WO2016002571A1 - In-wheel motor drive device - Google Patents

In-wheel motor drive device Download PDF

Info

Publication number
WO2016002571A1
WO2016002571A1 PCT/JP2015/067971 JP2015067971W WO2016002571A1 WO 2016002571 A1 WO2016002571 A1 WO 2016002571A1 JP 2015067971 W JP2015067971 W JP 2015067971W WO 2016002571 A1 WO2016002571 A1 WO 2016002571A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
motor
hollow pipe
pipe member
rotating shaft
Prior art date
Application number
PCT/JP2015/067971
Other languages
French (fr)
Japanese (ja)
Inventor
朋久 魚住
俊明 圓増
鈴木 健一
Original Assignee
Ntn株式会社
朋久 魚住
俊明 圓増
鈴木 健一
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 朋久 魚住, 俊明 圓増, 鈴木 健一 filed Critical Ntn株式会社
Publication of WO2016002571A1 publication Critical patent/WO2016002571A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to an in-wheel motor drive device.
  • a conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2011-189919 (Patent Document 1).
  • the in-wheel motor drive device described in the publication is disposed between a motor unit that generates a driving force, a wheel bearing unit that is connected to a wheel, and the motor unit and the wheel bearing unit. And a speed reducer that decelerates the rotation and transmits it to the wheel bearing.
  • the above-mentioned in-wheel motor drive device employs a low-torque, high-rotation type motor for the motor unit from the viewpoint of making the device compact.
  • a cycloid reduction gear that is compact and obtains a high reduction ratio is employed for the reduction portion.
  • the motor unit includes a stator fixed to the casing, a rotor disposed at a position facing the inner side of the stator with a radial gap, and a motor rotating shaft connected and fixed to the inner side of the rotor and integrally rotated with the rotor. It is a radial gap motor.
  • the motor rotating shaft having a hollow structure is supported by a casing so that both ends in the axial direction are rotatable by a pair of rolling bearings.
  • the speed reducer to which the cycloid speed reducer is applied is a speed reducer input shaft having a pair of eccentric parts, a pair of curved plates arranged in the eccentric parts, and an outer peripheral surface of the curved plate to rotate on the curved plates.
  • a plurality of outer peripheral engagement members to be generated and a plurality of inner pins that transmit the rotation of the curved plate to the reduction gear output shaft are mainly configured.
  • the motor rotation shaft described above is connected to the reduction gear input shaft by a spline.
  • This in-wheel motor drive device is provided with a lubrication mechanism that supplies lubricating oil for cooling and lubrication of the motor unit and the speed reduction unit.
  • This lubrication mechanism is mainly composed of a circulating oil passage, a lubricating oil supply port, a lubricating oil discharge port, a lubricating oil reservoir, and a rotary pump.
  • the motor rotation shaft in which the lubricating oil passage is formed and the speed reducer input shaft are spline-fitted and torque transmission is performed.
  • Lubricating oil flowing in from the shaft end of the motor rotating shaft cools the motor rotor from the lubricating oil passage in the shaft center of the motor rotating shaft through the lubricating oil supply port, and is ejected to the stator and the shaft center of the speed reducer input shaft.
  • the oil flows into the lubricating oil passage and is divided into a passage for lubricating and cooling the speed reduction portion.
  • the reduction gear input shaft is splined (including serrations; the same shall apply hereinafter) on the outer diameter, so it is difficult to reduce the thickness of the input shaft.
  • a spline is also formed on the motor rotation shaft, it is necessary to have a structure in which the spline is penetrated with a hole diameter larger than the spline large diameter in manufacturing. Therefore, the hole diameter of the lubricating oil passage between the motor rotation shaft and the reduction gear input shaft is It is very different, and a step is generated at the connecting portion. As a result, the lubricating oil that has flowed into the motor rotation shaft is blocked by the previous stage that flows into the lubricating oil passage of the shaft center of the reduction gear input shaft. Therefore, it has been found that the lubricating oil is difficult to be supplied to the speed reducer in the low rotation range.
  • the present invention has been proposed in view of the above-described problems, and an object thereof is to provide an in-wheel motor drive device that is small and light, has excellent lubrication performance, and has improved durability.
  • the present invention includes a motor unit, a speed reduction unit, a wheel bearing unit, and a casing, and the motor unit is fixed to the casing;
  • the in-wheel motor drive is provided with a lubrication mechanism internally connected to the reducer output shaft, wherein the wheel bearing portion is connected to the reducer output shaft.
  • an outer periphery of the torque transmission unit of the speed reducer input shaft is fitted to an inner periphery of the torque transmission unit of the motor rotation shaft, and a lubricating oil path constituting a part of the lubrication mechanism includes the motor rotation shaft.
  • said decrease Is formed within each of the machine input shaft, a hollow pipe member forming the lubricating oil passage to the motor rotary shaft, characterized in that it is fitted.
  • the lubricating oil supplied from the lubricating oil passage of the motor rotating shaft can be effectively allowed to flow into the speed reducer by the hollow pipe member even in the low rotation range.
  • the inner diameter of the hollow pipe member and the inner diameter of the lubricating oil passage of the reduction gear input shaft are set to substantially the same size. This eliminates the step between the inner diameter of the hollow pipe member forming the lubricating oil path of the motor rotating shaft and the lubricating oil path of the speed reducer input shaft, and reduces the speed reducer input shaft from the lubricating oil path of the motor rotating shaft even in the low speed range.
  • the lubricating oil can effectively flow into the lubricating oil passage.
  • the lubricating oil is effective for cooling the rotor and stator of the motor unit. Can be supplied automatically.
  • a phase matching engagement portion is provided between the hollow pipe member and the motor rotating shaft. It is preferable. Thereby, the lubricating oil for cooling the rotor and stator of a motor part can be supplied smoothly.
  • the hollow pipe member and the motor rotation shaft have a fitting structure having a tightening margin at the shaft end. Therefore, the fitting assembly property of a hollow pipe member and a motor rotating shaft can be made easy.
  • the in-wheel motor drive device of the present invention it is possible to realize an in-wheel motor drive device that is small and light, has excellent lubrication performance, and has improved durability.
  • the lubricating oil supplied from the lubricating oil passage of the motor rotating shaft can be effectively allowed to flow into the speed reducer by the hollow pipe member even in the low rotation range.
  • FIG. 2 is a cross-sectional view taken along the line OO in FIG. It is explanatory drawing which shows the load which acts on the curve board of FIG.
  • FIG. 2 is a cross-sectional view of the rotary pump of FIG. It is the longitudinal cross-sectional view which expanded the peripheral part of the torque transmission part of the reduction gear input shaft of FIG. 1, and a motor rotating shaft.
  • It is the longitudinal cross-sectional view which expanded the motor rotating shaft which fitted the hollow pipe member.
  • It which expanded the D section of FIG. 6a.
  • It is a longitudinal cross-sectional view which shows the modification of a hollow pipe member.
  • FIG. 10 is a rear sectional view of the electric vehicle of FIG. 9.
  • FIG. 9 is a schematic plan view of an electric vehicle 11 equipped with an in-wheel motor drive device 21 according to an embodiment of the present invention
  • FIG. 10 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear.
  • the electric vehicle 11 includes an in-wheel motor drive device that transmits drive power to the chassis 12, front wheels 13 as steering wheels, rear wheels 14 as drive wheels, and left and right rear wheels 14. 21.
  • the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
  • the suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms. It is desirable that the suspension device 12b be an independent suspension type in which left and right wheels can be moved up and down independently in order to improve followability to road surface unevenness and efficiently transmit the driving force of the driving wheels to the road surface. .
  • the in-wheel motor drive device 21 for driving the left and right rear wheels 14 inside the wheel housing 12a, it is not necessary to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, it has the advantages that a large cabin space can be secured and the rotation of the left and right drive wheels can be controlled respectively.
  • in-wheel motor drive device 21 In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight. In addition, in-wheel motor drive device 21 is required to be downsized in order to secure a wider cabin space. Therefore, as shown in FIG. 1, an in-wheel motor drive device 21 according to the present embodiment is employed.
  • FIGS. 1 is a schematic longitudinal sectional view of an in-wheel motor drive device 21, FIG. 2 is a transverse sectional view taken along line OO in FIG. 1, FIG. 3 is an explanatory view showing a load acting on a curved plate, and FIG. FIG. 5 is an enlarged longitudinal sectional view of a peripheral portion of the torque transmission portion of the reduction gear input shaft and the motor rotation shaft, FIG. 6a is an enlarged longitudinal sectional view of the motor rotation shaft fitted with a hollow pipe member, and FIG. 6b.
  • FIG. 6A is an enlarged view of a portion D in FIG. 6A
  • FIG. 7 is an enlarged longitudinal sectional view of a hollow pipe member.
  • the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and an output from the deceleration unit B as driving wheels. 14 (see FIG. 10), and the motor part A and the speed reduction part B are housed in the casing 22 and are housed in the wheel housing 12a of the electric vehicle 11 as shown in FIGS. It is attached.
  • the casing 22 has a structure that can be divided into the motor part A and the speed reduction part B, and is fastened with bolts.
  • the casing 22 refers to both a casing part in which the motor part A is accommodated and a casing part in which the speed reduction part B is accommodated.
  • the motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed at a position facing the inner side of the stator 23a with a radial gap, and an inner side of the rotor 23b that is connected and fixed to be integrated with the rotor 23b.
  • a radial gap motor including a rotating motor rotating shaft 24.
  • the motor rotating shaft 24 having a hollow structure is fitted and fixed to the inner diameter surface of the rotor 23b and integrally rotates, and one end in the axial direction (right side in FIG. 1) in the motor portion A is axially moved to the rolling bearing 36a.
  • the other end (left side in FIG. 1) is rotatably supported by a rolling bearing 36b.
  • the reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) at the rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) at the rolling bearing 37b. Is supported so as to be freely rotatable.
  • the speed reducer input shaft 25 has eccentric portions 25 a and 25 b in the speed reduction portion B.
  • the two eccentric portions 25a and 25b are provided with a 180 ° phase change in order to cancel the centrifugal force due to the eccentric motion.
  • the motor rotating shaft 24 and the speed reducer input shaft 25 are coupled by spline fitting (including serrations, the same applies hereinafter), and the driving force of the motor part A is transmitted to the speed reducing part B.
  • the spline fitting portion is configured to suppress the influence on the motor rotating shaft 24 even if the speed reducer input shaft 25 is inclined to some extent.
  • the torque transmission portion means a spline (including serration) fitting portion.
  • the deceleration part B includes curved plates 26a and 26b as revolving members that are rotatably held by the eccentric parts 25a and 25b, and a plurality of outer pins as outer peripheral engaging members that engage with the outer peripheral parts of the curved plates 26a and 26b. 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the reducer output shaft 28, and a counterweight 29 at a position adjacent to the eccentric portions 25a, 25b.
  • the reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b.
  • the shaft portion 28b is connected to a hub wheel 32 as an inner member of the wheel bearing portion C by spline fitting, and transmits the output of the speed reduction portion B to the wheel 14 (see FIG. 10).
  • the reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46.
  • the curved plate 26 a has a plurality of corrugations formed of a trochoidal curve such as epitrochoid on the outer peripheral portion, and a plurality of through holes 30 a penetrating from one end face to the other end face, It has a through hole 30b.
  • a plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive inner pins 31 described later.
  • the through hole 30b is provided at the center of the curved plate 26a and is fitted to the eccentric portion 25a.
  • the curved plate 26a is rotatably supported by the rolling bearing 41 with respect to the eccentric portion 25a.
  • the rolling bearing 41 is directly fitted to the inner ring 42 having an inner raceway surface 42a on the outer diameter surface and the inner diameter surface of the through hole 30b of the curved plate 26a.
  • a cylindrical roller bearing comprising an outer raceway surface 43 formed, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42a and the outer raceway surface 43, and a cage (not shown) for holding the cylindrical rollers 44. is there.
  • wheel 42 has a collar part which protrudes to a radial direction outer side from the axial direction both ends of the inner side track surface 42a.
  • the outer pins 27 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer input shaft 25.
  • the curved plates 26a and 26b revolve, the curved waveform and the outer pin 27 engage with each other to cause the curved plates 26a and 26b to rotate.
  • the outer pin 27 is rotatably supported by the outer pin housing 60 (see FIG. 1) by a needle roller bearing 27a. Thereby, the contact resistance between the curved plates 26a and 26b can be reduced.
  • the counterweight 29 (see FIG. 1) is substantially fan-shaped and has a through-hole that fits with the speed reducer input shaft 25, and each counterweight 29 (see FIG. 1) has a through hole that is caused by the rotation of the curved plates 26a and 26b. It is arranged at a position adjacent to the eccentric parts 25a, 25b with a phase difference of 180 ° from that of the eccentric parts 25a, 25b.
  • the motion conversion mechanism is composed of a plurality of inner pins 31 held by the reduction gear output shaft 28 and through holes 30a provided in the curved plates 26a and 26b.
  • the inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer output shaft 28 (see FIG. 2), and one axial end thereof is fixed to the speed reducer output shaft 28.
  • a needle roller bearing 31a is provided at a position where the curved plates 26a, 26b come into contact with the inner wall surface of the through hole 30a.
  • a stabilizer 31 b is provided at the other axial end of the inner pin 31.
  • the stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner diameter surface of the annular portion 31c.
  • the ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c. Since the load applied to some of the inner pins 31 from the curved plates 26a and 26b is supported by all the inner pins 31 via the stabilizer 31b, the stress acting on the inner pins 31 is reduced and the durability is improved. be able to.
  • the through hole 30 a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30 a is the outer diameter dimension of the inner pin 31 (“the needle roller bearing 31 a.
  • the maximum outer diameter is included. ”The same shall apply hereinafter.
  • Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25.
  • the outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a.
  • the outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated recesses 34 that are depressed in the radial direction at equal intervals in the circumferential direction.
  • a plurality of outer pins 27 that engage with the recesses 34 are arranged in the circumferential direction with the axis O as the center.
  • the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2.
  • An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a.
  • the reduction gear output shaft 28 (see FIG. 1) is rotated.
  • the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. .
  • a resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
  • the direction of the resultant force Fs changes depending on geometrical conditions such as the waveform shape of the curved plate 26a, the number of the concave portions 34, and centrifugal force.
  • the angle ⁇ between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. fluctuate.
  • the load directions and magnitudes of the plurality of loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also reduced. Direction and size vary. Then, when the speed reducer input shaft 25 makes one rotation, the corrugated concave portion 34 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state shown in FIG.
  • the wheel bearing 33 of the wheel bearing portion C includes an inner raceway surface 33f formed directly on the outer diameter surface of the hub wheel 32 and an inner ring 33a fitted to a small diameter step portion of the outer diameter surface. And an outer ring 33b fitted and fixed to the inner surface of the casing 22, and a plurality of balls 33c as rolling elements disposed between the inner raceway surface 33f, the inner ring 33a and the outer ring 33b, and adjacent to each other.
  • This is a double-row angular contact ball bearing provided with a retainer 33d for holding the gap between the balls 33c to be sealed and a seal member 33e for sealing both axial ends of the wheel bearing 33.
  • This lubricating mechanism supplies lubricating oil for cooling the motor part A and supplies lubricating oil to the speed reducing part B. Although the details will be described later, this lubricating mechanism has the characteristic configuration of the present embodiment. Involved. Lubricating oil passages 24a, 25c, lubricating oil supply ports 24b, 24c, 25d, 25e, 25f, a lubricating oil discharge port 22b, a lubricating oil reservoir 22d, a lubricating oil passage 22e, a rotary pump 51, and a circulating oil passage 45 shown in FIG. Is the main configuration. The white arrow given in the lubrication mechanism indicates the direction in which the lubricating oil flows.
  • the lubricating oil passage 25c connected to the lubricating oil passage 24a of the motor rotating shaft 24 extends along the axial direction inside the reduction gear input shaft 25.
  • the lubricating oil supply ports 25d and 25e extend radially from the lubricating oil passage 25c toward the outer diameter surface of the reduction gear input shaft 25, and the lubricating oil supply port 25f extends from the shaft end of the reduction gear input shaft 25 to the rotating shaft. It extends toward the axial end surface in the center direction.
  • At least one location of the casing 22 at the position of the speed reduction part B is provided with a lubricating oil discharge port 22b for discharging the lubricating oil inside the speed reduction part B, and a lubricating oil storage part 22d for temporarily storing the discharged lubricating oil. Is provided.
  • the circulating oil passage 45 is connected to an axial oil passage 45 a extending in the axial direction inside the casing 22 and one axial end portion (right side in FIG. 1) of the axial oil passage 45 a.
  • a radial oil passage 45c extending in the direction and a radial oil passage 45b extending in the radial direction connected to the other axial end portion (left side in FIG. 1) of the axial oil passage 45a.
  • a rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45.
  • the radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and supplies the lubricating oil from the axial oil passage 45a to the lubricating oil passages 24a and 25c via the radial oil passage 45c. .
  • the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the reduction gear output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber 54.
  • the cycloid pump includes a suction port 55 communicating with the lubricating oil passage 22e and a discharge port 56 communicating with the radial oil passage 45b of the circulating oil passage 45.
  • the inner rotor 52 rotates around a rotation center c 1
  • the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45b.
  • a part of the lubricating oil recirculated from the circulating oil passage 45 to the lubricating oil passage 24a cools the rotor 23b from the lubricating oil supply ports 24c and 24b by centrifugal force. Thereafter, the lubricating oil is scattered to cool the stator 23a. Lubricating oil divides into this path and a path for lubricating and cooling the speed reducing portion B described later.
  • the lubricating oil in the lubricating oil path 25c flows out from the lubricating oil supply ports 25d and 25e to the speed reducing part B due to the centrifugal force and pressure accompanying the rotation of the speed reducer input shaft 25.
  • the lubricating oil that has flowed out of the lubricating oil supply port 25d is a cylindrical roller bearing 41 (see FIG. 2) that supports the curved plates 26a and 26b, and further, a contact portion between the curved plates 26a and 26b and the inner pin 31 by centrifugal force. Further, it moves radially outward while lubricating the contact portion between the curved plates 26a, 26b and the outer pin 27, and the like.
  • the lubricating oil that has flowed out of the lubricating oil supply ports 25e and 25f is supplied to deep groove ball bearings 37a and 37b that support the reduction gear input shaft 25, as well as internal bearings and contact portions.
  • the deceleration part B is comprised from many bearings and contact parts which need lubrication, and needs to supply lubricating oil efficiently by the built-in rotary pump 51.
  • the lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil reservoir 22d. Since the lubricating oil reservoir 22d is provided between the lubricating oil discharge port 22b and the rotary pump 51, even if lubricating oil that cannot be discharged by the rotary pump 51 is temporarily generated, the lubricating oil reservoir 22d Can be stored. As a result, an increase in torque loss of the deceleration unit B can be prevented.
  • the rotary pump 51 can return the lubricating oil stored in the lubricating oil storage portion 22d to the lubricating oil paths 24a and 25c.
  • Lubricating oil moves by gravity in addition to centrifugal force. Therefore, it is desirable to attach to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
  • the overall configuration of the in-wheel motor drive device 21 according to the present embodiment is as described above. Next, a characteristic configuration of the in-wheel motor drive device 21 of the present embodiment will be described.
  • the lubricating oil passages 24 a and 25 c constituting a part of the above-described lubrication mechanism are formed in the motor rotation shaft 24 and the reducer input shaft 25, respectively.
  • a hollow pipe member 80 forming the lubricating oil passage 24a is fitted.
  • the lubricating oil path 24a of the hollow pipe member 80 and the lubricating oil path 25c of the reduction gear input shaft 25 cooperate to lubricate and cool the path for cooling the rotor 23b of the motor part A and spraying it to the stator 23a, and the speed reducing part B. It is possible to efficiently divert to the route.
  • FIG. 5 is an enlarged longitudinal sectional view of the peripheral portion of the torque transmission portion of the reduction gear input shaft 25 and the motor rotation shaft 24 of FIG. 1
  • FIG. 6a is an enlargement of the motor rotation shaft 24 in which the hollow pipe member 80 is fitted.
  • FIG. 6b is an enlarged view of a portion D in FIG. 6a.
  • FIG. 7 shows a single hollow pipe member 80.
  • the motor rotating shaft 24 has a large-diameter outer diameter portion 61 formed at a substantially central portion in the axial direction, and the rotor 23b is fitted and fixed to the large-diameter outer diameter portion 61.
  • a mounting surface 65 of the rolling bearing 36a (see FIG. 1) is formed on the outer diameter of one end of the motor rotating shaft 24, and a mounting surface 66 of the rolling bearing 36b (see FIG. 1) is formed on the outer diameter of the other end. Yes.
  • a female spline 67 is formed on the inner diameter of the other end of the motor rotating shaft 24 (left side in FIG. 6A).
  • the through hole 68 is greatly different from the inner diameter F of the lubricating oil passage 25c of the reduction gear input shaft 25 shown in FIG.
  • a lubricating oil supply port 24 b communicating from the through hole 68 to the large diameter outer diameter portion 61 is formed in the motor rotating shaft 24 in the radial direction, and the hollow pipe member 80 is fitted into the through hole 68.
  • the hollow pipe member 80 is formed with a lubricating oil passage 24a penetrating the shaft center, and a plurality of lubricating oil supply ports 24c are arranged in the radial direction corresponding to the lubricating oil supply port 24b of the motor rotating shaft 24 (this embodiment). 4 in the form) are provided.
  • a circumferential groove 24d is provided on the outer peripheral portion of the lubricating oil supply port 24c.
  • the hollow pipe member 80 has a fitting portion 80b formed at one end (right side in FIG. 7) and a small-diameter stepped portion 80a formed at the other end (left side in FIG. 7).
  • the outer diameter portion 80d between the small diameter step portion 80a and the fitting portion 80b at both ends is formed to have a smaller diameter than the inner diameter of the through hole 68 of the motor rotating shaft 24.
  • the lubricating oil passage 24 a formed in the axial center of the hollow pipe member 80 has an inner diameter E.
  • a phase matching projection 80c is formed at the end of the fitting portion 80b.
  • the hollow pipe member 80 is inserted into the through hole 68 of the motor rotating shaft 24, and the small diameter step portion 80a provided at the end is fitted into the small diameter portion of the female spline 67 of the motor rotating shaft 24 by a clearance fit. Take it out.
  • the fitting portion 80 b of the hollow pipe member 80 is press-fitted into the through hole 68 of the motor rotating shaft 24.
  • the protrusion 80c formed at the end of the fitting portion 80b engages with the groove 68a formed at the end of the through hole 68 of the motor rotating shaft 24, and the phase is adjusted. It is done.
  • the phase alignment engaging portion means the protrusion 80c and the groove 68a, and in the modification described later, it means the protrusion 80c 'and the groove 68a.
  • the hollow pipe member 80 Since the outer diameter portion 80d between the small diameter step portion 80a and the fitting portion 80b at both ends of the hollow pipe member 80 is formed to be smaller in diameter than the inner diameter of the through hole 68 of the motor rotating shaft 24, the hollow pipe member 80 is When fitted to the motor rotating shaft 24, the hollow pipe member 80 can be inserted without being pressed in the entire axial length, and only the fitting portion 80 b is press-fitted into the through hole 68. For this reason, assembly work can be facilitated.
  • fitting portion 80b of the hollow pipe member 80 is press-fitted into the through hole 68 of the motor rotating shaft 24 in a centered state by fitting the small-diameter step portion 80a to the small-diameter portion of the female spline 67, thereby improving the rotation accuracy. Can be made.
  • the phases of the lubricating oil supply port 24c of the hollow pipe member 80 and the lubricating oil supply port 24b of the motor rotating shaft 24 are adjusted. Can be matched.
  • the circumferential groove 24d is formed in the outer peripheral portion of the lubricating oil supply port 24c of the hollow pipe member 80, the phase alignment is not particularly necessary. Therefore, either the phase matching structure of the protrusion 80c and the groove 68a or the circumferential groove 24d may be omitted.
  • the hollow pipe member can be obtained by sufficiently increasing the diameter of one of the lubricating oil supply port 24c of the hollow pipe member 80 and the lubricating oil supply port 24b of the motor rotating shaft 24 from the other hole diameter. Even when the lubricating oil supply port 24c of 80 and the lubricating oil supply port 24b of the motor rotating shaft 24 are out of phase, a communication structure that does not hinder the supply of the lubricating oil can be achieved. In this case, the phase alignment structure of the protrusion 80c and the groove 68a and the circumferential groove 24d can be omitted.
  • An iron-based metal was used as a material for the hollow pipe member 80.
  • a resin material can be used as the material of the hollow pipe member 80, it is difficult to secure a tightening allowance in the entire region of the usage environment due to the influence of the thermal expansion coefficient.
  • a fixing method using an O-ring is also conceivable, but a fixing method that induces imbalance in the motor rotating shaft 24 that rotates at a high speed of about 15000 min ⁇ 1 is not preferable, and the anti-rotation effect is also uncertain.
  • the hollow pipe member 80 in which the lubricating oil passage 24a is formed is fitted to the motor rotating shaft 24, the lubrication formed on the shaft center of the hollow pipe member 80 as shown in FIG.
  • the inner diameter E of the oil passage 24 a is set to be approximately the same size as the inner diameter F of the lubricating oil passage 25 c formed in the shaft center of the speed reducer input shaft 25.
  • the hollow pipe member 80 ' is obtained by reducing the diameter of a steel pipe by swaging.
  • the hollow pipe member 80 ′ has one end (left side in FIG. 8) having a small diameter portion 80a ′ that fits into the small diameter portion of the female spline 67 of the motor rotating shaft 24 in the same manner as the hollow pipe member 80 of the above-described embodiment.
  • a fitting portion 80b ′ that is press-fitted into the through hole 68 of the motor rotating shaft 24 is formed at the other end (right side in FIG. 8).
  • the diameter is reduced from the large-diameter fitting portion 80b 'to a taper shape and connected to the small-diameter portion 80a'.
  • the small diameter portion 80a ' is formed over most of the axial direction.
  • the hollow pipe member 80 ′ is formed with a lubricating oil passage 24a ′ penetrating the shaft center, and a plurality of lubricating oil supply ports 24c ′ are arranged in the radial direction at axial positions corresponding to the lubricating oil supply ports 24b of the motor rotating shaft 24. (Four in this modification) are provided.
  • a phase matching projection 80c ' is provided at the end of the fitting portion 80b' of the hollow pipe member 80 '.
  • no circumferential groove is provided in the outer peripheral portion of the lubricating oil supply port 24 c ′, but the lubricating oil supply port 24 c ′ of the hollow pipe member 80 ′ is connected to the motor rotating shaft 24. Since the phase coincides with the lubricating oil supply port 24b, the lubricating oil is effectively supplied.
  • the inner diameter E of the lubricating oil passage 24 a ′ of the hollow pipe member 80 ′ of this modification is also set to be approximately the same size as the inner diameter F of the lubricating oil passage 25 c formed in the shaft center of the reduction gear input shaft 25. Therefore, it has the same effect as the above-described embodiment.
  • the hollow pipe member 80 ′ of the present modification is obtained by reducing the diameter of a steel pipe, there is little change in the wall thickness, and the weight can be reduced while suppressing the manufacturing cost.
  • the diameter reduction processing may be performed by pressing in addition to the swaging processing.
  • the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23 a, and the rotor 23 b made of a permanent magnet or a magnetic body rotates. .
  • the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates
  • the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25.
  • the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
  • the inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate.
  • the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
  • the reduction ratio of the speed reduction unit B having the above-described configuration is calculated as (Z A ⁇ Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b.
  • a very large reduction ratio of 1/11 can be obtained.
  • the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing the needle roller bearings 27a and 31a on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced, so that the transmission efficiency of the speed reduction portion B is improved.
  • the in-wheel motor drive device 21 By mounting the in-wheel motor drive device 21 according to this embodiment on the electric vehicle 11, the unsprung weight can be suppressed. As a result, the electric vehicle 11 having excellent running stability and NVH characteristics can be obtained.
  • the lubricating oil supply port 24b is provided at a substantially central portion in the axial direction of the motor rotating shaft 24, the lubricating oil supply port 25e is provided near the rolling bearing 37a, and the lubricating oil supply port 25d is provided as an eccentric portion.
  • the example which provided in 25a, 25b and provided the lubricating oil supply port 25f in the shaft end of the reduction gear input shaft 25 was shown, it does not restrict to this but arbitrary positions of the motor rotating shaft 24 or the reduction gear input shaft 25 are shown. Can be provided.
  • a cycloid pump has been shown as the rotary pump 51, the present invention is not limited to this, and any rotary pump that is driven using the rotation of the speed reducer output shaft 28 can be adopted. Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
  • the number of the curved plates can be arbitrarily set. For example, when three curved plates are provided, , 120 ° phase may be changed.
  • the reduction part It is possible to adopt an arbitrary configuration that can transmit the rotation of B to the hub wheel 32.
  • it may be a motion conversion mechanism composed of an inner pin fixed to a curved plate and a hole formed in a reduction gear output shaft.
  • the case where power is supplied to the motor unit A to drive the motor unit and the power from the motor unit A is transmitted to the drive wheels 14 is shown, but conversely, the vehicle decelerates or goes down the hill.
  • the power from the drive wheel 14 side may be converted into high-rotation low-torque rotation by the speed reduction unit B and transmitted to the motor unit A, and the motor unit A may generate power.
  • the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
  • a radial gap motor is adopted as the motor unit A
  • the present invention is not limited to this, and a motor having an arbitrary configuration can be applied.
  • it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
  • the present invention is not limited to this, and other types of reduction devices such as a planetary gear reducer may be applied.
  • the electric vehicle 11 shown in FIG. 9 has shown the example which used the rear wheel 14 as the driving wheel, it is not restricted to this,
  • the front wheel 13 may be used as a driving wheel and may be a four-wheel driving vehicle.
  • “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • General Details Of Gearings (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Retarders (AREA)

Abstract

 The present invention addresses the problem of providing an in-wheel motor drive device that is small and lightweight and that has excellent lubrication performance and improved durability. The invention provides an in-wheel motor drive device equipped with a lubrication mechanism in the interior, the in-wheel motor drive device characterized in that the outer periphery of a torque transmission part of a reduction gear input shaft (25) is fitted with the inner periphery of the torque transmission part of a motor rotating shaft (24), lubricating oil channels (24a), (25c) constituting part of the lubrication mechanism are formed in the respective interiors of the motor rotating shaft (24) and the reduction gear input shaft (25), and a hollow pipe member (80), (80') forming the lubricating oil channel (24a) is fitted into the motor rotating shaft (24).

Description

インホイールモータ駆動装置In-wheel motor drive device
 本発明は、インホイールモータ駆動装置に関する。 The present invention relates to an in-wheel motor drive device.
 従来のインホイールモータ駆動装置は、例えば、特開2011-189919号公報(特許文献1)に記載されている。同公報に記載されているインホイールモータ駆動装置は、駆動力を発生させるモータ部と、車輪に接続する車輪用軸受部と、モータ部と車輪用軸受部との間に配置され、モータ部の回転を減速して車輪用軸受部に伝達する減速部とを備えている。 A conventional in-wheel motor drive device is described in, for example, Japanese Patent Application Laid-Open No. 2011-189919 (Patent Document 1). The in-wheel motor drive device described in the publication is disposed between a motor unit that generates a driving force, a wheel bearing unit that is connected to a wheel, and the motor unit and the wheel bearing unit. And a speed reducer that decelerates the rotation and transmits it to the wheel bearing.
 上記のインホイールモータ駆動装置は、装置のコンパクト化の観点からモータ部には低トルクで高回転型のモータが採用されている。一方、車輪用軸受部には車輪を駆動するために大きなトルクが必要となるため、減速部には、コンパクトで高い減速比が得られるサイクロイド減速機が採用されている。 The above-mentioned in-wheel motor drive device employs a low-torque, high-rotation type motor for the motor unit from the viewpoint of making the device compact. On the other hand, since a large torque is required for driving the wheel in the wheel bearing portion, a cycloid reduction gear that is compact and obtains a high reduction ratio is employed for the reduction portion.
 モータ部は、ケーシングに固定されたステータと、ステータの内側に径方向の隙間をもって対向する位置に配置されるロータと、ロータの内側に連結固定されてロータと一体回転するモータ回転軸とを備えるラジアルギャップモータである。中空構造のモータ回転軸は、軸方向両端部を一対の転がり軸受によって回転自在にケーシングに支持されている。 The motor unit includes a stator fixed to the casing, a rotor disposed at a position facing the inner side of the stator with a radial gap, and a motor rotating shaft connected and fixed to the inner side of the rotor and integrally rotated with the rotor. It is a radial gap motor. The motor rotating shaft having a hollow structure is supported by a casing so that both ends in the axial direction are rotatable by a pair of rolling bearings.
 サイクロイド減速機を適用した減速部は、一対の偏心部を有する減速機入力軸と、偏心部に配置される一対の曲線板と、曲線板の外周面に係合して曲線板に自転運動を生じさせる複数の外周係合部材と、曲線板の自転運動を減速機出力軸に伝達する複数の内ピンを主な構成とする。前述したモータ回転軸は、減速機入力軸にスプラインで連結されている。 The speed reducer to which the cycloid speed reducer is applied is a speed reducer input shaft having a pair of eccentric parts, a pair of curved plates arranged in the eccentric parts, and an outer peripheral surface of the curved plate to rotate on the curved plates. A plurality of outer peripheral engagement members to be generated and a plurality of inner pins that transmit the rotation of the curved plate to the reduction gear output shaft are mainly configured. The motor rotation shaft described above is connected to the reduction gear input shaft by a spline.
 このインホイールモータ駆動装置は、モータ部と減速部の冷却および潤滑のために潤滑油を供給する潤滑機構を備えている。この潤滑機構は、循環油路、潤滑油供給口、潤滑油排出口、潤滑油貯留部および回転ポンプを主な構成とし、モータ回転軸および減速機入力軸のそれぞれの軸心に潤滑油路が形成されている。 This in-wheel motor drive device is provided with a lubrication mechanism that supplies lubricating oil for cooling and lubrication of the motor unit and the speed reduction unit. This lubrication mechanism is mainly composed of a circulating oil passage, a lubricating oil supply port, a lubricating oil discharge port, a lubricating oil reservoir, and a rotary pump. There are lubricating oil passages at the shaft centers of the motor rotation shaft and the reduction gear input shaft. Is formed.
特開2011-189919号公報JP2011-189919A
 ところで、上記のインホイールモータ駆動装置では、潤滑油路が形成されたモータ回転軸と減速機入力軸とがスプライン嵌合し、トルク伝達が行われる。モータ回転軸の軸端から流入した潤滑油は、モータ回転軸の軸心の潤滑油路から潤滑油供給口を経てモータロータを冷却し、ステータへ噴出する経路と、減速機入力軸の軸心の潤滑油路に流入し、減速部を潤滑および冷却する経路とに分流する。 By the way, in the above-described in-wheel motor drive device, the motor rotation shaft in which the lubricating oil passage is formed and the speed reducer input shaft are spline-fitted and torque transmission is performed. Lubricating oil flowing in from the shaft end of the motor rotating shaft cools the motor rotor from the lubricating oil passage in the shaft center of the motor rotating shaft through the lubricating oil supply port, and is ejected to the stator and the shaft center of the speed reducer input shaft. The oil flows into the lubricating oil passage and is divided into a passage for lubricating and cooling the speed reduction portion.
 減速機入力軸は、外径にスプライン(セレーションを含む。以下同じ。)を形成することから、入力軸の肉厚を薄くすることは難しい。また、モータ回転軸にもスプラインを形成するため、製造上、スプライン大径以上の孔径で貫通させた構造とせざるを得ず、そのため、モータ回転軸と減速機入力軸の潤滑油路の孔径は大きく異なり、接続部には段差が生じる。この結果、モータ回転軸に流入した潤滑油は、減速機入力軸の軸心の潤滑油路に流入する前段で堰き止められる。そのため、低回転域では、減速機側に潤滑油が供給され難いという問題が判明した。 減速 The reduction gear input shaft is splined (including serrations; the same shall apply hereinafter) on the outer diameter, so it is difficult to reduce the thickness of the input shaft. In addition, since a spline is also formed on the motor rotation shaft, it is necessary to have a structure in which the spline is penetrated with a hole diameter larger than the spline large diameter in manufacturing. Therefore, the hole diameter of the lubricating oil passage between the motor rotation shaft and the reduction gear input shaft is It is very different, and a step is generated at the connecting portion. As a result, the lubricating oil that has flowed into the motor rotation shaft is blocked by the previous stage that flows into the lubricating oil passage of the shaft center of the reduction gear input shaft. Therefore, it has been found that the lubricating oil is difficult to be supplied to the speed reducer in the low rotation range.
 一方、トルク伝達部(スプライン)の構造の変更として、モータ回転軸側を雄スプラインとし、減速機入力軸側を雌スプラインとする構造も考えられるが、部品点数の多い減速機側の径寸法の拡大には限界があるため難しいことが分かった。 On the other hand, as a change in the structure of the torque transmission part (spline), a structure in which the motor rotating shaft side is a male spline and the speed reducer input shaft side is a female spline is conceivable. I found it difficult because there was a limit to expansion.
 本発明は、上記の問題に鑑みて提案されたものであって、小型・軽量で、潤滑性能に優れ、耐久性を向上させたインホイールモータ駆動装置を提供することを目的とする。 The present invention has been proposed in view of the above-described problems, and an object thereof is to provide an in-wheel motor drive device that is small and light, has excellent lubrication performance, and has improved durability.
 前述した目的を達成するための技術的手段として、本発明は、モータ部と、減速部と、車輪用軸受部と、ケーシングとを備え、前記モータ部が、前記ケーシングに固定されたステータと、複数の転がり軸受を介して前記ケーシングに回転自在に支持されるモータ回転軸と、このモータ回転軸に装着されたロータとからなり、前記モータ部のモータ回転軸が前記減速部の減速機入力軸を回転駆動し、この減速機入力軸の回転を減速して減速機出力軸に伝達し、前記車輪用軸受部が前記減速機出力軸に連結され、内部に潤滑機構を備えたインホイールモータ駆動装置において、前記モータ回転軸のトルク伝達部の内周に、前記減速機入力軸のトルク伝達部の外周が嵌合し、前記潤滑機構の一部を構成する潤滑油路が、前記モータ回転軸と前記減速機入力軸のそれぞれの内部に形成されており、前記モータ回転軸に前記潤滑油路を形成する中空パイプ部材が嵌装されていることを特徴とする。 As technical means for achieving the above-described object, the present invention includes a motor unit, a speed reduction unit, a wheel bearing unit, and a casing, and the motor unit is fixed to the casing; A motor rotating shaft that is rotatably supported by the casing via a plurality of rolling bearings, and a rotor mounted on the motor rotating shaft, and the motor rotating shaft of the motor unit is a speed reducer input shaft of the speed reducing unit The in-wheel motor drive is provided with a lubrication mechanism internally connected to the reducer output shaft, wherein the wheel bearing portion is connected to the reducer output shaft. In the apparatus, an outer periphery of the torque transmission unit of the speed reducer input shaft is fitted to an inner periphery of the torque transmission unit of the motor rotation shaft, and a lubricating oil path constituting a part of the lubrication mechanism includes the motor rotation shaft. And said decrease Is formed within each of the machine input shaft, a hollow pipe member forming the lubricating oil passage to the motor rotary shaft, characterized in that it is fitted.
 上記の構成により、小型・軽量で、潤滑性能に優れ、耐久性を向上させたインホイールモータ駆動装置を実現することができる。特に、低回転域でも、中空パイプ部材によって、モータ回転軸の潤滑油路から供給される潤滑油を減速機に効果的に流入させることができる。 With the above configuration, it is possible to realize an in-wheel motor drive device that is small and light, has excellent lubrication performance, and has improved durability. In particular, the lubricating oil supplied from the lubricating oil passage of the motor rotating shaft can be effectively allowed to flow into the speed reducer by the hollow pipe member even in the low rotation range.
 具体的には、上記の中空パイプ部材の内径と減速機入力軸の潤滑油路の内径とを略同一寸法に設定することが好ましい。これにより、モータ回転軸の潤滑油路を形成する中空パイプ部材の内径と減速機入力軸の潤滑油路との段差をなくし、低回転域でも、モータ回転軸の潤滑油路から減速機入力軸の潤滑油路へ潤滑油を効果的に流入させることができる。 Specifically, it is preferable that the inner diameter of the hollow pipe member and the inner diameter of the lubricating oil passage of the reduction gear input shaft are set to substantially the same size. This eliminates the step between the inner diameter of the hollow pipe member forming the lubricating oil path of the motor rotating shaft and the lubricating oil path of the speed reducer input shaft, and reduces the speed reducer input shaft from the lubricating oil path of the motor rotating shaft even in the low speed range. The lubricating oil can effectively flow into the lubricating oil passage.
 上記の中空パイプ部材に潤滑油供給口を径方向に形成すると共にモータ回転軸にも潤滑油供給口を径方向に形成することにより、モータ部のロータやステータを冷却するために潤滑油を効果的に供給することができる。 By forming the lubricating oil supply port in the above-mentioned hollow pipe member in the radial direction and also forming the lubricating oil supply port in the radial direction on the motor rotation shaft, the lubricating oil is effective for cooling the rotor and stator of the motor unit. Can be supplied automatically.
 上記の中空パイプ部材の潤滑油供給口の外周部に周方向の溝を形成することが好ましい。これにより、中空パイプ部材の潤滑油供給口とモータ回転軸の潤滑油供給口の位相がずれた場合にも、潤滑油の供給が妨げられない連通構造にすることができる。 It is preferable to form a circumferential groove in the outer periphery of the lubricating oil supply port of the hollow pipe member. Thereby, even when the phases of the lubricating oil supply port of the hollow pipe member and the lubricating oil supply port of the motor rotating shaft are shifted, a communication structure that does not hinder the supply of the lubricating oil can be achieved.
 また、上記の中空パイプ部材の潤滑油供給口とモータ回転軸の潤滑油供給口のいずれか一方を他方よりも大きくすることにより、中空パイプ部材の潤滑油供給口とモータ回転軸の潤滑油供給口の位相がずれた場合にも、潤滑油の供給が妨げられない連通構造にすることができる。 Also, by making one of the lubricating oil supply port of the hollow pipe member and the lubricating oil supply port of the motor rotating shaft larger than the other, supplying the lubricating oil supply port of the hollow pipe member and the lubricating oil of the motor rotating shaft. Even when the phases of the ports are shifted, a communication structure that does not hinder the supply of the lubricating oil can be achieved.
 上記の中空パイプ部材の潤滑油供給口とモータ回転軸の潤滑油供給口の位相を一致させること、また、そのために、中空パイプ部材とモータ回転軸との間に位相合わせ用係合部を設けることが好ましい。これにより、モータ部のロータやステータを冷却するための潤滑油をスムーズに供給することができる。 In order to make the phases of the lubricating oil supply port of the hollow pipe member and the lubricating oil supply port of the motor rotating shaft coincide with each other, and for that purpose, a phase matching engagement portion is provided between the hollow pipe member and the motor rotating shaft. It is preferable. Thereby, the lubricating oil for cooling the rotor and stator of a motor part can be supplied smoothly.
 上記の中空パイプ部材とモータ回転軸は軸端に締め代を有する嵌合構造とすることが好ましい。これにより、中空パイプ部材とモータ回転軸の嵌合組立性を容易にすることができる。 It is preferable that the hollow pipe member and the motor rotation shaft have a fitting structure having a tightening margin at the shaft end. Thereby, the fitting assembly property of a hollow pipe member and a motor rotating shaft can be made easy.
 本発明のインホイールモータ駆動装置によれば、小型・軽量で、潤滑性能に優れ、耐久性を向上させたインホイールモータ駆動装置を実現することができる。特に、低回転域でも、中空パイプ部材によって、モータ回転軸の潤滑油路から供給される潤滑油を減速機に効果的に流入させることができる。 According to the in-wheel motor drive device of the present invention, it is possible to realize an in-wheel motor drive device that is small and light, has excellent lubrication performance, and has improved durability. In particular, the lubricating oil supplied from the lubricating oil passage of the motor rotating shaft can be effectively allowed to flow into the speed reducer by the hollow pipe member even in the low rotation range.
本発明の一実施形態に係るインホイールモータ駆動装置を示す図である。It is a figure which shows the in-wheel motor drive device which concerns on one Embodiment of this invention. 図1のO-Oにおける横断面図である。FIG. 2 is a cross-sectional view taken along the line OO in FIG. 図1の曲線板に作用する荷重を示す説明図である。It is explanatory drawing which shows the load which acts on the curve board of FIG. 図1の回転ポンプの横断面図である。It is a cross-sectional view of the rotary pump of FIG. 図1の減速機入力軸とモータ回転軸のトルク伝達部の周辺部分を拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the peripheral part of the torque transmission part of the reduction gear input shaft of FIG. 1, and a motor rotating shaft. 中空パイプ部材を嵌装したモータ回転軸を拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the motor rotating shaft which fitted the hollow pipe member. 図6aのD部を拡大した図である。It is the figure which expanded the D section of FIG. 6a. 中空パイプ部材を拡大した縦断面図である。It is the longitudinal cross-sectional view which expanded the hollow pipe member. 中空パイプ部材の変形例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the modification of a hollow pipe member. 図1のインホイールモータ駆動装置を搭載した電気自動車の平面図である。It is a top view of the electric vehicle carrying the in-wheel motor drive device of FIG. 図9の電気自動車の後方断面図である。FIG. 10 is a rear sectional view of the electric vehicle of FIG. 9.
 図9は、本発明の一実施形態に係るインホイールモータ駆動装置21を搭載した電気自動車11の概略平面図であって、図10は、電気自動車11を後方から見た概略断面図である。図9に示すように、電気自動車11は、シャーシ12と、操舵輪としての前輪13と、駆動輪としての後輪14と、左右の後輪14それぞれに駆動力を伝達するインホイールモータ駆動装置21とを備える。図10に示すように、後輪14は、シャーシ12のホイールハウジング12aの内部に収容され、懸架装置(サスペンション)12bを介してシャーシ12の下部に固定されている。 FIG. 9 is a schematic plan view of an electric vehicle 11 equipped with an in-wheel motor drive device 21 according to an embodiment of the present invention, and FIG. 10 is a schematic cross-sectional view of the electric vehicle 11 as viewed from the rear. As shown in FIG. 9, the electric vehicle 11 includes an in-wheel motor drive device that transmits drive power to the chassis 12, front wheels 13 as steering wheels, rear wheels 14 as drive wheels, and left and right rear wheels 14. 21. As shown in FIG. 10, the rear wheel 14 is accommodated in the wheel housing 12a of the chassis 12, and is fixed to the lower portion of the chassis 12 via a suspension device (suspension) 12b.
 懸架装置12bは、左右に延びるサスペンションアームによって後輪14を支持すると共に、コイルスプリングとショックアブソーバとを含むストラットによって、後輪14が地面から受ける振動を吸収してシャーシ12の振動を抑制する。さらに、左右のサスペンションアームの連結部分には、旋回時等の車体の傾きを抑制するスタビライザが設けられる。懸架装置12bは、路面の凹凸に対する追従性を向上し、駆動輪の駆動力を効率よく路面に伝達するために、左右の車輪を独立して上下させることができる独立懸架式とするのが望ましい。 The suspension device 12b supports the rear wheel 14 by a suspension arm extending left and right, and suppresses vibration of the chassis 12 by absorbing vibration received by the rear wheel 14 from the ground by a strut including a coil spring and a shock absorber. Furthermore, a stabilizer that suppresses the inclination of the vehicle body during turning or the like is provided at a connecting portion of the left and right suspension arms. It is desirable that the suspension device 12b be an independent suspension type in which left and right wheels can be moved up and down independently in order to improve followability to road surface unevenness and efficiently transmit the driving force of the driving wheels to the road surface. .
 この電気自動車11は、ホイールハウジング12a内部に、左右の後輪14それぞれを駆動するインホイールモータ駆動装置21を設けることによって、シャーシ12上にモータ、ドライブシャフトおよびデファレンシャルギヤ機構等を設ける必要がなくなるので、客室スペースを広く確保でき、かつ、左右の駆動輪の回転をそれぞれ制御することができるという利点を備えている。 In the electric vehicle 11, by providing the in-wheel motor drive device 21 for driving the left and right rear wheels 14 inside the wheel housing 12a, it is not necessary to provide a motor, a drive shaft, a differential gear mechanism, and the like on the chassis 12. Therefore, it has the advantages that a large cabin space can be secured and the rotation of the left and right drive wheels can be controlled respectively.
 電気自動車11の走行安定性およびNVH特性を向上するために、ばね下重量を抑える必要がある。また、さらに広い客室スペースを確保するために、インホイールモータ駆動装置21の小型化が求められる。そこで、図1に示すように、本実施形態に係るインホイールモータ駆動装置21を採用する。 In order to improve the running stability and NVH characteristics of the electric vehicle 11, it is necessary to suppress the unsprung weight. In addition, in-wheel motor drive device 21 is required to be downsized in order to secure a wider cabin space. Therefore, as shown in FIG. 1, an in-wheel motor drive device 21 according to the present embodiment is employed.
 本発明の一実施形態に係るインホイールモータ駆動装置21を図1~図7に基づいて説明する。図1はインホイールモータ駆動装置21の概略縦断面図、図2は図1のO-Oにおける横断面図、図3は曲線板に作用する荷重を示す説明図、図4は回転ポンプの横断面図、図5は減速機入力軸とモータ回転軸のトルク伝達部の周辺部分を拡大した縦断面図、図6aは中空パイプ部材を嵌装したモータ回転軸を拡大した縦断面図、図6bは、図6aのD部を拡大した図、図7は中空パイプ部材を拡大した縦断面図である。本実施形態に係るインホイールモータ駆動装置の特徴的な構成を説明する前に全体構成を説明する。 An in-wheel motor drive device 21 according to an embodiment of the present invention will be described with reference to FIGS. 1 is a schematic longitudinal sectional view of an in-wheel motor drive device 21, FIG. 2 is a transverse sectional view taken along line OO in FIG. 1, FIG. 3 is an explanatory view showing a load acting on a curved plate, and FIG. FIG. 5 is an enlarged longitudinal sectional view of a peripheral portion of the torque transmission portion of the reduction gear input shaft and the motor rotation shaft, FIG. 6a is an enlarged longitudinal sectional view of the motor rotation shaft fitted with a hollow pipe member, and FIG. 6b. FIG. 6A is an enlarged view of a portion D in FIG. 6A, and FIG. 7 is an enlarged longitudinal sectional view of a hollow pipe member. Before describing the characteristic configuration of the in-wheel motor drive device according to the present embodiment, the overall configuration will be described.
 図1に示すように、インホイールモータ駆動装置21は、駆動力を発生させるモータ部Aと、モータ部Aの回転を減速して出力する減速部Bと、減速部Bからの出力を駆動輪14(図10参照)に伝達する車輪用軸受部Cとを備え、モータ部Aと減速部Bはケーシング22に収納されて、図9、10に示すように電気自動車11のホイールハウジング12a内に取り付けられる。本実施形態では、ケーシング22は、モータ部Aと減速部Bとで分割可能な構造とし、ボルトで締結されている。本明細書および特許請求の範囲において、ケーシング22とは、モータ部Aが収容されたケーシング部分と減速部Bが収容されたケーシング部分の両方を指すものとする。 As shown in FIG. 1, the in-wheel motor drive device 21 includes a motor unit A that generates a driving force, a deceleration unit B that decelerates and outputs the rotation of the motor unit A, and an output from the deceleration unit B as driving wheels. 14 (see FIG. 10), and the motor part A and the speed reduction part B are housed in the casing 22 and are housed in the wheel housing 12a of the electric vehicle 11 as shown in FIGS. It is attached. In the present embodiment, the casing 22 has a structure that can be divided into the motor part A and the speed reduction part B, and is fastened with bolts. In the present specification and claims, the casing 22 refers to both a casing part in which the motor part A is accommodated and a casing part in which the speed reduction part B is accommodated.
 モータ部Aは、ケーシング22に固定されているステータ23aと、ステータ23aの内側に径方向の隙間をもって対向する位置に配置されるロータ23bと、ロータ23bの内側に連結固定されてロータ23bと一体回転するモータ回転軸24とを備えるラジアルギャップモータである。 The motor part A includes a stator 23a fixed to the casing 22, a rotor 23b disposed at a position facing the inner side of the stator 23a with a radial gap, and an inner side of the rotor 23b that is connected and fixed to be integrated with the rotor 23b. A radial gap motor including a rotating motor rotating shaft 24.
 中空構造のモータ回転軸24は、ロータ23bの内径面に嵌合固定されて一体回転すると共に、モータ部A内で軸方向一方側端部(図1の右側)を転がり軸受36aに、軸方向他方側端部(図1の左側)を転がり軸受36bによって回転自在に支持されている。 The motor rotating shaft 24 having a hollow structure is fitted and fixed to the inner diameter surface of the rotor 23b and integrally rotates, and one end in the axial direction (right side in FIG. 1) in the motor portion A is axially moved to the rolling bearing 36a. The other end (left side in FIG. 1) is rotatably supported by a rolling bearing 36b.
 減速機入力軸25は、その軸方向一方側略中央部(図1の右側)が転がり軸受37aに、軸方向他方側端部(図1の左側)を転がり軸受37bによって、減速機出力軸28に対して回転自在に支持されている。減速機入力軸25は、減速部B内に偏心部25a、25bを有する。2つの偏心部25a、25bは、偏心運動による遠心力を互いに打ち消し合うために、180°位相を変えて設けられている。 The reduction gear input shaft 25 has a substantially central portion on the one side in the axial direction (right side in FIG. 1) at the rolling bearing 37a and an end portion on the other side in the axial direction (left side in FIG. 1) at the rolling bearing 37b. Is supported so as to be freely rotatable. The speed reducer input shaft 25 has eccentric portions 25 a and 25 b in the speed reduction portion B. The two eccentric portions 25a and 25b are provided with a 180 ° phase change in order to cancel the centrifugal force due to the eccentric motion.
 モータ回転軸24と減速機入力軸25とは、スプライン(セレーションを含む。以下同じ。)嵌合によって連結され、モータ部Aの駆動力が減速部Bに伝達される。このスプライン嵌合部は、減速機入力軸25がある程度傾いても、モータ回転軸24への影響を抑制するように構成されている。本明細書および特許請求の範囲において、トルク伝達部とは、スプライン(セレーションを含む。)嵌合部を意味する。 The motor rotating shaft 24 and the speed reducer input shaft 25 are coupled by spline fitting (including serrations, the same applies hereinafter), and the driving force of the motor part A is transmitted to the speed reducing part B. The spline fitting portion is configured to suppress the influence on the motor rotating shaft 24 even if the speed reducer input shaft 25 is inclined to some extent. In the present specification and claims, the torque transmission portion means a spline (including serration) fitting portion.
 減速部Bは、偏心部25a、25bに回転自在に保持される公転部材としての曲線板26a、26bと、曲線板26a、26bの外周部に係合する外周係合部材としての複数の外ピン27と、曲線板26a、26bの自転運動を減速機出力軸28に伝達する運動変換機構と、偏心部25a、25bに隣接する位置にカウンタウェイト29とを備える。 The deceleration part B includes curved plates 26a and 26b as revolving members that are rotatably held by the eccentric parts 25a and 25b, and a plurality of outer pins as outer peripheral engaging members that engage with the outer peripheral parts of the curved plates 26a and 26b. 27, a motion conversion mechanism for transmitting the rotational motion of the curved plates 26a, 26b to the reducer output shaft 28, and a counterweight 29 at a position adjacent to the eccentric portions 25a, 25b.
 減速機出力軸28は、フランジ部28aと軸部28bとを有する。フランジ部28aには、減速機出力軸28の回転軸心を中心とする円周上に等間隔に内ピン31を固定する孔が形成されている。また、軸部28bは、車輪用軸受部Cの内方部材としてのハブ輪32にスプライン嵌合によって連結され、減速部Bの出力を車輪14(図10参照)に伝達する。減速機出力軸28は、転がり軸受46によって外ピンハウジング60に回転自在に支持されている。 The reduction gear output shaft 28 has a flange portion 28a and a shaft portion 28b. In the flange portion 28a, holes for fixing the inner pins 31 at equal intervals are formed on a circumference centered on the rotation axis of the reduction gear output shaft 28. The shaft portion 28b is connected to a hub wheel 32 as an inner member of the wheel bearing portion C by spline fitting, and transmits the output of the speed reduction portion B to the wheel 14 (see FIG. 10). The reduction gear output shaft 28 is rotatably supported on the outer pin housing 60 by a rolling bearing 46.
 図2に示すように、曲線板26aは、外周部にエピトロコイド等のトロコイド系曲線で構成される複数の波形を有し、一方側端面から他方側端面に貫通する複数の貫通孔30aと、貫通孔30bを有する。貫通孔30aは、曲線板26aの自転軸心を中心とする円周上に等間隔に複数個設けられており、後述する内ピン31を受け入れる。また、貫通孔30bは、曲線板26aの中心に設けられており、偏心部25aに嵌合する。 As shown in FIG. 2, the curved plate 26 a has a plurality of corrugations formed of a trochoidal curve such as epitrochoid on the outer peripheral portion, and a plurality of through holes 30 a penetrating from one end face to the other end face, It has a through hole 30b. A plurality of through holes 30a are provided at equal intervals on the circumference centered on the rotation axis of the curved plate 26a, and receive inner pins 31 described later. Further, the through hole 30b is provided at the center of the curved plate 26a and is fitted to the eccentric portion 25a.
 曲線板26aは、転がり軸受41によって偏心部25aに対して回転自在に支持されている。図2に示すように、転がり軸受41は、偏心部25aの外径面に嵌合し、外径面に内側軌道面42aを有する内輪42と、曲線板26aの貫通孔30bの内径面に直接形成された外側軌道面43と、内側軌道面42aと外側軌道面43の間に配置される複数の円筒ころ44と、円筒ころ44を保持する保持器(図示省略)とを備える円筒ころ軸受である。また、内輪42は、内側軌道面42aの軸方向両端部から径方向外側に突出する鍔部を有する。 The curved plate 26a is rotatably supported by the rolling bearing 41 with respect to the eccentric portion 25a. As shown in FIG. 2, the rolling bearing 41 is directly fitted to the inner ring 42 having an inner raceway surface 42a on the outer diameter surface and the inner diameter surface of the through hole 30b of the curved plate 26a. A cylindrical roller bearing comprising an outer raceway surface 43 formed, a plurality of cylindrical rollers 44 disposed between the inner raceway surface 42a and the outer raceway surface 43, and a cage (not shown) for holding the cylindrical rollers 44. is there. Moreover, the inner ring | wheel 42 has a collar part which protrudes to a radial direction outer side from the axial direction both ends of the inner side track surface 42a.
 図2に示すように、外ピン27は、減速機入力軸25の回転軸心を中心とする円周上に等間隔に設けられている。曲線板26a、26bが公転運動すると、曲線形状の波形と外ピン27とが係合して、曲線板26a、26bに自転運動を生じさせる。外ピン27は、針状ころ軸受27aによって外ピンハウジング60(図1参照)に回転自在に支持されている。これにより、曲線板26a、26bとの間の接触抵抗を低減することができる。 As shown in FIG. 2, the outer pins 27 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer input shaft 25. When the curved plates 26a and 26b revolve, the curved waveform and the outer pin 27 engage with each other to cause the curved plates 26a and 26b to rotate. The outer pin 27 is rotatably supported by the outer pin housing 60 (see FIG. 1) by a needle roller bearing 27a. Thereby, the contact resistance between the curved plates 26a and 26b can be reduced.
 カウンタウェイト29(図1参照)は、略扇形状で、減速機入力軸25と嵌合する貫通孔を有し、曲線板26a、26bの回転によって生じる不釣合い慣性偶力を打ち消すために、各偏心部25a、25bに隣接する位置に偏心部25a、25bと180°位相を変えて配置される。 The counterweight 29 (see FIG. 1) is substantially fan-shaped and has a through-hole that fits with the speed reducer input shaft 25, and each counterweight 29 (see FIG. 1) has a through hole that is caused by the rotation of the curved plates 26a and 26b. It is arranged at a position adjacent to the eccentric parts 25a, 25b with a phase difference of 180 ° from that of the eccentric parts 25a, 25b.
 図1に示すように、運動変換機構は、減速機出力軸28に保持された複数の内ピン31と、曲線板26a、26bに設けられた貫通孔30aとで構成される。内ピン31は、減速機出力軸28の回転軸心を中心とする円周上に等間隔に設けられており(図2参照)、その軸方向一方側端部が減速機出力軸28に固定されている。また、曲線板26a、26bとの摩擦抵抗を低減するために、曲線板26a、26bの貫通孔30aの内壁面に当接する位置に針状ころ軸受31aが設けられている。 As shown in FIG. 1, the motion conversion mechanism is composed of a plurality of inner pins 31 held by the reduction gear output shaft 28 and through holes 30a provided in the curved plates 26a and 26b. The inner pins 31 are provided at equal intervals on the circumference centering on the rotational axis of the speed reducer output shaft 28 (see FIG. 2), and one axial end thereof is fixed to the speed reducer output shaft 28. Has been. Further, in order to reduce the frictional resistance with the curved plates 26a, 26b, a needle roller bearing 31a is provided at a position where the curved plates 26a, 26b come into contact with the inner wall surface of the through hole 30a.
 図1に示すように、内ピン31の軸方向他方側端部には、スタビライザ31bが設けられている。スタビライザ31bは、円環形状の円環部31cと、円環部31cの内径面から軸方向に延びる円筒部31dとを含む。複数の内ピン31の軸方向他方側端部は、円環部31cに固定されている。曲線板26a、26bから一部の内ピン31に負荷される荷重はスタビライザ31bを介して全ての内ピン31によって支持されるため、内ピン31に作用する応力を低減させ、耐久性を向上させることができる。 As shown in FIG. 1, a stabilizer 31 b is provided at the other axial end of the inner pin 31. The stabilizer 31b includes an annular ring portion 31c and a cylindrical portion 31d extending in the axial direction from the inner diameter surface of the annular portion 31c. The ends on the other axial side of the plurality of inner pins 31 are fixed to the annular portion 31c. Since the load applied to some of the inner pins 31 from the curved plates 26a and 26b is supported by all the inner pins 31 via the stabilizer 31b, the stress acting on the inner pins 31 is reduced and the durability is improved. be able to.
 図2に示すように、貫通孔30aは、複数の内ピン31のそれぞれに対応する位置に設けられ、貫通孔30aの内径寸法は、内ピン31の外径寸法(「針状ころ軸受31aを含む最大外径」を指す。以下同じ。)より所定寸法大きく設定されている。 As shown in FIG. 2, the through hole 30 a is provided at a position corresponding to each of the plurality of inner pins 31, and the inner diameter dimension of the through hole 30 a is the outer diameter dimension of the inner pin 31 (“the needle roller bearing 31 a. The maximum outer diameter is included. ”The same shall apply hereinafter.
 曲線板26a、26bに作用する荷重の状態を図3に基づいて説明する。偏心部25aの軸心Oは減速機入力軸25の軸心Oから偏心量eだけ偏心している。偏心部25aの外周には、曲線板26aが取り付けられ、偏心部25aは曲線板26aを回転自在に支持するので、軸心Oは曲線板26aの軸心でもある。曲線板26aの外周は波形曲線で形成され、径方向に窪んだ波形の凹部34を周方向等間隔に有する。曲線板26aの周囲には、凹部34と係合する外ピン27が、軸心Oを中心として周方向に複数配設されている。 The state of the load acting on the curved plates 26a and 26b will be described with reference to FIG. Axis O 2 of the eccentric portion 25a is eccentric by the eccentricity e from the axis O of the reduction gear input shaft 25. The outer periphery of the eccentric portion 25a is attached is curved plates 26a, the eccentric part 25a is so rotatably supports the curve plate 26a, the axial center O 2 is also the axis of the curved plate 26a. The outer periphery of the curved plate 26a is formed by a corrugated curve, and has corrugated recesses 34 that are depressed in the radial direction at equal intervals in the circumferential direction. Around the curved plate 26a, a plurality of outer pins 27 that engage with the recesses 34 are arranged in the circumferential direction with the axis O as the center.
 図3において、減速機入力軸25と共に偏心部25aが紙面上で反時計周りに回転すると、偏心部25aは軸心Oを中心とする公転運動を行うので、曲線板26aの凹部34が、外ピン27と周方向に順次当接する。この結果、矢印で示すように、曲線板26aは、複数の外ピン27から荷重Fiを受けて、時計回りに自転する。 In FIG. 3, when the eccentric portion 25a rotates counterclockwise along with the speed reducer input shaft 25, the eccentric portion 25a revolves around the axis O, so that the concave portion 34 of the curved plate 26a The pin 27 is sequentially brought into contact with the circumferential direction. As a result, as indicated by the arrow, the curved plate 26a receives the load Fi from the plurality of outer pins 27 and rotates clockwise.
 また、曲線板26aには貫通孔30aが軸心Oを中心として周方向に複数配設されている。各貫通孔30aには、軸心Oと同軸に配置された減速機出力軸28と結合する内ピン31が挿通する。貫通孔30aの内径は、内ピン31の外径よりも所定寸法大きいため、内ピン31は曲線板26aの公転運動の障害とはならず、内ピン31は曲線板26aの自転運動を取り出して減速機出力軸28(図1参照)を回転させる。このとき、減速機出力軸28は、減速機入力軸25よりも高トルクかつ低回転数になり、図3に矢印で示すように、曲線板26aは、複数の内ピン31から荷重Fjを受ける。これらの複数の荷重Fi、Fjの合力Fsが減速機入力軸25にかかる。 Further, the curved plates 26a through hole 30a has a plurality circumferentially disposed about the axis O 2. An inner pin 31 that is coupled to the reduction gear output shaft 28 that is disposed coaxially with the axis O is inserted through each through hole 30a. Since the inner diameter of the through-hole 30a is larger than the outer diameter of the inner pin 31, the inner pin 31 does not hinder the revolving motion of the curved plate 26a, and the inner pin 31 extracts the rotational motion of the curved plate 26a. The reduction gear output shaft 28 (see FIG. 1) is rotated. At this time, the speed reducer output shaft 28 has a higher torque and a lower rotational speed than the speed reducer input shaft 25, and the curved plate 26a receives the load Fj from the plurality of inner pins 31 as indicated by arrows in FIG. . A resultant force Fs of the plurality of loads Fi and Fj is applied to the reduction gear input shaft 25.
 合力Fsの方向は、曲線板26aの波形形状、凹部34の数などの幾何学的条件や遠心力の影響により変化する。具体的には、自転軸心Oと軸心Oとを結ぶ直線Yと直角であって軸心Oを通過する基準線Xと、合力Fsとの角度αは概ね30°~60°で変動する。 The direction of the resultant force Fs changes depending on geometrical conditions such as the waveform shape of the curved plate 26a, the number of the concave portions 34, and centrifugal force. Specifically, the angle α between the reference line X perpendicular to the straight line Y connecting the rotation axis O 2 and the axis O and passing through the axis O 2 and the resultant force Fs is approximately 30 ° to 60 °. fluctuate.
 上記の複数の荷重Fi、Fjは、減速機入力軸25が1回転(360°)する間に荷重の方向や大きさが変り、その結果、減速機入力軸25に作用する合力Fsも荷重の方向や大きさが変動する。そして、減速機入力軸25が1回転すると、曲線板26aの波形の凹部34が減速されて1ピッチ時計回りに回転し、図3の状態になり、これを繰り返す。 The load directions and magnitudes of the plurality of loads Fi and Fj change during one rotation (360 °) of the speed reducer input shaft 25. As a result, the resultant force Fs acting on the speed reducer input shaft 25 is also reduced. Direction and size vary. Then, when the speed reducer input shaft 25 makes one rotation, the corrugated concave portion 34 of the curved plate 26a is decelerated and rotated clockwise by one pitch, resulting in the state shown in FIG.
 図1に示すように、車輪用軸受部Cの車輪用軸受33は、ハブ輪32の外径面に直接形成した内側軌道面33fと外径面の小径段部に嵌合された内輪33aとで内方部材を形成し、ケーシング22の内径面に嵌合固定された外輪33bと、内側軌道面33f、内輪33aおよび外輪33bの間に配置された転動体としての複数の玉33cと、隣接する玉33cの間隔を保持する保持器33dと、車輪用軸受33の軸方向両端部を密封するシール部材33eとを備えた複列アンギュラ玉軸受である。 As shown in FIG. 1, the wheel bearing 33 of the wheel bearing portion C includes an inner raceway surface 33f formed directly on the outer diameter surface of the hub wheel 32 and an inner ring 33a fitted to a small diameter step portion of the outer diameter surface. And an outer ring 33b fitted and fixed to the inner surface of the casing 22, and a plurality of balls 33c as rolling elements disposed between the inner raceway surface 33f, the inner ring 33a and the outer ring 33b, and adjacent to each other. This is a double-row angular contact ball bearing provided with a retainer 33d for holding the gap between the balls 33c to be sealed and a seal member 33e for sealing both axial ends of the wheel bearing 33.
 次に、潤滑機構を説明する。この潤滑機構は、モータ部Aの冷却のために潤滑油を供給すると共に減速部Bに潤滑油を供給するもので、詳細は後述するが、この潤滑機構が本実施形態の特徴的な構成に関係する。図1に示す潤滑油路24a、25c、潤滑油供給口24b、24c、25d、25e、25f、潤滑油排出口22b、潤滑油貯留部22d、潤滑油路22e、回転ポンプ51および循環油路45を主な構成とする。潤滑機構内に付した白抜き矢印は潤滑油の流れる方向を示す。 Next, the lubrication mechanism will be described. This lubricating mechanism supplies lubricating oil for cooling the motor part A and supplies lubricating oil to the speed reducing part B. Although the details will be described later, this lubricating mechanism has the characteristic configuration of the present embodiment. Involved. Lubricating oil passages 24a, 25c, lubricating oil supply ports 24b, 24c, 25d, 25e, 25f, a lubricating oil discharge port 22b, a lubricating oil reservoir 22d, a lubricating oil passage 22e, a rotary pump 51, and a circulating oil passage 45 shown in FIG. Is the main configuration. The white arrow given in the lubrication mechanism indicates the direction in which the lubricating oil flows.
 モータ回転軸24の潤滑油路24aに接続された潤滑油路25cは、減速機入力軸25の内部を軸線方向に沿って延びている。潤滑油供給口25d、25eは、潤滑油路25cから減速機入力軸25の外径面に向って半径方向に延び、潤滑油供給口25fは、減速機入力軸25の軸端部から回転軸心方向に軸端面に向って延びている。 The lubricating oil passage 25c connected to the lubricating oil passage 24a of the motor rotating shaft 24 extends along the axial direction inside the reduction gear input shaft 25. The lubricating oil supply ports 25d and 25e extend radially from the lubricating oil passage 25c toward the outer diameter surface of the reduction gear input shaft 25, and the lubricating oil supply port 25f extends from the shaft end of the reduction gear input shaft 25 to the rotating shaft. It extends toward the axial end surface in the center direction.
 減速部Bの位置におけるケーシング22の少なくとも1箇所には、減速部B内部の潤滑油を排出する潤滑油排出口22bが設けられ、吐出された潤滑油を一時的に貯留する潤滑油貯留部22dが設けられている。 At least one location of the casing 22 at the position of the speed reduction part B is provided with a lubricating oil discharge port 22b for discharging the lubricating oil inside the speed reduction part B, and a lubricating oil storage part 22d for temporarily storing the discharged lubricating oil. Is provided.
 図1に示すように、循環油路45は、ケーシング22の内部を軸方向に延びる軸方向油路45aと、軸方向油路45aの軸方向一端部(図1の右側)に接続されて径方向に延びる径方向油路45cと、軸方向油路45aの軸方向他端部(図1の左側)に接続されて径方向に延びる径方向油路45bとで構成される。 As shown in FIG. 1, the circulating oil passage 45 is connected to an axial oil passage 45 a extending in the axial direction inside the casing 22 and one axial end portion (right side in FIG. 1) of the axial oil passage 45 a. A radial oil passage 45c extending in the direction and a radial oil passage 45b extending in the radial direction connected to the other axial end portion (left side in FIG. 1) of the axial oil passage 45a.
 潤滑油を強制的に循環させるために、潤滑油貯留部22dに接続する潤滑油路22eと循環油路45との間に回転ポンプ51が設けられている。径方向油路45bは回転ポンプ51から圧送された潤滑油を軸方向油路45aに供給し、軸方向油路45aから径方向油路45cを経て潤滑油を潤滑油路24a、25cに供給する。 In order to forcibly circulate the lubricating oil, a rotary pump 51 is provided between the lubricating oil passage 22e connected to the lubricating oil reservoir 22d and the circulating oil passage 45. The radial oil passage 45b supplies the lubricating oil pumped from the rotary pump 51 to the axial oil passage 45a, and supplies the lubricating oil from the axial oil passage 45a to the lubricating oil passages 24a and 25c via the radial oil passage 45c. .
 図4に示すように、回転ポンプ51は、減速機出力軸28の回転を利用して回転するインナーロータ52と、インナーロータ52の回転に伴って従動回転するアウターロータ53と、ポンプ室54と、潤滑油路22eに連通する吸入口55と、循環油路45の径方向油路45bに連通する吐出口56とを備えるサイクロイドポンプである。回転ポンプ51をケーシング22内に配置することによって、インホイールモータ駆動装置21全体としての大型化を防止することができる。 As shown in FIG. 4, the rotary pump 51 includes an inner rotor 52 that rotates using the rotation of the reduction gear output shaft 28, an outer rotor 53 that rotates following the rotation of the inner rotor 52, and a pump chamber 54. The cycloid pump includes a suction port 55 communicating with the lubricating oil passage 22e and a discharge port 56 communicating with the radial oil passage 45b of the circulating oil passage 45. By disposing the rotary pump 51 in the casing 22, it is possible to prevent the in-wheel motor drive device 21 as a whole from being enlarged.
 インナーロータ52は、回転中心cを中心として回転し、一方、アウターロータ53は、回転中心cを中心として回転する。インナーロータ52およびアウターロータ53はそれぞれ異なる回転中心c、cを中心として回転するので、ポンプ室54の容積は連続的に変化する。これにより、吸入口55から流入した潤滑油が吐出口56から径方向油路45bに圧送される。 The inner rotor 52 rotates around a rotation center c 1, whereas, the outer rotor 53 rotates around a rotation center c 2. Since the inner rotor 52 and the outer rotor 53 rotate about different rotation centers c 1 and c 2 , the volume of the pump chamber 54 changes continuously. As a result, the lubricating oil flowing in from the suction port 55 is pumped from the discharge port 56 to the radial oil passage 45b.
 モータ部Aの冷却として、図1に示すように、循環油路45から潤滑油路24aに還流された潤滑油の一部が、遠心力によって潤滑油供給口24c、24bからロータ23bを冷却し、その後、潤滑油が飛散してステータ23aを冷却する。この経路と後述する減速部Bを潤滑および冷却する経路とに潤滑油が分流する。 As shown in FIG. 1, a part of the lubricating oil recirculated from the circulating oil passage 45 to the lubricating oil passage 24a cools the rotor 23b from the lubricating oil supply ports 24c and 24b by centrifugal force. Thereafter, the lubricating oil is scattered to cool the stator 23a. Lubricating oil divides into this path and a path for lubricating and cooling the speed reducing portion B described later.
 減速部Bの潤滑として、潤滑油路25cの潤滑油は、減速機入力軸25の回転に伴う遠心力および圧力によって潤滑油供給口25d、25eから減速部Bに流出する。潤滑油供給口25dから流出した潤滑油は、曲線板26a、26bを支持する円筒ころ軸受41(図2参照)、さらに、遠心力により、曲線板26a、26bと内ピン31との当接部分および曲線板26a、26bと外ピン27との当接部分等を潤滑しながら径方向外側に移動する。潤滑油供給口25e、25fから流出した潤滑油は、減速機入力軸25を支持する深溝玉軸受37a、37b、さらに、内部の軸受や当接部分に供給される。このように、減速部Bは、潤滑が必要な多数の軸受や当接部分から構成されており、内蔵した回転ポンプ51により、効率よく潤滑油を供給する必要がある。 As the lubrication of the speed reducing part B, the lubricating oil in the lubricating oil path 25c flows out from the lubricating oil supply ports 25d and 25e to the speed reducing part B due to the centrifugal force and pressure accompanying the rotation of the speed reducer input shaft 25. The lubricating oil that has flowed out of the lubricating oil supply port 25d is a cylindrical roller bearing 41 (see FIG. 2) that supports the curved plates 26a and 26b, and further, a contact portion between the curved plates 26a and 26b and the inner pin 31 by centrifugal force. Further, it moves radially outward while lubricating the contact portion between the curved plates 26a, 26b and the outer pin 27, and the like. The lubricating oil that has flowed out of the lubricating oil supply ports 25e and 25f is supplied to deep groove ball bearings 37a and 37b that support the reduction gear input shaft 25, as well as internal bearings and contact portions. Thus, the deceleration part B is comprised from many bearings and contact parts which need lubrication, and needs to supply lubricating oil efficiently by the built-in rotary pump 51. FIG.
 ケーシング22の内壁面に到達した潤滑油は、潤滑油排出口22bから排出されて潤滑油貯留部22dに貯留される。潤滑油吐出口22bと回転ポンプ51との間に潤滑油貯留部22dが設けられているので、回転ポンプ51によって排出しきれない潤滑油が一時的に発生しても、潤滑油貯留部22dに貯留しておくことができる。その結果、減速部Bのトルク損失の増加を防止することができる。一方、潤滑油排出口22bに到達する潤滑油量が少なくなっても、回転ポンプ51は、潤滑油貯留部22dに貯留されている潤滑油を潤滑油路24a、25cに還流することができる。潤滑油は、遠心力に加えて重力によって移動する。したがって、潤滑油貯留部22dがインホイールモータ駆動装置21の下部に位置するように、電気自動車11に取り付けるのが望ましい。 The lubricating oil that has reached the inner wall surface of the casing 22 is discharged from the lubricating oil discharge port 22b and stored in the lubricating oil reservoir 22d. Since the lubricating oil reservoir 22d is provided between the lubricating oil discharge port 22b and the rotary pump 51, even if lubricating oil that cannot be discharged by the rotary pump 51 is temporarily generated, the lubricating oil reservoir 22d Can be stored. As a result, an increase in torque loss of the deceleration unit B can be prevented. On the other hand, even if the amount of the lubricating oil reaching the lubricating oil discharge port 22b decreases, the rotary pump 51 can return the lubricating oil stored in the lubricating oil storage portion 22d to the lubricating oil paths 24a and 25c. Lubricating oil moves by gravity in addition to centrifugal force. Therefore, it is desirable to attach to the electric vehicle 11 so that the lubricating oil reservoir 22d is positioned below the in-wheel motor drive device 21.
 本実施形態に係るインホイールモータ駆動装置21の全体構成は、前述したとおりであるが、次に、本実施形態のインホイールモータ駆動装置21の特徴的な構成を説明する。要約すると、前述した潤滑機構の一部を構成する潤滑油路24a、25cが、モータ回転軸24と減速機入力軸25のそれぞれの内部(軸心)に形成されており、モータ回転軸24に潤滑油路24aを形成する中空パイプ部材80が嵌装されていることを特徴とする。中空パイプ部材80の潤滑油路24aと減速機入力軸25の潤滑油路25cが連携して、モータ部Aのロータ23bを冷却しステータ23aへ噴出する経路と、減速部Bを潤滑および冷却する経路とに効率よく分流させることができる。 The overall configuration of the in-wheel motor drive device 21 according to the present embodiment is as described above. Next, a characteristic configuration of the in-wheel motor drive device 21 of the present embodiment will be described. In summary, the lubricating oil passages 24 a and 25 c constituting a part of the above-described lubrication mechanism are formed in the motor rotation shaft 24 and the reducer input shaft 25, respectively. A hollow pipe member 80 forming the lubricating oil passage 24a is fitted. The lubricating oil path 24a of the hollow pipe member 80 and the lubricating oil path 25c of the reduction gear input shaft 25 cooperate to lubricate and cool the path for cooling the rotor 23b of the motor part A and spraying it to the stator 23a, and the speed reducing part B. It is possible to efficiently divert to the route.
 図5は、図1の減速機入力軸25とモータ回転軸24のトルク伝達部の周辺部分を拡大した縦断面図で、図6aは中空パイプ部材80が嵌装されたモータ回転軸24を拡大した縦断面図で、図6bは、図6aにおけるD部を拡大した図である。また、図7に中空パイプ部材80の単体を示す。 FIG. 5 is an enlarged longitudinal sectional view of the peripheral portion of the torque transmission portion of the reduction gear input shaft 25 and the motor rotation shaft 24 of FIG. 1, and FIG. 6a is an enlargement of the motor rotation shaft 24 in which the hollow pipe member 80 is fitted. FIG. 6b is an enlarged view of a portion D in FIG. 6a. FIG. 7 shows a single hollow pipe member 80.
 図6aに示すように、モータ回転軸24は、軸方向の略中央部に大径外径部61が形成され、この大径外径部61にロータ23bが嵌合固定されている。モータ回転軸24の一端部の外径に転がり軸受36a(図1参照)の装着面65が形成され、他端部の外径に転がり軸受36b(図1参照)の装着面66が形成されている。 As shown in FIG. 6a, the motor rotating shaft 24 has a large-diameter outer diameter portion 61 formed at a substantially central portion in the axial direction, and the rotor 23b is fitted and fixed to the large-diameter outer diameter portion 61. A mounting surface 65 of the rolling bearing 36a (see FIG. 1) is formed on the outer diameter of one end of the motor rotating shaft 24, and a mounting surface 66 of the rolling bearing 36b (see FIG. 1) is formed on the outer diameter of the other end. Yes.
 モータ回転軸24の他端部(図6aの左側)内径には雌スプライン67が形成されている。雌スプライン67をブローチ加工するために、雌スプライン67の大径よりも若干大きな直径の貫通孔68を形成する必要がある。このため、貫通孔68は、図5に示す減速機入力軸25の潤滑油路25cの内径Fとは大きく異なる。貫通孔68を潤滑油路とした従来技術の場合には、減速機入力軸25の潤滑油路25cの内径Fとの接続部に段差が生じ、この結果、モータ回転軸24に流入した潤滑油は、減速機入力軸25の潤滑油路25cに流入する前段で堰き止められる。そのため、前述した全体的な潤滑機構において、低回転域では、減速部B側に潤滑油が供給され難いという問題が判明した。この問題を解決したのが本実施形態である。 A female spline 67 is formed on the inner diameter of the other end of the motor rotating shaft 24 (left side in FIG. 6A). In order to broach the female spline 67, it is necessary to form a through hole 68 having a diameter slightly larger than the large diameter of the female spline 67. For this reason, the through hole 68 is greatly different from the inner diameter F of the lubricating oil passage 25c of the reduction gear input shaft 25 shown in FIG. In the case of the prior art in which the through hole 68 is used as a lubricating oil passage, a step is formed at the connection portion between the reduction gear input shaft 25 and the inner diameter F of the lubricating oil passage 25c, and as a result, the lubricating oil flowing into the motor rotating shaft 24 is generated. Is blocked in the previous stage that flows into the lubricating oil passage 25c of the reduction gear input shaft 25. Therefore, the above-described overall lubrication mechanism has a problem that it is difficult to supply lubricating oil to the speed reduction unit B side in the low rotation range. The present embodiment solves this problem.
 図6aに示すように、モータ回転軸24には、貫通孔68から大径外径部61へ連通する潤滑油供給口24bが半径方向に形成され、貫通孔68に中空パイプ部材80が嵌装されている。中空パイプ部材80には、軸心を貫通する潤滑油路24aが形成され、モータ回転軸24の潤滑油供給口24bに対応する軸方向位置に潤滑油供給口24cが半径方向に複数(本実施形態では4本)設けられている。潤滑油供給口24cの外周部には周方向の溝24dが設けられている。 As shown in FIG. 6 a, a lubricating oil supply port 24 b communicating from the through hole 68 to the large diameter outer diameter portion 61 is formed in the motor rotating shaft 24 in the radial direction, and the hollow pipe member 80 is fitted into the through hole 68. Has been. The hollow pipe member 80 is formed with a lubricating oil passage 24a penetrating the shaft center, and a plurality of lubricating oil supply ports 24c are arranged in the radial direction corresponding to the lubricating oil supply port 24b of the motor rotating shaft 24 (this embodiment). 4 in the form) are provided. A circumferential groove 24d is provided on the outer peripheral portion of the lubricating oil supply port 24c.
 図7に示すように、中空パイプ部材80は、一端部(図7の右側)に嵌合部80bが形成され、他端部(図7の左側)に小径段部80aが形成されている。両端部の小径段部80aと嵌合部80bとの間の外径部分80dは、モータ回転軸24の貫通孔68の内径より小径に形成されている。中空パイプ部材80の軸心に形成された潤滑油路24aは内径Eを有する。嵌合部80bの端部に位相合わせ用の突起80cが形成されている。 7, the hollow pipe member 80 has a fitting portion 80b formed at one end (right side in FIG. 7) and a small-diameter stepped portion 80a formed at the other end (left side in FIG. 7). The outer diameter portion 80d between the small diameter step portion 80a and the fitting portion 80b at both ends is formed to have a smaller diameter than the inner diameter of the through hole 68 of the motor rotating shaft 24. The lubricating oil passage 24 a formed in the axial center of the hollow pipe member 80 has an inner diameter E. A phase matching projection 80c is formed at the end of the fitting portion 80b.
 次に、図6aを参照して、中空パイプ部材80をモータ回転軸24に装着する要領を説明する。まず、中空パイプ部材80をモータ回転軸24の貫通孔68に挿入し、端部に設けられた小径段部80aをモータ回転軸24の雌スプライン67の小径部分にすきま嵌めで嵌合させて芯出しする。この状態で中空パイプ部材80の嵌合部80bをモータ回転軸24の貫通孔68に圧入する。このとき、図6bに示すように、嵌合部80bの端部に形成された突起80cは、モータ回転軸24の貫通孔68の端部に形成された溝68aに係合し、位相が合わせられる。本明細書および特許請求の範囲において、位相合わせ用係合部とは、突起80cと溝68aを意味し、後述する変形例では、突起80c’と溝68aを意味する。 Next, the procedure for mounting the hollow pipe member 80 on the motor rotating shaft 24 will be described with reference to FIG. 6a. First, the hollow pipe member 80 is inserted into the through hole 68 of the motor rotating shaft 24, and the small diameter step portion 80a provided at the end is fitted into the small diameter portion of the female spline 67 of the motor rotating shaft 24 by a clearance fit. Take it out. In this state, the fitting portion 80 b of the hollow pipe member 80 is press-fitted into the through hole 68 of the motor rotating shaft 24. At this time, as shown in FIG. 6b, the protrusion 80c formed at the end of the fitting portion 80b engages with the groove 68a formed at the end of the through hole 68 of the motor rotating shaft 24, and the phase is adjusted. It is done. In the present specification and claims, the phase alignment engaging portion means the protrusion 80c and the groove 68a, and in the modification described later, it means the protrusion 80c 'and the groove 68a.
 中空パイプ部材80の両端の小径段部80aと嵌合部80bとの間の外径部分80dは、モータ回転軸24の貫通孔68の内径より小径に形成されているので、中空パイプ部材80をモータ回転軸24に嵌装する際、中空パイプ部材80の軸長の全域で圧入することなく挿入でき、嵌合部80bのみが貫通孔68に圧入される。このため、組立作業を容易にすることができる。 Since the outer diameter portion 80d between the small diameter step portion 80a and the fitting portion 80b at both ends of the hollow pipe member 80 is formed to be smaller in diameter than the inner diameter of the through hole 68 of the motor rotating shaft 24, the hollow pipe member 80 is When fitted to the motor rotating shaft 24, the hollow pipe member 80 can be inserted without being pressed in the entire axial length, and only the fitting portion 80 b is press-fitted into the through hole 68. For this reason, assembly work can be facilitated.
 また、小径段部80aを雌スプライン67の小径部分に嵌合させて芯出状態で、中空パイプ部材80の嵌合部80bをモータ回転軸24の貫通孔68に圧入するので、回転精度を向上させることができる。 In addition, the fitting portion 80b of the hollow pipe member 80 is press-fitted into the through hole 68 of the motor rotating shaft 24 in a centered state by fitting the small-diameter step portion 80a to the small-diameter portion of the female spline 67, thereby improving the rotation accuracy. Can be made.
 また、中空パイプ部材80の突起80cをモータ回転軸24の溝68aに係合させて位相合わせるので、中空パイプ部材80の潤滑油供給口24cとモータ回転軸24の潤滑油供給口24bの位相を一致させることができる。しかし、本実施形態では、中空パイプ部材80の潤滑油供給口24cの外周部に周方向の溝24dを形成したので、位相合わせは特に必要はない。したがって、突起80cと溝68aとの位相合わせ構造又は周方向の溝24dのどちらかを省略してもよい。 Further, since the projections 80c of the hollow pipe member 80 are engaged with the grooves 68a of the motor rotating shaft 24, the phases of the lubricating oil supply port 24c of the hollow pipe member 80 and the lubricating oil supply port 24b of the motor rotating shaft 24 are adjusted. Can be matched. However, in this embodiment, since the circumferential groove 24d is formed in the outer peripheral portion of the lubricating oil supply port 24c of the hollow pipe member 80, the phase alignment is not particularly necessary. Therefore, either the phase matching structure of the protrusion 80c and the groove 68a or the circumferential groove 24d may be omitted.
 また、図示は省略するが、中空パイプ部材80の潤滑油供給口24cとモータ回転軸24の潤滑油供給口24bのいずれか一方の孔径を他方の孔径より十分に大きくすることにより、中空パイプ部材80の潤滑油供給口24cとモータ回転軸24の潤滑油供給口24bの位相がずれた場合にも、潤滑油の供給が妨げられない連通構造にすることができる。
この場合には、前述した突起80cと溝68aとの位相合わせ構造や周方向の溝24dを省略することができる。
Although not shown in the drawings, the hollow pipe member can be obtained by sufficiently increasing the diameter of one of the lubricating oil supply port 24c of the hollow pipe member 80 and the lubricating oil supply port 24b of the motor rotating shaft 24 from the other hole diameter. Even when the lubricating oil supply port 24c of 80 and the lubricating oil supply port 24b of the motor rotating shaft 24 are out of phase, a communication structure that does not hinder the supply of the lubricating oil can be achieved.
In this case, the phase alignment structure of the protrusion 80c and the groove 68a and the circumferential groove 24d can be omitted.
 中空パイプ部材80の材料として鉄系金属を用いた。中空パイプ部材80の材料として、樹脂材も使用可能であるが、熱膨張率の影響により、使用環境の全領域において締め代を確保することは難しい。また、Oリングによる固定方法も考えられるが、15000min-1程度で高速回転するモータ回転軸24にアンバランスを誘因する固定方法は好ましくなく、また、回り止め効果についても確実性に欠ける。 An iron-based metal was used as a material for the hollow pipe member 80. Although a resin material can be used as the material of the hollow pipe member 80, it is difficult to secure a tightening allowance in the entire region of the usage environment due to the influence of the thermal expansion coefficient. A fixing method using an O-ring is also conceivable, but a fixing method that induces imbalance in the motor rotating shaft 24 that rotates at a high speed of about 15000 min −1 is not preferable, and the anti-rotation effect is also uncertain.
 以上のように、モータ回転軸24に、潤滑油路24aを形成した中空パイプ部材80を嵌装する構成にしたので、図5に示すように、中空パイプ部材80の軸心に形成された潤滑油路24aの内径Eは、減速機入力軸25の軸心に形成された潤滑油路25cの内径Fと略同一寸法に設定される。これにより、モータ回転軸24の潤滑油路24aと減速機入力軸25の潤滑油路25cとの段差がなく、低回転域でも、モータ回転軸24の潤滑油路24aから減速機入力軸25の潤滑油路25cへ潤滑油を効果的に流入させることができる。 As described above, since the hollow pipe member 80 in which the lubricating oil passage 24a is formed is fitted to the motor rotating shaft 24, the lubrication formed on the shaft center of the hollow pipe member 80 as shown in FIG. The inner diameter E of the oil passage 24 a is set to be approximately the same size as the inner diameter F of the lubricating oil passage 25 c formed in the shaft center of the speed reducer input shaft 25. As a result, there is no step between the lubricating oil path 24a of the motor rotating shaft 24 and the lubricating oil path 25c of the reduction gear input shaft 25, and the reduction gear input shaft 25 can be moved from the lubricating oil path 24a of the motor rotating shaft 24 even in a low rotation range. Lubricating oil can be effectively flowed into the lubricating oil passage 25c.
 次に、中空パイプ部材の変形例を図8に示す。この中空パイプ部材80’は、鋼管からスウェージング加工により縮径加工したものである。中空パイプ部材80’は、その一端部(図8の左側)が、前述した実施形態の中空パイプ部材80と同様に、モータ回転軸24の雌スプライン67の小径部に嵌合する小径部80a’と、他端部(図8の右側)にモータ回転軸24の貫通孔68に圧入嵌合される嵌合部80b’が形成されている。大径の嵌合部80b’からテーパ状に縮径され、小径部80a’に接続されている。小径部80a’は、軸方向の大半にわたって形成されている。 Next, a modification of the hollow pipe member is shown in FIG. The hollow pipe member 80 'is obtained by reducing the diameter of a steel pipe by swaging. The hollow pipe member 80 ′ has one end (left side in FIG. 8) having a small diameter portion 80a ′ that fits into the small diameter portion of the female spline 67 of the motor rotating shaft 24 in the same manner as the hollow pipe member 80 of the above-described embodiment. A fitting portion 80b ′ that is press-fitted into the through hole 68 of the motor rotating shaft 24 is formed at the other end (right side in FIG. 8). The diameter is reduced from the large-diameter fitting portion 80b 'to a taper shape and connected to the small-diameter portion 80a'. The small diameter portion 80a 'is formed over most of the axial direction.
 中空パイプ部材80’には、軸心を貫通する潤滑油路24a’が形成され、モータ回転軸24の潤滑油供給口24bに対応する軸方向位置に潤滑油供給口24c’が半径方向に複数(本変形例では4本)設けられている。中空パイプ部材80’の嵌合部80b’の端部に位相合わせ用の突起80c’が設けられている。前述した実施形態とは異なって、潤滑油供給口24c’の外周部には周方向の溝は設けられていないが、中空パイプ部材80’の潤滑油供給口24c’は、モータ回転軸24の潤滑油供給口24bと位相が一致しているので、潤滑油が効果的に供給される。 The hollow pipe member 80 ′ is formed with a lubricating oil passage 24a ′ penetrating the shaft center, and a plurality of lubricating oil supply ports 24c ′ are arranged in the radial direction at axial positions corresponding to the lubricating oil supply ports 24b of the motor rotating shaft 24. (Four in this modification) are provided. A phase matching projection 80c 'is provided at the end of the fitting portion 80b' of the hollow pipe member 80 '. Unlike the above-described embodiment, no circumferential groove is provided in the outer peripheral portion of the lubricating oil supply port 24 c ′, but the lubricating oil supply port 24 c ′ of the hollow pipe member 80 ′ is connected to the motor rotating shaft 24. Since the phase coincides with the lubricating oil supply port 24b, the lubricating oil is effectively supplied.
 本変形例の中空パイプ部材80’の潤滑油路24a’の内径Eも、減速機入力軸25の軸心に形成された潤滑油路25cの内径Fと略同一寸法に設定されている。したがって、前述した実施形態と同様の作用効果を有する。 The inner diameter E of the lubricating oil passage 24 a ′ of the hollow pipe member 80 ′ of this modification is also set to be approximately the same size as the inner diameter F of the lubricating oil passage 25 c formed in the shaft center of the reduction gear input shaft 25. Therefore, it has the same effect as the above-described embodiment.
 本変形例の中空パイプ部材80’は、鋼管を縮径加工したものであるので、肉厚の変化が少なく、製造コストの抑制と共に軽量化が図れる。縮径加工はスウェージング加工の他にプレス加工を行ってもよい。その他の構成や作用効果については、前述した実施形態の内容を準用する。 Since the hollow pipe member 80 ′ of the present modification is obtained by reducing the diameter of a steel pipe, there is little change in the wall thickness, and the weight can be reduced while suppressing the manufacturing cost. The diameter reduction processing may be performed by pressing in addition to the swaging processing. The contents of the above-described embodiment apply mutatis mutandis for other configurations and operational effects.
 上記構成のインホイールモータ駆動装置21の全体的な作動原理を説明する。 The overall operating principle of the in-wheel motor drive device 21 configured as described above will be described.
 図1および図2を参照して、モータ部Aは、例えば、ステータ23aのコイルに交流電流を供給することによって生じる電磁力を受けて、永久磁石又は磁性体によって構成されるロータ23bが回転する。これにより、モータ回転軸24に連結された減速機入力軸25が回転すると、曲線板26a、26bは減速機入力軸25の回転軸心を中心として公転運動する。このとき、外ピン27が、曲線板26a、26bの曲線形状の波形と係合して、曲線板26a、26bを減速機入力軸25の回転とは逆向きに自転回転させる。 With reference to FIGS. 1 and 2, the motor unit A receives, for example, an electromagnetic force generated by supplying an alternating current to the coil of the stator 23 a, and the rotor 23 b made of a permanent magnet or a magnetic body rotates. . Thereby, when the reduction gear input shaft 25 connected to the motor rotation shaft 24 rotates, the curved plates 26 a and 26 b revolve around the rotation axis of the reduction gear input shaft 25. At this time, the outer pin 27 engages with the curved waveform of the curved plates 26 a and 26 b to rotate the curved plates 26 a and 26 b in the direction opposite to the rotation of the speed reducer input shaft 25.
 貫通孔30aに挿通する内ピン31は、曲線板26a、26bの自転運動に伴って貫通孔30aの内壁面と当接する。これにより、曲線板26a、26bの公転運動が内ピン31に伝わらず、曲線板26a、26bの自転運動のみが減速機出力軸28を介して車輪用軸受部Cに伝達される。 The inner pin 31 inserted through the through hole 30a comes into contact with the inner wall surface of the through hole 30a as the curved plates 26a and 26b rotate. As a result, the revolving motion of the curved plates 26 a and 26 b is not transmitted to the inner pin 31, but only the rotational motion of the curved plates 26 a and 26 b is transmitted to the wheel bearing portion C via the reduction gear output shaft 28.
 このとき、減速機入力軸25の回転が減速部Bによって減速されて減速機出力軸28に伝達されるので、低トルク、高回転型のモータ部Aを採用した場合でも、駆動輪14に必要なトルクを伝達することが可能となる。 At this time, since the rotation of the speed reducer input shaft 25 is decelerated by the speed reducer B and is transmitted to the speed reducer output shaft 28, it is necessary for the drive wheel 14 even when the low torque, high speed motor part A is adopted. It is possible to transmit an appropriate torque.
 上記構成の減速部Bの減速比は、外ピン27の数をZ、曲線板26a、26bの波形の数をZとすると、(Z-Z)/Zで算出される。図2に示す実施形態では、Z=12、Z=11であるので、減速比は1/11と非常に大きな減速比を得ることができる。 The reduction ratio of the speed reduction unit B having the above-described configuration is calculated as (Z A −Z B ) / Z B where Z A is the number of outer pins 27 and Z B is the number of waveforms of the curved plates 26a and 26b. In the embodiment shown in FIG. 2, since Z A = 12 and Z B = 11, a very large reduction ratio of 1/11 can be obtained.
 このように、多段構成とすることなく大きな減速比を得ることができる減速部Bを採用することにより、コンパクトで高減速比のインホイールモータ駆動装置21を得ることができる。また、外ピン27および内ピン31に針状ころ軸受27a、31aを設けたことにより、曲線板26a、26bとの間の摩擦抵抗が低減されるので、減速部Bの伝達効率が向上する。 In this way, by adopting the reduction part B that can obtain a large reduction ratio without using a multistage configuration, the in-wheel motor drive device 21 having a compact and high reduction ratio can be obtained. Further, by providing the needle roller bearings 27a and 31a on the outer pin 27 and the inner pin 31, the frictional resistance between the curved plates 26a and 26b is reduced, so that the transmission efficiency of the speed reduction portion B is improved.
 本実施形態に係るインホイールモータ駆動装置21を電気自動車11に搭載することにより、ばね下重量を抑えることができる。その結果、走行安定性およびNVH特性に優れた電気自動車11を得ることができる。 By mounting the in-wheel motor drive device 21 according to this embodiment on the electric vehicle 11, the unsprung weight can be suppressed. As a result, the electric vehicle 11 having excellent running stability and NVH characteristics can be obtained.
 本実施形態および変形例においては、潤滑油供給口24bをモータ回転軸24の軸方向略中央部に設け、潤滑油供給口25eを転がり軸受37aの近くに設け、潤滑油供給口25dを偏心部25a、25bに設け、潤滑油供給口25fを減速機入力軸25の軸端に設けた例を示したが、これに限ることなく、モータ回転軸24や減速機入力軸25の任意の位置に設けることができる。 In the present embodiment and the modified example, the lubricating oil supply port 24b is provided at a substantially central portion in the axial direction of the motor rotating shaft 24, the lubricating oil supply port 25e is provided near the rolling bearing 37a, and the lubricating oil supply port 25d is provided as an eccentric portion. Although the example which provided in 25a, 25b and provided the lubricating oil supply port 25f in the shaft end of the reduction gear input shaft 25 was shown, it does not restrict to this but arbitrary positions of the motor rotating shaft 24 or the reduction gear input shaft 25 are shown. Can be provided.
 回転ポンプ51としてサイクロイドポンプの例を示したが、これに限ることなく、減速機出力軸28の回転を利用して駆動するあらゆる回転型ポンプを採用することができる。さらには、回転ポンプ51を省略して、遠心力のみによって潤滑油を循環させるようにしてもよい。 Although an example of a cycloid pump has been shown as the rotary pump 51, the present invention is not limited to this, and any rotary pump that is driven using the rotation of the speed reducer output shaft 28 can be adopted. Furthermore, the rotary pump 51 may be omitted, and the lubricating oil may be circulated only by centrifugal force.
 減速部Bの曲線板26a、26bを180°位相を変えて2枚設けた例を示したが、この曲線板の枚数は任意に設定することができ、例えば、曲線板を3枚設ける場合は、120°位相を変えて設けるとよい。 Although the example in which two curved plates 26a and 26b of the deceleration unit B are provided with the phase shifted by 180 ° is shown, the number of the curved plates can be arbitrarily set. For example, when three curved plates are provided, , 120 ° phase may be changed.
 運動変換機構は、減速機出力軸28に固定された内ピン31と、曲線板26a、26bに設けられた貫通孔30aとで構成された例を示したが、これに限ることなく、減速部Bの回転をハブ輪32に伝達可能な任意の構成とすることができる。例えば、曲線板に固定された内ピンと減速機出力軸に形成された孔とで構成される運動変換機構であってもよい。 Although the motion conversion mechanism has shown the example comprised by the inner pin 31 fixed to the reduction gear output shaft 28, and the through-hole 30a provided in the curve board 26a, 26b, it is not restricted to this, The reduction part It is possible to adopt an arbitrary configuration that can transmit the rotation of B to the hub wheel 32. For example, it may be a motion conversion mechanism composed of an inner pin fixed to a curved plate and a hole formed in a reduction gear output shaft.
 本実施形態における作動の説明は、各部材の回転に着目して行ったが、実際にはトルクを含む動力がモータ部Aから駆動輪14に伝達される。したがって、上述のように減速された動力は高トルクに変換されたものとなっている。 The description of the operation in the present embodiment has been made by paying attention to the rotation of each member, but in reality, power including torque is transmitted from the motor unit A to the drive wheels 14. Therefore, the power decelerated as described above is converted into high torque.
 また、モータ部Aに電力を供給してモータ部を駆動させ、モータ部Aからの動力を駆動輪14に伝達させる場合を示したが、これとは逆に、車両が減速したり坂を下ったりするようなときは、駆動輪14側からの動力を減速部Bで高回転低トルクの回転に変換してモータ部Aに伝達し、モータ部Aで発電してもよい。さらに、ここで発電した電力は、バッテリーに蓄電しておき、後でモータ部Aを駆動させたり、車両に備えられた他の電動機器等の作動に用いてもよい。 Also, the case where power is supplied to the motor unit A to drive the motor unit and the power from the motor unit A is transmitted to the drive wheels 14 is shown, but conversely, the vehicle decelerates or goes down the hill. In such a case, the power from the drive wheel 14 side may be converted into high-rotation low-torque rotation by the speed reduction unit B and transmitted to the motor unit A, and the motor unit A may generate power. Furthermore, the electric power generated here may be stored in a battery and used later for driving the motor unit A or for operating other electric devices provided in the vehicle.
 本実施形態においては、モータ部Aにラジアルギャップモータを採用した例を示したが、これに限ることなく、任意の構成のモータを適用可能である。例えば、ケーシングに固定されるステータと、ステータの内側の軸方向の隙間を開けて対向する位置に配置されるロータとを備えるアキシャルギャップモータであってもよい。 In the present embodiment, an example in which a radial gap motor is adopted as the motor unit A has been shown, but the present invention is not limited to this, and a motor having an arbitrary configuration can be applied. For example, it may be an axial gap motor including a stator fixed to the casing and a rotor disposed at a position facing the stator with an axial gap inside the stator.
 本実施形態および変形例では、減速部にサイクロイド減速機を適用したものを例示したが、これに限られず、遊星歯車減速機等、他の形式の減速機を適用してもよい。 In the present embodiment and the modification, the example in which the cycloid reducer is applied to the reduction unit is illustrated, but the present invention is not limited to this, and other types of reduction devices such as a planetary gear reducer may be applied.
 さらに、図9に示した電気自動車11は、後輪14を駆動輪とした例を示したが、これに限ることなく、前輪13を駆動輪としてもよく、4輪駆動車であってもよい。なお、本明細書中で「電気自動車」とは、電力から駆動力を得る全ての自動車を含む概念であり、例えば、ハイブリッドカー等をも含むものとして理解すべきである。 Furthermore, although the electric vehicle 11 shown in FIG. 9 has shown the example which used the rear wheel 14 as the driving wheel, it is not restricted to this, The front wheel 13 may be used as a driving wheel and may be a four-wheel driving vehicle. . In the present specification, “electric vehicle” is a concept including all vehicles that obtain driving force from electric power, and should be understood as including, for example, a hybrid vehicle.
 本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々の形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。 The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the scope of the present invention. The scope of the present invention is not limited to patents. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.
11  電気自動車、12  シャーシ、12a  ホイールハウジング、12b  懸架装置、13  前輪、14  後輪、21  インホイールモータ駆動装置、22  ケーシング、22a  軸受装着面、22b  潤滑油排出口、22d  潤滑油貯留部、22e  潤滑油路、23a  ステータ、23b  ロータ、24  モータ回転軸、24b  潤滑油路、24c  潤滑油供給口、24d  溝、25  減速機入力軸、25a  偏心部、25b  偏心部、25c  潤滑油路、25d  潤滑油供給口、25e  潤滑油供給口、26a  曲線板、26b  曲線板、27  外ピン、27a  針状ころ軸受、28  減速機出力軸、29  カウンタウェイト、30b  貫通孔、31  内ピン、31a  針状ころ軸受、31b  スタビライザ、31c  円環部、31d  円筒部、32  ハブ輪、33  車輪用軸受、33a  内輪、33b  外輪、33c  玉、33d  保持器、33e  シール部材、33f  内側軌道面、36a  転がり軸受、36b  転がり軸受、37a  転がり軸受、37b  転がり軸受、41  転がり軸受、42  内輪、43  外側軌道面、44  円筒ころ、45 循環油路、45a  軸方向油路、45b  径方向油路、45c  径方向油路、46  転がり軸受、51  回転ポンプ、52  インナーロータ、53  アウターロータ、54  ポンプ室、55  吸入口、56  吐出口、60  外ピンハウジング、61  大径外径部、62  鍔部、62a  外側面、63  挟持部材、65  軸受装着面、66  軸受装着面、67  雌スプライン、68  貫通孔、68a  溝、80、80’  中空パイプ部材、80b、80b’  嵌合部、80c、80c’  突起、E  内径、F  内径 11 Electric car, 12 Chassis, 12a Wheel housing, 12b Suspension device, 13 Front wheel, 14 Rear wheel, 21 In-wheel motor drive device, 22 Casing, 22a Bearing mounting surface, 22b Lubricating oil discharge port, 22d Lubricating oil reservoir, 22e Lubricating oil passage, 23a stator, 23b rotor, 24 motor rotation shaft, 24b lubricating oil passage, 24c lubricating oil supply port, 24d groove, 25 speed reducer input shaft, 25a eccentric portion, 25b eccentric portion, 25c lubricating oil passage, 25d lubrication Oil supply port, 25e Lubricating oil supply port, 26a curved plate, 26b curved plate, 27 outer pin, 27a needle roller bearing, 28 reducer output shaft, 29 counterweight, 30b through hole, 31 inner pin, 3 a Needle roller bearing, 31b stabilizer, 31c annular part, 31d cylindrical part, 32 hub wheel, 33 wheel bearing, 33a inner ring, 33b outer ring, 33c ball, 33d retainer, 33e seal member, 33f inner raceway surface, 36a Rolling bearing, 36b Rolling bearing, 37a Rolling bearing, 37b Rolling bearing, 41 Rolling bearing, 42 Inner ring, 43 Outer raceway surface, 44 Cylindrical roller, 45 Circulating oil path, 45a Axial oil path, 45b Radial oil path, 45c Diameter Directional oil passage, 46, rolling bearing, 51, rotary pump, 52, inner rotor, 53, outer rotor, 54, pump chamber, 55, inlet, 56, outlet, 60, outer pin housing, 61, large diameter outer diameter, 62 collar, 2a outer surface, 63 clamping member, 65 bearing mounting surface, 66 bearing mounting surface, 67 female spline, 68 through hole, 68a groove, 80, 80 'hollow pipe member, 80b, 80b' fitting part, 80c, 80c 'projection , E inner diameter, F inner diameter

Claims (8)

  1.  モータ部と、減速部と、車輪用軸受部と、ケーシングとを備え、前記モータ部が、前記ケーシングに固定されたステータと、複数の転がり軸受を介して前記ケーシングに回転自在に支持されるモータ回転軸と、このモータ回転軸に装着されたロータとからなり、前記モータ部のモータ回転軸が前記減速部の減速機入力軸を回転駆動し、この減速機入力軸の回転を減速して減速機出力軸に伝達し、前記車輪用軸受部が前記減速機出力軸に連結され、内部に潤滑機構を備えたインホイールモータ駆動装置において、
     前記モータ回転軸のトルク伝達部の内周に、前記減速機入力軸のトルク伝達部の外周が嵌合し、前記潤滑機構の一部を構成する潤滑油路が、前記モータ回転軸と前記減速機入力軸のそれぞれの内部に形成されており、前記モータ回転軸に前記潤滑油路を形成する中空パイプ部材が嵌装されていることを特徴とするインホイールモータ駆動装置。
    A motor comprising a motor part, a speed reduction part, a wheel bearing part, and a casing, wherein the motor part is rotatably supported by the casing via a stator fixed to the casing and a plurality of rolling bearings. It consists of a rotating shaft and a rotor mounted on the motor rotating shaft, and the motor rotating shaft of the motor unit rotates the speed reducer input shaft of the speed reducing unit, decelerates the speed of the speed reducer input shaft and decelerates. An in-wheel motor drive device that is transmitted to a machine output shaft, the wheel bearing portion is connected to the speed reducer output shaft, and includes a lubrication mechanism therein;
    The outer periphery of the torque transmission part of the speed reducer input shaft is fitted to the inner periphery of the torque transmission part of the motor rotation shaft, and a lubricating oil path constituting a part of the lubrication mechanism is formed between the motor rotation shaft and the speed reduction part. An in-wheel motor drive device, characterized in that a hollow pipe member that is formed inside each machine input shaft and that forms the lubricating oil passage is fitted to the motor rotation shaft.
  2.  前記中空パイプ部材の内径と前記減速機入力軸の潤滑油路の内径とが略同一寸法に設定されていることを特徴とする請求項1に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 1, wherein the inner diameter of the hollow pipe member and the inner diameter of the lubricating oil passage of the speed reducer input shaft are set to be substantially the same size.
  3.  前記中空パイプ部材に潤滑油供給口が径方向に形成されると共に前記モータ回転軸にも潤滑油供給口が径方向に形成されていることを特徴とする請求項1又は請求項2に記載のインホイールモータ駆動装置。 The lubricating oil supply port is formed in the hollow pipe member in the radial direction, and the lubricating oil supply port is also formed in the radial direction in the motor rotating shaft. In-wheel motor drive device.
  4.  前記中空パイプ部材の潤滑油供給口の外周部に周方向の溝が形成されていることを特徴とする請求項1~3のいずれか一項に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to any one of claims 1 to 3, wherein a circumferential groove is formed in an outer peripheral portion of the lubricating oil supply port of the hollow pipe member.
  5.  前記中空パイプ部材の潤滑油供給口と前記モータ回転軸の潤滑油供給口のいずれか一方を他方よりも大きくしたことを特徴とする請求項3に記載のインホイールモータ駆動装置。 4. The in-wheel motor drive device according to claim 3, wherein one of the lubricating oil supply port of the hollow pipe member and the lubricating oil supply port of the motor rotating shaft is made larger than the other.
  6.  前記中空パイプ部材の潤滑油供給口と前記モータ回転軸の潤滑油供給口の位相を一致させたことを特徴とする請求項3又は請求項5に記載のインホイールモータ駆動装置。 The in-wheel motor drive device according to claim 3 or 5, wherein phases of the lubricating oil supply port of the hollow pipe member and the lubricating oil supply port of the motor rotating shaft are matched.
  7.  前記中空パイプ部材の潤滑油供給口と前記モータ回転軸の潤滑油供給口の位相を一致させるために、前記中空パイプ部材と前記モータ回転軸との間に位相合わせ用係合部を設けたことを特徴とする請求項3、5、6のいずれか一項に記載のインホイールモータ駆動装置。 In order to match the phases of the lubricating oil supply port of the hollow pipe member and the lubricating oil supply port of the motor rotating shaft, a phase matching engagement portion is provided between the hollow pipe member and the motor rotating shaft. The in-wheel motor drive apparatus as described in any one of Claim 3, 5, 6 characterized by these.
  8.  前記中空パイプ部材と前記モータ回転軸は軸端に締め代を有する嵌合構造であることを特徴とする請求項1~7のいずれか一項に記載のインホイールモータ駆動装置。
     
    The in-wheel motor drive device according to any one of claims 1 to 7, wherein the hollow pipe member and the motor rotation shaft have a fitting structure having a tightening margin at a shaft end.
PCT/JP2015/067971 2014-07-03 2015-06-23 In-wheel motor drive device WO2016002571A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014137585A JP2016014445A (en) 2014-07-03 2014-07-03 In-wheel motor driving gear
JP2014-137585 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002571A1 true WO2016002571A1 (en) 2016-01-07

Family

ID=55019115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067971 WO2016002571A1 (en) 2014-07-03 2015-06-23 In-wheel motor drive device

Country Status (2)

Country Link
JP (1) JP2016014445A (en)
WO (1) WO2016002571A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867881A (en) * 2018-09-28 2021-05-28 日本电产株式会社 Drive device
DE102020128934B3 (en) 2020-11-03 2021-11-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive unit for an electric vehicle
CN115076352A (en) * 2022-08-18 2022-09-20 南京南高齿新能源汽车传动设备有限公司 Oil pipe and electric driving device for high-speed shaft

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437033B2 (en) * 2017-03-28 2018-12-12 本田技研工業株式会社 Power transmission device
WO2022180876A1 (en) * 2021-02-24 2022-09-01 日本電産株式会社 Rotating electric machine and drive device
WO2022180875A1 (en) * 2021-02-24 2022-09-01 日本電産株式会社 Rotating electric machine and drive device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063043A (en) * 2007-09-05 2009-03-26 Ntn Corp In-wheel motor driving device
JP2010121701A (en) * 2008-11-19 2010-06-03 Ntn Corp In-wheel motor driving device
JP2011189919A (en) * 2010-03-17 2011-09-29 Ntn Corp In-wheel motor driving device
JP2012077848A (en) * 2010-10-01 2012-04-19 Toyota Motor Corp Lubricating structure of compound planetary gear device
WO2012105482A1 (en) * 2011-02-04 2012-08-09 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063043A (en) * 2007-09-05 2009-03-26 Ntn Corp In-wheel motor driving device
JP2010121701A (en) * 2008-11-19 2010-06-03 Ntn Corp In-wheel motor driving device
JP2011189919A (en) * 2010-03-17 2011-09-29 Ntn Corp In-wheel motor driving device
JP2012077848A (en) * 2010-10-01 2012-04-19 Toyota Motor Corp Lubricating structure of compound planetary gear device
WO2012105482A1 (en) * 2011-02-04 2012-08-09 アイシン・エィ・ダブリュ株式会社 Drive device for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867881A (en) * 2018-09-28 2021-05-28 日本电产株式会社 Drive device
DE102020128934B3 (en) 2020-11-03 2021-11-04 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Drive unit for an electric vehicle
CN115076352A (en) * 2022-08-18 2022-09-20 南京南高齿新能源汽车传动设备有限公司 Oil pipe and electric driving device for high-speed shaft
CN115076352B (en) * 2022-08-18 2022-11-01 南京南高齿新能源汽车传动设备有限公司 Oil pipe and electric driving device for high-speed shaft

Also Published As

Publication number Publication date
JP2016014445A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
JP5158861B2 (en) In-wheel motor drive device
JP5778433B2 (en) In-wheel motor drive device
JP5374215B2 (en) Cycloid reducer, in-wheel motor drive device, and vehicle motor drive device
JP5079431B2 (en) In-wheel motor drive device
JP5032382B2 (en) Motor drive device and in-wheel motor drive device
JP6301125B2 (en) In-wheel motor drive device
WO2016002571A1 (en) In-wheel motor drive device
US20160167505A1 (en) In-wheel motor drive device
JP2015137733A (en) In-wheel motor drive unit
JP5687839B2 (en) In-wheel motor drive device
JP2009262616A (en) Motor driving device and in-wheel motor driving device
WO2012111411A1 (en) Device for driving in-wheel motor
JP5010490B2 (en) Motor drive device and in-wheel motor drive device
JP5176183B2 (en) In-wheel motor drive device
WO2016047442A1 (en) In-wheel motor drive apparatus
WO2015046087A1 (en) In-wheel motor drive device
JP2016179799A (en) Motor drive unit for vehicle
JP2016160980A (en) Vehicular motor drive device
WO2016017351A1 (en) Cycloidal speed reducer and in-wheel motor drive device provided with same
JP6324761B2 (en) In-wheel motor drive device
WO2015060135A1 (en) In-wheel motor driving device
JP2008275094A (en) In-wheel motor drive unit
JP6333579B2 (en) In-wheel motor drive device
JP2008207585A (en) In-wheel motor drive unit
JP4918051B2 (en) Motor drive device and in-wheel motor drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815802

Country of ref document: EP

Kind code of ref document: A1