WO2016004683A1 - 电致变色光栅及其制备方法、3d显示装置 - Google Patents

电致变色光栅及其制备方法、3d显示装置 Download PDF

Info

Publication number
WO2016004683A1
WO2016004683A1 PCT/CN2014/087680 CN2014087680W WO2016004683A1 WO 2016004683 A1 WO2016004683 A1 WO 2016004683A1 CN 2014087680 W CN2014087680 W CN 2014087680W WO 2016004683 A1 WO2016004683 A1 WO 2016004683A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochromic
layer
transparent electrode
material layer
grating
Prior art date
Application number
PCT/CN2014/087680
Other languages
English (en)
French (fr)
Inventor
黄常刚
张振宇
廖燕平
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/771,552 priority Critical patent/US9715119B2/en
Publication of WO2016004683A1 publication Critical patent/WO2016004683A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/157Structural association of cells with optical devices, e.g. reflectors or illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/1514Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
    • G02F1/1523Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
    • G02F1/1524Transition metal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/15Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on an electrochromic effect
    • G02F1/153Constructional details
    • G02F1/155Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/44Arrangements combining different electro-active layers, e.g. electrochromic, liquid crystal or electroluminescent layers

Definitions

  • Embodiments of the present invention relate to the field of display technologies, and in particular, to an electrochromic grating, a method of fabricating the same, and a 3D display device.
  • the 3D display function has been widely used in display devices.
  • the methods for realizing 3D display include shutter type, polarized type, grating type, etc., wherein both shutter type and polarized type need to wear glasses for viewing, and the grating type can be directly viewed by naked eyes.
  • a 2D/3D-switched grating is prepared by using an electrochromic solution, that is, an electrochromic solution is disposed between two transparent conductive films, and a black-and-white strip-shaped grating is formed by controlling the electrochromic solution.
  • the 3D grating in the prior art separates the electrochromic solution 14 in a corresponding grid through a barrier layer 13 disposed between the first substrate 11 and the second substrate 12, and is applied after voltage application.
  • the discoloration solution 14 is discolored to form a grating to function as a light blocking.
  • an ITO transparent electrode and a barrier layer 13 are sequentially prepared on the first substrate 11, and an electrochromic solution 14 is dropped into a mesh formed by the barrier layer 13; a transparent electrode of ITO is prepared on the second substrate 12; The layer substrates are combined to form a grating.
  • the electrochromic solution 14 dropped into the grid of the barrier layer 13 is completely separated by the second substrate 12 and the first substrate 11.
  • the grating cannot completely separate the electrochromic solution 14 in the corresponding grid, so that other grids that need to transmit light may also seep.
  • the electrochromic solution will also change color after power-on, which will affect the 3D display effect of the 3D display panel.
  • the electrochromic solution and the thicker barrier layer used in the prior art can severely refract and scatter the light emitted by the display panel, thereby affecting the effect of the 2D display.
  • the present invention provides an electrochromic grating and a preparation method thereof, and a 3D display device, which uses an inorganic electrochromic material to form an electrochromic pattern, which is completely under a voltage condition. Transparent, does not affect the 2D display effect, in another type of electricity In the case of pressure, the inorganic electrochromic material is discolored, and the patterned region produces a light-shielding effect, thereby functioning as a grating, and the display panel provided with the grating can realize naked-eye 3D display.
  • an electrochromic grating comprising:
  • an ion storage layer, an electrochromic layer and a second transparent electrode are sequentially formed on each of the first transparent electrodes, and the electrochromic layer is configured to be in the first transparent electrode and When a different driving voltage is applied to the two transparent electrodes, the transparent state is switched to the light blocking state.
  • the electrochromic layer is made of an inorganic electrochromic material.
  • the electrochromic layer is made of yttrium oxide IrO 3 , tungsten oxide WO 3 or molybdenum oxide MoO 3 .
  • the ion storage layer is made of vanadium pentoxide or titanium dioxide.
  • the electrochromic grating further includes a driving circuit coupled to the first transparent electrode and the second transparent electrode to provide a driving voltage for the electrochromic layer.
  • a 3D display device including:
  • An electrochromic grating according to any of the above embodiments disposed on the display panel.
  • the display panel is an OLED display panel
  • the electrochromic grating is located on a light exiting side of the OLED display panel.
  • the display panel is a liquid crystal display panel
  • the electrochromic grating is located between a backlight for providing light to the liquid crystal display panel and the liquid crystal display panel, or the electricity
  • the color-changing grating is located on the light-emitting side of the liquid crystal display panel.
  • a method of fabricating an electrochromic grating comprising the steps of:
  • first transparent electrode material layer Forming a first transparent electrode material layer, an ion storage material layer, an electrochromic material layer, and a second transparent electrode material layer sequentially on the substrate;
  • the first transparent electrode material layer, the ion storage material layer, and the electro-deformation are performed by a patterning process
  • the color material layer and the second transparent electrode material layer are divided into a plurality of first transparent electrodes, a plurality of ion storage layers, and a plurality of first transparent electrodes, which are sequentially arranged at equal predetermined intervals in a direction parallel to the substrate, in a direction perpendicular to the substrate.
  • the step of forming the plurality of first transparent electrodes, the plurality of ion storage layers, the plurality of electrochromic layers, and the plurality of second transparent electrodes comprises the steps of:
  • the electrochromic grating of the above embodiment of the present invention the method of manufacturing the same, and the 3D display device, the naked-eye 3D display can be conveniently realized, and switching between the naked-eye 3D display and the 2D display state is conveniently performed.
  • the position of the light-shielding pattern of the electrochromic grating prepared according to any of the above embodiments of the present invention is fixed, and the light-shielding region and the light-transmitting region can be strictly distinguished, so that the light-shielding region and the light-transmitting region do not have any relationship with each other. Interference, so as to have no effect on the effect of 2D display, provides users with an excellent experience.
  • FIG. 1 is a schematic diagram of the principle of a grating of a 3D display panel in the prior art
  • FIG. 2 is a partial cross-sectional structural view of an electrochromic grating according to an embodiment of the invention
  • FIG. 3 is a schematic view showing a 2D display principle of a 3D display panel provided with the electrochromic grating of the present invention
  • Figure 4 is a schematic view showing the principle of 3D display of a 3D display panel provided with the electrochromic grating of the present invention
  • 5A-5J are schematic views showing a process of preparing an electrochromic grating according to an embodiment of the present invention.
  • an electrochromic grating As shown in FIG. 2, the electrochromic grating comprises: a substrate 1, a plurality of strip-shaped first transparent electrodes 2, and a plurality of ion storages. Layer 3, a plurality of electrochromic layers 4 and a plurality of strip-shaped second transparent electrodes 5. A plurality of strip-shaped first transparent electrodes 1 are distributed in parallel on the substrate 1 at equal predetermined intervals.
  • An ion storage layer 3, an electrochromic layer 4 and a second transparent electrode 5 are sequentially formed on each of the first transparent electrodes 2, and the electrochromic layer is configured to be at the first transparent electrode 2 and the second When a different driving voltage is applied to the transparent electrode 5, the transparent state that allows the light beam to pass through is converted from a transparent state to a light blocking state.
  • each of the first transparent electrodes 2, and the ion storage layer 3, the electrochromic layer 4, and the second transparent electrode 5 sequentially formed on the first transparent electrode 2 form a barrier which is distributed in parallel at equal intervals of the predetermined pitch. Floor.
  • the arrangement pitch of the barrier layers becomes the arrangement pitch of the electrochromic layer 4.
  • the predetermined spacing between two adjacent barrier layers is determined by the number of viewing viewpoints, the pixel size of the display panel, and the pupil spacing, as shown in the following equation:
  • f denotes the arrangement pitch of the electrochromic grating
  • n denotes the number of viewpoints
  • p denotes the width of the sub-pixel of the display panel matched with the electrochromic grating
  • e denotes the pupil spacing.
  • a pattern of each film layer is formed by a patterning process such as photolithography.
  • the substrate 1 may be made of any one of materials such as glass, silicon wafer, quartz, plastic, and silicon wafer, such as glass.
  • the first transparent electrode 2 and the second transparent electrode 5 are each made of a transparent conductive material.
  • the transparent conductive material includes a transparent metal film, a transparent metal oxide film, a non-metal oxide film, and a conductive particle-dispersed ferroelectric material.
  • the form of the film includes a single layer film, a two layer film, a multilayer film or a multilayer film, an undoped type, a doped type, and a multi-element type.
  • the transparent conductive material includes a metal oxide film such as an indium tin oxide (ITO) film.
  • ITO indium tin oxide
  • the first transparent electrode 2 and the second transparent electrode 5 have a thickness of 0.02 to 0.50 um.
  • a first transparent electrode material layer for forming a first transparent electrode and a second transparent electrode material layer for forming a second transparent electrode may be separately formed by a semiconductor process such as deposition or sputtering film formation.
  • the ion storage layer 3 is used for storing and providing ions required for electrochromism to maintain charge balance.
  • the ion storage layer 3 is made of a material such as vanadium pentoxide V 2 O 5 or titanium dioxide TiO 2 .
  • ion storage layer 3 is made of vanadium pentoxide V 2 O 5
  • vanadium pentoxide V 2 O 5 has good ion storage properties, and a layered structure having semiconductor characteristics, facilitate storage and transmission of ions to maintain Charge balance in the electrochromic layer.
  • the thickness of the ion storage layer 3 is 0.2 to 1 um.
  • the ion storage layer 3 can be formed by a semiconductor process such as sputtering film formation.
  • the electrochromic layer 4 is made of an inorganic electrochromic material such as yttrium oxide IrO 3 , tungsten oxide WO 3 or molybdenum oxide MoO 3 .
  • the electrochromic layer 4 has a thickness of 1.5 to 10 um.
  • a layer of electrochromic material is formed by a semiconductor process such as deposition or sputtering film formation.
  • the electrochromic layer 4 is formed of a solid film, the electrochromic layers located in two adjacent barrier layers are physically separated from each other, and the electrochromic layer in one barrier layer is not It affects the light transmission performance of other light-transmitting regions, thereby improving the 3D display effect of the 3D display device including such an electrochromic grating.
  • the electrochromic grating of the embodiment of the present invention further includes a driving circuit (not shown) connected to the first transparent electrode 2 and the second transparent electrode 5 to provide the electrochromic layer 4 Drive voltage.
  • the electrochromic grating may be driven by a direct current.
  • the electrochromic grating has a driving voltage of 2 to 20V. It should be noted that there are some differences in the driving voltages of different electrochromic materials. Therefore, in practical applications, it is also necessary to determine the specific range of the driving voltage according to the characteristics of different electrochromic materials.
  • the electrochromic layer 4 in the electrochromic grating is initially light transmissive. After the electric field is applied to the electrochromic grating, the electrochromic material in the electrochromic layer 4 is discolored, for example, becomes black having a light-shielding effect, forming a light-shielding pattern, functioning as a grating, in which discoloration occurs.
  • the electrochromic material has an optical density (OD) of 2 to 3 and a visible light transmittance of 0.1 to 1%.
  • the electrochromic material is not energized When the voltage or the applied voltage is lower than a predetermined value, the transparent state allows the light beam to pass through, and when the applied voltage is greater than the predetermined value, the light blocking state is blocked.
  • the electrochromic material which is transparent when the applied voltage is greater than the predetermined value can also be applied to the electro-optical embodiment of the present invention. Color changing grating.
  • the electrochromic layer is in a transparent state upon application of a first voltage value, and an electrochromic material in a light-shielded state after application of a second voltage value.
  • the driving voltage in the range of the driving voltage is (2-20 volts), as the driving voltage increases, the optical density of the electrochromic layer at the light shielding pattern increases, and the visible light transmittance Decrease and gradually change from a transparent state to a light-shielded state.
  • the electrochromic grating may be driven by other driving methods.
  • the driving method of the electrochromic grating is not particularly limited as long as the electrochromic grating can be driven to make the shading pattern.
  • the electrochromic material at the corresponding position may be discolored.
  • the electrochromic layer is in a transparent state when no voltage is applied or the applied voltage is lower than a predetermined value, and is in a light blocking state when the applied voltage is greater than the predetermined value.
  • the material of the electrochromic layer at the corresponding position of the light-shielding pattern undergoes constant discoloration and becomes a light-shielding state, for example, becomes black.
  • the portion of the light emitted from the display panel 7 is partially blocked by the black portion, and part of the light is transmitted from the gap between the light-shielding patterns in which the electrochromic layer is not provided, thereby functioning as a grating.
  • the left and right eye images displayed on the display panel are respectively projected to the left eye view area and the right eye view area in front of the display panel 7, and the left and right eyes of the viewer are respectively located in the left and right eye view areas, and the 3D can be viewed.
  • Image which enables naked-eye 3D display. As shown in FIG.
  • the naked-eye 3D display can be conveniently realized, and switching between the naked-eye 3D display and the 2D display state is conveniently performed.
  • the position of the light-shielding pattern of the electrochromic grating of any of the above embodiments of the present invention is fixed, and the light-shielding region and the light-transmitting region can be strictly distinguished, so that the light-shielding region and the light-transmitting region do not interfere with each other, thereby Does not have any effect on the effect of 2D display, for the user to bring Come to an excellent experience.
  • the display panel 7 is a common 2D display screen, and may be, for example, an organic light emitting diode (OLED) display panel or a thin film transistor liquid crystal display (TFT-film). LCD)) Display panel or Active Matrix Organic Light Emitting Diode (AMOLED) display panel.
  • OLED organic light emitting diode
  • TFT-film thin film transistor liquid crystal display
  • AMOLED Active Matrix Organic Light Emitting Diode
  • the 3D display device comprising a display panel 7 and an electro-induced electrical system according to any of the above embodiments disposed on the display panel Color changing grating.
  • the 3D display device further includes a septum glass 8 between the electrochromic grating and the display panel 7.
  • the display panel 7 is an OLED display panel, and the electrochromic grating is located on a light exiting side of the OLED display panel.
  • the display panel 7 is a liquid crystal display panel, and the electrochromic grating is located at a backlight (not shown) for providing light to the liquid crystal display panel and the liquid crystal display panel. Between, or the electrochromic grating is located on the light exiting side of the liquid crystal display panel.
  • the display device of the present invention may be a device such as a liquid crystal television, a liquid crystal panel, an OLED television, an OLED panel, a mobile phone, a notebook, or a navigator.
  • a method of fabricating an electrochromic grating comprising the steps of:
  • first transparent electrode material layer Forming a first transparent electrode material layer, an ion storage material layer, an electrochromic material layer, and a second transparent electrode material layer on the substrate 1 in sequence;
  • a plurality of first transparent electrodes 2, a plurality of ion storage layers 3, a plurality of electrochromic layers 4, and a plurality of second transparent electrodes 5 are sequentially disposed in the direction of 1.
  • the first transparent electrode 2 is obtained by a one-step patterning process.
  • each film layer is not specifically limited in the present invention, and any reasonable manner of forming each film layer falls within the protection scope of the present invention.
  • the step of forming a plurality of the first transparent electrode 2, the plurality of ion storage layers 3, the plurality of electrochromic layers 4, and the plurality of second transparent electrodes 5 comprises the steps of:
  • FIGS. 5A-5J are schematic views showing a process of preparing an electrochromic grating according to an embodiment of the present invention. As shown in FIGS. 5A-5J, for this embodiment, a method of fabricating an electrochromic grating includes the following steps:
  • Exposing the photoresist with a mask (not shown) having a plurality of patterns arranged in parallel at equal predetermined intervals, as shown in FIG. 5G;
  • Each of the barrier layers formed on the substrate 1 includes, in order, a first transparent electrode 1, an ion storage layer 3, an electrochromic layer 4, and a second transparent electrode 5, as shown in FIG. 5I;
  • the photoresist located at the uppermost layer is peeled off to form an electrochromic grating of an embodiment of the present invention, as shown in Fig. 5J.
  • an electrochromic grating having a regularly arranged light-shielding pattern defined by a barrier layer is formed.
  • the material of the electrochromic layer at the corresponding position of the light-shielding pattern is changed from colorless transparent to black, so that the portion of the light emitted by the display panel is changed.
  • the black portion is partially blocked, and the electrochromic material is not disposed at the gap between the light shielding patterns.
  • a part of the light beam emitted from the display panel is diffused from the gap between the light-shielding patterns, and the left and right eye images displayed by the display panel are respectively projected to the left-eye view and the right-eye view area in front of the display panel, and the viewer's left and right sides
  • the 3D image can be viewed, and finally the naked eye 3D display is realized.
  • the electrochromic grating may be driven with a DC voltage of, for example, 2 to 20V.
  • the driving voltage increases, the optical density of the electrochromic layer at the light-shielding pattern increases, the visible light transmittance decreases, and gradually changes from the transparent state to the light-shielded state.
  • the naked-eye 3D display can be conveniently realized, and switching between the naked-eye 3D display and the 2D display state is conveniently performed.
  • the position of the light-shielding pattern of the electrochromic grating prepared according to any of the above embodiments of the present invention is fixed, and the light-shielding region and the light-transmitting region can be strictly distinguished, so that the light-shielding region and the light-transmitting region do not have any relationship with each other. Interference, so as to have no effect on the effect of 2D display, provides users with an excellent experience.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

提供了一种电致变色光栅,包括:基板(1);多个条状的第一透明电极(2),以相等的预定间距平行地分布在基板(1)上;以及多个离子存储层(3)、多个电致变色层(4)和多个条状的第二透明电极(5)。在每个第一透明电极(2)上依次形成一个离子存储层(3)、一个电致变色层(4)和一个第二透明电极(5),电致变色层(4)被配置成当在第一透明电极(2)和第二透明电极(5)上施加不同的驱动电压的情况下从透明状态转换成遮光状态。还提供了一种电致变色光栅的制备方法和3D显示装置。提供的电致变色光栅的显示装置,能够很方便地实现裸眼3D显示、在裸眼3D与2D显示状态之间切换;电致变色光栅遮光图形位置固定,遮光区和透光区不存在干扰,对2D显示没有影响,增强了用户使用体验。

Description

电致变色光栅及其制备方法、3D显示装置 技术领域
本发明的实施例涉及显示技术领域,尤其是一种电致变色光栅及其制备方法、3D显示装置。
背景技术
3D显示功能已经广泛应用于显示装置中,实现3D显示的方法包括快门式、偏光式、光栅式等,其中快门式和偏光式均需要佩戴眼镜来观看,而光栅式可直接裸眼观看。
现有技术中利用电致变色溶液制备2D/3D切换的光栅,即在两个透过导电膜之间设置电致变色溶液,通过控制电致变色溶液形成黑白条间隔的光栅。
如图1所示,现有技术中的3D光栅是通过设在第一基板11和第二基板12之间的阻隔层13将电致变色溶液14分隔在相应的网格内,施加电压后电致变色溶液14发生变色形成光栅从而起到遮光作用。一般地,在第一基板11上依次制备ITO透明电极、阻隔层13,电致变色溶液14滴注在阻隔层13形成的网格内;在第二基板12上制备一层ITO透明电极;两层基板对合后形成光栅。滴注在阻隔层13网格内的电致变色溶液14完全依靠第二基板12与第一基板11贴合后进行分隔。由于贴合后阻隔层13与第二基板12之间会存在缝隙,因此这种光栅无法将电致变色溶液14完全分隔在相应的网格内,导致其他需要透光的网格也会渗有电致变色溶液,加电后也会发生变色,从而影响3D显示面板的3D显示效果。另外,现有技术中采用的电致变色溶液以及较厚的阻隔层都会对显示面板发出的光发生严重的折射和散射,从而影响2D显示的效果。
发明内容
为了解决上述现有技术中存在的问题,本发明提出一种电致变色光栅及其制备方法、3D显示装置,采用无机电致变色材料形成电致变色图形,该图形在一种电压情况下完全透明,不会影响2D显示效果,在另一种电 压情况下,无机电致变色材料发生变色,有图形的区域产生遮光效应,从而起到光栅的作用,设置有该光栅的显示面板能够实现裸眼3D显示。
根据本发明的一方面,提出一种电致变色光栅,包括:
基板;
多个条状的第一透明电极,以相等的预定间距平行地分布在所述基板上;以及
多个离子存储层、多个电致变色层和多个条状的第二透明电极,
其中,在每个所述第一透明电极上依次形成一个离子存储层、一个电致变色层和一个第二透明电极,所述电致变色层被配置成当在所述第一透明电极和第二透明电极上施加不同的驱动电压的情况下从透明状态转换成遮光状态。
在一种实施例中,所述电致变色层由无机电致变色材料制成。
在一种实施例中,所述电致变色层由氧化铱IrO3、氧化钨WO3或氧化钼MoO3制成。
在一种实施例中,所述离子存储层由五氧化二钒或二氧化钛制成。
在一种实施例中,所述电致变色光栅还包括驱动电路,与所述第一透明电极和第二透明电极连接,以提供用于所述电致变色层的驱动电压。
根据本发明另一方面的实施例,提供一种3D显示装置,包括:
显示面板;以及
设置在所述显示面板上的上述任一实施例所述的电致变色光栅。
在一种实施例中,所述显示面板为OLED显示面板,并且所述电致变色光栅位于所述OLED显示面板的出光侧。
在一种实施例中,所述显示面板为液晶显示面板,并且所述电致变色光栅位于用于向所述液晶显示面板提供光的背光源与所述液晶显示面板之间,或所述电致变色光栅位于所述液晶显示面板的出光侧。
根据本发明进一步方面的实施例,提供一种电致变色光栅的制备方法,包括以下步骤:
在基板上依次形成第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层;以及
采用构图工艺将所述第一透明电极材料层、离子存储材料层、电致变 色材料层和第二透明电极材料层分成在平行于基板的方向上以相等的预定间距平行分布、在垂直于基板的方向上依次布置的多个第一透明电极、多个离子存储层、多个电致变色层和多个第二透明电极。
在一种实施例中,形成多个第一透明电极、多个离子存储层、多个电致变色层和多个第二透明电极的步骤包括以下步骤:
在所述第二透明电极材料层上涂布光刻胶;
采用具有以相等的预定间距平行布置的多个图形的掩膜板对光刻胶进行曝光;
对经过曝光后的光刻胶进行显影;
对所述第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层进行刻蚀,露出位于刻蚀部位的所述基板;以及
去除残留的光刻胶。
根据本发明上述实施例的电致变色光栅及其制备方法、3D显示装置,能够很方便地实现裸眼3D显示,并且很方便地在裸眼3D显示与2D显示状态之间进行切换。另外,根据本发明上述任一实施例制得的电致变色光栅的遮光图形位置固定,能够将遮光区和透光区严格的区分开来,使得遮光区和透光区互相之间不存在任何干扰,从而对于2D显示的效果不会产生任何的影响,为用户带来了极佳的使用体验。
附图说明
图1是现有技术中的一种3D显示面板的光栅的原理示意图;
图2是根据本发明一实施例的电致变色光栅的局部截面结构示意图;
图3是设有本发明的电致变色光栅的3D显示面板的2D显示原理示意图;
图4是设有本发明的电致变色光栅的3D显示面板的3D显示原理示意图;以及
图5A-5J是根据本发明一实施例的电致变色光栅的制备工艺示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实 施例,并参照附图,对本发明进一步详细说明。
在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一方面的实施例,提出一种电致变色光栅,如图2所示,所述电致变色光栅包括:基板1、多个条状的第一透明电极2、多个离子存储层3、多个电致变色层4和多个条状的第二透明电极5。多个条状的第一透明电极1以相等的预定间距平行地分布在所述基板1上。在每个第一透明电极2上依次形成一个离子存储层3、一个电致变色层4和一个第二透明电极5,所述电致变色层被配置成当在第一透明电极2和第二透明电极5上施加不同的驱动电压的情况下从允许光束透过的透明状态转换成阻止光束透过的遮光状态从透明状态转换成遮光状态。这样每个第一透明电极2、以及依次形成在该第一透明电极2上的离子存储层3、电致变色层4和第二透明电极5形成以相等的所述预定间距平行地分布的阻隔层。在本发明实施例的电致变色光栅中,由于阻隔层以相等的预定间距平行地形成在基板1上,因此,所述阻隔层形成的排布间距就成为电致变色层4的排布间距。相邻两个阻隔层之间的预定间距由观察视点的数量、显示面板的像素尺寸和瞳孔间距来决定,如下式所示:
Figure PCTCN2014087680-appb-000001
其中,f表示所述电致变色光栅的排布间距,n表示视点数量,p表示与所述电致变色光栅匹配的显示面板的亚像素的宽度,e表示瞳孔间距。
可选地,利用光刻等构图工艺形成各膜层的图形。
可选地,所述基板1可以由玻璃、硅片、石英、塑料以及硅片等材料中的任一种制成,例如由玻璃制成。
在一种示例性实施例中,所述第一透明电极2和所述第二透明电极5均由透明导电材料制成。所述透明导电材料包括透明金属薄膜、透明金属氧化物薄膜、非金属氧化物薄膜以及导电性颗粒分散铁电材料等。薄膜的形式包括单层膜、二层膜、多层膜或复层膜、无掺杂型、掺杂型和多元素 型。例如,所述透明导电材料包括金属氧化物薄膜,比如氧化铟锡(ITO)薄膜。
可选地,所述第一透明电极2和所述第二透明电极5的厚度为0.02~0.50um。例如,可以利用沉积或溅射成膜等半导体工艺分别形成用于形成第一透明电极的第一透明电极材料层和用于形成第二透明电极的第二透明电极材料层。
其中,所述离子存储层3用于存储和提供电致变色所需要的离子,维持电荷平衡。离子存储层3由五氧化二钒V2O5或二氧化钛TiO2等材料制成。例如,离子存储层3由五氧化二钒V2O5制成,五氧化二钒V2O5具有良好的离子存储性能,具有半导体特性和层状结构,有利于离子存储和传输,以维持电致变色层中的电荷平衡。离子存储层3的厚度为0.2~1um。可以利用溅射成膜等半导体工艺形成离子存储层3。
在一种示例性实施例中,电致变色层4由氧化铱IrO3、氧化钨WO3或氧化钼MoO3等无机电致变色材料制成。电致变色层4的厚度为1.5~10um。例如,利用沉积或溅射成膜等半导体工艺形成电致变色材料层。
根据本发明实施例的电致变色光栅,由于电致变色层4由固态的膜形成,位于两个相邻阻隔层中的电致变色层彼此物理隔离,一个阻隔层中的电致变色层不会对其它透光区域的透光性能产生影响,从而提高了包括这种电致变色光栅的3D显示装置的3D显示效果。
本发明实施例的电致变色光栅还包括驱动电路(未示出),所述驱动电路与所述第一透明电极2和第二透明电极5连接,以提供用于所述电致变色层4的驱动电压。可选地,所述电致变色光栅可以采用直流驱动。例如,所述电致变色光栅的驱动电压为2~20V。需要注意的是,不同电致变色材料的驱动电压存在一定的差异,因此,在实际应用中,还需要根据不同电致变色材料的特性来确定驱动电压的具体范围。
在本发明的一种实施例中,所述电致变色光栅中的电致变色层4最初是透光的。在对所述电致变色光栅施加电场驱动后,电致变色层4中的电致变色材料发生变色,例如,变为具有遮光效果的黑色,形成遮光图形,起到光栅的作用,其中发生变色的电致变色材料的光学浓度(OD)为2~3,可见光透过率为0.1~1%。在该实施例中,所述电致变色材料在未施加电 压或者所施加的电压低于一个预定值时呈允许光束透过的透明状态,在所施加的电压大于该预定值时呈阻止光束透过的遮光状态。当然,对于未施加电压或者所施加的电压低于一个预定值时呈遮光状态,在所施加的电压大于该预定值时呈透明状态的电致变色材料也可以应用于本发明实施例的电致变色光栅。例如,在一种实施例中,电致变色层在施加第一电压值时呈透明状态,施加第二电压值后呈遮光状态的电致变色材料。
另外,在一种实施例中,在所述驱动电压为(2~20V)范围内,随着驱动电压的增大,处于遮光图形处的电致变色层的光学浓度增大,可见光透过率降低,逐渐从透明状态转换成遮光状态。
需要说明的是,也可以采用其他驱动方式对于所述电致变色光栅进行驱动,本发明对于电致变色光栅的驱动方式不作特殊限定,只要能够对于所述电致变色光栅进行驱动,使得遮光图形相应位置处的电致变色材料发生色变即可。
根据本发明实施例的电致变色光栅,电致变色层在未施加电压或者所施加的电压低于一个预定值时呈透明状态,在施加的电压大于该预定值时呈遮光状态。这样,如图4所示,当对所述电致变色光栅施加一定的外加电压时,处于遮光图形相应位置处的电致变色层的材料发生恒定变色,变成遮光状态,比如变为黑色。此时,显示面板7发出的光线部分被变为黑色的部分遮挡,部分光线从没有设置电致变色层的遮光图形之间的间隙处透出,从而起到光栅的作用。在此情况下,将显示面板所显示的左右眼图像分别投射到显示面板7前方的左眼视区和右眼视区,观看者的左右眼分别位于左右眼视区内时即可以观看到3D图像,从而可以实现裸眼3D显示。如图3所示,当去除外加电压或者所施加的电压小于预定值时,处于遮光图形相应位置处的电致变色层的材料恢复为透明状态,显示面板7发出的光线全部透出,没有任何遮挡,从而实现2D显示。因此,使用具有根据本发明上述任一实施例的电致变色光栅的显示装置,能够很方便地实现裸眼3D显示,并且很方便地在裸眼3D显示与2D显示状态之间进行切换。另外,本发明上述任一实施例的电致变色光栅的遮光图形位置固定,能够将遮光区和透光区严格的区分开来,使得遮光区和透光区互相之间不存在任何干扰,从而对于2D显示的效果不会产生任何的影响,为用户带 来了极佳的使用体验。
在本发明一实施例中,所述显示面板7为普通2D显示屏,例如可以是有机发光二极管(organic Light Emitting Diode(OLED))显示面板、薄膜晶体管液晶(Thin Film Transistor Liquid Crystal Display(TFT-LCD))显示面板、或者主动矩阵有机发光二极管(Active Matrix Organic Light Emitting Diode(AMOLED))显示面板。
根据本发明的另一方面,还提出一种3D显示装置,如图4所示,所述3D显示装置包括显示面板7和设置在所述显示面板上的上述任一实施例所述的电致变色光栅。
在一种实施例中,所述3D显示装置还包括隔垫玻璃8,所述隔垫玻璃8位于所述电致变色光栅与显示面板7之间。
在一种实施例中,所述显示面板7为OLED显示面板,并且所述电致变色光栅位于所述OLED显示面板的出光侧。在另一种实施例中,所述显示面板7为液晶显示面板,并且所述电致变色光栅位于用于向所述液晶显示面板提供光的背光源(未示出)与所述液晶显示面板之间,或所述电致变色光栅位于所述液晶显示面板的出光侧。
本发明所述的显示装置可以为,液晶电视、液晶面板、OLED电视、OLED面板、手机、笔记本或导航仪等装置。
根据本发明的再一方面的实施例,还提出一种电致变色光栅的制备方法,所述制备方法包括以下步骤:
在基板1上依次形成第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层;以及
采用构图工艺将所述第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层分成在平行于基板的方向上以相等的预定间距平行分布、在垂直于基板1的方向上依次布置的多个第一透明电极2、多个离子存储层3、多个电致变色层4和多个第二透明电极5。在本发明一实施例中,通过形成第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层之后,利用一步构图工艺得到所述第一透明电极2、离子存储层3、电致变色层4和第二透明电极4。
当然,在形成所述第一透明电极、离子存储层、电致变色层和第二透 明电极时,也可以采取每形成一材料层之后就进行一次构图工艺的方式,或者其他可能的方式。需要说明的是,本发明对于各膜层的具体形成方式不作具体的限定,任何合理的、能够形成各膜层的方式都落入本发明的保护范围内。
在一种实施例中,形成多个所述第一透明电极2、多个离子存储层3、多个电致变色层4和多个第二透明电极5的步骤包括以下步骤:
在所述第二透明电极材料层上涂布光刻胶6;
采用具有以相等的预定间距平行布置的多个图形的掩膜板(未示出)对光刻胶6进行曝光;
对于经过曝光后的光刻胶进行显影处理;
对所述第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层进行刻蚀,露出位于刻蚀部位的基板1,使得所述第一透明电极材料层和第二透明电极材料层分别形成等间距平行布置的多个第一透明电极2和多个第二透明电极4;
去除位于最上层的光刻胶。这样每个第一透明电极2、以及依次形成在该第一透明电极2上的离子存储层3、电致变色层4和第二透明电极5形成以相等的所述预定间距平行地分布的阻隔层。图5A-5J是根据本发明一实施例的电致变色光栅的制备工艺的示意图。如图5A-5J所示,对于该实施例,电致变色光栅的制备方法包括以下步骤:
在基板1上形成第一透明导电层,如图5A和图5B所示;
在第一透明导电层2上形成离子存储材料层3,如图5C所示;
在离子存储材料层3上形成电致变色材料层4,如图5D所示;
在电致变色材料层4上形成第二透明导电层,如图5E所示;
在所述第二透明导电层上涂布光刻胶6,如图5F所示;
采用具有以相等的预定间距平行布置的多个图形的掩膜板(未示出)对光刻胶进行曝光,如图5G所示;
对经过曝光后的光刻胶进行显影处理,如图5H所示;
对第一透明导电层、电致变色层和第二透明导电层进行刻蚀,露出位于刻蚀部位的基板1,使得第一透明电极材料层和第二透明电极材料层分别形成等间距平行布置的多个第一透明电极2和多个第二透明电极5;这 样,形成在基板1上的每个阻隔层依次包括第一透明电极1、离子存储层3、电致变色层4和第二透明电极5,如图5I所示;
剥离位于最上层的光刻胶,形成本发明实施例的电致变色光栅,如图5J所示。
上述制备方法中,光刻胶涂布、曝光、显影、刻蚀和剥离等工艺与现有的显示器件的生产工艺相似,在此不作赘述。
这样,通过成膜、曝光、显影、刻蚀、剥离等构图工艺后,就形成了具有由阻隔层限定成的规则排布的遮光图形的电致变色光栅。如图4所示,对于得到的电致变色光栅施加电场驱动后,处于遮光图形相应位置处的电致变色层的材料由无色透明转变成黑色,从而使显示面板发出的光线部分被变为黑色的部分遮挡,而所述遮光图形之间的间隙处没有设置电致变色材料。从显示面板发出的光束的一部分从遮光图形之间的间隙处透出,将显示面板显示所显示的左右眼图像分别投射到显示面板前方的左眼视区和右眼视区,观看者的左右眼分别位于左右眼视区内时即可以观看到3D图像,最终实现裸眼3D显示。
可选地,所述电致变色光栅可以采用例如为2~20V的直流电压驱动。随着驱动电压的增大,处于遮光图形处的电致变色层的光学浓度增大,可见光透过率降低,逐渐从透明状态转换成遮光状态。
如图3所示,当去除外加电压时,处于遮光图形相应位置处的电致变色层的材料恢复为透明状态,显示面板7发出的光线全部透出,没有任何遮挡,实现2D显示。
因此,使用具有根据本发明任一实施例制得的电致变色光栅的显示装置,能够很方便地实现裸眼3D显示,并且很方便地在裸眼3D显示与2D显示状态之间进行切换。另外,根据本发明上述任一实施例制得的电致变色光栅的遮光图形位置固定,能够将遮光区和透光区严格的区分开来,使得遮光区和透光区互相之间不存在任何干扰,从而对于2D显示的效果不会产生任何的影响,为用户带来了极佳的使用体验。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修 改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种电致变色光栅,包括:
    基板;
    多个条状的第一透明电极,以相等的预定间距平行地分布在所述基板上;以及
    多个离子存储层、多个电致变色层和多个条状的第二透明电极,
    其中,在每个所述第一透明电极上依次形成一个离子存储层、一个电致变色层和一个第二透明电极,所述电致变色层被配置成当在所述第一透明电极和第二透明电极上施加不同的驱动电压的情况下从透明状态转换成遮光状态。
  2. 根据权利要求1所述的电致变色光栅,其中,所述电致变色层由无机电致变色材料制成。
  3. 根据权利要求2所述的电致变色光栅,其中,所述电致变色层由氧化铱IrO3、氧化钨WO3或氧化钼MoO3制成。
  4. 根据权利要求1-3中的任一项所述的电致变色光栅,其中,所述离子存储层由五氧化二钒或二氧化钛制成。
  5. 根据权利要求1所述的电致变色光栅,还包括驱动电路,与所述第一透明电极和第二透明电极连接,以提供用于所述电致变色层的驱动电压。
  6. 一种3D显示装置,包括:
    显示面板;以及
    设置在所述显示面板上的如权利要求1-5任一项所述的电致变色光栅。
  7. 根据权利要求6所述的3D显示装置,其中,所述显示面板为OLED显示面板,并且所述电致变色光栅位于所述OLED显示面板的出光侧。
  8. 根据权利要求6所述的3D显示装置,其中,所述显示面板为液晶显示面板,并且所述电致变色光栅位于用于向所述液晶显示面板提供光的背光源与所述液晶显示面板之间,或所述电致变色光栅位于所述液晶显示面板的出光侧。
  9. 一种电致变色光栅的制备方法,包括以下步骤:
    在基板上依次形成第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层;以及
    采用构图工艺将所述第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层分成在平行于基板的方向上以相等的预定间距平行分布、在垂直于基板的方向上依次布置的多个第一透明电极、多个离子存储层、多个电致变色层和多个第二透明电极。
  10. 根据权利要求9所述的制备方法,其中,形成多个第一透明电极、多个离子存储层、多个电致变色层和多个第二透明电极的步骤包括以下步骤:
    在所述第二透明电极材料层上涂布光刻胶;
    采用具有以相等的预定间距平行布置的多个图形的掩膜板对光刻胶进行曝光;
    对经过曝光后的光刻胶进行显影;
    对所述第一透明电极材料层、离子存储材料层、电致变色材料层和第二透明电极材料层进行刻蚀,露出位于刻蚀部位的所述基板;以及
    去除残留的光刻胶。
PCT/CN2014/087680 2014-07-09 2014-09-28 电致变色光栅及其制备方法、3d显示装置 WO2016004683A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,552 US9715119B2 (en) 2014-07-09 2014-09-28 Electrochromic grating, method for producing the same and 3D display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410325317.2A CN104238223A (zh) 2014-07-09 2014-07-09 一种电致变色光栅及其制备方法、3d显示装置
CN201410325317.2 2014-07-09

Publications (1)

Publication Number Publication Date
WO2016004683A1 true WO2016004683A1 (zh) 2016-01-14

Family

ID=52226611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087680 WO2016004683A1 (zh) 2014-07-09 2014-09-28 电致变色光栅及其制备方法、3d显示装置

Country Status (3)

Country Link
US (1) US9715119B2 (zh)
CN (1) CN104238223A (zh)
WO (1) WO2016004683A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104570371A (zh) * 2015-02-06 2015-04-29 京东方科技集团股份有限公司 一种3d显示装置
CN104730719B (zh) * 2015-04-09 2017-03-15 京东方科技集团股份有限公司 触控裸眼光栅3d显示装置及其制备和控制方法
CN104749850B (zh) 2015-04-17 2017-11-07 京东方科技集团股份有限公司 电致变色显示面板及其驱动方法、显示装置
CN104834103B (zh) * 2015-05-25 2017-04-12 京东方科技集团股份有限公司 3d光栅、彩膜基板、显示装置及其控制方法
CN105467711B (zh) * 2015-12-18 2019-03-19 杭州福斯特应用材料股份有限公司 一种变色面积可控的全固态电致变色器件及其制备方法
CN105467606A (zh) * 2016-02-03 2016-04-06 宁波维真显示科技有限公司 适于量产的裸眼3d显示器的制造方法
CN105572892B (zh) * 2016-03-10 2019-01-22 京东方科技集团股份有限公司 分光材料及其制备方法、光栅及其使用方法和显示装置
CN106773183B (zh) * 2017-01-19 2019-12-10 京东方科技集团股份有限公司 一种液晶透镜、立体显示装置、显示方法和制作方法
CN108008587A (zh) * 2017-12-05 2018-05-08 华南理工大学 一种以图案化ito作为透明导电层的电致玻璃及制作方法
CN109986937B (zh) * 2018-03-26 2020-07-17 京东方科技集团股份有限公司 一种防炫目装置、控制方法及车辆
CN110542445A (zh) * 2018-05-29 2019-12-06 义明科技股份有限公司 光学感测模块
CN110806386B (zh) * 2018-08-06 2021-09-24 京东方科技集团股份有限公司 微量样品的检测芯片、其使用方法、使用装置及检测系统
CN109261233B (zh) 2018-11-19 2020-11-10 京东方科技集团股份有限公司 微流控芯片
CN110873989B (zh) * 2019-11-29 2021-08-10 深圳市光羿科技有限公司 一种电致变色光圈、其制备方法和包含其的镜头模组
CN111638618A (zh) * 2020-07-01 2020-09-08 京东方科技集团股份有限公司 调光面板、调光玻璃及装置、光透过率调节系统
CN114076576B (zh) * 2020-08-21 2023-11-21 深圳市万普拉斯科技有限公司 光发射器、摄像模组、电子设备及图像三维信息采集方法
CN115268159A (zh) * 2022-09-13 2022-11-01 义乌清越光电技术研究院有限公司 电致变色调控光栅和显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102096231A (zh) * 2011-02-24 2011-06-15 华映视讯(吴江)有限公司 具有可改变视差屏障图案的立体显示器
CN102338960A (zh) * 2010-07-26 2012-02-01 介面光电股份有限公司 2d/3d影像切换显示装置
CN102385208A (zh) * 2010-09-02 2012-03-21 介面光电股份有限公司 电致变色模块及结合该电致变色模块的显示装置
CN202472131U (zh) * 2012-03-14 2012-10-03 京东方科技集团股份有限公司 一种显示装置和终端
JP2013167843A (ja) * 2012-02-17 2013-08-29 Sharp Corp 映像表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM371902U (en) * 2009-04-27 2010-01-01 Chunghwa Picture Tubes Ltd 2D/3D display device
TW201215916A (en) * 2010-10-01 2012-04-16 J Touch Corp Display device structure improvement featuring 2D/3D image switching
TWI437341B (zh) 2011-03-04 2014-05-11 J Touch Corp 3D display and its manufacturing method of grating device
TW201237525A (en) 2011-03-04 2012-09-16 J Touch Corp Grating structure of 2D/3D switching display device
CN102681175A (zh) 2011-03-18 2012-09-19 介面光电股份有限公司 2d/3d切换显示装置的光栅结构
KR101920766B1 (ko) * 2011-08-09 2018-11-22 엘지디스플레이 주식회사 유기 발광 표시 장치의 제조 방법
CN103376556A (zh) 2012-04-19 2013-10-30 深圳市亿思达显示科技有限公司 立体显示装置
CN203054349U (zh) 2012-12-05 2013-07-10 深圳市亿思达显示科技有限公司 立体显示装置
KR20140133673A (ko) * 2013-05-09 2014-11-20 삼성디스플레이 주식회사 마스크 제조방법 및 마스크
CN103246072A (zh) 2013-05-15 2013-08-14 福州大学 一种2d/3d转换的动态光栅

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102338960A (zh) * 2010-07-26 2012-02-01 介面光电股份有限公司 2d/3d影像切换显示装置
CN102385208A (zh) * 2010-09-02 2012-03-21 介面光电股份有限公司 电致变色模块及结合该电致变色模块的显示装置
CN102096231A (zh) * 2011-02-24 2011-06-15 华映视讯(吴江)有限公司 具有可改变视差屏障图案的立体显示器
JP2013167843A (ja) * 2012-02-17 2013-08-29 Sharp Corp 映像表示装置
CN202472131U (zh) * 2012-03-14 2012-10-03 京东方科技集团股份有限公司 一种显示装置和终端

Also Published As

Publication number Publication date
CN104238223A (zh) 2014-12-24
US9715119B2 (en) 2017-07-25
US20160363779A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2016004683A1 (zh) 电致变色光栅及其制备方法、3d显示装置
US11793049B2 (en) Display apparatus and method of manufacturing the same
CN107632453B (zh) 显示面板及制造方法和显示装置
KR102325674B1 (ko) 유기발광 표시장치, 그를 포함한 헤드 장착형 디스플레이, 및 그의 제조방법
US9310616B2 (en) 3D display device and manufacturing method thereof
KR101766878B1 (ko) 전기 영동 표시 장치 및 그 제조 방법
US10067375B2 (en) Liquid crystal display device
US20210223604A1 (en) Optical film and fabrication method thereof and display apparatus
CN106200090B (zh) 显示面板及其制造方法
WO2017067453A1 (zh) 曲面显示面板及其制作方法、曲面显示装置
WO2020107917A1 (en) Display substrate, display apparatus, method of controlling display substrate, and method of fabricating display substrate
KR20160130055A (ko) 액정 표시 장치 및 그 구동 방법
JP4749678B2 (ja) 液晶表示装置及びこの製造方法
US8520287B2 (en) Parallax barrier device and fabricating method thereof
CN202948233U (zh) 主动式光栅、显示装置及主动快门眼镜
JP2007052041A (ja) マルチプル視野型の表示装置
WO2018188301A1 (zh) 显示基板及其制作方法、显示装置
US9164276B2 (en) Micro optical switching device, image display apparatus including micro optical switching device, and method of manufacturing micro optical switching device
US10310343B2 (en) Display panel
CN109507837B (zh) 显示装置及其制造方法
US8885113B2 (en) Display device, barrier device, and method of manufacturing barrier device
KR20160084949A (ko) 포토 마스크, 및 이를 이용한 박막 트랜지스터 기판의 제조 방법
JP2005258222A (ja) パララックスバリア素子および表示装置
US20190081076A1 (en) Thin film transistor substrate and display panel
JP2000137243A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771552

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14897373

Country of ref document: EP

Kind code of ref document: A1