WO2016002648A1 - レーザ装置、euv光生成システム及びレーザ装置の制御方法 - Google Patents

レーザ装置、euv光生成システム及びレーザ装置の制御方法 Download PDF

Info

Publication number
WO2016002648A1
WO2016002648A1 PCT/JP2015/068468 JP2015068468W WO2016002648A1 WO 2016002648 A1 WO2016002648 A1 WO 2016002648A1 JP 2015068468 W JP2015068468 W JP 2015068468W WO 2016002648 A1 WO2016002648 A1 WO 2016002648A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical amplifier
laser
command value
euv light
current
Prior art date
Application number
PCT/JP2015/068468
Other languages
English (en)
French (fr)
Inventor
川筋 康文
直弥 高岡
俊雄 横塚
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2016531331A priority Critical patent/JP6513088B2/ja
Publication of WO2016002648A1 publication Critical patent/WO2016002648A1/ja
Priority to US15/356,763 priority patent/US10224686B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/104Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09702Details of the driver electronics and electric discharge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/2232Carbon dioxide (CO2) or monoxide [CO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2316Cascaded amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3401Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • the present disclosure relates to a laser device, an EUV light generation system, and a control method of the laser device.
  • the EUV light generation apparatus includes an LPP (Laser Produced Plasma) system using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge.
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • Three types of devices have been proposed: a device of the system and a device of SR (Synchrotron Radiation) method using orbital radiation.
  • a laser apparatus includes a master oscillator that outputs pulsed laser light, an optical amplifier that amplifies laser light output from the master oscillator, and supplies an alternating current for optical amplification to the optical amplifier.
  • the AC current generation circuit that generates the AC current, and includes control information that defines a correspondence relationship between a command value from the laser controller and a duty ratio of the inverter circuit, and corresponds to the command value received from the laser controller
  • a duty ratio is determined using the control information, and the determined duty ratio is Providing the converter circuit, a power supply control circuit may include.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 shows a configuration example of the laser processing machine according to the first embodiment.
  • FIG. 3A shows a side view of a three-axis orthogonal amplifier.
  • FIG. 3B shows a cross-sectional view along IIIB-IIIB in FIG. 3A.
  • FIG. 4 schematically shows a configuration of a comparative example of the PA power source.
  • FIG. 5 shows temporal changes in the gate signal and inverter current generated in the PA power source of the comparative example.
  • FIG. 6 schematically illustrates a configuration example of the PA power supply according to the first embodiment.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation system.
  • FIG. 2 shows a configuration example of the laser processing machine according to the first embodiment.
  • FIG. 3A shows a side view of a three-axis orthogonal amplifier.
  • FIG. 3B shows a cross-sectional view along IIIB
  • FIG. 7 shows a configuration example of the gate control table.
  • FIG. 8 shows temporal changes in the gate signal and inverter current from the PA power supply control circuit.
  • FIG. 9 shows the relationship between the current command value and the ON time length of the gate signal.
  • FIG. 10 shows a configuration example of a current control table referred to by the laser controller.
  • FIG. 11 shows the relationship between the pulse energy command value and the current command value.
  • FIG. 12 shows a flowchart of the operation of the laser controller.
  • FIG. 13 schematically illustrates the configuration of the EUV light generation system according to the second embodiment.
  • FIG. 14 shows a configuration example of the gate control table.
  • FIG. 15 illustrates a configuration example of the EUV light generation system according to the third embodiment.
  • FIG. 16 shows a configuration example of the operation parameter table.
  • FIG. 17 shows a flowchart of the operation of the laser controller.
  • FIG. 18 shows a detailed flowchart of the correction of the excitation current of the master oscillator in the operation parameter table.
  • FIG. 19 shows a detailed flowchart of the calculation of a new excitation current MOIC.
  • FIG. 20 shows a detailed flowchart of correction of the current command value IC of the optical amplifier in the operation parameter table.
  • FIG. 21 shows a detailed flowchart of changing the current command value of the optical amplifier.
  • FIG. 22 shows a detailed flowchart of laser device control during EUV light generation.
  • FIG. 23 shows a detailed flowchart of the correction of the current command value of the optical amplifier.
  • FIG. 24A shows the time change of the energy of the EUV light in the fourth embodiment.
  • FIG. 24A shows the time change of the energy of the EUV light in the fourth embodiment.
  • FIG. 24B shows the time change of the energy of the pulse laser beam for generating the EUV light of FIG. 24A.
  • FIG. 24C shows the problem of pulsed laser light energy during the burst period.
  • FIG. 24D shows the time change of the energy of the EUV light corresponding to the Perus laser light of FIG. 24C.
  • FIG. 25A shows control of the optical amplifier in the laser apparatus of the fourth embodiment.
  • FIG. 25B shows the relationship between the feedback controlled optical amplifier and the control dynamic range of EUV light energy.
  • FIG. 26A shows a flowchart of laser device control during EUV light generation in the fourth embodiment.
  • FIG. 26B shows a detailed flowchart of the correction of the current command value of the optical amplifier in the flowchart of FIG. 26A.
  • FIG. 26C shows a detailed flowchart of the correction of the current command value of the optical amplifier in the flowchart of FIG. 26A.
  • FIG. 27 shows the relationship between the current command value and the discharge current value in the fifth embodiment for the laser gas that has deteriorated in the optical amplifier and the new laser gas that has not deteriorated.
  • FIG. 28 shows the configuration of the laser apparatus of the fifth embodiment.
  • FIG. 29A shows a flowchart of the operation of the laser controller in the fifth embodiment.
  • FIG. 29B shows a flowchart of details of determination of gas deterioration and correction of the operation parameter table in the flowchart of FIG. 29A.
  • FIG. 30A shows a modified current command value table for the optical amplifier.
  • FIG. 30B shows a modified current command value table for the optical amplifier.
  • FIG. 30C shows a modified current command value table for the optical amplifier.
  • FIG. 30D shows a modified current command value table for the optical amplifier.
  • An LPP EUV light generation system may generate plasma by irradiating a target with laser light output from a laser device to generate EUV light.
  • the LPP EUV light generation system for exposure may generate EUV light at a high repetition rate of 50 to 100 kHz or more, and control the EUV energy every pulse.
  • the pulse energy of the laser light outputted from the laser device may be controlled every pulse.
  • the laser device may include a master oscillator and an optical amplifier that amplifies pulse laser light from the master oscillator. In order to control the EUV light energy every pulse, it may be required to control the gain of the optical amplifier at high speed.
  • a laser apparatus such as a laser processing machine, a laser apparatus including a master oscillator and an optical amplifier that amplifies pulse laser light from the master oscillator is used to control the gain of the optical amplifier at high speed. Can be required.
  • a laser apparatus includes an optical amplifier that amplifies laser light output from a master oscillator, an optical amplifier power source that supplies an alternating current for optical amplification to the optical amplifier, and a laser controller. But you can.
  • the optical amplifier power supply may include an inverter circuit and a power supply control circuit.
  • the power supply control circuit may include control information that defines a correspondence relationship between the command value from the laser controller and the duty ratio of the inverter circuit.
  • the power supply control circuit may determine a duty ratio corresponding to the command value received from the laser controller using the control information, and give the determined duty ratio to the inverter circuit.
  • the duty ratio can be given to the inverter circuit without performing feedback control by the output current of the inverter circuit, and the pulse energy output from the optical amplifier can be controlled at high speed.
  • the laser device of the present disclosure to an LPP EUV light generation system, the energy of EUV light can be controlled more accurately every pulse.
  • Information used to perform processing for determining a value corresponding to an input value may include a function in addition to a table, a database, and the like.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation apparatus.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3 (a system including the EUV light generation apparatus 1 and the laser apparatus 3 is hereinafter referred to as an EUV light generation system 11).
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26 (eg, a droplet generator).
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached to the wall of the chamber 2, for example.
  • the target material supplied from the target supply device may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • the pulse laser beam 32 output from the laser device 3 may pass through the through hole.
  • the chamber 2 may be provided with at least one window 21 through which the pulsed laser light 32 output from the laser device 3 passes.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 has a first focal point and a second focal point.
  • a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed on the surface of the EUV collector mirror 23.
  • the EUV collector mirror 23 has a first focal point located at or near the plasma generation position (plasma generation region 25) and a second focal point defined by the specifications of the exposure apparatus. It is preferably arranged so as to be located at (intermediate focal point (IF) 292).
  • a through hole 24 through which the pulse laser beam 33 can pass may be provided at the center of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include an EUV light generation control unit 5. Further, the EUV light generation apparatus 1 may include a target sensor 4. The target sensor 4 may detect at least one of the presence, trajectory, and position of the target. The target sensor 4 may have an imaging function.
  • the EUV light generation apparatus 1 may include a connection portion 29 that communicates the inside of the chamber 2 and the inside of the exposure apparatus 6.
  • a wall 291 in which an aperture is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control device 34, a laser beam collector mirror 22, a target recovery unit 28 that recovers the target 27, and the like.
  • the laser beam traveling direction control device 34 includes an optical element that defines the traveling direction of the laser beam and an actuator for adjusting the position or posture of the optical element in order to control the traveling direction of the laser beam. Good.
  • the pulse laser beam 31 output from the laser device 3 passes through the window 21 as the pulse laser beam 32 through the laser beam traveling direction control device 34 and enters the chamber 2. Also good.
  • the pulsed laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam focusing mirror 22, and irradiate at least one target 27 as the pulsed laser beam 33.
  • the target supply unit 26 may output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 is irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the laser light is turned into plasma, and EUV light 251 is generated from the plasma.
  • the EUV light 251 may be reflected and collected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be output to the exposure apparatus 6 through the intermediate focal point 292.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 may control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may process the image data of the target 27 imaged by the target sensor 4.
  • the EUV light generation controller 5 may perform at least one of, for example, control of timing for outputting the target 27 and control of the output direction of the target 27.
  • the EUV light generation controller 5 performs, for example, at least one of control of the laser oscillation timing of the laser device 3, control of the traveling direction of the pulsed laser light 32, and control of the focusing position of the pulsed laser light 33. Also good.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 shows a configuration example of the laser processing machine 201 of the present embodiment.
  • the laser processing machine 201 may include a processing machine controller 221, a laser device 210, and a laser focusing / scanning optical system 222.
  • the laser device 210 may include a laser controller 211, a master oscillator (MO) 212, a PA power source 213, and an optical amplifier (PA) 214.
  • MO master oscillator
  • PA optical amplifier
  • the master oscillator 212 may include a solid-state laser including a semiconductor laser (QCL: quantum cascade laser) or a CO 2 laser.
  • the master oscillator 212 can output laser light including the amplification region wavelength of the amplification medium.
  • the optical amplifier 214 may be disposed on the optical path of the laser beam output from the master oscillator 212.
  • the optical amplifier 214 may be a laser amplifier including gas as a laser medium.
  • the laser medium may be CO 2.
  • a PA power source 213 may be connected to the optical amplifier 214.
  • the laser controller 211 may include a current control table 451.
  • a master oscillator 212 and a PA power source 213 may be connected to the laser controller 211.
  • the laser controller 211 may be connected to the processing machine controller 221.
  • the laser controller 211 may include a current source for causing the master oscillator 212 to oscillate.
  • the laser processing machine 201 may process the work 231 by irradiating the work 231 with the laser light output from the laser device 210 via the laser focusing / scanning optical system 222. .
  • the laser controller 211 may supply an excitation current to the master oscillator 212 and cause the master oscillator 212 to oscillate laser light at a predetermined repetition frequency, timing, and intensity.
  • the laser controller 211 may acquire a pulse energy command value from the processing machine controller 221.
  • the pulse energy command value may specify the pulse energy of the laser beam required by the laser processing machine 201.
  • the laser controller 211 may determine a current command value corresponding to the pulse energy command value with reference to the current control table 451.
  • the laser controller 211 may transmit a current command value corresponding to the pulse energy command value to the PA power source 213.
  • the current command value may specify, for example, an inverter current value or a discharge current value in the PA power source 213.
  • the PA power source 213 may supply the optical amplifier 214 with a discharge current based on the current command value.
  • the laser light output from the master oscillator 212 may be amplified to a predetermined pulse energy by a predetermined discharge current in the optical amplifier 214 and output.
  • the laser focusing / scanning optical system 222 may receive the laser beam output from the optical amplifier 214.
  • the laser condensing / scanning optical system 222 may condense and scan the laser light on the work 231.
  • the laser light applied to the work 231 from the laser focusing / scanning optical system 222 has a predetermined pulse energy and can process the work 231.
  • a 3-axis orthogonal laser device may be used as an optical amplifier.
  • a triaxial orthogonal laser device used as an optical amplifier is referred to as a triaxial orthogonal amplifier.
  • Another laser device may be used as the optical amplifier 214.
  • 3A and 3B schematically show a configuration example of the three-axis orthogonal amplifier 214.
  • FIG. 3A shows a side view of the three-axis orthogonal amplifier 214. Some components are seen through.
  • FIG. 3B shows a cross-sectional view along IIIB-IIIB in FIG. 3A.
  • the 3-axis orthogonal amplifier 214 may include a laser chamber 318 that houses other components.
  • the three-axis orthogonal amplifier 214 may include a pair of electrodes 313 and 314, a pair of mirrors 316 and 317, a cross flow fan 320, a motor 319, and a heat exchanger 321.
  • a PA power source 213 may be connected to the pair of electrodes 313 and 314.
  • the motor 319 may rotate the cross flow fan 320 to circulate the laser gas between the electrodes 313 and 314.
  • the heat exchanger 321 can cool the laser gas.
  • the PA power source 213 can apply a voltage reflecting a predetermined discharge current to the electrodes 313 and 314 to cause discharge in the laser gas in the discharge region 315.
  • the laser gas in the discharge region 315 can be excited and become an amplification medium.
  • the laser light incident from the input window 311 may be reflected by the mirrors 316 and 317 and pass through the discharge region 315.
  • Laser light can be amplified in the discharge region 315.
  • the amplified laser light may be emitted from the output window 312.
  • FIG. 4 schematically illustrates the configuration of the comparative example 501 of the PA power supply 213.
  • the PA power supply 501 may include a PA power supply control circuit 502, a rectifier circuit 361, an inrush prevention circuit 362, a smoothing and power factor correction circuit 363, an inverter circuit 648, a current monitor 365, and a transformer 368.
  • the rectifier circuit 361 may be connected to a three-phase AC distribution board 370. From the distribution board 370, the rectifier circuit 361, the inrush prevention circuit 362, the smoothing and power factor correction circuit 363, the inverter circuit 648, and the transformer 368 may be connected in series.
  • the PA power supply control circuit 502 may be configured to be connected to the current monitor 365 so that the inverter current 381 can be monitored.
  • the inverter circuit 648 may include a gate drive circuit 366 and a switch element group 364.
  • the gate drive circuit 366 may be connected to the PA power supply control circuit 502.
  • the switch element group 364 may include switch elements 364A to 364D.
  • the gates of switch elements 364A-364B may be connected to gate drive circuit 366, respectively.
  • the switch elements 364A to 364D may be IGBTs or other types of switch elements.
  • the free-wheeling diodes 369A to 369D may be connected in parallel to the switch elements 364A to 364D, respectively.
  • the switch elements 364A and 364D may be connected in series via the transformer 368, and the switch elements 364B and 364C may be connected in series via the transformer 368.
  • the switch elements 364A and 364B may be connected in parallel, and the switch elements 364C and 364D may be connected in parallel.
  • the switch elements 364A and 364D may constitute one set, and the switch elements 364B and 364C may constitute another set.
  • the gate drive circuit 366 may control both sets to OFF or only one set to ON.
  • the direction of the voltage applied to the transformer 368 when one of the two switch element sets is ON may be opposite to that when the other switch element set is ON.
  • the free-wheeling diodes 369A to 369D can pass a current when the switch element is OFF and a reverse current when the switch element is ON.
  • the switch element group 364 may have other configurations.
  • the PA power source 501 may generate the inverter current 381 and supply the discharge current 382 to the optical amplifier 214 via the transformer 368.
  • the PA power control circuit 502 may receive a current command value from the laser controller 211.
  • the current command value from the laser controller 211 may be a value that specifies the current value of the discharge current 382, for example.
  • PA power supply control circuit 502 may feedback control inverter current 381 based on inverter current 381 monitored by current monitor 365 so as to realize discharge current 382 specified by the current command value.
  • the PA power control circuit 502 may transmit a gate signal to the gate drive circuit 366 based on the current command value and the monitor value of the inverter current 381.
  • the gate drive circuit 366 may cause each switch element of the switch element group 364 to perform an ON-OFF operation according to the received gate signal.
  • the gate drive circuit 366 can control the inverter current 381 by controlling the switch elements 364A to 364D.
  • FIG. 5 shows temporal changes of the gate signal and the inverter current 381 generated in the PA power supply 501 of the comparative example.
  • the PA power supply control circuit 502 may control the inverter circuit 648 so that the inverter current 381 shows the change shown in FIG.
  • the discharge current 382 can show a change according to the change of the inverter current 381.
  • the PA power control circuit 502 may periodically switch ON / OFF of the gate signal.
  • the frequency of the gate signal may be equal to or higher than the transmission frequency of the master oscillator 212.
  • one of the two switch element sets may be ON and the other may be OFF.
  • the gate signal during the ON period can be a pulse in the gate signal.
  • the PA power supply control circuit 502 may switch the set of switch elements that are ON for each pulse.
  • the PA power supply control circuit 502 may control the inverter current 381 by PWM control of the inverter circuit 648.
  • the PA power supply control circuit 502 may control the peak value (amplitude) of the inverter current 381 by changing the duty ratio of the pulse width in the gate signal.
  • the pulse width may be the length of the period during which the gate signal is ON.
  • PA power supply control circuit 502 may gradually change the peak value of inverter current 381 to a value corresponding to the current command value.
  • the PA power supply control circuit 502 may hold information indicating the relationship between the current command value and the peak value of the inverter current 381.
  • the PA power supply control circuit 502 may gradually change the peak value of the inverter current 381 by feedback control referring to the value of the current monitor 365.
  • the pulse energy of the pulse laser beam of the optical amplifier 214 can gradually change so as to approach a value corresponding to the current command value.
  • the PA power supply control circuit 502 may gradually increase the peak value of the inverter current 381 in accordance with the new current command value.
  • the pulse width of the gate signal by feedback control based on the monitor value of the current monitor 365, that is, by gradually increasing the ON time length of the gate signal, the value gradually approaches the value corresponding to the current command value.
  • the discharge current 382 can be controlled.
  • the output control of the optical amplifier 214 using the feedback control can gradually change the pulse energy. Therefore, the pulse energy cannot be controlled at high speed by the current command value corresponding to the desired pulse energy.
  • the processing machine controller 221 controls the pulse energy for each pulse in order to maintain the pulse energy of the laser beam that is likely to fluctuate with high stability. It may be required to do.
  • the feedback control of the comparative example cannot meet this requirement.
  • FIG. 6 schematically shows a configuration example of the PA power supply 213 of the present embodiment.
  • the PA power source 213 may not include the current monitor 365.
  • the PA power supply control circuit 367 may include a volatile or non-volatile storage device that stores the gate control table 369.
  • the alternating current generation circuit in the present disclosure may include an inverter circuit 648 and a transformer 368.
  • FIG. 7 shows a configuration example of the gate control table 369.
  • the gate control table 369 may define a correspondence relationship between the current command value IC and the ON time length G of the gate signal, for example.
  • the ON time length of the gate signal may be the pulse width of the gate signal.
  • the duty ratio of the gate signal can be uniquely determined with respect to the ON time length of the gate signal.
  • the PA power control circuit 367 may refer to the gate control table 369 and determine the ON time length of the gate signal corresponding to the current command value.
  • the PA power supply control circuit 367 may output a gate signal having the determined ON time length to the gate drive circuit 366.
  • PA power supply 213 may include a register that holds a current command value. When receiving the new current command value, the PA power supply 213 may update the value stored in the register with the new current command value. The PA power supply 213 may determine the pulse width of each pulse of the gate signal based on the current command value stored in the register and the gate control table 369.
  • FIG. 8 shows a time change of the gate signal from the PA power supply control circuit 367 and the inverter current 381 corresponding to the gate signal.
  • the PA power supply control circuit 367 sets a corresponding gate signal with reference to the table.
  • the value of the inverter current 381 or the value of the discharge current 382 may be specified as the current command value.
  • the PA power supply control circuit 367 may directly change the ON time length of the gate signal from the current value to a value corresponding to the current command value.
  • the PA power supply control circuit 367 may change the ON time length to a value corresponding to the current command value in the pulse of the gate signal immediately after receiving the current command value.
  • the gate drive circuit 366 may control the switch elements 364A to 364D in accordance with the gate signal received from the PA power supply control circuit 367. By controlling the switch elements 364A to 364D, the peak value of the inverter current 381 can be immediately changed to a value corresponding to the current command value. Along with the change of the inverter current 381, the peak value of the discharge current 382 can immediately change to a value corresponding to the current command value.
  • the interface between the PA power supply control circuit 367 and the laser controller 211 may be constituted by a parallel I / O.
  • the current command value can be transmitted from the laser controller 211 to the PA power supply control circuit 367 at high speed.
  • the current command value may be a numerical value that can be transferred by parallel I / O, for example.
  • the current command value may be represented by, for example, a 16-bit digital signal.
  • a value based on the PWM control of the inverter circuit 648 by the PA power supply control circuit 367 may be designated.
  • the gate control table 369 can be omitted.
  • the laser controller 211 may specify the ON time length of the gate signal.
  • the PA power supply control circuit 367 can change the ON time length of the gate signal to a designated value without using the gate control table 369.
  • the laser controller 211 may output a 16-bit digital signal designating the duty ratio of the gate signal to the PA power control circuit 367.
  • the designation of the duty ratio can also be the designation of the ON time length.
  • the current command value may be represented by a pulse signal to the PA power supply control circuit 367 that specifies the ON time length of the gate signal.
  • the pulse width of the pulse signal from the laser controller 211 to the PA power supply control circuit 367 may be the same as the ON time length of the gate signal.
  • the correspondence between the current command value and the gate signal in the gate control table 369 may be determined in advance by experiments or the like.
  • the PA power supply control circuit 367 may determine the ON time length of the gate signal corresponding to the current command value not included in the gate control table 369 by complementary calculation. For example, when the current command value ICX between the current command value IC2 and the current command value IC3 is input (IC2 ⁇ ICX ⁇ IC3), the PA power supply control circuit 367 sets the current command value ICX to the current command value ICX according to the following calculation formula.
  • the ON time length GX of the corresponding gate signal may be calculated.
  • GX (G3-G2) / (IC3-IC2) * ICX
  • PA power supply control circuit 367 may determine the ON time length of a gate signal corresponding to a given current command value by a function instead of gate control table 369.
  • FIG. 9 shows an example of the relationship between the current command value and the ON time length of the gate signal.
  • the PA power supply control circuit 367 may hold in advance a function that defines the relationship shown in FIG. The function may be determined in advance by experiments or the like. Both the gate control table 369 and the function can be control information that defines the relationship between the current command value and the ON time length (duty ratio) of the gate signal.
  • FIG. 10 shows a configuration example of the current control table 451 referred to by the laser controller 211.
  • the laser controller 211 may include a volatile or nonvolatile storage device that stores the current control table 451.
  • the current control table 451 may define a correspondence relationship between the pulse energy command value and the current command value. The correspondence between the pulse energy command value and the current command value in the current control table 451 may be determined in advance by experiments or the like.
  • the laser controller 211 may determine a current command value corresponding to the received pulse energy command value with reference to the current control table 451.
  • the laser controller 211 may determine a current command value corresponding to a pulse energy command value not included in the current control table 451 by complementary calculation. For example, when a pulse energy command value PtY between the pulse energy command value Pt2 and the pulse energy command value Pt3 is input (Pt2 ⁇ PtY ⁇ Pt3), the laser controller 211 calculates the pulse energy command value PtY according to the following formula:
  • the laser controller 211 may determine a current command value corresponding to a given pulse energy command value by a function instead of the current control table 451.
  • FIG. 11 shows the relationship between the pulse energy command value and the current command value.
  • the laser controller 211 may hold in advance a function that defines the relationship shown in FIG.
  • the function may be determined in advance by experiments or the like. Both the current control table 451 and the function may be control information that defines the relationship between the pulse energy command value and the current command value.
  • FIG. 12 shows a flowchart of the operation of the laser controller 211.
  • the laser controller 211 may wait until it receives the pulse energy command value Pt from the processing machine controller 221 (S101: N).
  • the laser controller 211 may wait until a laser light output signal from the processing machine controller 221 is received (S102: N).
  • the laser controller 211 When the laser controller 211 receives the pulse energy command value Pt from the processing machine controller 221 (S101: Y) and receives the laser light output signal (S102: Y), the laser controller 211 receives the reference with reference to the current control table 451. A current command value IC corresponding to the pulse energy command value Pt may be determined (S103).
  • the laser controller 211 may transmit the determined current command value IC to the PA power source 213 (S104).
  • the PA power supply 213 may operate the optical amplifier 214 by outputting a discharge current 382 corresponding to the new current command value IC to the optical amplifier 214.
  • the laser controller 211 may transmit the MO excitation current to the master oscillator 212 and cause the master oscillator 212 to oscillate laser light at a predetermined repetition frequency, timing, and intensity (S105).
  • the optical amplifier 214 may amplify the pulsed laser light from the master oscillator 212 and output the amplified laser light to the laser focusing / scanning optical system 222.
  • the laser controller 211 may wait until a new pulse energy command value Pt or a laser output stop signal is received from the processing machine controller 221 (S106: N, S107: N). When the laser output stop signal is received from the processing machine controller 221 (S107: Y), the laser controller 211 may stop the master oscillator 212 and the optical amplifier 214 (S108).
  • the laser controller 211 When receiving a new pulse energy command value Pt from the processing machine controller 221 (S106: Y), the laser controller 211 refers to the current control table 451, and a current command corresponding to the received new pulse energy command value Pt.
  • the value IC may be determined (S109).
  • the laser controller 211 may transmit the determined current command value IC to the PA power source 213 (S110).
  • the period of the gate signal in the PA power source 213 can be equal to or longer than the period of the pulse laser beam irradiated on the work 231.
  • the laser controller 211 may transmit the current command value IC to the PA power source 213 at the period of the gate signal in the PA power source 213.
  • the laser controller 211 may transmit the same current command value IC as the previous one to the PA power source 213.
  • the laser controller 211 may immediately determine a current command value corresponding to the pulse energy command value Pt without using feedback control, and transmit the current command value to the PA power source 213.
  • the pulse energy of the output laser light can be adjusted at high speed. For example, the pulse energy of the laser beam to be output can be adjusted with each pulse.
  • FIG. 13 schematically shows the configuration of the EUV light generation system 11 of the present embodiment.
  • the chamber 2 may be provided with a laser condensing optical system 603 that condenses the pulsed laser light on the target 27 and an EUV sensor 604 that observes the energy of the EUV light.
  • the laser apparatus 3 may include a laser controller 611, a master oscillator (MO) 612, optical amplifiers (PA) 614-1 to 614-4, and PA power sources 613-1 to 613-4.
  • the master oscillator 612 may include a plurality of semiconductor lasers 601-1 to 601-4 and an optical path adjuster 602.
  • the semiconductor lasers 601-1 to 601-4 may be quantum cascade lasers (QCL) that output laser light including the amplification region wavelength of the amplification medium including CO 2 gas.
  • QCL quantum cascade lasers
  • FIG. 13 illustrates four quantum cascade lasers 601-1 to 601-4, but the laser type and number may be other types and numbers.
  • the master oscillator 612 may be a CO 2 laser oscillator including a Q switch.
  • the pulsed laser light output from the master oscillator 612 may be linearly polarized light.
  • the optical amplifiers 614-1 to 614-4 may be arranged in series on the optical path of the pulse laser beam output from the master oscillator 612, and sequentially amplify the pulse laser beam output from the master oscillator 612.
  • the optical amplifiers 614-1 to 614-4 may be first to fourth stage optical amplifiers.
  • the optical amplifiers 614-1 to 614-4 may be laser amplifiers containing CO 2 gas as a laser medium.
  • PA power supplies 613-1 to 613-4 may be connected to optical amplifiers 614-1 to 614-4, respectively.
  • FIG. 13 illustrates four optical amplifiers 614-1 to 614-4 and four PA power sources 613-1 to 613-4, but the number of these may be other numbers.
  • Each of the optical amplifiers 614-1 to 614-4 may have the same configuration as the optical amplifier 214.
  • the PA power sources 613-1 to 613-4 may have the same configuration as the PA power source 213.
  • the above description of the optical amplifier 214 can be applied to the optical amplifiers 614-1 to 614-4.
  • the above description of the PA power supply 213 can be applied to the PA power supplies 613-1 to 613-4.
  • At least one optical isolator is disposed at any position on the optical path between the master oscillator 612 and the optical amplifier 614-1, between each of two consecutive optical amplifiers, and downstream of the optical amplifier 614-4. May be.
  • the laser controller 611 may be connected to the quantum cascade lasers 601-1 to 601-4 and the PA power sources 613-1 to 613-4.
  • the laser controller 611 may be connected to the EUV light generation controller 5.
  • the laser controller 611 may include a gate control table 621.
  • FIG. 14 shows a configuration example of the gate control table 621.
  • the gate control table 621 may define the relationship between the pulse energy command value from the EUV light generation controller 5 and the current command value to the optical amplifiers 614-1 to 614-4.
  • the current command values to the optical amplifiers 614-1 to 614-4 may be transmitted by the laser controller 611 to the PA power sources 613-1 to 613-4 connected to the optical amplifiers 614-1 to 614-4, respectively. .
  • Both the gate control table 621 and the function can be control information for determining the current command value.
  • the point that both the table and the function for determining the current command value are control information for determining the current command value may be the same in other embodiments.
  • the laser controller 611 may supply an excitation current to the quantum cascade lasers 601-1 to 601-4 to oscillate laser light at a predetermined repetition frequency, timing, and intensity.
  • the quantum cascade lasers 601-1 to 601-4 may output laser beams having different wavelengths.
  • the optical path controller 602 may match the optical paths of the laser beams output from each of the quantum cascade lasers 601-1 to 601-4 and output them.
  • the EUV light generation controller 5 may transmit a pulse energy command value to the laser controller 611.
  • the laser controller 611 may determine a current command value to each of the PA power sources 613-1 to 613-4 corresponding to the received pulse energy command value with reference to the gate control table 621.
  • the laser controller 611 may transmit the determined current command value to each of the PA power sources 613-1 to 613-4.
  • the PA power supplies 613-1 to 613-4 may supply a discharge current based on the current command value to the optical amplifiers 614-1 to 614-4, respectively.
  • the PA power sources 613-1 to 613-4 may generate a discharge current based on the current command value by the same configuration and operation as the PA power source 213.
  • the optical amplifiers 614-1 to 614-4 may sequentially amplify and output the laser light output from the master oscillator 612.
  • the laser light output from the laser apparatus 3 is irradiated onto the target 27 supplied into the chamber 2, and EUV light can be generated.
  • the EUV light generation controller 5 may acquire a measured value of EUV pulse energy from the EUV sensor 604.
  • the EUV light generation controller 5 may transmit a pulse energy command value to the laser controller 611 for each EUV pulse based on the acquired measurement value.
  • the pulse energy output from the optical amplifiers 614-1 to 614-4 can fluctuate due to fluctuations in the laser medium temperature accompanying fluctuations in the thermal load. Further, the fluctuations of the multistage optical amplifiers 614-1 to 614-4 are accumulated, and can be a large energy fluctuation of the pulsed laser light output from the laser device 3.
  • the optical amplifiers 614-1 to 614-4 may require energy control at every pulse.
  • the laser device 3 can be required to have a control speed of 20 to 10 ⁇ s or less.
  • the PA power supplies 613-1 to 613-4 may change the ON time length of the gate signal immediately in accordance with the current command value, similarly to the PA power supply 213.
  • the pulse energy output from the optical amplifiers 614-1 to 614-4 can be controlled at high speed.
  • the PA power sources 613-1 to 613-4 may control the gate signal pulse width or the current command value for each cycle of the inverter current.
  • the frequency of the inverter current is also the pumping frequency of the optical amplifiers 614-1 to 614-4, and the pumping intensity can be changed by the pumping frequency of the optical amplifiers 614-1 to 614-4.
  • the repetition frequency (EUV light generation frequency) of the EUV pulse output is f and the excitation frequency of the optical amplifiers 614-1 to 614-4 is g
  • a relationship of f ⁇ g ⁇ 10f may be established.
  • a relationship of f ⁇ g ⁇ 5f may be established.
  • the output pulse frequency of the master oscillator 612 and the pumping frequencies of the optical amplifiers 614-1 to 614-4 may have a similar relationship.
  • the excitation frequency may be equal to or higher than the output pulse frequency.
  • the excitation frequency of the optical amplifiers 614-1 to 614-4 may be several hundred kHz to several tens of MHz, and the repetition frequency for generating EUV light may be 50 to 100 kHz.
  • the laser apparatus 3 can control the EUV light energy at every pulse in the EUV light generation system 11 by controlling the pumping intensity with the pumping frequencies of the optical amplifiers 614-1 to 614-4.
  • FIG. 15 shows a configuration example of the EUV light generation system 11 of this embodiment. In the following, differences from the configuration shown in FIG. 13 will be mainly described.
  • An MO energy detector 607 may be disposed on the laser light output side of the master oscillator 612. Further, PA energy detectors 605-1 to 605-4 may be arranged on the output sides of the optical amplifiers 614-1 to 614-4, respectively.
  • the energy detectors 607, 605-1 to 605-4 may be arranged on the optical path of the reflected light from a beam sampler (not shown) arranged on the laser optical path.
  • the energy detectors 607, 605-1 to 605-4 may be arranged so as to be freely inserted and removed at an arbitrary timing with respect to the optical path.
  • the laser controller 611 may be connected to the energy detectors 607 and 605-1 to 605-4 in addition to the quantum cascade lasers 601-1 to 601-4 and the PA power sources 613-1 to 613-4.
  • the laser controller 611 may be connected to the EUV sensor 604 disposed in the chamber 2.
  • the laser controller 611 may include an operation parameter table 681.
  • FIG. 16 shows a configuration example of the operation parameter table 681.
  • the operation parameter table 681 defines the correspondence between the EUV pulse energy command value from the exposure apparatus controller 660 and the operation parameters of the quantum cascade lasers 601-1 to 601-4 and PA power sources 613-1 to 613-4. Also good.
  • the operation parameters managed by the operation parameter table 681 may include the excitation current of the master oscillator 612 and the current command values of the optical amplifiers 614-1 to 614-4.
  • the operation parameter table 681 may further store target energies of the master oscillator 612 and the optical amplifiers 614-1 to 614-4 corresponding to the EUV pulse energy command value.
  • the target energy of the master oscillator 612 and the optical amplifiers 614-1 to 614-4 may be set in advance by experiments.
  • the target energy of the master oscillator 612 and the optical amplifiers 614-1 to 614-4 may be fixed with respect to the EUV pulse energy command value.
  • the excitation current of the master oscillator 612 may be set to achieve the target energy of the master oscillator 612.
  • the current command values of the optical amplifiers 614-1 to 614-4 may be set so as to realize the target energies of the optical amplifiers 614-1 to 614-4, respectively.
  • the initial values of the excitation current of the master oscillator 612 and the current command values of the optical amplifiers 614-1 to 614-4 may be set in advance by experiments.
  • the excitation current of the master oscillator 612 may be updated according to the target energy and measured energy of the master oscillator 612.
  • the current command values of the optical amplifiers 614-1 to 614-4 may be updated according to the target energy and measured energy of the optical amplifiers 614-1 to 614-4, respectively.
  • functions of the MO excitation current and the current command values of the optical amplifiers 614-1 to 614-4 may be used.
  • the laser controller 611 may perform adjustment oscillation prior to EUV light generation and modify the operation parameter table 681.
  • the laser controller 611 acquires laser beam energy measurement values from the energy detectors 607 and 605-1 to 605-4, and based on the acquired energy detection values and the energy target values in the operation parameter table 681, The excitation current of the oscillator 612 and the current command value of the optical amplifiers 614-1 to 614-4 may be corrected.
  • FIG. 17 shows a flowchart of the operation of the laser controller 611.
  • the laser controller 611 may wait until the EUV pulse energy command value Et is received from the exposure apparatus controller 660 (S201: N).
  • the laser controller 611 corrects the excitation current MOIC of the master oscillator 612 in the operation parameter table 681 by adjustment oscillation based on the EUV pulse energy command value Et. (S202).
  • the laser controller 611 may correct the current command value IC of the optical amplifiers 614-1 to 614-4 in the operation parameter table 681 by adjustment oscillation based on the EUV pulse energy command value Et (S203).
  • the laser controller 611 may execute Step S202 and Step S203 for a plurality of different EUV pulse energy command values Et.
  • the function may be modified.
  • the laser controller 611 may wait until receiving the EUV light output signal from the exposure apparatus controller 660 after correcting the operation parameter table 681 by the adjustment oscillation (S204: N). When the EUV light output signal is received from the exposure apparatus controller 660 (S204: Y), the laser controller 611 may execute laser apparatus control at the time of EUV light generation (S205).
  • FIG. 18 shows a detailed flowchart of the correction (S202) of the excitation current of the master oscillator 612 in the operation parameter table 681.
  • the laser controller 611 may determine the target energy MOEt and the excitation current MOIC of the master oscillator 612 based on the operation parameter table 681 (S301).
  • the laser controller 611 may oscillate the master oscillator 612 by the determined excitation current MOIC (S302).
  • the laser controller 611 may acquire the measured energy value MOEm of the laser pulse from the MO energy detector 607 (S303).
  • the laser controller 611 may compare the difference between the measured energy value MOEm and the target energy MOEt with a predetermined value set in advance (S304). When the difference is larger than the predetermined value (S304: Y), the laser controller 611 calculates a new excitation current MOIC based on the current excitation current MOIC and the difference, and newly supplies the excitation current supplied to the master oscillator 612. The excitation current MOIC may be changed to (S305).
  • FIG. 19 shows a detailed flowchart of calculation of a new excitation current MOIC (S305).
  • the laser controller 611 may calculate a difference ⁇ MOE between the measured energy value MOEm and the target energy MOEt (S501).
  • the laser controller 611 may calculate the change amount ⁇ MOIC of the excitation current MOIC by substituting the difference ⁇ MOE into a preset function f (S502).
  • the change amount ⁇ MOIC can be positive or negative.
  • the laser controller 611 may add ⁇ MOIC to the current excitation current MOIC to calculate a new excitation current MOIC (S503).
  • the laser controller 611 rewrites the excitation current MOIC for the target energy MOEt in the operation parameter table 681 with the current excitation current MOIC. (S306).
  • the correction of the excitation current MOIC may be feedback control that increases or decreases the MO excitation current of the next pulse according to the immediately preceding MO energy detection value.
  • FIG. 20 shows a detailed flowchart of the correction (S203) of the current command value IC of the optical amplifiers 614-1 to 614-4 in the operation parameter table 681.
  • the laser controller 611 may determine the target energy AMPNEt and the current command value AMPNIC of the optical amplifier 614-N from the operation parameter table 681 based on the EUV pulse energy command value Et (S402).
  • the laser controller 611 may operate the optical amplifier 614-1 from the optical amplifier 614-1 (S403).
  • the laser controller 611 may transmit the current command values AMP1IC to AMPNIC determined by the operation parameter table 681 to the PA power sources 613-1 to 613-N, respectively, based on the EUV pulse energy command value Et.
  • the laser controller 611 may measure the output energy AMPNEm of the optical amplifier 614-N by the PA energy detector 605-N (S404). The laser controller 611 may determine whether the difference between the target energy AMPNEt and the measured energy AMPNEm is greater than a predetermined value (S405).
  • step S406 When the difference between the target energy AMPNEt and the measured energy AMPNEm is larger than a predetermined value (S405: Y), the laser controller 611 changes the current command value AMPNIC of the optical amplifier 641-N (S406), and the PA power supply 613-N You may give to. Details of step S406 will be described later.
  • the laser controller 611 When the difference between the target energy AMPNEt and the measured energy AMPNEm is equal to or smaller than a predetermined value (S405: N), the laser controller 611 rewrites the current command value AMPNIC for the target energy AMPNEt in the operation parameter table 681 to the current value. It is good (S407).
  • the laser controller 611 may add 1 to the variable N (S408).
  • the laser controller 611 may determine whether the variable N has reached the number K of optical amplifiers (S409). In this example, K may be 4. If the variable N has not reached the number K of optical amplifiers (S409: N), the laser controller 611 may return to step S403. When the variable N has reached the number K of optical amplifiers (S409: Y), the laser controller 611 may stop the operations of the master oscillator master oscillator 612 and the optical amplifiers 641-1 to 641-4 (S410). .
  • the change of the current command value of the optical amplifier 641-N may be feedback control that increases or decreases the current command value of the next pulse according to the immediately preceding energy measurement value.
  • the current command values of the optical amplifiers 641-1 to 641-4 may be corrected sequentially from the upstream, that is, from the optical amplifier close to the master oscillator 612.
  • FIG. 21 shows a detailed flowchart of the AMPNIC change (S406) of the optical amplifier 641-N.
  • the laser controller 611 may calculate a difference AMPN ⁇ E between the target energy AMPNEt and the measured energy AMPNEm (S601).
  • the laser controller 611 may calculate the change amount AMPN ⁇ IC of the current command value by substituting the calculated difference AMPN ⁇ E into the predetermined function g (S602).
  • the further amount AMPN ⁇ IC can be positive or negative.
  • the laser controller 611 may calculate a new current command value AMPNIC by adding the change amount AMPN ⁇ IC to the current current command value AMPNIC (S603).
  • the operation parameter table 681 can be corrected to an appropriate content before EUV light generation.
  • the gate control table 369 may be modified by the same method.
  • FIG. 22 shows a detailed flowchart of laser device control (S205) during EUV light generation.
  • the laser controller 611 may determine the excitation current of the master oscillator 612 and the current command values of the optical amplifiers 614-1 to 614-4 based on the operation parameter table 681 (S701). .
  • the laser controller 611 may oscillate the master oscillator 612 with the determined excitation current.
  • the laser controller 611 may transmit the determined current command value to the PA power sources 613-1 to 613-4, and operate the optical amplifiers 614-1 to 614-4 at the determined current command value (S702).
  • the laser controller 611 measures the EUV pulse energy Em by the EUV sensor 604 (S705), and the measured EUV pulse. It may be determined whether the difference between the energy Em and the EUV pulse energy command value Et is greater than a predetermined value (S706).
  • the laser controller 611 uses the operation parameter table 681 to determine the final stage based on the new EUV pulse energy command value Et.
  • the current command value of the optical amplifier 614-4 may be determined and transmitted to the PA power source 613-4 (S704). Thereafter, the laser controller 611 may move to step S705.
  • the laser controller 611 may return to step S703.
  • the laser controller 611 corrects the current command value of the optical amplifier 614-4 at the final stage (S707). The process may return to step S703.
  • FIG. 23 shows a detailed flowchart of the correction of the current command value of the optical amplifier 614-4 (S707) in the flowchart of FIG.
  • the laser controller 611 may calculate a difference ⁇ E between the EUV pulse energy command value Et and the measured EUV pulse energy Em (S801).
  • the laser controller 611 may calculate the change amount AMP4 ⁇ IC of the current command value of the optical amplifier 614-4 by substituting the calculated difference ⁇ E into the predetermined function h (S802).
  • the amount of change AMP4 ⁇ IC can be positive or negative.
  • the laser controller 611 may calculate a new current command value AMP4IC to the optical amplifier 614-4 by adding the calculated change amount AMP4 ⁇ IC to the current current command value AMP4IC to the optical amplifier 614-4 (S803). ). The laser controller 611 may transmit the newly determined current command value AMP4IC to the PA power source 613-4 of the optical amplifier 614-4 (S804).
  • the laser controller 611 obtains a measured value of EUV light energy from the EUV sensor 604 after adjustment oscillation and at the time of EUV light generation, and sends some PA power sources, for example, the PA power source 613-4 to the laser You may control for every pulse.
  • the correction of the current command value to the optical amplifier 614-4 may be feedback control that increases or decreases the current command value of the next pulse based on the immediately previous EUV light energy measurement value.
  • another optical amplifier for example, the optical amplifier 614-3 may be feedback-controlled together with the amplifier 614-4.
  • the EUV light energy can be stabilized by controlling the optical amplifier based on the output of the EUV sensor 604.
  • the optical amplifier By controlling only a part of the optical amplifier including the final stage amplifier, the EUV light energy can be stabilized easily and effectively.
  • the laser controller 611 may execute only some steps in the flowchart of FIG. Only the PA power supply of some optical amplifiers whose current command value is corrected when EUV light is generated may have the same configuration as the PA power supply 213.
  • the EUV light generation controller 5 may receive a burst signal from the exposure apparatus controller 660 in addition to the EUV pulse energy command value.
  • the burst signal may be a signal that instructs the EUV light generation system 11 that EUV light should be generated in a predetermined period.
  • the predetermined period is called a burst period.
  • the EUV light generation controller 5 may perform control for outputting EUV light to the exposure apparatus 6 during the burst period.
  • the EUV light generation system 11 may output EUV light while the burst signal is ON.
  • the period when the burst signal is ON is a burst period.
  • the EUV light generation system 11 may stop outputting the EUV light.
  • a period in which the burst signal is OFF is called a pause period.
  • FIG. 24A shows the time change of the energy of the EUV light.
  • the burst period and the pause period may be alternately repeated. This operation of the EUV light generation system 11 is called a burst operation.
  • the EUV light generation system 11 may output EUV light having a predetermined number of pulses at a predetermined repetition rate in a burst period.
  • the EUV light generation controller 5 may control other devices so that the energy of the EUV light is constant during the burst period.
  • FIG. 24B shows the time change of the energy of the pulse laser beam for generating the EUV light of FIG. 24A.
  • the burst period and the pause period may be alternately repeated.
  • the energy of the pulsed laser light may show a time change similar to the energy of the EUV light.
  • the laser controller 611 may receive a burst signal via the EUV light generation controller 5.
  • the laser controller 611 may perform control so that the laser device 3 outputs pulsed laser light during a period when the burst signal is ON.
  • the laser controller 611 may perform control so that the laser device 3 stops outputting pulsed laser light during a period when the burst signal is OFF.
  • the laser device 3 may output laser light having a predetermined number of pulses at a predetermined repetition rate during the burst period.
  • the laser controller 611 may control the laser device 3 so that the laser beam energy is constant during the burst period.
  • FIG. 24C shows a problem of pulsed laser light energy in the burst period.
  • the amplification factor of the optical amplifier can be high. Therefore, immediately after the burst signal changes from OFF to ON and in a plurality of continuous laser light pulses thereafter, the laser light pulse energy gradually decreases, and the laser light pulse energy may tend to be higher than the subsequent pulses. .
  • FIG. 24D shows the time change of the energy of the EUV light corresponding to the pulse laser light of FIG. 24C. Similar to the pulsed laser light to be irradiated, the EUV light pulse energy gradually decreases in the first pulse of the burst and the subsequent multiple pulses, and may further tend to be higher than the subsequent pulses.
  • the laser controller 611 may lower the current command value of the final stage optical amplifier 614-4. However, if the following factors are added to this situation, the energy of some laser light pulses from the head of the burst becomes too large, and the laser light energy may exceed the output target energy.
  • the first factor may be a decrease in gas flow rate due to deterioration of a motor that rotates a cross flow fan that circulates the laser gas of the optical amplifier.
  • the second factor may be a decrease in the temperature of the cooling water flowing through the heat exchanger of the optical amplifier.
  • the third factor may be an increase in output fluctuation of the master oscillator 612.
  • the EUV light energy is converted into the EUV pulse energy command value (target energy) Et even if only the final stage optical amplifier 614-4 is controlled. Cannot be controlled within a certain range. As described above, when the pulsed laser beam is in a state exceeding the control dynamic range of only the final stage optical amplifier 614-4, it is difficult to control the exposure amount by the exposure apparatus 6.
  • FIG. 25A shows control of the optical amplifiers 614-1 to 614-4 of the present embodiment in the laser apparatus 3.
  • the laser controller 611 may extend the control dynamic range of the laser apparatus 3 by performing feedback control of other optical amplifiers in addition to the final stage optical amplifier 614-4 when EUV light is generated.
  • the current command value applied to the optical amplifier may be corrected based on the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et.
  • the laser controller 611 may perform feedback control only on the optical amplifier 614-4.
  • the laser controller 611 may perform feedback control on the optical amplifiers 614-4 and 614-3.
  • the laser controller 611 may perform feedback control on the optical amplifiers 614-4, 614-3, and 614-2.
  • the current command value for the upstream optical amplifier that is not feedback controlled may be constant, and the output of the inverter circuit may be constant.
  • the laser controller 611 may increase the number of optical amplifiers that perform feedback control from the downstream side in accordance with an insufficient amount of the control dynamic range.
  • the detection of insufficient dynamic range may be based on the output value of the EUV sensor 604 or the output value of the energy detector of the optical amplifier.
  • FIG. 25B shows the relationship between the feedback-controlled optical amplifier and the control dynamic range of EUV light energy. As the number of optical amplifiers for feedback control increases, the control dynamic range of EUV light energy can increase.
  • the EUV light energy control dynamic range Te3 by the optical amplifiers 614-3 and 614-4 may be larger than the EUV light energy control dynamic range Te4 by the optical amplifier 614-4.
  • the control dynamic range Te2 of EUV light energy by the optical amplifiers 614-2, 614-3, and 614-4 may be larger than the control dynamic range Te3 of EUV light energy by the optical amplifiers 614-3 and 614-4.
  • FIG. 26A shows a flowchart of laser device control (S205) during EUV light generation in the present embodiment.
  • the laser controller 611 determines a numerical range including a difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et, and corrects the current command value of the optical amplifier associated with the numerical range in advance. Good. A larger number of optical amplifiers may be assigned to a numerical range composed of larger numerical values.
  • the laser controller 611 may determine the pump current of the master oscillator 612 and the current command values of the optical amplifiers 614-1 to 614-4 based on the operation parameter table 681 ( S821).
  • the laser controller 611 may oscillate the master oscillator 612 with the determined excitation current.
  • the laser controller 611 may transmit the determined current command value to the PA power sources 613-1 to 613-4, and operate the optical amplifiers 614-1 to 614-4 at the determined current command value (S822).
  • the EUV pulse energy Em may be measured by the EUV sensor 604 (S826), and it may be determined whether the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et is equal to or less than a specified value Te4 (S827).
  • the specified value Te4 corresponds to the control dynamic range of the EUV light by the optical amplifier 614-4, and may be determined by experiment.
  • the laser controller 611 uses the operation parameter table 681 to determine the optical amplifier based on the new EUV pulse energy command value Et.
  • the current command values AMP2IC to AMP4IC of 614-2 to 614-4 may be determined and transmitted to the PA power sources 613-2 to 613-4 (S824). Thereafter, the laser controller 611 may move to step S825.
  • the laser controller 611 may end this flow.
  • the laser controller 611 When the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et is larger than the specified value Te4 (S827: N), the laser controller 611 has a difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et. It may be determined whether the value is equal to or less than the specified value Te3 (S828).
  • the prescribed value Te3 corresponds to the control dynamic range of EUV light by the optical amplifiers 614-4 and 614-3, and may be determined by experiment.
  • the laser controller 611 determines that the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et is It may be determined whether the value is equal to or less than the specified value Te2 (S829).
  • the prescribed value Te2 corresponds to the control dynamic range of EUV light by the optical amplifiers 614-4, 614-3, and 614-2, and may be determined experimentally.
  • the laser controller 611 When the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et is larger than the specified value Te2 (S829: N), the laser controller 611 notifies the EUV light generation controller 5 that the dynamic range is insufficient (S830). This flow may be terminated.
  • the laser controller 611 corrects the current command value of only the optical amplifier 614-4 at the final stage. (S831) and the process may return to step S823.
  • the laser controller 611 When the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et is greater than the specified value Te4 (S827: N) and less than or equal to the specified value Te3 (S828: Y), the laser controller 611 is the final stage optical amplifier.
  • the current command values of 614-4 and optical amplifier 614-3 may be corrected (S832), and the process may return to step S823.
  • the laser controller 611 When the difference between the measured EUV pulse energy Em and the EUV pulse energy command value Et is greater than the prescribed value Te3 (S828: N) and less than or equal to the prescribed value Te2 (S829: Y), the laser controller 611 is the last stage optical amplifier.
  • the current command values of 614-4 and optical amplifiers 614-3 and 614-2 may be corrected (S833), and the process may return to step S823.
  • FIG. 26B shows a detailed flowchart of the current command value correction (S832) of the optical amplifiers 614-4 and 614-3 in the flowchart of FIG. 26A.
  • the correction of the current command value of only the optical amplifier 614-4 (S831) may be the same as the flowchart shown in FIG.
  • the laser controller 611 may calculate a difference ⁇ E between the EUV pulse energy command value Et and the measured EUV pulse energy Em (S841).
  • the laser controller 611 may calculate the difference ⁇ E3 between the specified value Te3 and the specified value Te4 and the difference ⁇ E4 between the difference ⁇ E and the difference ⁇ E3 (S842).
  • the laser controller 611 may calculate the change amount AMP3 ⁇ IC of the current command value of the optical amplifier 614-3 by substituting the calculated difference ⁇ E3 into the predetermined function f (S843).
  • ⁇ E3 may be constant regardless of the difference ⁇ E between the EUV pulse energy command value Et and the measured EUV pulse energy Em, and the change amount AMP3 ⁇ IC may be constant regardless of the difference ⁇ E.
  • the laser controller 611 may calculate a new current command value AMP3IC for the optical amplifier 614-3 by adding the calculated change amount AMP3 ⁇ IC to the current current command value AMP3IC for the optical amplifier 614-3 (S844). ).
  • the laser controller 611 may calculate the change amount AMP4 ⁇ IC of the current command value of the optical amplifier 614-4 by substituting the calculated difference ⁇ E4 into the predetermined function f (S845).
  • the laser controller 611 may calculate a new current command value AMP4IC for the optical amplifier 614-4 by adding the calculated change amount AMP4 ⁇ IC to the current current command value AMP4IC for the optical amplifier 614-4 (S846). ).
  • the laser controller 611 may transmit the newly determined current command values AMP3IC and AMP4IC to the PA power source 613-3 of the optical amplifier 614-3 and the PA power source 613-4 of the optical amplifier 614-4, respectively (S847). ).
  • FIG. 26C shows a detailed flowchart of the current command value correction (S833) of the optical amplifiers 614-4, 614-3, 614-2 in the flowchart of FIG. 26A.
  • the laser controller 611 may calculate a difference ⁇ E between the EUV pulse energy command value Et and the measured EUV pulse energy Em (S861).
  • the laser controller 611 may calculate the difference ⁇ E2 between the specified value Te3 and the specified value Te2, the difference ⁇ E3 between the specified value Te3 and the specified value Te4, and the difference ⁇ E4 (S862).
  • the difference ⁇ E4 may be a difference between the difference ⁇ E and an added value of the difference ⁇ E2 and the difference ⁇ E3.
  • the laser controller 611 may calculate the change amount AMP2 ⁇ IC of the current command value of the optical amplifier 614-2 by substituting the calculated difference ⁇ E2 into a predetermined function f (S863).
  • ⁇ E2 may be constant regardless of the difference ⁇ E between the EUV pulse energy command value Et and the measured EUV pulse energy Em, and the change amount AMP2 ⁇ IC may be constant regardless of the difference ⁇ E.
  • the laser controller 611 may calculate a new current command value AMP2IC for the optical amplifier 614-2 by adding the calculated change amount AMP2 ⁇ IC to the current current command value AMP2IC for the optical amplifier 614-2 (S864). ).
  • the laser controller 611 may calculate the change amount AMP3 ⁇ IC of the current command value of the optical amplifier 614-3 by substituting the calculated difference ⁇ E3 into the predetermined function f (S865).
  • the laser controller 611 may calculate a new current command value AMP3IC for the optical amplifier 614-3 by adding the calculated change amount AMP3 ⁇ IC to the current current command value AMP3IC for the optical amplifier 614-3 (S866). ).
  • the laser controller 611 may calculate the change amount AMP4 ⁇ IC of the current command value of the optical amplifier 614-4 by substituting the calculated difference ⁇ E4 into the predetermined function f (S867).
  • the laser controller 611 may calculate a new current command value AMP4IC for the optical amplifier 614-4 by adding the calculated change amount AMP4 ⁇ IC to the current current command value AMP4IC for the optical amplifier 614-4 (S868). ).
  • the laser controller 611 sends the newly determined current command values AMP2IC, AMP3IC, and AMP4IC to the PA power supply 613-2 of the optical amplifier 614-2, the PA power supply 613-3 of the optical amplifier 614-3, and the optical amplifier 614-4, respectively. May be transmitted to the PA power source 613-4 (S869).
  • This embodiment changes the control range of EUV light energy by changing the number of optical amplifiers that correct the current command value according to the difference between the EUV pulse energy command value and the measured EUV pulse energy.
  • EUV light energy can be within a desired range.
  • the amount of change in the current command location to the optical amplifier at the final stage changes according to the difference between the EUV pulse energy command value and the measured EUV pulse energy, and the amount of change in the current command location to the other optical amplifiers is constant, The energy of the pulse laser beam can be controlled efficiently.
  • the number of optical amplifiers that can be feedback controlled in addition to the final stage optical amplifier may depend on the design. The number may be 1 or 3 or more.
  • the position of the optical amplifier capable of feedback control may not be immediately before the final stage optical amplifier. The order of addition need not be from the downstream side.
  • the master oscillator may also be feedback controlled.
  • FIG. 27 shows the relationship between a current command value and a discharge current value in a deteriorated laser gas and a new laser gas not deteriorated in an optical amplifier.
  • the laser gas of the optical amplifier can be deteriorated by elapse of time, increase in the number of discharges, generation of unauthorized discharge, or the like.
  • the amplification factor can be reduced.
  • the discharge current value can be reduced with respect to the current command value. This can be considered because the electrical load of the laser gas changes with deterioration.
  • the laser apparatus of the present embodiment may detect gas deterioration of the optical amplifier and rewrite control information indicating the relationship between the pulse energy command value and the current command value. As shown in FIG. 27, the divergence between the current command value and the discharge current value caused by gas deterioration can be corrected by rewriting the control information.
  • the detection of gas deterioration may be performed based on the difference between the current command value and the discharge current value, or may be performed based on the amount of decrease in laser output with respect to the same current command value.
  • an optical amplifier that automatically performs gas exchange at predetermined time intervals or at startup. This embodiment does not have to be applied to such an optical amplifier.
  • FIG. 28 shows a configuration of the laser apparatus 3 of the present embodiment.
  • Discharge current monitors 617-1 to 617-4 may be arranged on current connection paths between the optical amplifiers 614-1 to 614-4 and the PA power sources 613-1 to 613-4, respectively.
  • the discharge current monitors 617-1 to 617-4 may be configured with a shunt resistor, CT, or current probe.
  • CT shunt resistor
  • the current monitor of the PA power supply may also serve as a discharge current monitor.
  • the discharge current monitors 617-1 to 617-4 may be connected to the laser controller 611. Other configurations may be the same as in FIG.
  • the laser controller 611 acquires the respective discharge current values from the discharge current monitors 617-1 to 617-4, and based on the difference between each current command value and each discharge current value, the PA power source 613 The control information set in each of -1 to 613-4 may be rewritten.
  • FIG. 29A shows a flowchart of the operation of the laser controller 611 in the present embodiment.
  • the laser controller 611 may wait until the EUV pulse energy command value Et is received from the exposure apparatus controller 660 (S901: N).
  • Step S902 may be the same as step S202 shown in FIG.
  • the laser controller 611 determines the deterioration of the laser gas of the optical amplifiers 614-1 to 614-4 by the adjustment oscillation, and the current command value IC of the optical amplifiers 614-1 to 614-4 in the operation parameter table 681 according to the determination result. May be corrected (S903). As will be described later, the laser controller 611 may turn on a gas exchange flag for an optical amplifier that requires laser gas exchange. The gas exchange flag may be stored in a storage device of the laser controller 611.
  • the laser controller 611 may determine whether or not the gas exchange flags of all the optical amplifiers 614-1 to 614-4 are OFF (S904).
  • the gas exchange flag of any of the optical amplifiers is ON (S904: N)
  • the laser controller 611 notifies the EUV light generation control unit 5 of the optical amplifier whose gas exchange flag is ON (S905). You may end.
  • Step S907 may be the same as step S205 shown in FIG.
  • FIG. 29B shows a detailed flowchart of the determination of gas deterioration and the correction of the operation parameter table 681 (S903) in the flowchart of FIG. 29A.
  • the character N in the variable name used in the flowchart shown in FIG. 29B is replaced by the value of the variable N.
  • the laser controller 611 may substitute 1 for the variable N (S921).
  • the laser controller 611 may set the current command value AMPNIC of the optical amplifier 614-N corresponding to the EUV pulse energy command value Et obtained from the operation parameter table 681 in the optical amplifier 614-N (S922).
  • the laser controller 611 may operate the optical amplifier 614-N (S923).
  • the laser controller 611 may detect the discharge current value AMPNID of the optical amplifier 614-N by the discharge current monitor 617-N (S924).
  • the laser controller 611 may calculate a difference ⁇ I between the current command value AMPNIC and the discharge current value AMPDNID (S925).
  • the laser controller 611 may determine a numerical range including the difference ⁇ I (S926 to S929). Each numerical range may be a range less than the threshold D1, a range greater than or equal to the threshold D1 and less than the threshold D2, a range greater than or equal to the threshold D2 and less than the threshold D3, a range greater than or equal to the threshold D3 and less than the threshold D4, and a range greater than or equal to the threshold D4. Between the threshold values, a relationship of D1 ⁇ D2 ⁇ D3 ⁇ D4 may be established.
  • the operation of the optical amplifier 614-N may be stopped (S934).
  • the laser controller 611 may determine that the degree of deterioration of the laser gas is 1. Further, the laser controller 611 may rewrite the current command value of the optical amplifier 614-N in the operation parameter table 681 with a current command value of gas deterioration degree 1 (S931).
  • FIGS. 30A to 30D show modified current command value tables 691-1 to 691-4 for the optical amplifiers 614-1 to 614-4, which are referred to to modify the operation parameter table 681.
  • the tables 691-1 to 691-4 may be stored in the storage device of the laser controller 611.
  • the corrected current command value tables 691-1 to 691-4 may store a corrected current command value for each pulse energy command value corresponding to the degree of gas deterioration.
  • the laser controller 611 acquires the data of the gas degradation degree 1 row from the corrected current command value table corresponding to the optical amplifier 614-N, and rewrites the current command value row of the optical amplifier 614-N in the operation parameter table 681. May be.
  • the laser controller 611 may determine that the degree of deterioration of the laser gas is 2. Further, the laser controller 611 may rewrite the current command value of the optical amplifier 614-N in the operation parameter table 681 with a current command value of gas deterioration degree 2 (S932). Specifically, the laser controller 611 acquires the data of the row of the gas degradation degree 2 from the corrected current command value table corresponding to the optical amplifier 614-N, and the current command of the optical amplifier 614-N in the operation parameter table 681. You may rewrite the value row.
  • the laser controller 611 may determine that the degree of deterioration of the laser gas is 3. Further, the laser controller 611 may rewrite the current command value of the optical amplifier 614-N in the operation parameter table 681 to a current command value of gas deterioration degree 3 (S933). Specifically, the laser controller 611 acquires the data of the gas degradation degree 3 row from the corrected current command value table corresponding to the optical amplifier 614-N, and the current command of the optical amplifier 614-N in the operation parameter table 681. You may rewrite the value row. When the difference ⁇ I is greater than or equal to the threshold value D4 (S929: N), the laser controller 611 may set the gas replacement request flag of the optical amplifier 614-N to ON (S930).
  • the laser controller 611 may stop the operation of the optical amplifier 614-N (S934).
  • the laser controller 611 may determine whether the current command value correction processing has been executed for all the optical amplifiers. Specifically, the laser controller 611 may increment the variable N (S935) and determine whether the value of the variable N matches the value obtained by adding 1 to the number K of optical amplifiers (S936).
  • the laser controller 611 may end this flow.
  • the laser controller 611 may return to Step S922.
  • This embodiment can realize high-speed current control of an optical amplifier even when the laser gas of the optical amplifier is deteriorated.
  • the laser controller 611 may detect laser gas deterioration of the optical amplifier by other methods without using the discharge current monitor. An output history of the energy detector or the EUV sensor may be held, and gas deterioration may be detected based on the laser light energy decrease amount or the EUV light energy decrease amount from the previous operation.
  • the laser controller 611 may correct the function.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment can be added to the configuration of one embodiment.
  • a part of the configuration of each embodiment may be deleted, added with another configuration, or replaced with another configuration.
  • 3 laser device 11 EUV light generation system, 211 laser controller, 212, 612 master oscillator, 213, 613-1 to 613-4 PA power supply, 214, 614-1 to 614-4 optical amplifier, 367 PA power supply control circuit, 369, 621 Gate control table, 451 Current control table, 648 Inverter circuit, 681 Operation parameter table

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

 レーザ装置は、マスタオシレータから出力されるレーザ光を増幅する光増幅器と、光増幅器に交流電流を供給する光増幅器電源と、レーザコントローラと、を含んでもよい。光増幅器電源は、デューティ比に応じて出力振幅を変化させるインバータ回路を含み、インバータ回路の出力から交流電流を生成する、交流電流生成回路と、レーザコントローラからの指令値とインバータ回路のデューティ比との対応関係を定義する制御情報を保持し、レーザコントローラから受信した指令値に対応するデューティ比を前記制御情報に基づいて決定し、決定したデューティ比をインバータ回路に与える電源制御回路と、を含んでもよい。

Description

レーザ装置、EUV光生成システム及びレーザ装置の制御方法 参照による取り込み
 本出願は、2014年7月1日に出願された国際出願であるPCT/JP2014/067509の優先権を主張し、その内容を参照することにより、本出願に取り込む。
 本開示は、レーザ装置、EUV光生成システム及びレーザ装置の制御方法に関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系(reduced projection reflective optics)とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
特開2012-191171号 特開平1-101681号 特開平2-25085号 国際公開第2012/131455号 国際公開第2012/131452号 特開平9-184900号 米国特許第7928416号
概要
 本開示の一例のレーザ装置は、パルスレーザ光を出力するマスタオシレータと、前記マスタオシレータから出力されるレーザ光を増幅する光増幅器と、前記光増幅器に、光増幅のための交流電流を供給する光増幅器電源と、前記マスタオシレータ及び前記光増幅器電源を制御するレーザコントローラと、を含み、前記光増幅器電源は、デューティ比に応じて出力振幅を変化させるインバータ回路を含み、前記インバータ回路の出力から前記交流電流を生成する、交流電流生成回路と、前記レーザコントローラからの指令値と前記インバータ回路のデューティ比との対応関係を定義する制御情報を含み、前記レーザコントローラから受信した指令値に対応するデューティ比を前記制御情報を使用して決定し、前記決定したデューティ比を前記インバータ回路に与える、電源制御回路と、を含んでもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成システムの構成を概略的に示している。 図2は、実施形態1のレーザ加工機の構成例を示している。 図3Aは、3軸直交型増幅器の側面図を示している。 図3Bは、図3AにおけるIIIB-IIIB断面図を示している。 図4は、PA電源の比較例の構成を模式的に示している。 図5は、比較例のPA電源において生成されるゲート信号及びインバータ電流の時間変化を示している。 図6は、実施形態1のPA電源の構成例を模式的に示している。 図7は、ゲート制御テーブルの構成例を示している。 図8は、PA電源制御回路からのゲート信号とインバータ電流の時間変化を示している。 図9は、電流指令値とゲート信号のON時間長との間の関係を示している。 図10は、レーザコントローラが参照する電流制御テーブルの構成例を示している。 図11は、パルスエネルギ指令値と電流指令値との間の関係を示している。 図12は、レーザコントローラの動作のフローチャートを示している。 図13は、実施形態2のEUV光生成システムの構成を模式的に示している。 図14は、ゲート制御テーブルの構成例を示している。 図15は、実施形態3のEUV光生成システムの構成例を示している。 図16は、動作パラメータテーブルの構成例を示している。 図17は、レーザコントローラの動作のフローチャートを示している。 図18は、動作パラメータテーブルにおけるマスタオシレータの励起電流の修正の詳細フローチャートを示している。 図19は、新たな励起電流MOICの算出の詳細フローチャートを示している。 図20は、動作パラメータテーブルにおける光増幅器の電流指令値ICの修正の詳細フローチャートを示している。 図21は、光増幅器の電流指令値の変更の詳細フローチャートを示している。 図22は、EUV光生成時のレーザ装置制御の詳細フローチャートを示している。 図23は、光増幅器の電流指令値の補正の詳細フローチャートを示している。 図24Aは、実施形態4のEUV光のエネルギの時間変化を示している。 図24Bは、図24AのEUV光を生成するためのパルスレーザ光のエネルギの時間変化を示している。 図24Cは、バースト期間におけるパルスレーザ光エネルギの課題を示している。 図24Dは、図24Cのペルスレーザ光に対応するEUV光のエネルギの時間変化を示している。 図25Aは、実施形態4のレーザ装置における光増幅器の制御を示している。 図25Bは、フィードバック制御される光増幅器と、EUV光エネルギの制御ダイナミックレンジと、の間の関係を示している。 図26Aは、実施形態4におけるEUV光生成時のレーザ装置制御のフローチャートを示している。 図26Bは、図26Aのフローチャートにおける、光増幅器の電流指令値の補正の詳細フローチャートを示している。 図26Cは、図26Aのフローチャートにおける、光増幅器の電流指令値の補正の詳細フローチャートを示している。 図27は、実施形態5において、光増幅器の劣化したレーザガスと劣化していない新しいレーザガスにおける、電流指令値と放電電流値との関係を示している。 図28は、実施形態5のレーザ装置の構成を示す。 図29Aは、実施形態5におけるレーザコントローラの動作のフローチャートを示している。 図29Bは、図29Aのフローチャートにおける、ガス劣化の判定及び動作パラメータテーブルの修正の詳細のフローチャートを示している。 図30Aは、光増幅器に対する修正電流指令値テーブルを示している。 図30Bは、光増幅器に対する修正電流指令値テーブルを示している。 図30Cは、光増幅器に対する修正電流指令値テーブルを示している。 図30Dは、光増幅器に対する修正電流指令値テーブルを示している。
実施形態
内容
1.概要
2.用語の説明
3.EUV光生成システムの全体説明
 3.1 構成
 3.2 動作
<実施形態1>
4.レーザ加工機
 4.1 レーザ加工機の構成
 4.2 レーザ加工機の動作
 4.3 レーザ装置の構成・動作
 4.4 比較例のPA電源における課題
 4.5 本実施形態のPA電源
5.レーザコントローラ
 5.1 電流制御テーブル
 5.2 動作
 5.3 効果
<実施形態2>
6.EUV光生成システム
 6.1 構成
 6.2 動作
 6.3 効果
<実施形態3>
7.EUV光生成システムの他の形態
 7.1 構成
 7.2 動作
<実施形態4>
8.レーザ制御の他の形態
 8.1 バースト動作
 8.2 課題
 8.3 構成
 8.4 動作
 8.5 効果
<実施形態5>
9.レーザ制御の他の形態
 9.1 概要
 9.2 構成
 9.3 動作
 9.4 効果
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
 LPP方式EUV光生成システムは、レーザ装置から出力されたレーザ光をターゲットに照射することによって、プラズマ化し、EUV光を生成してもよい。露光用のLPP方式EUV光生成システムは、50~100kHz以上の高繰り返しでEUV光を生成し、EUVのエネルギを毎パルス制御してもよい。EUV光のエネルギを毎パルス制御するには、レーザ装置から出力されるレーザ光のパルスエネルギを毎パルス制御してもよい。
 レーザ装置は、マスタオシレータとマスタオシレータからのパルスレーザ光を増幅する光増幅器を含んでもよい。EUV光のエネルギを毎パルス制御するためには、光増幅器のゲインを高速に制御することが要求され得る。または、レーザ加工機のようなレーザ装置の他の用途においても、マスタオシレータとマスタオシレータからのパルスレーザ光を増幅する光増幅器とを含むレーザ装置が使用され、光増幅器のゲインを高速に制御することが要求され得る。
 本開示の1つの観点のレーザ装置は、マスタオシレータから出力されるレーザ光を増幅する光増幅器と、光増幅器に光増幅のための交流電流を供給する光増幅器電源と、レーザコントローラと、を含んでもよい。光増幅器電源は、インバータ回路と電源制御回路とを含んでもよい。電源制御回路は、レーザコントローラからの指令値とインバータ回路のデューティ比との対応関係を定義する制御情報を含んでもよい。電源制御回路は、レーザコントローラから受信した指令値に対応するデューティ比を制御情報を使用して決定し、決定したデューティ比をインバータ回路に与えてもよい。
 本開示のレーザ装置によれば、インバータ回路の出力電流によるフィードバック制御を行うことなくデューティ比をインバータ回路に与え、光増幅器から出力されるパルスエネルギを高速に制御し得る。また、本開示のレーザ装置をLPP方式EUV光生成システムに適用することにより、EUV光のエネルギをより正確に毎パルス制御し得る。
2.用語の説明
 本開示において使用される用語を以下に説明する。入力された値に対応する値を決定する処理を行うために使用される情報は、テーブル、データベース等の他、関数を含み得る。
3.EUV光生成システムの全体説明
3.1 構成
 図1は、例示的なLPP方式のEUV光生成装置の構成を概略的に示している。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いてもよい(EUV光生成装置1及びレーザ装置3を含むシステムを、以下、EUV光生成システム11と称する)。図1に示し、かつ以下に詳細に説明するように、EUV光生成装置1は、チャンバ2及びターゲット供給部26(例えばドロップレット発生器)を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えばチャンバ2の壁に取り付けられてもよい。ターゲット供給装置から供給されるターゲットの材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又はそれらのうちのいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられてもよい。その貫通孔をレーザ装置3から出力されたパルスレーザ光32が通過してもよい。チャンバ2には、レーザ装置3から出力されたパルスレーザ光32が透過する少なくとも1つのウインドウ21が設けられてもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1の焦点、及び第2の焦点を有する。EUV集光ミラー23の表面には例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ発生位置(プラズマ生成領域25)又はその近傍に位置し、その第2の焦点が露光装置の仕様によって規定される所望の集光位置(中間焦点(IF)292)に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には、パルスレーザ光33が通過することができる貫通孔24が設けられてもよい。
 EUV光生成装置1は、EUV光生成制御部5を含んでもよい。また、EUV光生成装置1は、ターゲットセンサ4を含んでもよい。ターゲットセンサ4は、ターゲットの存在、軌道、位置の少なくとも1つを検出してもよい。ターゲットセンサ4は、撮像機能を有していてもよい。
 更に、EUV光生成装置1は、チャンバ2内部と露光装置6内部とを連通する接続部29を含んでもよい。接続部29内部には、アパーチャが形成された壁291を設けてもよい。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点位置に位置するように配置してもよい。
 更に、EUV光生成装置1は、レーザ光進行方向制御装置34、レーザ光集光ミラー22、ターゲット27を回収するターゲット回収部28などを含んでもよい。レーザ光進行方向制御装置34は、レーザ光の進行方向を制御するために、レーザ光の進行方向を規定する光学素子と、この光学素子の位置または姿勢を調整するためのアクチュエータとを備えてもよい。
3.2 動作
 図1を参照すると、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御装置34を経てパルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザビーム経路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力してもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。レーザ光が照射されたターゲット27はプラズマ化し、そのプラズマからEUV光251が生成される。EUV光251は、EUV集光ミラー23によって反射されるとともに集光されてもよい。EUV集光ミラー23に反射されたEUV光252は、中間焦点292を通って露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御部5は、EUV光生成システム11全体の制御を統括してもよい。EUV光生成制御部5はターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理してもよい。EUV光生成制御部5は、例えば、ターゲット27を出力するタイミングの制御およびターゲット27の出力方向の制御の内の少なくとも1つを行ってもよい。EUV光生成制御部5は、例えば、レーザ装置3のレーザ発振タイミングの制御、パルスレーザ光32の進行方向の制御、及びパルスレーザ光33の集光位置の制御の内の少なくとも1つを行ってもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御を追加してもよい。
<実施形態1>
4.レーザ加工機
4.1 レーザ加工機の構成
 図2は、本実施形態のレーザ加工機201の構成例を示している。レーザ加工機201は、加工機コントローラ221、レーザ装置210、及びレーザ集光・走査光学系222を含んでもよい。レーザ装置210は、レーザコントローラ211、マスタオシレータ(MO)212、PA電源213、及び光増幅器(PA)214を含んでもよい。
 マスタオシレータ212は半導体レーザ(QCL:量子カスケードレーザ)を含む固体レーザ又はCOレーザを含んでもよい。マスタオシレータ212は、増幅媒体の増幅領域波長を含むレーザ光を出力し得る。
 光増幅器214は、マスタオシレータ212から出力されるレーザ光の光路上に配置されてもよい。光増幅器214は、ガスをレーザ媒質として含むレーザ増幅器であってもよい。レーザ媒質は、COであってもよい。光増幅器214には、PA電源213が接続されてもよい。
 レーザコントローラ211は、電流制御テーブル451を含んでもよい。レーザコントローラ211には、マスタオシレータ212及びPA電源213が接続されてもよい。レーザコントローラ211は、加工機コントローラ221に接続されてもよい。レーザコントローラ211は、マスタオシレータ212を発振させるための電流源を含んでもよい。
4.2 レーザ加工機の動作
 レーザ加工機201は、レーザ装置210から出力されたレーザ光を、レーザ集光・走査光学系222を介してワーク231に照射し、ワーク231を加工してもよい。レーザコントローラ211は、マスタオシレータ212に励起電流を供給し、マスタオシレータ212に、所定の繰り返し周波数、タイミング、強度で、レーザ光を発振させてもよい。
 レーザコントローラ211は、加工機コントローラ221からパルスエネルギ指令値を取得してもよい。パルスエネルギ指令値は、レーザ加工機201が必要とするレーザ光のパルスエネルギを指定してもよい。
 レーザコントローラ211は、電流制御テーブル451を参照して、パルスエネルギ指令値に対応する電流指令値を決定してもよい。レーザコントローラ211は、パルスエネルギ指令値に対応する電流指令値を、PA電源213に送信してもよい。
 電流指令値は、例えば、PA電源213内のインバータ電流又は放電電流の値を指定してもよい。PA電源213は、光増幅器214に、電流指令値に基づいた放電電流を供給してもよい。マスタオシレータ212から出力されたレーザ光は、光増幅器214において所定の放電電流によって所定のパルスエネルギまで増幅され、出力されてもよい。
 レーザ集光・走査光学系222は、光増幅器214から出力されたレーザ光を受光してもよい。レーザ集光・走査光学系222は、レーザ光をワーク231上で集光、走査してもよい。レーザ集光・走査光学系222からワーク231に照射されたレーザ光は、所定のパルスエネルギを有し、ワーク231を加工し得る。
4.3 レーザ装置の構成・動作
4.3-1 3軸直交型増幅器の構成・動作
 光増幅器214の一例として、3軸直交型レーザ装置を使用してもよい。以下において、光増幅器として使用される3軸直交型レーザ装置を、3軸直交型増幅器と呼ぶ。光増幅器214として、他のレーザ装置を使用してもよい。図3A及び図3Bは、3軸直交型増幅器214の構成例を模式的に示している。図3Aは、3軸直交型増幅器214の側面図を示している。一部構成要素は透視されている。図3Bは、図3AにおけるIIIB-IIIB断面図を示している。
 3軸直交型増幅器214は、他の構成要素を収容するレーザチャンバ318を含んでもよい。3軸直交型増幅器214は、一対の電極313、314、一対のミラー316、317、クロスフローファン320、モータ319、及び熱交換器321を備えてもよい。一対の電極313、314には、PA電源213が接続されてもよい。
 モータ319は、クロスフローファン320を回転させ、電極間313、314にレーザガスを循環させてもよい。熱交換器321は、レーザガスを冷却し得る。PA電源213は、電極313、314に所定の放電電流を反映した電圧を印加し、放電領域315においてレーザガスに放電を生じさせ得る。放電領域315のレーザガスは、励起され、増幅媒体となり得る。
 入力ウインドウ311から入射したレーザ光は、ミラー316、317に反射されて、放電領域315を通過してもよい。レーザ光は、放電領域315において増幅され得る。増幅されたレーザ光は、出力ウインドウ312から出射してもよい。
4.3-2 PA電源の比較例の構成・動作
 図4は、PA電源213の比較例501の構成を模式的に示している。PA電源501は、PA電源制御回路502、整流回路361、突入防止回路362、平滑化及び力率改善回路363、インバータ回路648、電流モニタ365、及びトランス368を含んでもよい。
 整流回路361は、3相ACの分電盤370に接続されていてもよい。分電盤370から、整流回路361、突入防止回路362、平滑化及び力率改善回路363、インバータ回路648、トランス368の順に、直列に接続されていてもよい。
 PA電源制御回路502は、電流モニタ365に接続され、インバータ電流381をモニタ可能に構成されてもよい。インバータ回路648は、ゲートドライブ回路366及びスイッチ素子群364を含んでもよい。ゲートドライブ回路366は、PA電源制御回路502に接続されてもよい。
 スイッチ素子群364は、スイッチ素子364A~364Dを含んでいてもよい。スイッチ素子364A~364Bのゲートは、それぞれ、ゲートドライブ回路366に接続されてもよい。スイッチ素子364A~364Dは、図4に示すように、IGBTでもよいし、他の種別のスイッチ素子でもよい。還流ダイオード369A~369Dは、それぞれ、スイッチ素子364A~364Dに並列に接続されてもよい。
 スイッチ素子364A、364Dが、トランス368を介して直列に接続され、スイッチ素子364B、364Cが、トランス368を介して直列に接続されてもよい。スイッチ素子364A、364Bが並列に接続され、スイッチ素子364C、364Dが並列に接続されてもよい。
 スイッチ素子群364において、スイッチ素子364A、364Dが一つの組を構成し、スイッチ素子364B、364Cが他の一つの組を構成してもよい。ゲートドライブ回路366は、双方の組をOFF又は一方の組のみをONに制御してもよい。二つのスイッチ素子の組のうち一方がONの時にトランス368に印加される電圧方向は、他のスイッチ素子の組がONの場合とは逆であり得る。還流ダイオード369A~369Dは、スイッチ素子がOFFの時の電流及びスイッチ素子がONの時の逆流電流を流し得る。スイッチ素子群364は、他の構成を有してもよい。
 PA電源501は、インバータ電流381を生成し、トランス368を介して光増幅器214に放電電流382を供給してもよい。具体的には、PA電源制御回路502は、レーザコントローラ211から電流指令値を受信してもよい。レーザコントローラ211からの電流指令値は、例えば、放電電流382の電流値を指定する値であってもよい。
 PA電源制御回路502は、電流指令値によって指定された放電電流382を実現するよう、電流モニタ365によりモニタされているインバータ電流381に基づいて、インバータ電流381をフィードバック制御してもよい。
 PA電源制御回路502は、電流指令値及びインバータ電流381のモニタ値に基づき、ゲートドライブ回路366にゲート信号を送信してもよい。ゲートドライブ回路366は、ゲート信号を受信すると、受信したゲート信号に応じて、スイッチ素子群364の各スイッチ素子を、ON-OFF動作させてもよい。ゲートドライブ回路366は、スイッチ素子364A~364Dを制御することによって、インバータ電流381を制御し得る。
4.4 比較例のPA電源における課題
 図5は、比較例のPA電源501において生成されるゲート信号及びインバータ電流381の時間変化を示している。PA電源制御回路502は、インバータ電流381が図5に示す変化を示すように、インバータ回路648を制御してもよい。放電電流382は、インバータ電流381の変化に応じた変化を示し得る。
 PA電源制御回路502は、周期的に、ゲート信号のON/OFFを切り替えてもよい。ゲート信号の周波数は、マスタオシレータ212の発信周波数以上であり得る。ゲート信号がONの各期間において、二つのスイッチ素子の組の一方がONであり、他方がOFFであってもよい。ONである期間のゲート信号が、ゲート信号におけるパルスであり得る。PA電源制御回路502は、パルス毎に、ONであるスイッチ素子の組を入れ替えてもよい。
 PA電源制御回路502は、インバータ回路648のPWM制御により、インバータ電流381を制御してもよい。PA電源制御回路502は、ゲート信号におけるパルス幅のデューティ比を変化させて、インバータ電流381のピーク値(振幅)を制御してもよい。パルス幅は、ゲート信号がONである期間の長さであり得る。
 PA電源制御回路502は、インバータ電流381のピーク値を電流指令値に対応する値まで徐々に変化させてもよい。PA電源制御回路502は、電流指令値とインバータ電流381のピーク値との関係を示す情報を保持してもよい。PA電源制御回路502は、変更された電流指令値を受信すると、電流モニタ365の値を参照したフィードバック制御によって、インバータ電流381のピーク値を徐々に変化させてもよい。光増幅器214のパルスレーザ光のパルスエネルギは、電流指令値に対応する値に近づくように徐々に変化し得る。
 例えば、図5に示すように、PA電源制御回路502は、新たな電流指令値に応じて、インバータ電流381のピーク値を徐々に増加させてもよい。電流モニタ365のモニタ値によるフィードバック制御によって、ゲート信号におけるパルス幅を徐々に大きくする、つまり、ゲート信号のON時間長を次第に長くすることで、徐々に電流指令値に対応する値に近づくように放電電流382を制御し得る。
 このように、フィードバック制御を用いた光増幅器214の出力制御は、徐々にパルスエネルギを変化させ得る。そのため、所望のパルスエネルギに対応する電流指令値によって、パルスエネルギを高速に制御し得ない。
 一方、非常に高精度のパルスエネルギ安定性が要求されるレーザ加工機においては、変動しやすいレーザ光のパルスエネルギを高い安定性で維持するため、加工機コントローラ221がパルス毎にパルスエネルギを制御することが、要求され得る。上記比較例のフィードバック制御は、この要求に対応し得ない。
4.5 本実施形態のPA電源
4.5-1 構成及び動作
 図6は、本実施形態のPA電源213の構成例を模式的に示している。以下においては、図4を参照して説明した比較例501との差異を主に説明する。PA電源213は、電流モニタ365を備えなくともよい。また、PA電源制御回路367は、ゲート制御テーブル369を格納する揮発性又は不揮発性の記憶デバイスを含んでもよい。なお、本開示における交流電流生成回路は、インバータ回路648とトランス368を含んでもよい。
 図7は、ゲート制御テーブル369の構成例を示している。ゲート制御テーブル369は、例えば、電流指令値ICとゲート信号のON時間長Gとの対応関係を定義してもよい。なお、ゲート信号のON時間長は、ゲート信号のパルス幅であり得る。ゲート信号のON時間長に対して、ゲート信号のデューティ比は一意に決定し得る。
 PA電源制御回路367は、電流指令値を受信するとゲート制御テーブル369を参照し、当該電流指令値に対応するゲート信号のON時間長を決定してもよい。PA電源制御回路367は、決定したON時間長のゲート信号をゲートドライブ回路366に出力してもよい。
 PA電源213は、電流指令値を保持するレジスタを含んでもよい。PA電源213は、新たな電流指令値を受信すると、レジスタに格納されている値を新たな電流指令値で更新してもよい。PA電源213は、レジスタに格納されている電流指令値及びゲート制御テーブル369に基づいて、ゲート信号の各パルスのパルス幅を決定してもよい。
 図8は、PA電源制御回路367からのゲート信号と、当該ゲート信号に応じたインバータ電流381との、時間変化を示している。PA電源制御回路367は、電流指令値が入力されると、テーブルを参照して対応するゲート信号を設定する。電流指令値は、例えば、インバータ電流381の値又は放電電流382の値を指定してもよい。
 例えば、PA電源制御回路367は、電流指令値を受信すると、ゲート信号のON時間長を、現在値から電流指令値に対応する値に直接変更してもよい。例えば、PA電源制御回路367は、電流指令値を受信した直後のゲート信号のパルスにおいて、ON時間長を電流指令値に対応する値に変更してもよい。
 ゲートドライブ回路366は、PA電源制御回路367から受信したゲート信号に従って、スイッチ素子364A~364Dを制御してもよい。スイッチ素子364A~364Dの制御により、インバータ電流381のピーク値が即時に電流指令値に対応する値に変化し得る。インバータ電流381の変化と共に、放電電流382のピーク値が即時に、電流指令値に対応する値に変化し得る。
 PA電源制御回路367とレーザコントローラ211との間のインターフェースは、パラレルI/Oで構成されてもよい。これにより、レーザコントローラ211からPA電源制御回路367に、電流指令値を高速に伝送し得る。電流指令値は、例えば、パラレルI/Oによって転送可能な数値であってもよい。電流指令値は、例えば、16bitのデジタル信号で表わされてもよい。
 電流指令値は、PA電源制御回路367によるインバータ回路648のPWM制御を前提とした値を指定してもよい。この構成において、ゲート制御テーブル369は省略し得る。
 例えば、レーザコントローラ211は、ゲート信号のON時間長を指定してもよい。PA電源制御回路367は、ゲート制御テーブル369を使用することなく、ゲート信号のON時間長を、指定された値に変更し得る。
 例えば、レーザコントローラ211は、ゲート信号のデューティ比を指定する16bitデジタル信号を、PA電源制御回路367に出力してもよい。デューティ比の指定は、ON時間長の指定でもあり得る。電流指令値は、ゲート信号のON時間長を指定する、PA電源制御回路367へのパルス信号で表わされてもよい。レーザコントローラ211からPA電源制御回路367へのパルス信号のパルス幅は、ゲート信号のON時間長と同一でもよい。
 ゲート制御テーブル369における電流指令値とゲート信号との対応は、予め実験等によって決定されてもよい。PA電源制御回路367は、ゲート制御テーブル369に含まれない電流指令値に対応するゲート信号のON時間長を、補完計算によって決定してもよい。例えば、例えば電流指令値IC2と電流指令値IC3との間の電流指令値ICXが入力された場合(IC2<ICX<IC3)、PA電源制御回路367は、下記計算式に従って、電流指令値ICXに対応するゲート信号のON時間長GXを計算してもよい
  GX=(G3-G2)/(IC3-IC2)*ICX
 PA電源制御回路367は、ゲート制御テーブル369に代えて、関数によって、与えられた電流指令値に対応するゲート信号のON時間長を決定してもよい。図9は、電流指令値とゲート信号のON時間長との間の関係の一例を示している。PA電源制御回路367は、図9に示す関係を定義する関数を予め保持してもよい。関数は、予め実験等によって決定されてもよい。ゲート制御テーブル369及び関数は、共に、電流指令値とゲート信号のON時間長(デューティ比)との関係を定義する制御情報であり得る。
5.レーザコントローラ
5.1 電流制御テーブル
 図10は、レーザコントローラ211が参照する電流制御テーブル451の構成例を示している。レーザコントローラ211は、電流制御テーブル451を格納する揮発性又は不揮発性の記憶デバイスを含んでもよい。電流制御テーブル451は、パルスエネルギ指令値と電流指令値との間の対応関係を定義してもよい。電流制御テーブル451におけるパルスエネルギ指令値と電流指令値との対応は、予め実験等によって決定されてもよい。
 レーザコントローラ211は、加工機コントローラ221からパルスエネルギ指令値を受信すると、電流制御テーブル451を参照し、受信したパルスエネルギ指令値に対応する電流指令値を決定してもよい。
 レーザコントローラ211は、電流制御テーブル451に含まれないパルスエネルギ指令値に対応する電流指令値を、補完計算によって決定してもよい。例えば、パルスエネルギ指令値Pt2とパルスエネルギ指令値Pt3との間のパルスエネルギ指令値PtYが入力された場合(Pt2<PtY<Pt3)、レーザコントローラ211は、下記計算式に従って、パルスエネルギ指令値PtYに対応する電流指令値ICYを計算してもよい
  ICY=(IC3-IC2)/(Pt3-Pt2)*PtY
 レーザコントローラ211は、電流制御テーブル451に代えて、関数によって、与えられたパルスエネルギ指令値に対応する電流指令値を決定してもよい。図11は、パルスエネルギ指令値と電流指令値との間の関係を示している。レーザコントローラ211は、図11に示す関係を定義する関数を予め保持してもよい。関数は、予め実験等によって決定されてもよい。電流制御テーブル451及び関数は、共に、パルスエネルギ指令値と電流指令値との関係を定義する制御情報であり得る。
5.2 動作
 図12は、レーザコントローラ211の動作のフローチャートを示している。レーザコントローラ211は、加工機コントローラ221からのパルスエネルギ指令値Ptを受信するまで待ってもよい(S101:N)。パルスエネルギ指令値Ptを受信すると(S101:Y)、レーザコントローラ211は、加工機コントローラ221からのレーザ光出力信号を受信するまで待ってもよい(S102:N)。
 レーザコントローラ211は、加工機コントローラ221からパルスエネルギ指令値Ptを受信し(S101:Y)、かつ、レーザ光出力信号を受信すると(S102:Y)、電流制御テーブル451を参照して、受信したパルスエネルギ指令値Ptに対応する電流指令値ICを決定してもよい(S103)。
 レーザコントローラ211は、PA電源213に、決定した電流指令値ICを送信してもよい(S104)。PA電源213は、新たな電流指令値ICに応じた放電電流382を光増幅器214に出力して、光増幅器214を動作させてもよい。
 レーザコントローラ211は、MO励起電流をマスタオシレータ212に送信し、マスタオシレータ212に、所定の繰り返し周波数、タイミング、強度で、レーザ光を発振させてもよい(S105)。光増幅器214は、マスタオシレータ212からのパルスレーザ光を増幅して、レーザ集光・走査光学系222に出力してもよい。
 レーザコントローラ211は、加工機コントローラ221からの新たなパルスエネルギ指令値Pt及びレーザ出力停止信号のいずれかを受信するまで待ってもよい(S106:N、S107:N)。加工機コントローラ221から、レーザ出力停止信号を受信すると(S107:Y)、レーザコントローラ211は、マスタオシレータ212及び光増幅器214を停止してもよい(S108)。
 加工機コントローラ221からの新たなパルスエネルギ指令値Ptを受信すると(S106:Y)、レーザコントローラ211は、電流制御テーブル451を参照して、受信した新たなパルスエネルギ指令値Ptに対応する電流指令値ICを決定してもよい(S109)。レーザコントローラ211は、PA電源213に、決定した電流指令値ICを送信してもよい(S110)。
 PA電源213におけるゲート信号の周期は、ワーク231に照射されるパルスレーザ光の周期以上であり得る。レーザコントローラ211は、PA電源213におけるゲート信号の周期で、電流指令値ICをPA電源213に送信してもよい。前回送信から新たなパルスエネルギ指令値Ptを受信していない場合には、レーザコントローラ211は、前回と同一の電流指令値ICをPA電源213に送信してもよい。
5.3 効果
 レーザコントローラ211は、フィードバック制御を使用することなくパルスエネルギ指令値Ptに対応した電流指令値を即時に決定し、PA電源213に送信してもよい。PA電源213における放電電流382の即時制御と共に、出力されるレーザ光のパルスエネルギを高速に調整し得る。例えば、出力されるレーザ光のパルスエネルギを毎パルスで調整し得る。
<実施形態2>
6.EUV光生成システム
6.1 構成
 図13は、本実施形態のEUV光生成システム11の構成を模式的に示している。チャンバ2には、パルスレーザ光をターゲット27に集光するレーザ集光光学系603と、EUV光のエネルギを観測するEUVセンサ604と、が設けられてもよい。レーザ装置3は、レーザコントローラ611と、マスタオシレータ(MO)612と、光増幅器(PA)614-1~614-4と、PA電源613-1~613-4と、を含んでもよい。
 マスタオシレータ612は、複数の半導体レーザ601-1~601-4と、光路調節器602とを含んでもよい。半導体レーザ601-1~601-4は、COガスを含む増幅媒体の増幅領域波長を含むレーザ光を出力する、量子カスケードレーザ(QCL)であってもよい。
 図13は、4台の量子カスケードレーザ601-1~601-4を例示するが、レーザ種別及び台数は、他の種別及び数でもよい。例えば、マスタオシレータ612は、Qスイッチを含むCOレーザ発振器であってもよい。マスタオシレータ612から出力されるパルスレーザ光は、直線偏光であってもよい。
 光増幅器614-1~614-4は、マスタオシレータ612から出力されるパルスレーザ光の光路上に直列に配置され、マスタオシレータ612から出力されるパルスレーザ光を順次増幅してもよい。光増幅器614-1~614-4は、第1段から第4段の光増幅器であり得る。光増幅器614-1~614-4は、COガスをレーザ媒質として含むレーザ増幅器であってもよい。
 PA電源613-1~613-4は、それぞれ、光増幅器614-1~614-4に接続されてもよい。図13は、4つの光増幅器614-1~614-4と4つのPA電源613-1~613-4を例示するが、これらの台数は他の数でもよい。
 光増幅器614-1~614-4は、それぞれ、上記光増幅器214と同様の構成を有してもよい。PA電源613-1~613-4は、上記PA電源213と同様の構成を有してもよい。光増幅器214の上記説明は光増幅器614-1~614-4に適用され得る。PA電源213の上記説明はPA電源613-1~613-4に適用され得る。
 少なくとも一つの光アイソレータが、マスタオシレータ612と光増幅器614-1との間、二つの連続する光増幅器のそれぞれの間、光増幅器614-4の下流側、の光路上のいずれかの位置に配置されていてもよい。
 レーザコントローラ611は、量子カスケードレーザ601-1~601-4、PA電源613-1~613-4と接続されてもよい。レーザコントローラ611は、EUV光生成制御部5に接続さてもよい。
 レーザコントローラ611は、ゲート制御テーブル621を含んでもよい。図14は、ゲート制御テーブル621の構成例を示している。ゲート制御テーブル621は、EUV光生成制御部5からのパルスエネルギ指令値と、光増幅器614-1~614-4への電流指令値との関係を定義してもよい。光増幅器614-1~614-4への電流指令値は、レーザコントローラ611によって光増幅器614-1~614-4それぞれに接続されたPA電源613-1~613-4それぞれに送信されてもよい。
 ゲート制御テーブル621に代えて、PA電源613-1~613-4それぞれの関数が定義されてもよい。ゲート制御テーブル621及び関数のいずれも、電流指令値を決定するための制御情報であり得る。電流指令値を決定ためのテーブル及び関数のいずれも電流指令値を決定するための制御情報である点は、他の実施形態において同様であり得る。
6.2 動作
 レーザコントローラ611は、量子カスケードレーザ601-1~601-4に励起電流を供給し、所定の繰り返し周波数、タイミング、強度で、レーザ光を発振させてもよい。量子カスケードレーザ601-1~601-4は、それぞれ異なった波長のレーザ光を出力してもよい。光路調節器602は量子カスケードレーザ601-1~601-4の各々から出力されたレーザ光の光路を一致させて出力してもよい。
 EUV光生成制御部5は、レーザコントローラ611に、パルスエネルギ指令値を送信してもよい。レーザコントローラ611は、ゲート制御テーブル621を参照して、受信したパルスエネルギ指令値に対応する、PA電源613-1~613-4それぞれへの電流指令値を決定してもよい。レーザコントローラ611は、決定した電流指令値を、PA電源613-1~613-4それぞれに送信してもよい。
 PA電源613-1~613-4は、それぞれ、光増幅器614-1~614-4に、電流指令値に基づいた放電電流を供給してもよい。PA電源613-1~613-4は、上記PA電源213と同様の構成及び動作によって、電流指令値に基づいた放電電流を生成してもよい。光増幅器614-1~614-4は、マスタオシレータ612から出力されたレーザ光を、順次増幅して出力してもよい。
 レーザ装置3から出力されたレーザ光は、チャンバ2内に供給されたターゲット27に照射され、EUV光が生成され得る。EUV光生成制御部5は、EUVセンサ604から、EUVパルスエネルギの測定値を取得してもよい。EUV光生成制御部5は、取得した測定値に基づき、パルスエネルギ指令値をEUVパルス毎にレーザコントローラ611に送信してもよい。
6.3 効果
 光増幅器614-1~614-4から出力されるパルスエネルギは、熱負荷の変動に伴うレーザ媒質温度の変動により、変動し得る。さらに、多段の光増幅器614-1~614-4の変動は累積し、レーザ装置3から出力されるパルスレーザ光の大きなエネルギ変動となり得る。
 レーザ装置3の変動しやすいパルスエネルギを高い安定性で維持するため、光増幅器614-1~614-4において、毎パルスでのエネルギ制御が要求され得る。例えば、EUVパルス出力の繰り返し周波数が50~100kHzである場合、レーザ装置3は、20~10μs以下での制御速度が求められ得る。
 PA電源613-1~613-4は、上記PA電源213と同様に、電流指令値に従って、即時にゲート信号のON時間長を変更してもよい。これにより、光増幅器614-1~614-4から出力されるパルスエネルギを高速に制御し得る。例えば、PA電源613-1~613-4は、インバータ電流の1周期毎に、ゲート信号パルス幅又は電流指令値を制御してもよい。インバータ電流の周波数は、光増幅器614-1~614-4の励起周波数でもあり、光増幅器614-1~614-4の励起周波数で、励起強度を変更し得る。
 EUVパルス出力の繰り返し周波数(EUV光生成周波数)をf、光増幅器614-1~614-4の励起周波数をgとした場合、f≦g<10fの関係が成立してもよい。さらに、f≦g<5fの関係が成立してもよい。或いはf=gであってもよい。マスタオシレータ612の出力パルス周波数と光増幅器614-1~614-4の励起周波数も、同様の関係を有してもよい。励起周波数は、出力パルス周波数以上でもよい。
 例えば、光増幅器614-1~614-4の励起周波数は数100kHz~数10MHzであり、EUV光を生成する繰り返し周波数は50~100kHzであり得る。レーザ装置3は、光増幅器614-1~614-4の励起周波数で励起強度を制御することにより、EUV光生成システム11において、毎パルスでEUV光エネルギを制御し得る。
<実施形態3>
7.EUV光生成システムの他の形態
7.1 構成
 図15は、本実施形態のEUV光生成システム11の構成例を示している。以下では、図13に示す構成との差異を主に説明する。マスタオシレータ612のレーザ光出力側に、MOエネルギ検出器607が配置されてもよい。また、光増幅器614-1~614-4の各々の出力側に、PAエネルギ検出器605-1~605-4が各々配置されてもよい。
 エネルギ検出器607、605-1~605-4は、レーザ光路に配置された不図示のビームサンプラからの反射光の光路上に配置されてもよい。エネルギ検出器607、605-1~605-4は、光路に対して任意のタイミングで出し入れ自在に配置されてもよい。
 レーザコントローラ611は、量子カスケードレーザ601-1~601-4、PA電源613-1~613-4の他、エネルギ検出器607、605-1~605-4に接続されてもよい。レーザコントローラ611は、チャンバ2に配置されたEUVセンサ604に接続されてもよい。
 レーザコントローラ611は、動作パラメータテーブル681を含んでもよい。図16は、動作パラメータテーブル681の構成例を示している。動作パラメータテーブル681は、露光装置コントローラ660からのEUVパルスエネルギ指令値と、量子カスケードレーザ601-1~601-4及びPA電源613-1~613-4の動作パラメータとの対応関係を定義してもよい。
 動作パラメータテーブル681が管理する動作パラメータは、マスタオシレータ612の励起電流及び光増幅器614-1~614-4の電流指令値を含んでもよい。動作パラメータテーブル681は、さらに、EUVパルスエネルギ指令値に対応する、マスタオシレータ612及び光増幅器614-1~614-4の目標エネルギを格納してもよい。
 マスタオシレータ612及び光増幅器614-1~614-4の目標エネルギは、実験により予め設定されていてもよい。マスタオシレータ612及び光増幅器614-1~614-4の目標エネルギは、EUVパルスエネルギ指令値に対して固定でもよい。
 マスタオシレータ612の励起電流は、マスタオシレータ612の目標エネルギを実現するように設定されてもよい。光増幅器614-1~614-4の電流指令値は、それぞれ、光増幅器614-1~614-4の目標エネルギを実現するように設定されてもよい。マスタオシレータ612の励起電流及び光増幅器614-1~614-4の電流指令値の初期値は、実験により予め設定されていてもよい。
 後述するように、動作パラメータテーブル681において、マスタオシレータ612の励起電流は、マスタオシレータ612の目標エネルギ及び測定エネルギに応じて更新されてもよい。光増幅器614-1~614-4の電流指令値は、それぞれ、光増幅器614-1~614-4の目標エネルギ及び測定エネルギに応じて更新されてもよい。動作パラメータテーブル681に代えて、MO励起電流及び光増幅器614-1~614-4の電流指令値それぞれの関数を使用してもよい。
7.2 動作
7.2-1 全体動作
 レーザコントローラ611は、EUV光生成に先立って調整発振を行い、動作パラメータテーブル681を修正してもよい。レーザコントローラ611は、エネルギ検出器607、605-1~605-4からレーザ光のエネルギ測定値を取得し、取得したエネルギ検出値と、動作パラメータテーブル681内のエネルギ目標値とに基づいて、マスタオシレータ612の励起電流及び光増幅器614-1~614-4の電流指令値を修正してもよい。
 図17は、レーザコントローラ611の動作のフローチャートを示している。レーザコントローラ611は、露光装置コントローラ660からのEUVパルスエネルギ指令値Etを受信するまで待ってもよい(S201:N)。EUVパルスエネルギ指令値Etを受信すると(S201:Y)、レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、調整発振により、動作パラメータテーブル681におけるマスタオシレータ612の励起電流MOICを修正してもよい(S202)。
 さらに、レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、調整発振により、動作パラメータテーブル681における光増幅器614-1~614-4の電流指令値ICを修正してもよい(S203)。
 レーザコントローラ611は、複数の異なるEUVパルスエネルギ指令値Etについて、ステップS202及びステップS203を実行してもよい。励起電流MOIC及び/又は電流指令値ICを算出するための関数が定義されている場合には、関数を修正してもよい。
 レーザコントローラ611は、調整発振による動作パラメータテーブル681の修正後、露光装置コントローラ660からのEUV光出力信号を受信するまで待ってもよい(S204:N)。露光装置コントローラ660からEUV光出力信号を受信すると(S204:Y)、レーザコントローラ611は、EUV光生成時のレーザ装置制御を実行してもよい(S205)。
7.2-2 動作パラメータテーブルの修正
 図18は、動作パラメータテーブル681におけるマスタオシレータ612の励起電流の修正(S202)の詳細フローチャートを示している。レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により、マスタオシレータ612の目標エネルギMOEt及び励起電流MOICを決定してもよい(S301)。
 レーザコントローラ611は、決定した励起電流MOICによって、マスタオシレータ612を発振させてもよい(S302)。レーザコントローラ611は、MOエネルギ検出器607から、レーザパルスのエネルギ測定値MOEmを取得してもよい(S303)。
 レーザコントローラ611は、エネルギ測定値MOEmと目標エネルギMOEtとの差分と、予め設定されている所定値とを比較してもよい(S304)。差分が所定値より大きい場合(S304:Y)、レーザコントローラ611は、現在の励起電流MOICと差分とに基づいて、新たな励起電流MOICを算出し、マスタオシレータ612に供給する励起電流を、新たに算出した励起電流MOICに変更してもよい(S305)。
 図19は、新たな励起電流MOICの算出(S305)の詳細フローチャートを示している。レーザコントローラ611は、エネルギ測定値MOEmと目標エネルギMOEtとの差分ΔMOEを算出してもよい(S501)。レーザコントローラ611は、差分ΔMOEを予め設定された関数fに代入して、励起電流MOICの変更量ΔMOICを算出してもよい(S502)。変更量ΔMOICは正又は負であり得る。レーザコントローラ611は、ΔMOICを現在の励起電流MOICに加算して、新たな励起電流MOICを算出してもよい(S503)。
 図18に戻って、ステップS304において差分が所定値以下である場合(S304:N)、レーザコントローラ611は、動作パラメータテーブル681において、目標エネルギMOEtに対する励起電流MOICを、現在の励起電流MOICに書き換えてもよい(S306)。このように、励起電流MOICの修正は、直前のMOエネルギ検出値によって、次のパルスのMO励起電流を増減させるフィードバック制御であってもよい。
 図20は、動作パラメータテーブル681における光増幅器614-1~614-4の電流指令値ICの修正(S203)の詳細フローチャートを示している。レーザコントローラ611は、変数Nに1を代入してもよい(S401)。なお、図20に示したフローチャート中で使用される変数名中における文字Nは、変数Nの値によって置換される。例えば、N=2のとき、目標エネルギAMPNEtは目標エネルギAMP2Etである。
 レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により、光増幅器614-Nの目標エネルギAMPNEt、電流指令値AMPNIC決定してもよい(S402)。
 レーザコントローラ611は、光増幅器614-1から光増幅器614-Nを動作させてもよい(S403)。レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により決定した電流指令値AMP1IC~AMPNICを、それぞれ、PA電源613-1~613-Nに送信してもよい。
 レーザコントローラ611は、光増幅器614-Nの出力エネルギAMPNEmを、PAエネルギ検出器605-Nによって測定してもよい(S404)。レーザコントローラ611は、目標エネルギAMPNEtと測定エネルギAMPNEmとの差分が、所定値より大きいか判定してもよい(S405)。
 目標エネルギAMPNEtと測定エネルギAMPNEmとの差分が、所定値より大きい場合(S405:Y)、レーザコントローラ611は、光増幅器641-Nの電流指令値AMPNICを変更し(S406)、PA電源613-Nに与えてもよい。ステップS406の詳細は後述される。
 目標エネルギAMPNEtと測定エネルギAMPNEmとの差分が、所定値以下である場合(S405:N)、レーザコントローラ611は、動作パラメータテーブル681の目標エネルギAMPNEtに対する電流指令値AMPNICを、現在の値に書き換えてもよい(S407)。
 レーザコントローラ611は、変数Nに1を加えてもよい(S408)。レーザコントローラ611は、変数Nが光増幅器の数Kに達しているか判定してもよい(S409)。本例において、Kは4であり得る。変数Nが光増幅器の数Kに達していない場合(S409:N)、レーザコントローラ611は、ステップS403に戻ってもよい。変数Nが光増幅器の数Kに達している場合(S409:Y)、レーザコントローラ611は、マスタオシレータマスタオシレータ612と光増幅器641-1~641-4の動作を停止してもよい(S410)。
 上述のように、光増幅器641-Nの電流指令値の変更は、直前のエネルギ測定値によって、次のパルスの電流指令値を増減させるフィードバック制御であってもよい。上述のように、上流、つまりマスタオシレータ612に近い光増幅器から、順次、光増幅器641-1~641-4の電流指令値が修正されてもよい。
 図21は、光増幅器641-NのAMPNICの変更(S406)の詳細フローチャートを示している。レーザコントローラ611は、目標エネルギAMPNEtと測定エネルギAMPNEmとの差分AMPNΔEを算出してもよい(S601)。レーザコントローラ611は、算出した差分AMPNΔEを、所定の関数gに代入にし、電流指令値の変更量AMPNΔICを算出してもよい(S602)。更量AMPNΔICは正又は負であり得る。レーザコントローラ611は、現在の電流指令値AMPNICに変更量AMPNΔICを加算して、新たな電流指令値AMPNICを算出してもよい(S603)。
 上述のように、EUV光生成前に動作パラメータテーブル681を適切な内容に修正し得る。なお、実施形態1のレーザ装置において、同様の方法によりゲート制御テーブル369を修正してもよい。
7.2-3 EUV光生成時のレーザ装置制御
 図22は、EUV光生成時のレーザ装置制御(S205)の詳細フローチャートを示している。レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により、マスタオシレータ612の励起電流と光増幅器614-1~614-4の電流指令値を決定してもよい(S701)。
 レーザコントローラ611は、決定した励起電流でマスタオシレータ612を発振させてもよい。レーザコントローラ611は、決定した電流指令値をPA電源613-1~613-4に送信して、決定した電流指令値において光増幅器614-1~614-4を動作させてもよい(S702)。
 その後、露光装置コントローラ660から新たなEUVパルスエネルギ指令値Etを受信していない場合(S703:N)、レーザコントローラ611は、EUVセンサ604によってEUVパルスエネルギEmを測定し(S705)、測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、所定値より大きいか判定してもよい(S706)。
 露光装置コントローラ660から新たなEUVパルスエネルギ指令値Etを受信している場合(S703:Y)、レーザコントローラ611は、新たなEUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により、最終段の光増幅器614-4の電流指令値を決定し、PA電源613-4に送信してもよい(S704)。その後、レーザコントローラ611は、ステップS705に移ってもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が所定値以下であり(S706:N)、露光装置コントローラ660からEUV光停止信号を受信した場合(S708:Y)、レーザコントローラ611は、当該フローを終了してもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が所定値以下であり(S706:N)、露光装置コントローラ660からEUV光停止信号を受信していない場合(S708:N)、レーザコントローラ611は、ステップS703に戻ってもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が所定値より大きい場合(S706:Y)、レーザコントローラ611は、最終段の光増幅器614-4の電流指令値を補正し(S707)、ステップS703に戻ってもよい。
 図23は、図22のフローチャートにおける、光増幅器614-4の電流指令値の補正(S707)の詳細フローチャートを示している。レーザコントローラ611は、EUVパルスエネルギ指令値Etと測定EUVパルスエネルギEmとの差分ΔEを算出してもよい(S801)。レーザコントローラ611は、算出した差分ΔEを所定の関数hに代入し、光増幅器614-4の電流指令値の変更量AMP4ΔICを算出してもよい(S802)。変更量AMP4ΔICは正又は負であり得る。
 レーザコントローラ611は、光増幅器614-4への現在の電流指令値AMP4ICに算出した変更量AMP4ΔICを加算して、光増幅器614-4への新たな電流指令値AMP4ICを算出してもよい(S803)。レーザコントローラ611は、新たに決定した電流指令値AMP4ICを、光増幅器614-4のPA電源613-4に送信してもよい(S804)。
 上述のように、レーザコントローラ611は、調整発振後かつEUV光生成時、EUVセンサ604からEUV光エネルギの測定値を取得し、一部のPA電源、例えば、PA電源613-4をレーザ光のパルス毎に制御してもよい。
 上述のように、光増幅器614-4への電流指令値の補正は、直前のEUV光エネルギ測定値に基づいて、次のパルスの電流指令値を増減させるフィードバック制御であってもよい。最終段増幅器のみの制御ではEUV光エネルギを安定化させるダイナミックレンジが不足する場合は、他の光増幅器、例えば、光増幅器614-3を、増幅器614-4と共にフィードバック制御してもよい。
 上述のように、EUVセンサ604の出力に基づいた光増幅器の制御により、EUV光エネルギの安定化を図り得る。最終段増幅器を含む光増幅器の一部のみを制御することで、容易かつ効果的にEUV光エネルギの安定化を図り得る。
 なお、レーザコントローラ611は、図17のフローチャートにおける一部のステップのみを実行してもよい。EUV光生成時に電流指令値が補正される一部の光増幅器のPA電源のみが、上記PA電源213と同様の構成を有していてもよい。
<実施形態4>
8.レーザ制御の他の形態
8.1 バースト動作
 EUV光生成制御部5は、露光装置コントローラ660から、EUVパルスエネルギ指令値の他に、バースト信号を受信してもよい。バースト信号は、所定期間においてEUV光を生成すべきことをEUV光生成システム11に指示する信号であってもよい。当該所定期間をバースト期間と呼ぶ。
 EUV光生成制御部5は、バースト期間において、EUV光を露光装置6に出力するための制御を行ってもよい。EUV光生成システム11は、バースト信号がONの期間において、EUV光を出力してもよい。バースト信号がONの期間は、バースト期間である。バースト信号がOFFの期間において、EUV光生成システム11は、EUV光の出力を停止してもよい。バースト信号がOFFの期間を、休止期間と呼ぶ。
 図24Aは、EUV光のエネルギの時間変化を示している。バースト期間と休止期間とが交互に繰り返されてもよい。このEUV光生成システム11の動作を、バースト動作と呼ぶ。EUV光生成システム11は、バースト期間において、所定の繰り返し周波数で所定パルス数のEUV光を出力してもよい。EUV光生成制御部5は、バースト期間において、EUV光のエネルギが一定であるように他の装置を制御してもよい。
 図24Bは、図24AのEUV光を生成するためのパルスレーザ光のエネルギの時間変化を示している。バースト期間と休止期間とが交互に繰り返されてもよい。パルスレーザ光のエネルギは、EUV光のエネルギと同様の時間変化を示してもよい。レーザコントローラ611は、EUV光生成制御部5を介して、バースト信号を受信してもよい。
 レーザコントローラ611は、バースト信号がONの期間において、レーザ装置3がパルスレーザ光を出力するように制御してもよい。レーザコントローラ611は、バースト信号がOFFの期間において、レーザ装置3がパルスレーザ光の出力を停止するように制御してもよい。レーザ装置3は、バースト期間において、所定の繰り返し周波数で所定パルス数のレーザ光を出力してもよい。レーザコントローラ611は、バースト期間において、レーザ光エネルギが一定であるようにレーザ装置3を制御してもよい。
8.2 課題
 図24Cは、バースト期間におけるパルスレーザ光エネルギの課題を示している。バースト期間初期においては、光増幅器の増幅率が高くなり得る。そのため、バースト信号がOFFからONに変化した直後及びその後の複数の連続するレーザ光パルスにおいて、レーザ光パルスエネルギが漸減し、さらに、レーザ光パルスエネルギが後続のパルスと比較して高い傾向となり得る。
 図24Dは、図24Cのパルスレーザ光に対応するEUV光のエネルギの時間変化を示している。照射されるパルスレーザ光と同様に、バーストの先頭パルス及びその後の複数パルスにおいて、EUV光パルスエネルギが漸減し、さらに、後続のパルスと比較して高い傾向となり得る。
 当該課題に対応するため、レーザコントローラ611は、最終段光増幅器614-4の電流指令値を低くしてもよい。しかし、この状況に以下の要因が加わると、バースト先頭からのいくつかのレーザ光パルスのエネルギが大きくなりすぎ、レーザ光エネルギが出力目標エネルギを超え得る。
 第1の要因は、光増幅器のレーザガスを循環させるクロスフローファンを回転させるモータの劣化によるガス流速の低下である得る。第2の要因は、光増幅器の熱交換器を流れる冷却水温の低下であり得る。第3の要因は、マスタオシレータ612の出力変動の増加であり得る。
 最終段光増幅器614-4へ入力するパルスレーザ光が、目標エネルギを大きく超える場合、最終段光増幅器614-4のみを制御してもEUV光エネルギを、EUVパルスエネルギ指令値(目標エネルギ)Etから一定範囲内に制御し得ない。このように、パルスレーザ光が、最終段光増幅器614-4のみの制御ダイナミックレンジを超えた状態である場合、露光装置6による露光量の制御が困難となり得る。
8.3 構成
 図25Aは、レーザ装置3における本実施形態の光増幅器614-1~614-4の制御を示している。レーザコントローラ611は、EUV光生成時、最終段光増幅器614-4に加え、他の光増幅器をフィードバック制御することにより、レーザ装置3の制御ダイナミックレンジを拡張してもよい。フィードバック制御は、測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分に基づいて、光増幅器に与える電流指令値を補正してもよい。
 図25Aに示す例において、光増幅器614-4のみで制御ダイナミックレンジが足りる場合、レーザコントローラ611は、光増幅器614-4のみをフィードバック制御してもよい。光増幅器614-4のみでは制御ダイナミックレンジが不足する場合、レーザコントローラ611は、光増幅器614-4及び614-3を、フィードバック制御してもよい。
 光増幅器614-4及び614-3のみでは制御ダイナミックレンジが不足する場合、レーザコントローラ611は、光増幅器614-4、614-3及び614-2をフィードバック制御してもよい。フィードバック制御しない上流側光増幅器に対する電流指令値を一定であり、インバータ回路の出力が一定であってもよい。
 上述のように、レーザコントローラ611は、制御ダイナミックレンジの不足量に応じて、フィードバック制御する光増幅器の数を下流側から増やしてもよい。ダイナミックレンジ不足の検知は、EUVセンサ604の出力値又は光増幅器のエネルギ検出器の出力値に基づいてもよい。
 図25Bは、フィードバック制御される光増幅器と、EUV光エネルギの制御ダイナミックレンジと、の間の関係を示している。フィードバック制御する光増幅器の数が増加すると、EUV光エネルギの制御ダイナミックレンジが増加し得る。
 具体的には、光増幅器614-3、614-4によるEUV光エネルギの制御ダイナミックレンジTe3は、光増幅器614-4によるEUV光エネルギの制御ダイナミックレンジTe4よりも大きくなり得る。光増幅器614-2、614-3、614-4によるEUV光エネルギの制御ダイナミックレンジTe2は、光増幅器614-3、614-4によるEUV光エネルギの制御ダイナミックレンジTe3よりも大きくなり得る。
8.4 動作
 図26Aは、本実施形態におけるEUV光生成時のレーザ装置制御(S205)のフローチャートを示している。レーザコントローラ611は、測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が含まれる数値範囲を決定し、当該数値範囲に予め対応付けられている光増幅器の電流指令値を補正してもよい。より大きな数値で構成される数値範囲に対してより多くの数の光増幅器が割り当てられてもよい。
 まず、レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により、マスタオシレータ612の励起電流と光増幅器614-1~614-4の電流指令値を決定してもよい(S821)。
 レーザコントローラ611は、決定した励起電流でマスタオシレータ612を発振させてもよい。レーザコントローラ611は、決定した電流指令値をPA電源613-1~613-4に送信して、決定した電流指令値において光増幅器614-1~614-4を動作させてもよい(S822)。
 その後、露光装置コントローラ660から新たなEUVパルスエネルギ指令値Etを受信しておらず(S823:N)、さらに、EUV光停止信号を受信していない場合(S825:N)、レーザコントローラ611は、EUVセンサ604によってEUVパルスエネルギEmを測定し(S826)、測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te4以下か判定してもよい(S827)。規定値Te4は、光増幅器614-4によるEUV光の制御ダイナミックレンジに対応し、実験により決定されてもよい。
 露光装置コントローラ660から新たなEUVパルスエネルギ指令値Etを受信している場合(S823:Y)、レーザコントローラ611は、新たなEUVパルスエネルギ指令値Etに基づいて、動作パラメータテーブル681により、光増幅器614-2~614-4の電流指令値AMP2IC~AMP4ICを決定し、PA電源613-2~613-4に送信してもよい(S824)。その後、レーザコントローラ611は、ステップS825に移ってもよい。
 露光装置コントローラ660からEUV光停止信号を受信している場合(S825:Y)、レーザコントローラ611は、本フローを終了してもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te4より大きい場合(S827:N)、レーザコントローラ611は、測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te3以下か判定してもよい(S828)。規定値Te3は、光増幅器614-4及び614-3によるEUV光の制御ダイナミックレンジに対応し、実験により決定されてもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te3より大きい場合(S828:N)、レーザコントローラ611は、測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te2以下か判定してもよい(S829)。規定値Te2は、光増幅器614-4、614-3及び614-2によるEUV光の制御ダイナミックレンジに対応し、実験により決定されてもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te2より大きい場合(S829:N)、レーザコントローラ611は、EUV光生成制御部5にダイナミックレンジ不足を通知し(S830)、本フローを終了してもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te4以下である場合(S827:N)、レーザコントローラ611は、最終段の光増幅器614-4のみの電流指令値を補正し(S831)、ステップS823に戻ってもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te4より大きく(S827:N)、規定値Te3以下である場合(S828:Y)レーザコントローラ611は、最終段の光増幅器614-4及び光増幅器614-3の電流指令値を補正し(S832)、ステップS823に戻ってもよい。
 測定EUVパルスエネルギEmとEUVパルスエネルギ指令値Etとの差分が、規定値Te3より大きく(S828:N)、規定値Te2以下である場合(S829:Y)レーザコントローラ611は、最終段の光増幅器614-4、光増幅器614-3、614-2の電流指令値を補正し(S833)、ステップS823に戻ってもよい。
 図26Bは、図26Aのフローチャートにおける、光増幅器614-4、614-3の電流指令値の補正(S832)の詳細フローチャートを示している。なお、光増幅器614-4のみの電流指令値の補正(S831)は、図23に示すフローチャートと同様であってもよい。
 図26Bにおいて、レーザコントローラ611は、EUVパルスエネルギ指令値Etと測定EUVパルスエネルギEmとの差分ΔEを算出してもよい(S841)。レーザコントローラ611は、規定値Te3と規定値Te4との間の差分ΔE3、及び、差分ΔEと差分ΔE3との間の差分ΔE4を、算出してもよい(S842)。
 レーザコントローラ611は、算出した差分ΔE3を所定の関数fに代入し、光増幅器614-3の電流指令値の変更量AMP3ΔICを算出してもよい(S843)。ΔE3は、EUVパルスエネルギ指令値Etと測定EUVパルスエネルギEmとの差分ΔEに拠らず一定であってもよく、変更量AMP3ΔICも、差分ΔEに拠らず一定であってもよい。レーザコントローラ611は、光増幅器614-3への現在の電流指令値AMP3ICに算出した変更量AMP3ΔICを加算して、光増幅器614-3への新たな電流指令値AMP3ICを算出してもよい(S844)。
 レーザコントローラ611は、算出した差分ΔE4を所定の関数fに代入し、光増幅器614-4の電流指令値の変更量AMP4ΔICを算出してもよい(S845)。レーザコントローラ611は、光増幅器614-4への現在の電流指令値AMP4ICに算出した変更量AMP4ΔICを加算して、光増幅器614-4への新たな電流指令値AMP4ICを算出してもよい(S846)。
 レーザコントローラ611は、新たに決定した電流指令値AMP3IC、AMP4ICを、それぞれ、光増幅器614-3のPA電源613-3、光増幅器614-4のPA電源613-4に送信してもよい(S847)。
 図26Cは、図26Aのフローチャートにおける、光増幅器614-4、614-3、614-2、の電流指令値の補正(S833)の詳細フローチャートを示している。図26Cにおいて、レーザコントローラ611は、EUVパルスエネルギ指令値Etと測定EUVパルスエネルギEmとの差分ΔEを算出してもよい(S861)。
 レーザコントローラ611は、規定値Te3と規定値Te2との間の差分ΔE2、規定値Te3と規定値Te4との間の差分ΔE3、及び、差分ΔE4を算出してもよい(S862)。差分ΔE4は、差分ΔEと、差分ΔE2と差分ΔE3の加算値と、の間の差分であってもよい。
 レーザコントローラ611は、算出した差分ΔE2を所定の関数fに代入し、光増幅器614-2の電流指令値の変更量AMP2ΔICを算出してもよい(S863)。ΔE2は、EUVパルスエネルギ指令値Etと測定EUVパルスエネルギEmとの差分ΔEに拠らず一定であってもよく、変更量AMP2ΔICも、差分ΔEに拠らず一定であってもよい。レーザコントローラ611は、光増幅器614-2への現在の電流指令値AMP2ICに算出した変更量AMP2ΔICを加算して、光増幅器614-2への新たな電流指令値AMP2ICを算出してもよい(S864)。
 レーザコントローラ611は、算出した差分ΔE3を所定の関数fに代入し、光増幅器614-3の電流指令値の変更量AMP3ΔICを算出してもよい(S865)。レーザコントローラ611は、光増幅器614-3への現在の電流指令値AMP3ICに算出した変更量AMP3ΔICを加算して、光増幅器614-3への新たな電流指令値AMP3ICを算出してもよい(S866)。
 レーザコントローラ611は、算出した差分ΔE4を所定の関数fに代入し、光増幅器614-4の電流指令値の変更量AMP4ΔICを算出してもよい(S867)。レーザコントローラ611は、光増幅器614-4への現在の電流指令値AMP4ICに算出した変更量AMP4ΔICを加算して、光増幅器614-4への新たな電流指令値AMP4ICを算出してもよい(S868)。
 レーザコントローラ611は、新たに決定した電流指令値AMP2IC、AMP3IC、AMP4ICを、それぞれ、光増幅器614-2のPA電源613-2、光増幅器614-3のPA電源613-3、光増幅器614-4のPA電源613-4に送信してもよい(S869)。
8.5 効果
 本実施形態は、EUVパルスエネルギ指令値と測定EUVパルスエネルギとの差分に応じて電流指令値を補正する光増幅器の数を変更することで、EUV光エネルギの制御範囲を変更し、EUV光エネルギを所望範囲内とし得る。最終段の光増幅器から順次上流側にフィードバック制御する光増幅器を増やすことで、より正確にパルスレーザ光のエネルギを制御し得る。最終段の光増幅器への電流指令地の変更量がEUVパルスエネルギ指令値と測定EUVパルスエネルギとの差分に応じて変化し、他の光増幅器への電流指令地の変更量が一定であり、効率的にパルスレーザ光のエネルギを制御し得る。
 なお、最終段光増幅器の他にフィードバック制御可能な光増幅器の数は設計に依存し得る。当該数は、1又は3以上であってもよい。最終段光増幅器の他にフィードバック制御可能な光増幅器の位置は、最終段光増幅器の直前でなくてもよい。追加する順序は下流側からでなくてもよい。マスタオシレータもフィードバック制御されてもよい。
<実施形態5>
9.レーザ制御の他の形態
9.1 概要
 図27は、光増幅器の劣化したレーザガスと劣化していない新しいレーザガスにおける、電流指令値と放電電流値との関係を示している。光増幅器のレーザガスは、時間の経過、放電回数の増加、不正放電の発生等によって劣化し得る。一般に、光増幅器が劣化したレーザガスを用いて増幅する場合、その増幅率が低下し得る。さらに、劣化したレーザガスでは電流指令値に対して、放電電流値が低下し得る。これは、劣化に伴ってレーザガスの電気的負荷が変化するためと考えられ得る。
 本実施形態のレーザ装置は、光増幅器のガス劣化を検出し、パルスエネルギ指令値と電流指令値との間の関係を示す制御情報を書き換えてもよい。図27に示すように、制御情報の書き換えによって、ガス劣化によって生じる電流指令値と放電電流値の乖離を補正し得る。
 ガス劣化の検知は、電流指令値と放電電流値との差に基づいて行われてもよく、同一電流指令値に対するレーザ出力の低下量に基づいて行われてもよい。所定時間毎又は起動時に自動でガス交換を行う光増幅器が知られている。そのような光増幅器に対しては、本実施形態を適用しなくてよい。
9.2 構成
 図28は、本実施形態のレーザ装置3の構成を示す。光増幅器614-1~614-4とPA電源613-1~613-4との間の電流接続経路には、放電電流モニタ617-1~617-4がそれぞれ配置されてもよい。放電電流モニタ617-1~617-4は、シャント抵抗、CT、又は電流プローブ等で構成されてもよい。PA電源に電流モニタが含まれている場合、PA電源の電流モニタは放電電流モニタを兼用してもよい。放電電流モニタ617-1~617-4は、レーザコントローラ611に接続さてよい。他の構成は、図13と同様でもよい。
9.3 動作
 レーザコントローラ611は、放電電流モニタ617-1~617-4からそれぞれの放電電流値を取得し、それぞれの電流指令値とそれぞれの放電電流値との差に基づいて、PA電源613-1~613-4それぞれに設定する制御情報を書き換えてもよい。
 図29Aは、本実施形態におけるレーザコントローラ611の動作のフローチャートを示している。レーザコントローラ611は、露光装置コントローラ660からのEUVパルスエネルギ指令値Etを受信するまで待ってもよい(S901:N)。
 EUVパルスエネルギ指令値Etを受信すると(S901:Y)、レーザコントローラ611は、EUVパルスエネルギ指令値Etに基づいて、調整発振により、動作パラメータテーブル681におけるマスタオシレータ612の励起電流MOICを修正してもよい(S902)。ステップS902は、図17に示すステップS202と同様でもよい。
 レーザコントローラ611は、調整発振により、光増幅器614-1~614-4のレーザガスの劣化について判定し、判定結果に応じて動作パラメータテーブル681における光増幅器614-1~614-4の電流指令値ICを修正してもよい(S903)。後述するように、レーザコントローラ611は、レーザガスの交換が必要な光増幅器に対するガス交換フラグをONとしてもよい。ガス交換フラグは、レーザコントローラ611の記憶デバイスに格納されてもよい。
 次に、レーザコントローラ611は、全ての光増幅器614-1~614-4のガス交換フラグがOFFであるか判定してもよい(S904)。いずれかの光増幅器のガス交換フラグがONである場合(S904:N)、レーザコントローラ611は、ガス交換フラグがONの光増幅器をEUV光生成制御部5に通知し(S905)、本フローを終了してもよい。
 全ての光増幅器614-1~614-4のガス交換フラグがOFFである場合(S904:Y)、レーザコントローラ611は、露光装置コントローラ660からのEUV光出力信号を受信するまで待ってもよい(S906:N)。露光装置コントローラ660からEUV光出力信号を受信すると(S906:Y)、レーザコントローラ611は、EUV光生成時のレーザ装置制御を実行してもよい(S907)。ステップS907は、図17に示すステップS205と同様でもよい。
 図29Bは、図29Aのフローチャートにおける、ガス劣化の判定及び動作パラメータテーブル681の修正(S903)の詳細のフローチャートを示している。図29Bに示したフローチャート中で使用される変数名中における文字Nは、変数Nの値によって置換される。
 レーザコントローラ611は、変数Nに1を代入してもよい(S921)。レーザコントローラ611は、動作パラメータテーブル681から得た、EUVパルスエネルギ指令値Etに対応する光増幅器614-Nの電流指令値AMPNICを、光増幅器614-Nに設定してもよい(S922)。
 次に、レーザコントローラ611は、光増幅器614-Nを動作させてもよい(S923)。レーザコントローラ611は、光増幅器614-Nの放電電流値AMPNIDを、放電電流モニタ617-Nによって検出してもよい(S924)。レーザコントローラ611は、電流指令値AMPNICと放電電流値AMPNIDとの差分ΔIを計算してもよい(S925)。
 レーザコントローラ611は、差分ΔIが含まれる数値範囲を決定してもよい(S926~S929)。各数値範囲は、閾値D1未満の範囲、閾値D1以上閾値D2未満の範囲、閾値D2以上閾値D3未満の範囲、閾値D3以上閾値D4未満の範囲、閾値D4以上の範囲であってもよい。閾値の間では、D1<D2<D3<D4の関係が成立してもよい。
 差分ΔIが閾値D1未満である場合(S926:Y)、光増幅器614-Nの動作を停止させてもよい(S934)。差分ΔIが閾値D1以上閾値D2未満である場合(S926:N、S927:Y)、レーザコントローラ611は、レーザガスの劣化度が1であると判定してもよい。さらに、レーザコントローラ611は、動作パラメータテーブル681における光増幅器614-Nの電流指令値を、ガス劣化度1の電流指令値に書き換えてもよい(S931)。
 図30A~図30Dは、動作パラメータテーブル681を修正するために参照される、光増幅器614-1~614-4に対する修正電流指令値テーブル691-1~691-4を示している。テーブル691-1~691-4は、レーザコントローラ611の記憶デバイス内に格納されてもよい。修正電流指令値テーブル691-1~691-4は、ガス劣化度に応じたパルスエネルギ指令値それぞれに対する修正電流指令値を格納してもよい。レーザコントローラ611は、光増幅器614-Nに対応する修正電流指令値テーブルから、ガス劣化度1の行のデータを取得し、動作パラメータテーブル681における光増幅器614-Nの電流指令値の行を書き換えてもよい。
 図29Bに戻って、差分ΔIが閾値D2以上閾値D3未満である場合(S927:N、S928:Y)、レーザコントローラ611は、レーザガスの劣化度が2であると判定してもよい。さらに、レーザコントローラ611は、動作パラメータテーブル681における光増幅器614-Nの電流指令値を、ガス劣化度2の電流指令値に書き換えてもよい(S932)。具体的には、レーザコントローラ611は、光増幅器614-Nに対応する修正電流指令値テーブルから、ガス劣化度2の行のデータを取得し、動作パラメータテーブル681における光増幅器614-Nの電流指令値の行を書き換えてもよい。
 差分ΔIが閾値D3以上閾値D4未満である場合(S928:N、S929:Y)、レーザコントローラ611は、レーザガスの劣化度が3であると判定してもよい。さらに、レーザコントローラ611は、動作パラメータテーブル681における光増幅器614-Nの電流指令値を、ガス劣化度3の電流指令値に書き換えてもよい(S933)。具体的には、レーザコントローラ611は、光増幅器614-Nに対応する修正電流指令値テーブルから、ガス劣化度3の行のデータを取得し、動作パラメータテーブル681における光増幅器614-Nの電流指令値の行を書き換えてもよい。差分ΔIが閾値D4以上である場合(S929:N)、レーザコントローラ611は、光増幅器614-Nのガス交換要求フラグをONに設定してもよい(S930)。
 ステップS926、およびS930~S933のいずれかのステップの後、レーザコントローラ611は、光増幅器614-Nの動作を停止させてもよい(S934)。レーザコントローラ611は、全ての光増幅器について電流指令値の修正処理を実行したか判定してもよい。具体的には、レーザコントローラ611は、変数Nをインクリメントし(S935)、変数Nの値が光増幅器の数Kに1を加算した値と一致するか判定してもよい(S936)。
 全ての光増幅器について電流指令値の修正処理を終了している場合(S936:Y)、レーザコントローラ611は本フローを終了してもよい。未処理の光増幅器が残っている場合(S936:N)、レーザコントローラ611はステップS922に戻ってもよい。
9.4 効果
 本実施形態は、光増幅器のレーザガスが劣化している場合でも、光増幅器の高速電流制御を実現し得る。なお、レーザコントローラ611は放電電流モニタを使用することなく、他の方法によって光増幅器のレーザガス劣化を検出してもよい。エネルギ検出器またはEUVセンサの出力履歴を保持しておき、前回動作時からのレーザ光エネルギ低下量またはEUV光エネルギ低下量に基づいてガス劣化を検知してもよい。動作パラメータテーブルに代えて、電流指令値ICを算出するための関数が定義されている場合、レーザコントローラ611は関数を修正してもよい。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の請求の範囲を逸脱することなく本開示の実施形態に変更を加えてもよいことは、当業者には明らかであろう。
 ある実施形態の構成の一部を他の実施形態の構成に置き換え得る。ある実施形態の構成に他の実施形態の構成を加え得る。各実施形態の構成の一部について、削除、他の構成の追加、他の構成による置換をし得る。 
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
3 レーザ装置、11 EUV光生成システム、211 レーザコントローラ、212、612 マスタオシレータ、213、613-1~613-4 PA電源、214、614-1~614-4 光増幅器、367 PA電源制御回路、369、621 ゲート制御テーブル、451 電流制御テーブル、648 インバータ回路、681 動作パラメータテーブル

Claims (11)

  1.  パルスレーザ光を生成するレーザ装置であって、
     パルスレーザ光を出力するマスタオシレータと、
     前記マスタオシレータから出力されるレーザ光を増幅する光増幅器と、
     前記光増幅器に、光増幅のための交流電流を供給する光増幅器電源と、
     前記マスタオシレータ及び前記光増幅器電源を制御するレーザコントローラと、を含み、
     前記光増幅器電源は、
     デューティ比に応じて出力振幅を変化させるインバータ回路を含み、前記インバータ回路の出力から前記交流電流を生成する、交流電流生成回路と、
     前記レーザコントローラからの指令値と前記インバータ回路のデューティ比との対応関係を定義する制御情報を保持し、前記レーザコントローラから受信した指令値に対応するデューティ比を前記制御情報に基づいて決定し、前記決定したデューティ比を前記インバータ回路に与える、電源制御回路と、を含むレーザ装置。
  2.  請求項1に記載のレーザ装置であって、
     前記レーザコントローラは、前記光増幅器からの出力エネルギの測定値を取得し、前記出力エネルギの測定値と前記出力エネルギの目標値との差分を算出し、前記差分に基づき前記制御情報を修正する、レーザ装置。
  3.  ターゲットにパルスレーザ光を照射してEUV光を生成するEUV光生成システムであって、
     チャンバと、
     前記チャンバ内にターゲットを供給するターゲット供給装置と、
     前記チャンバ内に供給されたターゲットに照射するパルスレーザ光を出力する請求項1に記載のレーザ装置と、を含むEUV光生成システム。
  4.  請求項3に記載のEUV光生成システムであって、
     Kは2以上の整数であり、
     前記レーザ装置は、
     前記マスタオシレータから出力されるパルスレーザ光を増幅する、K段の光増幅器と、
     前記K段の光増幅器のそれぞれに交流電流を供給するK個の光増幅器電源と、を含み、
     前記K個の光増幅器電源のそれぞれは、
     デューティ比に応じて出力振幅を変化させるインバータ回路を含み、前記インバータ回路の出力から前記交流電流を生成する、交流電流生成回路と、
     前記レーザコントローラからの指令値と前記インバータ回路のデューティ比との対応関係を定義する制御情報を保持し、前記レーザコントローラから受信した指令値に対応するデューティ比を前記制御情報に基づいて決定し、前記決定したデューティ比を前記インバータ回路に与える、電源制御回路と、を含むEUV光生成システム。
  5.  請求項4に記載のEUV光生成システムであって、
     前記レーザコントローラは、
     1段目の光増幅器からK段目の光増幅器を、昇順において順次選択し、
     前記マスタオシレータ、及び、前記1段目の光増幅器から選択された光増幅器までの光増幅器、を動作させて、前記選択された光増幅器からの出力エネルギ測定値を取得し、
     前記選択された光増幅器の出力エネルギ測定値と前記選択された光増幅器の出力エネルギ目標値との差分を算出し、
     前記差分に基づき、前記選択された光増幅器に交流電流を供給する光増幅器電源における制御情報を修正する、EUV光生成システム。
  6.  請求項4に記載のEUV光生成システムであって、
     前記K段の光増幅器のそれぞれの励起周波数は、EUV光生成周波数以上である、EUV光生成システム。
  7.  請求項3に記載のEUV光生成システムであって、
     Kは2以上の整数であり、
     前記レーザ装置は、
     前記マスタオシレータから出力されるパルスレーザ光を増幅する、K段の光増幅器と、
     前記K段の光増幅器のそれぞれに交流電流を供給するK個の光増幅器電源と、を含み、
     K段目の光増幅器を含む一部の光増幅器のそれぞれは、
     デューティ比に応じて出力振幅を変化させるインバータ回路を含み、前記インバータ回路の出力から前記交流電流を生成する、交流電流生成回路と、
     前記レーザコントローラからの指令値と前記インバータ回路のデューティ比との対応関係を定義する制御情報を含み、前記レーザコントローラから受信した指令値に対応するデューティ比を前記制御情報を使用して決定し、前記決定したデューティ比を前記インバータ回路に与える、電源制御回路と、を含み、
     前記レーザコントローラは、
     前記チャンバにおけるEUV光のエネルギ測定値と、EUV光のエネルギ目標値との差分を算出し、
     前記差分に基づき、前記一部の光増幅器への指令値を補正する、EUV光生成システム。
  8.  請求項3に記載のEUV光生成システムであって、
     Kは2以上の整数であり、
     前記レーザ装置は、
     前記マスタオシレータから出力されるパルスレーザ光を増幅する、K段の光増幅器と、
     前記K段の光増幅器のそれぞれに交流電流を供給するK個の光増幅器電源と、を含み、
     前記レーザコントローラは、
     前記チャンバにおけるEUV光のエネルギ測定値と、EUV光のエネルギ目標値との差分を算出し、
     前記差分が閾値以下の場合に、K段目の光増幅器のみへの指令値を補正し、
     前記差分が前記閾値よりも大きい場合に、前記K段目の光増幅器を含む複数の光増幅器への指令値を補正する、EUV光生成システム。
  9.  請求項8に記載のEUV光生成システムであって、
     前記K段目の光増幅器を含む前記複数の光増幅器への指令値を補正する場合、前記K段目の光増幅器と異なる光増幅器の指令値の変更量は、前記差分に拠らず一定である、EUV光生成システム。
  10.  請求項1に記載の装置であって、
     前記レーザコントローラは、
     前記光増幅器のレーザガスの劣化度を判定し、
     前記劣化度に基づき前記制御情報を修正する、レーザ装置。
  11.  パルスレーザ光を生成するレーザ装置の制御方法であって、
     前記レーザ装置は、
     パルスレーザ光を出力するマスタオシレータと、
     前記マスタオシレータから出力されるレーザ光を増幅する光増幅器と、
     デューティ比に応じて出力振幅を変化させるインバータ回路を含み、前記インバータ回路の出力から生成した交流電流を前記光増幅器に供給する光増幅器電源と、を含み、
     前記制御方法は、
     前記光増幅器電源への第1指令値を取得し、
     前記第1指令値に対応する第1デューティ比を、指令値とデューティ比との対応関係を定義する制御情報を使用して決定し、
     前記第1デューティ比を前記インバータ回路に与える、ことを含むレーザ装置の制御方法。
PCT/JP2015/068468 2014-07-01 2015-06-26 レーザ装置、euv光生成システム及びレーザ装置の制御方法 WO2016002648A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016531331A JP6513088B2 (ja) 2014-07-01 2015-06-26 Euv光生成システム及びeuv光生成システムの制御方法
US15/356,763 US10224686B2 (en) 2014-07-01 2016-11-21 Laser apparatus, EUV light generation system, and method of controlling laser apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/067509 WO2016002001A1 (ja) 2014-07-01 2014-07-01 レーザ装置、euv光生成システム及びレーザ装置の制御方法
JPPCT/JP2014/067509 2014-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/356,763 Continuation US10224686B2 (en) 2014-07-01 2016-11-21 Laser apparatus, EUV light generation system, and method of controlling laser apparatus

Publications (1)

Publication Number Publication Date
WO2016002648A1 true WO2016002648A1 (ja) 2016-01-07

Family

ID=55018601

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/067509 WO2016002001A1 (ja) 2014-07-01 2014-07-01 レーザ装置、euv光生成システム及びレーザ装置の制御方法
PCT/JP2015/068468 WO2016002648A1 (ja) 2014-07-01 2015-06-26 レーザ装置、euv光生成システム及びレーザ装置の制御方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067509 WO2016002001A1 (ja) 2014-07-01 2014-07-01 レーザ装置、euv光生成システム及びレーザ装置の制御方法

Country Status (3)

Country Link
US (1) US10224686B2 (ja)
JP (1) JP6513088B2 (ja)
WO (2) WO2016002001A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938306B2 (en) 2017-04-05 2021-03-02 Panasonic Intellectual Property Management Co., Ltd. Laser driving power source
US11973302B2 (en) * 2017-11-21 2024-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Methods and systems for aligning master oscillator power amplifier systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6473504B2 (ja) * 2015-07-14 2019-02-20 ギガフォトン株式会社 エキシマレーザ装置
WO2017130346A1 (ja) * 2016-01-28 2017-08-03 ギガフォトン株式会社 極端紫外光生成装置
US10524345B2 (en) * 2017-04-28 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Residual gain monitoring and reduction for EUV drive laser
US10234765B2 (en) 2017-06-05 2019-03-19 Coherent Lasersystems Gmbh & Co. Kg Energy controller for excimer-laser silicon crystallization
JP6744356B2 (ja) * 2018-04-26 2020-08-19 ファナック株式会社 レーザ発振器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224092A (ja) * 1986-03-26 1987-10-02 Mitsubishi Electric Corp レ−ザ加工制御回路
JPH01191490A (ja) * 1988-01-27 1989-08-01 Komatsu Ltd 狭帯域エキシマレーザの起動方法
JP2003243749A (ja) * 2002-02-15 2003-08-29 Mitsubishi Electric Corp レーザ電源装置
JP2004047538A (ja) * 2002-07-09 2004-02-12 Mitsubishi Electric Corp スイッチング電源装置、レーザ電源装置及びレーザ装置並びにレーザ電源装置の制御方法
JP2006128157A (ja) * 2004-10-26 2006-05-18 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
WO2011013297A1 (ja) * 2009-07-27 2011-02-03 三菱電機株式会社 高周波電源装置
JP2012216768A (ja) * 2011-03-30 2012-11-08 Gigaphoton Inc レーザシステム、極端紫外光生成システム、およびレーザ光生成方法
JP2013089788A (ja) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp レーザ加工機用電源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101681A (ja) 1987-10-15 1989-04-19 Mitsubishi Heavy Ind Ltd 炭酸ガスレーザの放電用電源装置
JPH0225085A (ja) 1988-07-13 1990-01-26 Toshiba Corp ガスレーザ制御装置
JP3775840B2 (ja) 1995-12-28 2006-05-17 株式会社ニコン パルスx線照射装置、x線縮小露光装置
US6104737A (en) * 1998-06-03 2000-08-15 Uniphase Corporation Universal laser power controller in a gas ion laser system
US7928416B2 (en) 2006-12-22 2011-04-19 Cymer, Inc. Laser produced plasma EUV light source
JP4223887B2 (ja) * 2003-08-11 2009-02-12 株式会社小松製作所 2ステージレーザのパルスエネルギー制御装置及び2ステージレーザシステム
JP2008130598A (ja) * 2006-11-16 2008-06-05 Gigaphoton Inc チャンバ交換方法
JP2012191171A (ja) 2011-02-25 2012-10-04 Gigaphoton Inc レーザ装置、それを備える極端紫外光生成装置およびレーザ光出力制御方法
JP2012216769A (ja) 2011-03-29 2012-11-08 Gigaphoton Inc レーザシステム、レーザ光生成方法、および極端紫外光生成システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224092A (ja) * 1986-03-26 1987-10-02 Mitsubishi Electric Corp レ−ザ加工制御回路
JPH01191490A (ja) * 1988-01-27 1989-08-01 Komatsu Ltd 狭帯域エキシマレーザの起動方法
JP2003243749A (ja) * 2002-02-15 2003-08-29 Mitsubishi Electric Corp レーザ電源装置
JP2004047538A (ja) * 2002-07-09 2004-02-12 Mitsubishi Electric Corp スイッチング電源装置、レーザ電源装置及びレーザ装置並びにレーザ電源装置の制御方法
JP2006128157A (ja) * 2004-10-26 2006-05-18 Komatsu Ltd 極端紫外光源装置用ドライバレーザシステム
WO2011013297A1 (ja) * 2009-07-27 2011-02-03 三菱電機株式会社 高周波電源装置
JP2012216768A (ja) * 2011-03-30 2012-11-08 Gigaphoton Inc レーザシステム、極端紫外光生成システム、およびレーザ光生成方法
JP2013089788A (ja) * 2011-10-19 2013-05-13 Mitsubishi Electric Corp レーザ加工機用電源装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10938306B2 (en) 2017-04-05 2021-03-02 Panasonic Intellectual Property Management Co., Ltd. Laser driving power source
US11973302B2 (en) * 2017-11-21 2024-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Methods and systems for aligning master oscillator power amplifier systems

Also Published As

Publication number Publication date
JP6513088B2 (ja) 2019-05-15
WO2016002001A1 (ja) 2016-01-07
US20170070024A1 (en) 2017-03-09
US10224686B2 (en) 2019-03-05
JPWO2016002648A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016002648A1 (ja) レーザ装置、euv光生成システム及びレーザ装置の制御方法
US20130077073A1 (en) Methods to control euv exposure dose and euv lithographic methods and apparatus using such methods
WO2006120942A1 (ja) プラズマ発生装置及びプラズマ発生方法
JP6326432B2 (ja) リソグラフィ装置及びリフレクタ装置
US9544983B2 (en) Apparatus for and method of supplying target material
JP2010171000A (ja) ターゲット供給装置、その制御システム、その制御装置およびその制御回路
TW201438361A (zh) 雷射加工裝置及雷射加工方法
US20180342849A1 (en) Laser apparatus and extreme ultraviolet light generating system
JP6434985B2 (ja) レーザ装置及び極端紫外光生成装置
Benk et al. Brilliance scaling of discharge sources for extreme-ultraviolet and soft x-ray radiation for metrology applications
US20140346375A1 (en) Laser apparatus, laser system, and extreme ultraviolet light generation apparatus
TWI681692B (zh) 極紫外線(euv)輻射源及用於將一雷射光束提供至經組態用於產生euv光之一腔室的方法
KR102615048B1 (ko) 레이저가공기 및 그 전원장치
JP6845255B2 (ja) レーザ装置
US20160254635A1 (en) Temperature controllable gas laser oscillator
WO2018203370A1 (ja) ターゲット供給装置、極端紫外光生成装置、及びターゲット供給方法
WO2018025394A1 (ja) ガスレーザ装置
TW201811476A (zh) 雷射光源及使用雷射光源之雷射加工裝置
CN116648834A (zh) 用于光学系统的具有阻抗控制的磁性开关
JP2011124107A (ja) X線撮影装置およびx線撮影装置におけるフィラメント加熱電流の制御方法
US10955760B2 (en) Extreme ultraviolet light generation device and target supply device
JP7407410B2 (ja) レーザ発振器及びそれを備えたダイレクトダイオードレーザ加工装置
JP4323550B2 (ja) レーザ装置
JP6092927B2 (ja) 極端紫外光光源装置
Schriever et al. EUV Sources for Lithographic Applications: EUV Technology Enables Future Semiconductor Manufacturing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815860

Country of ref document: EP

Kind code of ref document: A1