WO2016004664A1 - 一种挖掘机的节能控制系统 - Google Patents

一种挖掘机的节能控制系统 Download PDF

Info

Publication number
WO2016004664A1
WO2016004664A1 PCT/CN2014/084371 CN2014084371W WO2016004664A1 WO 2016004664 A1 WO2016004664 A1 WO 2016004664A1 CN 2014084371 W CN2014084371 W CN 2014084371W WO 2016004664 A1 WO2016004664 A1 WO 2016004664A1
Authority
WO
WIPO (PCT)
Prior art keywords
main pump
pilot
pump
pressure
main
Prior art date
Application number
PCT/CN2014/084371
Other languages
English (en)
French (fr)
Inventor
李县军
王渠
秦家升
杨裕丰
费树辉
汪允显
石立京
赵瑜
金月峰
潘宏达
尹源禄
张明
王正华
Original Assignee
徐州徐工挖掘机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州徐工挖掘机械有限公司 filed Critical 徐州徐工挖掘机械有限公司
Publication of WO2016004664A1 publication Critical patent/WO2016004664A1/zh
Priority to US15/212,538 priority Critical patent/US20160326722A1/en
Priority to ZA2016/05413A priority patent/ZA201605413B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • E02F9/2235Control of flow rate; Load sensing arrangements using one or more variable displacement pumps including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/025Pressure reducing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/028Shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/25Pressure control functions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6316Electronic controllers using input signals representing a pressure the pressure being a pilot pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/65Methods of control of the load sensing pressure
    • F15B2211/653Methods of control of the load sensing pressure the load sensing pressure being higher than the load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6658Control using different modes, e.g. four-quadrant-operation, working mode and transportation mode

Definitions

  • the invention relates to an energy-saving control system for an excavator, belonging to the field of engineering machinery control systems.
  • An excavator is a project that uses a bucket to dig a material above or below the surface of the carrier and load it into the vehicle or unload it into the yard.
  • Mechanical equipment, its operating environment is harsh, and the load fluctuates frequently. Therefore, the requirements for overload capacity and durability of the engine are higher than those of the engine. General construction machinery is more demanding.
  • the transmission efficiency of the excavator hydraulic system has been significantly improved, but the fuel consumption of the excavator has not been significantly reduced.
  • Positive flow control uses a positive control pump, and the output power of the main pump is positively controlled by a pilot pressure having the largest opening degree among the pilot valves, and The maximum pilot pressure is detected and compared by the shuttle valve group from each pilot valve in real time.
  • the advantage is that the main controller is based on the pilot The pressure signal and its changing trend determine the flow demand, and according to these judgments, the hydraulic oil displacement of the main pump is controlled to realize Real-time control of the variable pump, oil supply to the system as required.
  • this control method can only control the output power of the pump according to the largest valve of the opening degree, and the remaining valve opening degrees do not participate in the control process regardless of the size. .
  • the negative flow control is to control the output power of the main pump by using the change of the return pressure of the main valve.
  • the negative flow control system uses a negative control pump whose control oil pressure is directly supplied by the return pressure before the return throttle valve.
  • the load sensor control uses the main control pump, ie the higher the oil pressure that controls the main pump variable, the greater the pump's output power.
  • Change control The oil pressure is provided by the control pump.
  • the oil pressure is controlled by the NC valve in inverse proportion according to the pressure difference of the jet valve.
  • the load sensor control structure is complicated and the application range is narrow.
  • An energy-saving control system for an excavator comprising an engine, a main pump, a pilot handle, a pilot pressure pump, a pilot control valve, a controller, a main control multi-way valve and an actuator, and an engine and a main pump
  • the pilot handle, the pilot pressure pump and the pilot control valve are connected to form a pilot oil passage, and the pilot oil passage is connected to the main pump, and the main pump is connected.
  • the main control multi-way valve control actuator is characterized in that: the main pump is connected with the actuator, and a pressure sensor is provided on the oil passage, and the pressure is transmitted. The sensor sends a signal to the controller; the main pump is a negative feedback control oil pump, and the main pump adjusts the flow of the main pump according to the pressure of the negative feedback oil path;
  • An electromagnetic proportional pressure reducing valve and a shuttle valve are arranged on the oil passage connecting the output end of the pilot handle with the main pump, and the pilot oil passage is sequentially passed through the electricity.
  • the magnetic proportional pressure reducing valve and shuttle valve control the main pump flow.
  • the main pump includes a variable hydraulic pump one and a variable hydraulic pump two.
  • the two hydraulic pumps are supplied with oil at the same time, which can improve the working efficiency of the system.
  • the pressure sensor comprises a low pressure sensor and a high pressure sensor
  • the actuator comprises a bucket cylinder, a bucket The rod cylinder, the boom cylinder and the swing motor
  • the low pressure sensor is disposed on the oil inlet path of the actuator cylinder
  • the high pressure sensor is disposed on the oil passage of the main pump and the main control multi-way valve.
  • the low pressure sensor is used to detect the action of the actuator, and the high pressure sensor is used to judge the working state of the actuator.
  • the controller sets a pressure value through the program, and the pressure value is based on the operation of the excavator load.
  • the pressure in the oil circuit is determined.
  • the fixed pressure value set by the controller is used to further judge the working state of the excavator, and the actuator can be controlled more precisely.
  • the invention combines the positive flow control and the negative flow control according to the sensor provided in the oil path
  • the signal is used to judge the working state of the excavator, and different control methods are adopted in a targeted manner, and the positive flow is adopted at no load.
  • Control method combined with negative flow, and negative flow control at load, different for different working conditions
  • the control method can not only provide enough power for the excavator, but also achieve the purpose of energy saving.
  • the oil circuit layout is simple and clear, the working flow is stable, and the system pressure loss is reduced.
  • Figure 1 is a hydraulic system diagram of the present invention
  • FIG. 2 is a schematic diagram of the process of the present invention.
  • an energy-saving control system for an excavator includes an engine, a main pump 1, and a pilot pressure pump 2 Pilot control valve 4, controller, main control multi-way valve 3 and actuator, the engine is connected to main pump 1, pilot pump 2 and pilot control valve 4 are connected to form pilot oil circuit, pilot oil circuit and main pump 1 Connected, the main pump 1 controls the actuator through the main control multi-way valve 3, and the main pump 1 is connected with the actuator to provide a pressure sensor on the oil path, and the pressure sensor sends a signal to the controller; the main pump 1 In order to control the oil pump by negative feedback, the main pump adjusts the flow rate of the main pump according to the pressure of the negative feedback oil path;
  • the oil passage connected to the main pump 1 at the output end of the pilot handle has an electromagnetic proportional pressure reducing valve 7 and a shuttle valve 8 , and the pilot oil passage is in turn
  • the main pump flow is controlled by an electromagnetic proportional pressure reducing valve and a shuttle valve.
  • the main pump 1 includes a variable hydraulic pump 1-1 and a variable hydraulic pump II 1-2. Two hydraulic pumps supply oil at the same time, which can improve the system Work efficiency.
  • the pressure sensor includes a low pressure sensor 5 and a high pressure sensor 6; the actuator includes a bucket cylinder, an arm cylinder, The boom cylinder and the swing motor; the low pressure sensor 5 is disposed on the oil inlet path of the actuator cylinder, and the high pressure sensor 6 is disposed on the oil passage of the main pump 1 and the main control multiplex valve 3.
  • the low pressure sensor is used to detect the action of the actuator, and the high pressure sensor is used to judge the working state of the actuator.
  • the controller sets a pressure value through the program, and the pressure value is negative according to the excavator. The magnitude of the pressure in the system oil circuit during working is determined.
  • the fixed pressure value set by the controller is used to further judge the working state of the excavator, and the actuator can be controlled more precisely.
  • Step 1 When the actuator is actuated, the low pressure sensor 5 sends a signal to the controller;
  • Step 2 When the excavator is working, the controller judges the action performed by the actuator based on the signal transmitted by the low pressure sensor 5.
  • Step 3 When it is detected that the boom is lowered and the swing or the boom is lowered separately, it indicates that the excavator may be in the no-load mode or the load mode.
  • Step 4 The controller judges that the shuttle valve 8 is in the right-hand position when the current mode is no-load according to the signal of the high-pressure sensor.
  • the system workflow is as follows:
  • the output of the pilot handle has a pressure sensor that sends a signal to the controller, which is based on the low voltage sensor 5 and the high voltage sensor 6
  • the signal determines the working state of the excavator, and then adjusts the current of the electromagnetic proportional pressure reducing valve so that the pressure is compared with the negative feedback pressure N1, N2 through the shuttle valve 8 to the main pump 1
  • the flow rate is adjusted, and the engine power is adjusted at the same time to realize the real-time matching between the engine power and the main pump power, thereby achieving the economical and energy-saving effect of the excavator.
  • the flow rate of the oil pump and the resulting operating speed of the actuator and the electromagnetic proportional decompression 7 The output pressure is inversely proportional.
  • Step 5 When it is judged to be in the load working mode, the flow rate cannot be reduced at this time, otherwise the working efficiency of the excavator will be reduced. Adjusting the electromagnetic proportional pressure reducing valve 7 The current value pushes the shuttle valve 8 to the left-hand position, and the negative feedback oil circuit is opened, so that the negative feedback pressures N1 and N2 regulate and control the flow of the main pump 1.
  • the system workflow is as follows:
  • Negative feedback oil circuit - shuttle valve 8 - main pump 1 - main control multi-way valve 3 - actuator.
  • the negative feedback pressures N1 and N2 continuously adjust the displacement of the main pump 1 to suit the load operation.
  • Negative flow adjustment Section not only meet the needs of load work, but also reduce the waste of hydraulic oil, to achieve energy-saving purposes.
  • Step 6 Low-pressure sensor 5 When detecting that the boom is falling and turning, you need to check the high-pressure sensor through the controller. 6 The pressure value, when the measured pressure value is lower than the set pressure value, indicates that the excavator is in the no-load working mode at this time, and step four is adopted.
  • step 6 When the measured pressure value is higher than the set pressure value, it indicates that the excavator is in the load working mode at this time, and step 6 is adopted.
  • step 4 When step 4 is detected when the boom is lowered separately.
  • the present invention combines positive flow and negative flow at no load by combining positive flow control and negative flow control. Combined control mode, and negative flow control during load, using different control modes for different working conditions, Providing sufficient power for the excavator can achieve the purpose of energy saving; at the same time, the oil circuit layout is simple and clear, the working flow is stable, and the system pressure loss is reduced.

Abstract

一种挖掘机的节能控制系统,包括发动机、主泵(1)、先导手柄、先导压力泵(2)、先导控制阀(4)、控制器、主控制多路阀(3)和执行机构,主泵(1)通过主控制多路阀(3)控制执行机构,主泵(1)与执行机构连接的油路上设有高压传感器(6),高压传感器(6)将信号输送至控制器;主泵(1)根据负反馈油路的压力调节主泵(1)的流量;先导手柄输出端与主泵(1)连通的油路上设有电磁比例减压阀(7)和梭阀(8),先导油路依次通过电磁比例减压阀(7)和梭阀(8)控制主泵(1)的流量。

Description

一种挖掘机的节能控制系统 Technical Field
本 发明涉及一种挖掘机的节能控制系统,属于工程机械控制系统领域 。
Background Art
挖掘机 是用 铲 斗挖 掘 高于或低于 承 机面 的 物料并装入 运 输车 辆 或卸至堆料场 的 工 程 机 械,其作业环境恶劣,负载波动频繁,因 此对发动机的过载能力、耐用性等方面的要求要比 一般工程机械更加苛刻。随着科技的进步,挖掘机液压系统的传动效率有了明显地提高 , 但是 挖掘机的燃油消耗却没有明显降低。
挖掘机常用的控制方式主要有三种:正流量控制、负流量控制和负荷传感器控制。正流 量控制是采用正控泵,由各先导阀中开度最大的一个先导压力正向控制主泵的输出功率,而 最大先导压力由梭阀组实时地从各先导阀中检测比较出来。其优点在于:主控制器根据先导 压力信号及其变化趋势判断出流量需求,并依这些判断对主泵的液压油排量加以控制,实现 了对变量泵的实时控制,按需求为系统供油。其缺点在于:这种控制方式,只能根据开度最 大的一路阀来控制泵的输出功率,其余各阀开度无论大小都不参与控制过程 。
负流量控制是利用主阀回油压力的变化控制主泵输出功率,回油大时主泵输出功率就小, 负流量控制系统采用负控泵,其控制油压直接由回油节流阀前的回油压力提供。其优点在于: 负流量控制结构简单,能够利用发动机功率根据负荷大小自动调节泵流量,有一定的节能效 果;其缺点在于:在使用过程中流量的波动大,响应时间长,操纵性能差。
负荷传 感器控制采用主控制泵,即控制主泵变量的油压越高,泵的输出功率越大。改控 制油压由控制泵提供,油压大小有 NC 阀按照射流阀压差大小成反比例控制,但负荷传感器控 制结构较复杂,适用范围窄。
Technical Solution
为解决上述问题,本发明提供一种挖掘机的节能控制系统,布局简单,节能效果好。 为了实现上述目的所采用的技术方案:.一种挖掘机的节能控制系统,包括发动机、主泵、先导手柄、先导压力泵、先导控制阀、控制器、主控制多路阀和执行机构,发动机与主泵相 连,先导手柄、先导压力泵与先导控制阀连通构成先导油路,先导油路与主泵相连,主泵通 过主控制多路阀控制执行机构,其特征在于:所述主泵与执行机构连接的油路上设有压力传 感器,压力传 感器将信号输送至控制器;所述主泵为受负反馈控制油泵,主泵根据负反馈油 路的压力调节主泵的流量;
先导手柄输出端与主泵连通的油路上设有电磁比例减压阀和梭阀,先导油路依次通过电 磁比例减压阀和梭阀控制主泵流量。
进一步的,主泵包括变量液压泵一和变量液压泵二。两个液压泵同时供油,可提高系统 的工作效率。
进一步的,压力传 感器包括低压传 感器和高压传感器;所述执行机构包括铲斗油缸、斗 杆油缸、动臂油缸与回转马达;低压传感器设在在执行机构油缸的进油路上,高压传感器设 在主泵与主控制多路阀连通的油路上。
低压传感器用于检测执行机构的动作,高压传感器用于判断执行机构的工作状态。
更进 一步 的,控 制器 通过程 序设 定一压 力值 ,压力 值根 据挖掘 机负 载工作 时系 统油路中 的压力大小确定。 通过控制器设定的固定压力值用于进一步判断挖掘机的工作状态,可更精 确的控制执行机构。
Advantageous Effects
本 发明通过正流量控制和负流量控制相结合的方式,根据油路中设置的传感器所传递的 信号来判断挖掘机的工作状态,并且有针对性的采取不同的控制方式,在空载时采用正流量 与负流量相结合的控制方式,而在负载时采用负流量控制方式,针对不同的工况使用不同的 控制方式,既可以为挖掘机提供足够的动力,又能够达到节能的目的;同时油路布置简单清 晰,作业流量稳定,减少了系统压力损失。
Description of Drawings
图 1 为本发明液压系统图;
图 2 为本发明流程原理图。
图中: 1 、 主泵; 1-1 、 变量液压泵一; 1-2 、 变量液压泵二; 2 、 先 导压力泵; 3 、 主控 制多路阀; 4 、先导控制阀; 5 、 低压传 感器; 6 、高压传 感器; 7 、 电磁比例减压阀; 8 、梭 阀。
Best Mode
下面结合附图对本发明作进一步说明。
如图 1 和图 2 所示,一种挖掘机的节能控制系统,包括发动机、主泵 1 、先导压力泵 2 、 先导控制阀 4 、控制器、主控制多路阀 3 和执行机构,发动机与主泵 1 相连,先导压力泵 2 与先导控制阀 4 连通构成先导油路,先导油路与主泵 1 相连,主泵 1 通过主控制多路阀 3 控制执行机构,所述主泵 1 与执行机构连接的油路上设有压力传感器,压力传感器将信号输送至控制器;所述主泵 1 为受负反馈控制油泵,主泵根据负反馈油路的压力调节主泵的流量;
先导手柄输出端与主泵 1 连通的油路上具有电磁比例减压阀 7 和梭阀 8 ,先导油路依次 通过电磁比例减压阀和梭阀控制主泵流量。
主泵 1 包括变量液压泵一 1-1 和变量液压泵二 1-2 。两个液压泵同时供油,可提高系统 的工作效率。
压力传感器包括低压传感器 5 和高压传感器 6 ; 所述执行机构包括铲斗油缸、斗杆油缸、 动臂油缸,回转马达;低压传感器 5 设在在执行机构油缸的进油路上,高压传感器 6 设在主 泵 1 与主控制多路阀 3 连通的油路上。 低压传感器用于检测执行机构的动作,高压传感器用于判断执行机构的工作状态。 控制器通过程序设定一压力值,压力值根据挖掘机负 载工作时系统油路中的压力大小确定。通过控制器设定的固定压力值用于进一步判断挖掘机的工作状态,可更精确的控制执行 机构。
具体工作流程如下:
步骤一:执行器动作时,低压传感器 5 将信号输送至控制器;
步骤二:挖掘机工作时,控制器根据低压传感器 5 所传递的信号,判断执行器所进行的 动作。
步骤三:当检测到动臂下降且回转或者动臂单独下降时,说明此时挖掘机可能处于空载 模式或者负载模式。
步骤四:控制器根据高压传感器的信号判断此时为空载工作模式时,梭阀 8 处在右通位 置,系统工作流程如下:
先导压力泵 2 --先导控制阀 4 --先导手柄输出端--电磁比例减压阀 7 --梭阀 8 - -主泵 1 --主控多路阀 3 --执行机构。 先导手柄的输出端具有压力传感器,传感器讲将 信号输送至控制器,控制器根据低压传 感器 5 及高压传感器 6 的信号,判断挖机的工作状态,进而调节电磁比例减压阀的电流大小, 使其压力与负反馈压力 N1 、 N2 通过梭阀 8 对比后,对主泵 1 的流量进行调节,同时调节发动 机功率,实现发动机功率和主泵功率实时匹配,达到挖掘机经济节能的作用。油泵的流量与 由此产生的执行机构的工作速度及电磁比例减压 7 输出压力成反比。
步骤五:判断为负载工作模式下,此时不可降低流量,否则会降低挖掘机的工作效率。 调节电磁比例减压阀 7 的电流值,推动梭阀 8 至左通位置,负反馈油路开通,使负反馈压力 N1 、 N2 调节控制主泵 1 流量,系统工作流程如下:
负反馈油路--梭阀 8 --主泵 1 --主控多路阀 3 --执行机构。
负反馈压力 N1 、 N2 不断调节主泵 1 的排量大小以适应负载工作需要。此时属于负流量调 节,既满足负载工作需要,同时减少液压油的浪费,达到节能的目的。
步骤六:低压传感器 5 检测到动臂下降且回转时候,需要通过控制器查看高压传感器 6 的压力值,当测定的压力值低于设定压力值时,说明说明此时挖掘机处于空载工作模式,采 用步骤四。
当测定的压力值高于设定压力值时,说明此时挖掘机处于负载工作模式,采用步骤六。
低压传感器 5 检测到动臂单独下降时,采用步骤四。
本 发明通过正流量控制和负流量控制相结合的方式,在空载时采用正流量与负流量相结 合的控制方式,而在负载时采用负流量控制,针对不同的工况使用不同的控制方式,既可以 为挖掘机提供足够的动力,又能够达到节能的目的;同时油路布置简单清晰,作业流量稳定, 减少了系统压力损失。

Claims (4)

  1. 一种挖掘机的节能控制系统,包括发动机、主泵(1)、先导手柄、先导压力泵(2)、先 导控制阀(4)、控制器、主控制多路阀(3)和执行机构,发动机与主泵(1)相连,先导手柄、先 导压力泵(2)与先导控制阀(4)连通构成先导油路,先导油路与主泵(1)相连,主泵(1)通过主 控制多路阀(3)控制执行机构,其特征在于:所述主泵(1)与执行机构连接的油路上设有压力 传感器,压力传感器将信号输送至控制器;所述主泵(1)为受负反馈控制油泵,主泵根据负反 馈油路的压力调节主泵的流量;
    先导手柄输出端与主泵(1)连通的油路上设有电磁比例减压阀(7)和梭阀(8),先导油 路依次通过电磁比例减压阀和梭阀控制主泵(1)流量。
  2. 如权利要求 1 所述的挖掘机的节能控制系统,其特征在于:主泵(1)包括变量液压泵一(1-1)和变量液压泵泵二(1-2)。
  3. 如权利要求 1 所述的挖掘机的节能控制系统,其特征在于:压力传感器包括低压传感 器(5)和高压传感器(6);所述执行机构包括铲斗油缸、斗杆油缸、动臂油缸与回转马达;低 压传感器(5)设在在执行机构油缸的进油路上,高压传感器(6)设在主泵(1)与主控制多 路阀(3)连通的油路上。
  4. 如权利要求 1 至 3 任一权利要求所述的挖掘机的节能控制系统,其特征在于:控制器 通过程序设定一压力值,压力值根据挖掘机负载工作时系统油路中的压力大小确定。
PCT/CN2014/084371 2014-07-11 2014-08-14 一种挖掘机的节能控制系统 WO2016004664A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/212,538 US20160326722A1 (en) 2014-07-11 2016-07-18 Energy-saving control system of excavator
ZA2016/05413A ZA201605413B (en) 2014-07-11 2016-08-04 Energy-saving control system of excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410332674.1 2014-07-11
CN201410332674.1A CN104141326B (zh) 2014-07-11 2014-07-11 一种挖掘机的节能控制系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/212,538 Continuation US20160326722A1 (en) 2014-07-11 2016-07-18 Energy-saving control system of excavator

Publications (1)

Publication Number Publication Date
WO2016004664A1 true WO2016004664A1 (zh) 2016-01-14

Family

ID=51850645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084371 WO2016004664A1 (zh) 2014-07-11 2014-08-14 一种挖掘机的节能控制系统

Country Status (4)

Country Link
US (1) US20160326722A1 (zh)
CN (1) CN104141326B (zh)
WO (1) WO2016004664A1 (zh)
ZA (1) ZA201605413B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105952700A (zh) * 2016-06-29 2016-09-21 徐工集团工程机械股份有限公司科技分公司 一种装载机变量多级功率控制模块及液压系统
CN114250819A (zh) * 2021-11-18 2022-03-29 中联重科土方机械有限公司 流量再生阀组、挖掘机控制系统和液压挖掘机
CN114352592A (zh) * 2022-01-24 2022-04-15 三一重机有限公司 液压控制系统及作业机械
CN114384957A (zh) * 2022-01-17 2022-04-22 雷沃工程机械集团有限公司 一种挖掘机破碎工况智能控制系统及方法
WO2023202591A1 (zh) * 2022-04-19 2023-10-26 徐州徐工矿业机械有限公司 无档位控制、工况自适应液压挖掘机智能控制系统及方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104564877B (zh) * 2014-12-15 2017-09-29 徐州徐工挖掘机械有限公司 一种挖掘机减压节流系统
KR102389687B1 (ko) * 2015-01-14 2022-04-22 현대두산인프라코어 주식회사 건설기계의 제어 시스템
CN104929170B (zh) * 2015-05-27 2017-08-25 徐工集团工程机械股份有限公司科技分公司 一种装载机举升动臂节能系统
CN105064444B (zh) * 2015-07-23 2017-06-30 山东临工工程机械有限公司 挖掘机正流量与负流量通用液压系统
CN105133687B (zh) * 2015-09-14 2017-09-15 山河智能装备股份有限公司 挖掘机节能装置启闭控制方法和装置
CN105571754A (zh) * 2016-01-18 2016-05-11 厦门理工学院 挖掘机液压系统节能效果的在线测试和评价方法及系统
CN107701530B (zh) * 2017-08-24 2020-03-10 潍柴动力股份有限公司 用于工程机械的液压系统及工程机械
CN110144985B (zh) * 2019-05-06 2021-07-13 柳州柳工挖掘机有限公司 挖掘机工作装置控制系统
CN110258709B (zh) * 2019-07-08 2021-07-30 山重建机有限公司 一种挖掘机自动匹配不同工况的方法
CN110700337B (zh) * 2019-11-14 2023-10-24 山河智能装备股份有限公司 一种挖掘机动臂节能控制系统及控制方法
CN111501893A (zh) * 2020-04-30 2020-08-07 徐州徐工挖掘机械有限公司 负流量液压系统和挖掘机
CN112682373B (zh) * 2020-12-29 2023-03-21 山推工程机械股份有限公司 一种液压系统、控制方法及工程车辆
CN112982543B (zh) * 2021-03-01 2022-11-22 中国地质科学院勘探技术研究所 一种负流量外控电液系统及方法
CN113152575B (zh) * 2021-05-19 2022-11-25 徐州徐工挖掘机械有限公司 一种基于液压桥路的集合先导正流量控制系统
CN113669314A (zh) * 2021-08-05 2021-11-19 天津工程机械研究院有限公司 纯电动工程车辆液压系统
CN113931895B (zh) * 2021-09-29 2022-11-11 常德中联重科液压有限公司 液压阀结构及分片式多路阀
CN113970008B (zh) * 2021-10-16 2024-02-27 山东锐凯工程机械有限公司 一种液压挖掘机用多路阀自动控制方法及系统
CN115030249A (zh) * 2022-06-30 2022-09-09 中联重科土方机械有限公司 正流量挖掘机及其控制方法、控制装置和控制器
CN115233766B (zh) * 2022-07-08 2023-11-28 湖南工业职业技术学院 一种挖掘机液压控制系统及液压负流量控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048359A (ja) * 2008-08-22 2010-03-04 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械のポンプ制御回路
CN202164653U (zh) * 2011-04-02 2012-03-14 徐州徐工挖掘机械有限公司 自动控制最大压力的挖掘机液压系统
CN102767196A (zh) * 2012-07-31 2012-11-07 徐州徐工挖掘机械有限公司 一种挖掘机液压油合流的控制装置
CN103541395A (zh) * 2013-09-26 2014-01-29 徐州徐工挖掘机械有限公司 一种液压挖掘机节能控制系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7320216B2 (en) * 2005-10-31 2008-01-22 Caterpillar Inc. Hydraulic system having pressure compensated bypass
JP5391040B2 (ja) * 2009-11-26 2014-01-15 キャタピラー エス エー アール エル 作業機械の旋回油圧制御装置
CN102011416B (zh) * 2010-11-03 2012-07-18 三一重机有限公司 一种液压挖掘机流量控制方法及控制回路
JP5786036B2 (ja) * 2010-12-27 2015-09-30 ボルボ コンストラクション イクイップメント アーベー 建設機械用走行制御システム
US8844280B2 (en) * 2011-02-28 2014-09-30 Caterpillar Inc. Hydraulic control system having cylinder flow correction
CN103717913B (zh) * 2011-08-09 2016-06-29 沃尔沃建造设备有限公司 用于施工机械的液压控制系统及方法
JP6018442B2 (ja) * 2012-07-10 2016-11-02 川崎重工業株式会社 傾転角制御装置
CN103122648B (zh) * 2012-12-28 2015-06-17 上海三一重机有限公司 一种多路阀液压控制系统及直线行走控制阀及挖掘机
CN103388348A (zh) * 2013-07-31 2013-11-13 贵州詹阳动力重工有限公司 挖掘机节能控制系统
CN203440862U (zh) * 2013-08-24 2014-02-19 烟台兴业机械股份有限公司 一种地下铲运机的智能控制系统
CN103669456B (zh) * 2013-12-30 2015-10-21 青岛雷沃挖掘机有限公司 一种挖掘机先导手柄操纵功能切换系统及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048359A (ja) * 2008-08-22 2010-03-04 Sumitomo (Shi) Construction Machinery Co Ltd 建設機械のポンプ制御回路
CN202164653U (zh) * 2011-04-02 2012-03-14 徐州徐工挖掘机械有限公司 自动控制最大压力的挖掘机液压系统
CN102767196A (zh) * 2012-07-31 2012-11-07 徐州徐工挖掘机械有限公司 一种挖掘机液压油合流的控制装置
CN103541395A (zh) * 2013-09-26 2014-01-29 徐州徐工挖掘机械有限公司 一种液压挖掘机节能控制系统

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105952700A (zh) * 2016-06-29 2016-09-21 徐工集团工程机械股份有限公司科技分公司 一种装载机变量多级功率控制模块及液压系统
CN114250819A (zh) * 2021-11-18 2022-03-29 中联重科土方机械有限公司 流量再生阀组、挖掘机控制系统和液压挖掘机
CN114250819B (zh) * 2021-11-18 2023-11-17 中联重科土方机械有限公司 流量再生阀组、挖掘机控制系统和液压挖掘机
CN114384957A (zh) * 2022-01-17 2022-04-22 雷沃工程机械集团有限公司 一种挖掘机破碎工况智能控制系统及方法
CN114352592A (zh) * 2022-01-24 2022-04-15 三一重机有限公司 液压控制系统及作业机械
CN114352592B (zh) * 2022-01-24 2023-09-22 三一重机有限公司 液压控制系统及作业机械
WO2023202591A1 (zh) * 2022-04-19 2023-10-26 徐州徐工矿业机械有限公司 无档位控制、工况自适应液压挖掘机智能控制系统及方法

Also Published As

Publication number Publication date
US20160326722A1 (en) 2016-11-10
ZA201605413B (en) 2017-09-27
CN104141326B (zh) 2017-05-03
CN104141326A (zh) 2014-11-12

Similar Documents

Publication Publication Date Title
WO2016004664A1 (zh) 一种挖掘机的节能控制系统
JP5927302B2 (ja) 建設機械用優先制御システム
CN103047208B (zh) 一种负载敏感电液比例多路阀
WO2012094993A1 (zh) 一种提高挖掘机挖掘操纵特性和平整作业特性的方法
US20110071738A1 (en) Controller of hybrid construction machine
CN103122648B (zh) 一种多路阀液压控制系统及直线行走控制阀及挖掘机
CN102079482B (zh) 起重机及其复合动作的控制方法、控制器
CN104379945B (zh) 建筑机械的控制系统
CN108412829B (zh) 一种进出口节流边能独立调节的负载敏感式多路阀
JP2002242904A (ja) 建設機械の油圧回路
CN101413522A (zh) 工程机械负载口独立电液负载敏感能量再生液压系统
CN109630504B (zh) 一种带压力补偿的进出油口独立控制系统
CN104863914A (zh) 一种电液联控合流阀
CN109811823A (zh) 一种挖掘机怠速节能控制系统及控制方法
CN109235534A (zh) 一种液压挖掘机多路液压系统
CN208185091U (zh) 正控制负载敏感系统
CN103807236B (zh) 阀控单元负载口独立控制多缸流量分配液压系统
CN207761575U (zh) 旋挖钻机主泵辅泵合流控制系统
CN113775603A (zh) 一种电液多执行器流量控制系统及方法
CN110671376B (zh) 工程机械负载敏感-进出口独立液压系统及其控制方法
CN108443273A (zh) 一种应急救援车辆工作装置回油路压力补偿节流控制系统
CN209243808U (zh) 一种液压挖掘机多路液压系统
CN107477160A (zh) 液压调速系统及工程机械
EP3434910B1 (en) Shovel and control valve for shovel
CN210031958U (zh) 一种挖掘机怠速节能控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897389

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016013596

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016013596

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160613

122 Ep: pct application non-entry in european phase

Ref document number: 14897389

Country of ref document: EP

Kind code of ref document: A1