WO2016006801A1 - 3족 질화물 반도체층을 성장하는 방법 - Google Patents

3족 질화물 반도체층을 성장하는 방법 Download PDF

Info

Publication number
WO2016006801A1
WO2016006801A1 PCT/KR2015/003787 KR2015003787W WO2016006801A1 WO 2016006801 A1 WO2016006801 A1 WO 2016006801A1 KR 2015003787 W KR2015003787 W KR 2015003787W WO 2016006801 A1 WO2016006801 A1 WO 2016006801A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
group iii
nitride semiconductor
iii nitride
growing
Prior art date
Application number
PCT/KR2015/003787
Other languages
English (en)
French (fr)
Inventor
신선혜
김두수
노민수
조인성
임원택
황성민
Original Assignee
주식회사 소프트에피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140094745A external-priority patent/KR101607564B1/ko
Application filed by 주식회사 소프트에피 filed Critical 주식회사 소프트에피
Publication of WO2016006801A1 publication Critical patent/WO2016006801A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Definitions

  • the present disclosure relates to a method of growing a group III nitride semiconductor layer as a whole, and more particularly, to a method of growing a group III nitride semiconductor layer on a substrate having irregularities.
  • the group III nitride semiconductor layer is a compound semiconductor layer of Al (x) Ga (y) In (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1). It is mainly used to make a semiconductor light emitting device that emits ultraviolet, blue, and green light.
  • FIG. 1 is a view showing an example of a method of growing a group III nitride semiconductor layer shown in US Patent No. 6,870,191, as shown in (a) to (c), the substrate 100; If the uneven or convex portion 200 is formed on the sapphire substrate, and the group III nitride semiconductor layer 110 (for example, GaN) is grown thereon, as shown in (b) and (c), the group III nitride semiconductor The layer 110 starts to grow from the bottom of the convex portion 200 and the top of the convex portion 200.
  • the group III nitride semiconductor layer 110 for example, GaN
  • the group III nitride semiconductor layer 110 grown from the bottom surface of the convex portion 200 and the top surface of the convex portion 200 met at the side surface of the convex portion 200.
  • the growth of the group III nitride semiconductor layer 110 is accelerated on the side of the convex portion 200, thereby forming a group III nitride semiconductor layer 110 having a flat and excellent crystallinity as shown in (f). do.
  • the convex portion 200 when the lateral orientation of the convex portion 200 is parallel to the growth stability surface of the group III nitride semiconductor layer 110 (for example, the direction parallel to the flat zone in the c-plane sapphire substrate), the convex portion 200 Since the growth rate of the group III nitride semiconductor layer 110 does not increase relatively near the side surface, it is difficult to fill the vicinity of the side surface of the convex portion 200, and thus the crystallinity of the group III nitride semiconductor layer 110 may be reduced. It is pointed out.
  • the convex portion 200 may have a stripe shape or an island shape. When the convex portion 200 is formed in an island shape, the convex portion 200 may have various scattering surfaces to further improve light extraction efficiency of a final device (eg, a semiconductor light emitting device). You can do it.
  • a method of growing a group III nitride semiconductor layer in a method of growing a group III nitride semiconductor layer, a plurality of protrusions extending in a first direction on the crystal substrate and protruding in a second direction Forming a stripe with protrusions; And forming a group III nitride semiconductor layer on the crystalline substrate on which the stripe having the protrusions is formed, wherein the second direction is a growth of the group III nitride semiconductor layer with respect to the growth of the group III nitride semiconductor layer in the first direction.
  • a method of growing a group III nitride semiconductor layer characterized by a relatively slow direction.
  • FIG. 1 is a view showing an example of a method of growing a group III nitride semiconductor layer shown in US Patent No. 6,870,191,
  • FIG. 5 is a view for explaining the principle of a method for growing a group III nitride semiconductor layer according to the present disclosure
  • 6 and 7 illustrate an example of a method of growing a group III nitride semiconductor layer according to the present disclosure
  • FIG. 8 is a diagram illustrating an example of a group III nitride semiconductor layer grown according to the present disclosure
  • FIG. 9 illustrates another example of a method for growing a group III nitride semiconductor layer according to the present disclosure
  • FIG. 10 shows another example of a group III nitride semiconductor layer grown in accordance with the present disclosure
  • FIG. 11 is a view showing an example of a group III nitride semiconductor light emitting device according to the present disclosure.
  • FIG. 2 and 3 are photographs showing the growth state of the group III nitride semiconductor layer according to the orientation of the pattern on the patterned crystal substrate
  • FIG. 2 shows a crystal substrate (eg, c-plane (surface orientation sapphire substrate; FIG. 4)
  • a plurality of stripes stripes formed in parallel along the direction of the crystal orientation [11-20]) extending in the direction of the crystal orientation [1-100] and having a groove (concave) or protrusion (convex) shape.
  • a photo shows a group III nitride semiconductor layer (for example, AlGaN) grown thereon, and FIG.
  • the branch is a photograph showing a group III nitride semiconductor layer (eg, AlGaN) grown on a plurality of stripes (stripes formed in parallel along the crystal orientation [1-100] direction).
  • a crystal substrate eg, c-plane sapphire substrate
  • Seed layer e.g.
  • a stripe in the form of protrusions having a width of 1.5 ⁇ m, a period of 3 ⁇ m, and a depth of 1.5 ⁇ m is formed in the direction shown in FIGS. 2 and 3, respectively, using an SiO 2 film as a mask.
  • FIG. 5 is a view for explaining the principle of a method for growing a group III nitride semiconductor layer according to the present disclosure.
  • a patterned stripe 20 is provided on a crystal substrate 10. Therefore, when the group III nitride semiconductor layer is grown, the growth of the group III nitride semiconductor layer is affected by the directions A and B in which the stripe 20 extends, which has a relatively better orientation (B). It is preferable to form the stripe 20 and to form a group III nitride semiconductor layer.
  • A relatively good orientation
  • Constraints are caused by using the convex portion of the
  • FIG. 6 and 7 illustrate an example of a method of growing a group III nitride semiconductor layer according to the present disclosure.
  • the orientations of better crystallinity relative to the crystal substrate 10 are shown in FIG. B) to form a stripe 20, but along the stripe 20 to form a projection 21 toward the direction (A), the growth of the group III nitride semiconductor layer is relatively slow, thereby ensuring crystallinity, The efficiency of scattering light by providing a light scattering surface is also improved.
  • FIG. 7 when the group III nitride semiconductor layer on the side of the stripe is formed, the stripe is formed in a relatively fast orientation A, and the protrusion 21 is provided in FIG. 3.
  • the group III nitride semiconductor layer will be coalesced and a group III nitride semiconductor layer with much lower flatness will be obtained.
  • the stripes 20 are evenly disposed throughout the crystal substrate 10.
  • FIG. 8 illustrates an example of a group III nitride semiconductor layer grown in accordance with the present disclosure.
  • the seed layer 31 is formed and then the group III nitride semiconductor layer 30 is grown.
  • the same conditions as those of the growth of the group III nitride semiconductor layer 30 shown in FIG. 2 may be used, but growth conditions in which the growth to the side of the stripe 20 is slightly suppressed may be used (for example, It is possible to use the same growth conditions as the seed layer (growth temperature: 1400 ° C., pressure 50 mbar) or to grow at lower pressures and higher temperatures than this growth condition.).
  • a cavity 22 is formed between the stripe 20 and the stripe 20.
  • the protrusion 21 may have various shapes such as trapezoidal, triangular, polygonal, and hemispherical, and preferably protrude to a width of 1/2 or less of the width of the stripe 20.
  • FIG. 9 is a view showing another example of a method for growing a group III nitride semiconductor layer according to the present disclosure. Unlike the example shown in FIG. 6, the protrusions 21 are disposed to be offset or zigzag. Has Through the arrangement of the protrusions 21, the spacing between neighboring stripes 20 is uniformly obtained.
  • FIG. 10 is a view illustrating another example of the group III nitride semiconductor layer grown according to the present disclosure.
  • the seed layer 31 is not formed in the protrusion 21.
  • This configuration can be obtained by performing primary etching for forming the stripe 20, as in FIG. 8, and then performing additional etching to remove the seed layer 31 formed on the protrusions 21.
  • FIG. 10 Through such a configuration, by suppressing the growth of the group III nitride semiconductor layer 30 in the protrusion 21, the group III nitride semiconductor layer 30 having excellent crystallinity can be obtained, while the light scattering efficiency remains as it is. It can be maintained.
  • the semiconductor light emitting device includes a crystal substrate 10, a seed layer 20 (eg, AlN), and a first semiconductor layer having a first conductivity. (30; Si-doped AlGaN), the active layer 40 to generate light through the recombination of electrons and holes, the second semiconductor layer 50 (Mg-AlGaN) having a second conductivity different from the first conductivity, current diffusion A first electrode 70 in electrical communication with the second semiconductor layer 50 through the transmissive electrode 60 (eg, ITO), the dielectric film 90, and the hole 71 formed in the dielectric film 90.
  • the transmissive electrode 60 eg, ITO
  • a second electrode 80 in electrical communication with the first semiconductor layer 30 through the holes 11 formed in the crystal substrate 10 and the holes 57 formed in the semiconductor layers 20 and 30.
  • the member number 81 is a plating seed layer
  • the member number 55 is an opening formed by removing the semiconductor layers 30, 40, and 50, and is insulated from the dielectric film 90.
  • Reference numeral 12 is a rough surface formed for light scattering on the crystal substrate 10, the stripe according to the present disclosure is not shown.
  • the light transmissive electrode 60 may be omitted, and the conductivity of the first semiconductor layer 30 and the conductivity of the second semiconductor layer 50 may be changed.
  • AlGaN may be further provided in the seed layer 20 and the first semiconductor layer 30.
  • a method for growing a group III nitride semiconductor layer comprising: forming a stripe on a crystal substrate, the stripe having a plurality of protrusions extending in a first direction and protruding in a second direction; And forming a group III nitride semiconductor layer on the crystalline substrate on which the stripe having the protrusions is formed, wherein the growth of the group III nitride semiconductor layer with respect to the first direction is performed in the second direction.
  • a method of growing a group III nitride semiconductor layer characterized in that the direction is slower than growth.
  • the first direction should be understood to include a direction slightly out of alignment, in addition to being completely consistent with [1-100], and should include an equivalent direction depending on the crystal substrate.
  • the first direction should be understood to include a direction slightly out of alignment in addition to being completely consistent with [11-20], and should include an equivalent direction depending on the crystal substrate.
  • the crystal substrate is a sapphire substrate.
  • SiC substrate, AlN substrate, etc. are mentioned as an example.
  • crystal substrates such as m surface, a surface, r surface, and n surface, can be used.
  • the light extraction efficiency can be improved.

Abstract

본 개시는 3족 질화물 반도체층을 성장하는 방법(METHOD OF GROWING III-NITRIDE SEMICONDUCTOR LAYER)에 있어서, 결정 기판에 제1 방향을 따라 뻗어 있으며, 제2 방향으로 돌출된 복수의 돌출부가 구비된 스트라이프를 형성하는 단계; 그리고, 돌출부를 구비하는 스트라이프가 형성된 결정 기판 위에 3족 질화물 반도체층을 형성하는 단계;를 포함하며, 제2 방향은 3족 질화물 반도체층의 성장이 제1 방향에 대한 3족 질화물 반도체층의 성장보다 상대적으로 느린 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법에 관한 것이다.

Description

3족 질화물 반도체층을 성장하는 방법
본 개시(Disclosure)는 전체적으로 3족 질화물 반도체층을 성장하는 방법(METHOD OF GROWING III-NITRIDE SEMICONDUCTOR LAYER)에 관한 것으로, 특히 요철을 구비하는 기판 위에 3족 질화물 반도체층을 성장하는 방법에 관한 것이다.
여기서, 3족 질화물 반도체층은 Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물 반도체층을 의미하며, 자외선, 청색, 녹색 계열의 빛을 발광하는 반도체 발광소자를 만드는데 주로 이용된다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 미국 등록특허공보 제6,870,191호에 제시된 3족 질화물 반도체층을 성장하는 방법의 일 예를 나타내는 도면으로서, (a) 내지 (c)에 도시된 바와 같이, 기판(100; 예: c면 사파이어 기판)에 요철 또는 볼록부(200)를 형성하고, 그 위에 3족 질화물 반도체층(110; 예: GaN)을 성장시키면, (b) 및 (c)에 도시된 바와 같이, 3족 질화물 반도체층(110)은 볼록부(200)의 저면과 볼록부(200)의 상면으로부터 성장을 시작한다. 이어서, (d) 및 (e)에 도시된 바와 같이, 볼록부(200)의 저면과 볼록부(200)의 상면으로부터 성장한 3족 질화물 반도체층(110)이 볼록부(200)의 측면에서 만난 다음, 이 볼록부(200)의 측면에서 3족 질화물 반도체층(110)의 성장이 가속화되어, (f)에 도시된 바와 같이, 평탄하고 결정성이 우수한 3족 질화물 반도체층(110)이 형성된다. 그러나, 볼록부(200)의 측면 방위가 성장되는 3족 질화물 반도체층(110)의 성장안정면(예: c면 사파이어 기판에서 플랫존과 나란한 방향)과 평행한 경우에는, 볼록부(200)의 측면 부근에서 3족 질화물 반도체층(110)의 성장속도가 상대적으로 빨라지지 않기 때문에, 볼록부(200)의 측면 부근을 메우기 어렵고, 따라서 3족 질화물 반도체층(110)의 결정성이 저하될 수 있다고 지적하고 있다. 이 때, 볼록부(200)는 스트라이프 형태나, 섬 형태를 가질 수 있으며, 섬 형태로 형성되는 경우에, 다양한 산란면을 가져서 최종적인 소자(예: 반도체 발광소자)의 광취출효율을 더 향상시킬 수 있게 된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 3족 질화물 반도체층을 성장하는 방법에 있어서, 결정 기판에 제1 방향을 따라 뻗어 있으며, 제2 방향으로 돌출된 복수의 돌출부가 구비된 스트라이프를 형성하는 단계; 그리고, 돌출부를 구비하는 스트라이프가 형성된 결정 기판 위에 3족 질화물 반도체층을 형성하는 단계;를 포함하며, 제2 방향은 3족 질화물 반도체층의 성장이 제1 방향에 대한 3족 질화물 반도체층의 성장보다 상대적으로 느린 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법이 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 미국 등록특허공보 제6,870,191호에 제시된 3족 질화물 반도체층을 성장하는 방법의 일 예를 나타내는 도면,
도 2 및 도 3은 패턴화된 기판 위에서 패턴의 방위에 따른 3족 질화물 반도체층의 성장 상태를 보이는 사진,
도 4는 면방위와 축방위를 설명하기 위한 도면,
도 5는 본 개시에 따라 3족 질화물 반도체층을 성장하는 방법의 원리를 설명하기 위한 도면,
도 6 및 도 7은 본 개시에 따라 3족 질화물 반도체층을 성장하는 방법의 일 예를 나타내는 도면,
도 8은 본 개시에 따라 성장된 3족 질화물 반도체층의 일 예를 나타내는 도면,
도 9는 본 개시에 따라 3족 질화물 반도체층을 성장하는 방법의 다른 예를 나타내는 도면,
도 10은 본 개시에 따라 성장된 3족 질화물 반도체층의 다른 예를 나타내는 도면,
도 11은 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 2 및 도 3은 패턴화된 결정 기판 위에서 패턴의 방위에 따른 3족 질화물 반도체층의 성장 상태를 보이는 사진으로서, 도 2는 결정 기판(예: c면(면방위 (0001) 사파이어 기판; 도 4 참조) 위에, 결정방위 [1-100] 방향으로 뻗어있으며, 홈(오목부) 또는 돌기(볼록부) 형태를 가지는 복수의 스트라이프(결정방위 [11-20] 방향을 따라 병렬로 형성된 스트라이프) 위에 성장된 3족 질화물 반도체층(예: AlGaN)을 나타내는 사진이고, 도 3은 결정 기판(예: c면 사파이어 기판) 위에, 결정방위 [11-20] 방향으로 뻗어있으며, 홈 또는 돌기 형태를 가지는 복수의 스트라이프(결정방위 [1-100] 방향을 따라 병렬로 형성된 스트라이프) 위에 성장된 3족 질화물 반도체층(예: AlGaN)을 나타내는 사진이다. 먼저, 결정 기판(예: c면 사파이어 기판) 위에 씨앗층(예: AlN(성장온도: 1400℃, 압력 50mbar)을 형성한다. 다음으로, SiO2막을 마스크로 하여 식각 공정을 통해 도 2 및 도 3에 제시된 방향으로 각각 폭 1.5㎛, 주기 3㎛, 깊이 1.5㎛의 돌기 형태의 스트라이프를 형성한다. 다음으로, 통상의 조건에 따라 3족 질화물 반도체층(예: AlxGayN(x>0, y≥0, x+y=1))을 성장하였다. 도 2에 도시된 3족 질화물 반도체층(예: AlGaN)의 경우에, 1.8㎛ 높이로 성장된 다음, 합체(coalescence)되어 평탄한 3족 질화물 반도체층이 형성되었다. 반면, 도 3에 도시된 3족 질화물 반도체층(예: AlGaN)의 경우에, 1.2㎛ 높이로 성장된 후, 이미 합체되었지만, 평탄하지 못하고 거칠게 형성되었다. 이것은 도 3에 제시된 스트라이프 측면에서의 3족 질화물 반도체층의 성장이, 도 2에 제시된 스트라이프 또는 홈 측면에서의 3족 질화물 반도체층의 성장보다 빠르기 때문이라고 알려져 있다(Growth of AlGaN and AlN on Patterned AlN/Sapphire Templates, Journal of Crystal Growth 315 (2011) 200-203). 또한 이것은 도 1에 제시된 3족 질화물 반도체층의 성장 방식(성장안정면과 평행한 볼록부의 측면에서 3족 질화물 반도체층이 빨리 메워지지 않음)과 일맥상통하는 점이 있다. 한편, 요철과 3족 질화물 반도체층 사이에 공동(cavity)이 형성되며, 3족 질화물 반도체층으로 3족 질화물 반도체 발광소자를 형성하는 경우에, 이 공동은 효율좋은 광 산란층으로 기능한다.
도 5는 본 개시에 따라 3족 질화물 반도체층을 성장하는 방법의 원리를 설명하기 위한 도면으로서, 위 논문에 제시된 바와 같이, 결정 기판(10) 위에, 패턴화된 스트라이프(20; stripe)를 구비하여 3족 질화물 반도체층을 성장하면, 스트라이프(20)가 뻗어있는 방향(A,B)에 따라 3족 질화물 반도체층의 성장이 영향을 받게 되며, 이는 결정성이 상대적으로 더 좋은 방위(B)로 스트라이프(20)를 형성하고, 3족 질화물 반도체층을 형성하는 것이 바람직하는 것을 의미한다. 그러나, 결정성이 상대적으로 좋은 방위(A)를 따라 스트라이프(20)를 형성하더라도, 스트라이프 형상을 가지는 이상 이 돌기 또는 홈을 이용하여 광을 산란하는데는, 도 1에 제시된 바와 같이, 섬(islands) 형태의 볼록부를 이용하는 것에 비해 제약이 따른다.
도 6 및 도 7은 본 개시에 따라 3족 질화물 반도체층을 성장하는 방법의 일 예를 나타내는 도면으로서, 도 6에 도시된 바와 같이, 결정 기판(10)에 상대적으로 결정성이 더 좋은 방위(B)로 스트라이프(20)를 형성하되, 스트라이프(20)를 따라 3족 질화물 반도체층의 성장이 상대적으로 느린 방위(A)를 향해 돌출부(21)를 형성함으로써, 결정성을 보장하는 한편, 다양한 광 산란면을 구비하여 광을 산란시키는 효율 또한 향상시키고 있다. 이와 달리, 도 7에 도시된 바와 같이 스트라이프의 측면에서의 3족 질화물 반도체층의 성장이 상대적으로 빠른 방위(A)로 스트라이프를 형성하고, 여기에 돌출부(21)를 구비하면, 도 3에 도시된 합체 높이(1.2㎛)보다 더 낮은 높이에서 3족 질화물 반도체층의 합체가 이루어지며, 훨씬 더 평탄도가 떨어지는 3족 질화물 반도체층을 얻게 될 것이다. 설명을 위해, 두 개의 스트라이프(20)만이 도시되었지만, 바람직하게는 스트라이프(20)는 결정 기판(10) 전체에 걸쳐서 균일하게 배치된다.
도 8은 본 개시에 따라 성장된 3족 질화물 반도체층의 일 예를 나타내는 도면으로서, 도 2에 제시된 바와 같이, 씨앗층(31)을 형성한 다음, 3족 질화물 반도체층(30)을 성장한다는 점에서 동일하나, 스트라이프(20)에 돌출부(21)가 형성되어 있다는 점에서 차이를 가진다. 도 2에 제시된 3족 질화물 반도체층(30)의 성장 조건과 동일한 조건을 사용해도 좋지만, 스트라이프(20) 측면 측으로의 성장이 상대적으로 약간 억제한 형태의 성장 조건을 사용하는 것도 좋다(예를 들어, 씨앗층과 동일한 성장조건(성장온도: 1400℃, 압력 50mbar)을 사용하거나, 이 성장조건보다 더 낮은 압력 및 더 높은 온도에서 성장할 수 있다.). 스트라이프(20)의 폭과 주기에 특별히 제한이 있는 것은 아니지만, 3㎛ 이하의 폭과 4㎛ 이하의 주기를 가지는 것이 결정성 및 광 산란효율의 측면에서 적합하다. 스트라이프(20)와 스트라이프(20) 사이에는 공동(22)이 형성되어 있다. 돌출부(21)의 형상은 사다리꼴, 삼각형, 다각형, 반구형 등 다양한 형태를 가질 수 있으며, 스프라이프(20)의 폭의 1/2이하의 폭으로 돌출되는 것이 바람직하다.
도 9는 본 개시에 따라 3족 질화물 반도체층을 성장하는 방법의 다른 예를 나타내는 도면으로서, 도 6에 제시된 예와 달리, 돌출부(21)가 서로 어긋나게 또는 지그재그로 위치하게 배치되어 있다는 점에서 차이를 가진다. 이러한 돌출부(21)의 배치를 통해, 이웃한 스트라이프(20) 사이의 간격을 전체적으로 균일하게 하는 이점을 가진다.
도 10은 본 개시에 따라 성장된 3족 질화물 반도체층의 다른 예를 나타내는 도면으로서, 도 8에 제시된 예와 달리, 돌출부(21)에 씨앗층(31)이 형성되어 있지 않다. 이러한 구성은 도 8에서와 같이, 스트라이프(20) 형성을 위한 1차적인 식각을 행한 다음, 돌출부(21) 위에 형성된 씨앗층(31)을 제거하는 추가의 식각을 행함으로써, 얻어질 수 있다. 이러한 구성을 통해, 돌출부(21)에서의 3족 질화물 반도체층(30)의 성장을 억제함으로써, 보다 결정성이 우수한 3족 질화물 반도체층(30)을 얻을 수 있게 되는 한편, 광 산란 효율은 그대로 유지할 수 있게 된다.
도 11은 본 개시에 따른 3족 질화물 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 결정 기판(10), 씨앗층(20; 예: AlN), 제1 도전성을 가지는 제1 반도체층(30; Si-doped AlGaN), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(40), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(50; Mg-AlGaN), 전류확산을 위한 투광성 전극(60; 예: ITO), 유전체막(90), 유전체막(90)에 형성된 홀(71)을 통해 제2 반도체층(50)과 전기적으로 연통하는 제1 전극(70) 그리고, 결정 기판(10)에 형성된 홀(11) 및 반도체층(20,30)에 형성된 홀(57)을 통해 제1 반도체층(30)과 전기적으로 연통하는 제2 전극(80)을 포함한다. 부재번호 81은 도금 씨드층이며, 부재번호 55는 반도체층(30,40,50)이 제거되어 형성된 개구로서, 유전체막(90)으로 절연되어 있다. 부재번호 12는 결정 기판(10)에 광 산란을 위해 형성된 거친 표면(rough surface)이며, 본 개시에 따른 스트라이프는 도시가 생략되었다. 투광성 전극(60)은 생략될 수 있으며, 제1 반도체층(30)의 도전성과 제2 반도체층(50)의 도전성을 바뀔 수 있다. 씨앗층(20)과 제1 반도체층(30)에 추가로 AlGaN을 구비하여도 좋다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 3족 질화물 반도체층을 성장하는 방법에 있어서, 결정 기판에 제1 방향을 따라 뻗어 있으며, 제2 방향으로 돌출된 복수의 돌출부가 구비된 스트라이프를 형성하는 단계; 그리고, 돌출부를 구비하는 스트라이프가 형성된 결정 기판 위에 3족 질화물 반도체층을 형성하는 단계;를 포함하며, 제2 방향은 대한 3족 질화물 반도체층의 성장이 제1 방향에 대한 3족 질화물 반도체층의 성장보다 상대적으로 느린 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
(2) 스트라이프를 형성하는 단계에 앞서, 결정 기판에 3족 질화물 반도체층의 성장을 위한 씨앗층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
(3) 3족 질화물 반도체층은 AlxGayN(x>0, y≥0, x+y=1))의 조성을 가지는 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
(4) x는 0.03 이상의 값을 가지는 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법. x가 0.03 이상의 값을 갖게 함으로써, 그 위에 자외선 반도체 발광소자를 위한 복수의 3족 질화물 반도체층을 성장하는데 활용할 수 있게 된다.
(5) 제1 방향은 [1-100] 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법. 여기서 제1 방향은 [1-100]과 완전히 일치하는 것 이외에 약간 벗어난 방위를 포함하는 것으로 이해되어야 하며, 결정 기판에 따라 등가의 방향을 포함하는 것으로 이해되어야 한다.
(6) 제2 방향은 [11-20] 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법. 여기서 제1 방향은 [11-20]과 완전히 일치하는 것 이외에 약간 벗어난 방위를 포함하는 것으로 이해되어야 하며, 결정 기판에 따라 등가의 방향을 포함하는 것으로 이해되어야 한다.
(7) 결정 기판은 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법. 이외에도, SiC 기판, AlN 기판 등을 예로 들 수 있다.
(8) 결정 기판은 c면 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법. 이외에도, m면, a면, r면, n면 등의 결정 기판을 사용할 수 있다.
(9) 스트라이프를 형성하는 단계에 앞서, 결정 기판에 3족 질화물 반도체층의 성장을 위한 씨앗층을 형성하는 단계;를 더 포함하며, 3족 질화물 반도체층은 AlxGayN(x>0, y≥0, x+y=1))의 조성을 가지고, 제1 방향은 [1-100] 방향이며, 제2 방향은 [11-20] 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
(10) 돌출부에는 씨앗층이 형성되어 있지 않은 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
본 개시에 따른 하나의 3족 질화물 반도체층을 성장하는 방법에 의하면, 광취출효율을 높일 수 있게 된다.

Claims (10)

  1. 3족 질화물 반도체층을 성장하는 방법에 있어서,
    결정 기판에 제1 방향을 따라 뻗어 있으며, 제2 방향으로 돌출된 복수의 돌출부가 구비된 스트라이프를 형성하는 단계; 그리고,
    돌출부를 구비하는 스트라이프가 형성된 결정 기판 위에 3족 질화물 반도체층을 형성하는 단계;를 포함하며,
    제2 방향은 3족 질화물 반도체층의 성장이 제1 방향에 대한 3족 질화물 반도체층의 성장보다 상대적으로 느린 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  2. 청구항 1에 있어서,
    스트라이프를 형성하는 단계에 앞서, 결정 기판에 3족 질화물 반도체층의 성장을 위한 씨앗층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  3. 청구항 1 또는 청구항 2에 있어서,
    3족 질화물 반도체층은 AlxGayN(x>0, y≥0, x+y=1))의 조성을 가지는 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  4. 청구항 3에 있어서,
    x는 0.03 이상의 값을 가지는 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  5. 청구항 1에 있어서,
    제1 방향은 [1-100] 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  6. 청구항 1 또는 청구항 5에 있어서,
    제2 방향은 [11-20] 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  7. 청구항 1에 있어서,
    결정 기판은 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  8. 청구항 7에 있어서,
    결정 기판은 c면 사파이어 기판인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  9. 청구항 8에 있어서,
    스트라이프를 형성하는 단계에 앞서, 결정 기판에 3족 질화물 반도체층의 성장을 위한 씨앗층을 형성하는 단계;를 더 포함하며,
    3족 질화물 반도체층은 AlxGayN(x>0, y≥0, x+y=1))의 조성을 가지고,
    제1 방향은 [1-100] 방향이며,
    제2 방향은 [11-20] 방향인 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
  10. 청구항 1 또는 청구항 9에 있어서,
    돌출부에는 씨앗층이 형성되어 있지 않은 것을 특징으로 하는 3족 질화물 반도체층을 성장하는 방법.
PCT/KR2015/003787 2014-07-11 2015-04-15 3족 질화물 반도체층을 성장하는 방법 WO2016006801A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0087713 2014-07-11
KR20140087713 2014-07-11
KR1020140094745A KR101607564B1 (ko) 2014-07-11 2014-07-25 3족 질화물 반도체층을 성장하는 방법
KR10-2014-0094745 2014-07-25

Publications (1)

Publication Number Publication Date
WO2016006801A1 true WO2016006801A1 (ko) 2016-01-14

Family

ID=55064403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003787 WO2016006801A1 (ko) 2014-07-11 2015-04-15 3족 질화물 반도체층을 성장하는 방법

Country Status (1)

Country Link
WO (1) WO2016006801A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106455A (ja) * 1998-07-31 2000-04-11 Sharp Corp 窒化物半導体構造とその製法および発光素子
JP2001176813A (ja) * 1999-12-15 2001-06-29 Nichia Chem Ind Ltd 窒化物半導体基板の作製方法
KR101078062B1 (ko) * 2010-08-11 2011-10-31 서울옵토디바이스주식회사 비극성 반도체 소자 및 그것을 제조하는 방법
KR20130055976A (ko) * 2011-11-21 2013-05-29 서울옵토디바이스주식회사 공극층을 갖는 발광 다이오드 및 그것을 제조하는 방법
JP2013179368A (ja) * 2011-08-09 2013-09-09 Panasonic Corp 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106455A (ja) * 1998-07-31 2000-04-11 Sharp Corp 窒化物半導体構造とその製法および発光素子
JP2001176813A (ja) * 1999-12-15 2001-06-29 Nichia Chem Ind Ltd 窒化物半導体基板の作製方法
KR101078062B1 (ko) * 2010-08-11 2011-10-31 서울옵토디바이스주식회사 비극성 반도체 소자 및 그것을 제조하는 방법
JP2013179368A (ja) * 2011-08-09 2013-09-09 Panasonic Corp 窒化物半導体層成長用構造、積層構造、窒化物系半導体素子および光源ならびにこれらの製造方法
KR20130055976A (ko) * 2011-11-21 2013-05-29 서울옵토디바이스주식회사 공극층을 갖는 발광 다이오드 및 그것을 제조하는 방법

Similar Documents

Publication Publication Date Title
US9660135B2 (en) Enhanced performance active pixel array and epitaxial growth method for achieving the same
WO2011025291A2 (ko) 요철 패턴 기판 상의 고품질 비극성/반극성 반도체 소자 및 그 제조 방법
JP2007053381A (ja) 垂直構造の窒化ガリウム系led素子の製造方法
CN103730544A (zh) 生长基板分离方法、发光二极管制造方法以及发光二极管
CN101926012B (zh) 制造发光器件的方法
US20160380153A1 (en) Substrate, method of preparing the same, and light-emitting diode using the substrate
CN104681679A (zh) 紫外发光二极管和其制备方法
CN102280533A (zh) 氮化镓衬底材料制造方法
WO2016006801A1 (ko) 3족 질화물 반도체층을 성장하는 방법
KR101148380B1 (ko) 저결함 밀도를 가지는 에피택셜 구조 및 그 제조 방법
JP2009170611A (ja) 単結晶基板およびGaN系LED素子の製造方法
KR101607564B1 (ko) 3족 질화물 반도체층을 성장하는 방법
WO2015102344A1 (ko) 질화물 반도체 발광소자 및 그 제조 방법
KR20130041620A (ko) 에피층과 성장 기판 분리 방법
KR20140145797A (ko) 질화물 반도체 박막 제조방법 및 이를 이용한 질화물 반도체 소자 제조방법
KR20140011071A (ko) 질화물 반도체층과 성장 기판 분리 방법
JP2022547670A (ja) 歪み緩和構造を組み込んだled前駆体
WO2014042461A1 (ko) 고휘도 질화물 발광소자 및 그 제조 방법
US10290497B2 (en) Fabrication of semi-polar crystal structures
JP2009184860A (ja) 基板およびエピタキシャルウェハ
KR101053115B1 (ko) 결정성 및 휘도가 우수한 질화물계 발광소자 및 그 제조 방법
WO2014193069A1 (ko) 백색 led와 그 제조방법
KR20140047869A (ko) 성장 기판 분리 방법 및 발광 다이오드 제조 방법
JP7338045B2 (ja) 発光ダイオードおよび発光ダイオードの形成方法
WO2022270309A1 (ja) 半導体デバイスの製造方法および製造装置、半導体デバイスならびに電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15819247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15819247

Country of ref document: EP

Kind code of ref document: A1