WO2016002560A1 - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
WO2016002560A1
WO2016002560A1 PCT/JP2015/067867 JP2015067867W WO2016002560A1 WO 2016002560 A1 WO2016002560 A1 WO 2016002560A1 JP 2015067867 W JP2015067867 W JP 2015067867W WO 2016002560 A1 WO2016002560 A1 WO 2016002560A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
detection unit
wavelength
housing
opening
Prior art date
Application number
PCT/JP2015/067867
Other languages
French (fr)
Japanese (ja)
Inventor
勉 篠崎
右一 佐藤
悠平 福島
西村 望
敏晶 深井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016531275A priority Critical patent/JP6705593B2/en
Publication of WO2016002560A1 publication Critical patent/WO2016002560A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid

Abstract

A measuring device (10) that comprises: a casing (100); an opening (102) that is provided in one part of the casing (100); a light-emitting unit (120) that is arranged inside the casing (100) and that radiates toward the opening (102) light that includes a first wavelength; a first light-detecting unit (140) that is arranged inside the casing (100) so as to be directed toward the opening (102) and that detects light of the first wavelength; a reflecting member (130) that is arranged in a location that does not overlap an optical axis (L) of the light-emitting unit (120) but that overlaps a radiation area (A) of the light from the light-emitting unit (120); and a second light-detecting unit (142) that is arranged inside the casing (100) so as to be directed toward a location that overlaps the radiation area of the light, and that detects light of the first wavelength.

Description

測定装置measuring device
 本発明は、光を用いて特定の成分を検出して測定する測定装置に関する。 The present invention relates to a measuring apparatus that detects and measures a specific component using light.
 測定対象に含まれる特定の成分を検出する方法の一つに、その成分によって吸収される波長の光を測定対象に照射し、測定対象におけるその光の吸収量を測定する方法がある。例えば特許文献1には、血液中の血糖値を測定するための装置が開示されている。この装置において、ベース部の上面には光源、受光素子、及び導波路が設けられている。そしてベース部の下面に導波路の一部を露出させ、この一部から光源が生成した光を照射する。またこの一部には、反射光が入射する。入射した反射光は、受光素子に導波される。 One method for detecting a specific component contained in a measurement target is to irradiate the measurement target with light having a wavelength absorbed by the component and measure the amount of light absorbed by the measurement target. For example, Patent Document 1 discloses an apparatus for measuring a blood sugar level in blood. In this apparatus, a light source, a light receiving element, and a waveguide are provided on the upper surface of the base portion. And a part of waveguide is exposed to the lower surface of a base part, and the light which the light source produced | generated from this part is irradiated. In addition, reflected light is incident on this part. The incident reflected light is guided to the light receiving element.
 また特許文献2には、皮膚に対して光を斜め方向に照射し、かつ、複数の受光部を斜めかつ間隔をあけて配置することが記載されている。特許文献2に記載の技術は、皮膚や血液に含まれるグルコースを測定することを目的としたものである。 Further, Patent Document 2 describes that light is applied to the skin in an oblique direction, and a plurality of light receiving portions are arranged obliquely and spaced apart. The technique described in Patent Document 2 is intended to measure glucose contained in skin and blood.
特開2011-245069号公報JP 2011-245069 A 特表2005-513491号公報JP 2005-513491 A
 光源から放射される光に関して、その光の強度や波長等は、例えば湿度や光源の温度などの環境によって変動し得る。光源から放射される光が変動すると、光を用いて特定の成分を検出する際に、対象とする成分の測定精度が低下し得る。そのため、このような環境に起因する光源の光の変動による影響を抑え、測定精度を向上させ得る技術が望まれる。 Regarding the light emitted from the light source, the intensity and wavelength of the light may vary depending on the environment such as humidity and the temperature of the light source. If the light emitted from the light source fluctuates, the measurement accuracy of the target component may be reduced when a specific component is detected using the light. Therefore, there is a demand for a technique that can suppress the influence of the light source fluctuation caused by such an environment and improve the measurement accuracy.
 本発明の目的は、光を用いて特定の成分を検出して測定する際、環境に起因する光源の光の変動による影響を抑え、測定精度を向上させ得る技術を提供することにある。 An object of the present invention is to provide a technique capable of improving measurement accuracy by suppressing the influence of fluctuations in light of a light source caused by the environment when detecting and measuring a specific component using light.
 本発明によれば、
 筐体と、
 前記筐体の一部に設けられた開口と、
 前記筐体の内部に配置され、第1波長を含む光を前記開口に向けて放射する発光手段と、
 前記筐体の内部に前記開口に向けて配置され、前記第1波長の光を検出する第1光検出手段と、
 前記発光手段の光軸に重ならず、前記発光手段の光の放射領域と重なる位置に配置された反射部材と、
 前記筐体の内部に前記光の放射領域と重なる位置に向けて配置され、前記第1波長の光を検出する第2光検出手段と、
 を備える測定装置が提供される。
According to the present invention,
A housing,
An opening provided in a part of the housing;
A light emitting means disposed inside the housing and emitting light including a first wavelength toward the opening;
A first light detecting means arranged in the housing toward the opening and detecting the light of the first wavelength;
A reflecting member disposed not at the optical axis of the light emitting means but at a position overlapping the light emission region of the light emitting means;
A second light detecting means disposed in the casing toward a position overlapping with the light emission region, and detecting light of the first wavelength;
A measuring device is provided.
 本発明によれば、光を用いて特定の成分を検出して測定する際、環境に起因する光源の光の変動による影響を抑え、測定精度を向上させることできる。 According to the present invention, when detecting and measuring a specific component using light, it is possible to suppress the influence due to light fluctuation of the light source caused by the environment and improve the measurement accuracy.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1実施形態における測定装置の構成を概念的に示すブロック図である。It is a block diagram which shows notionally the structure of the measuring apparatus in 1st Embodiment. 反射部材が設けられる面を上面から見た場合の図である。It is a figure at the time of seeing the surface in which a reflective member is provided from the upper surface. 第2実施形態における測定装置の構成を概念的に示すブロック図である。It is a block diagram which shows notionally the structure of the measuring apparatus in 2nd Embodiment. 第3実施形態における測定装置の構成を概念的に示すブロック図である。It is a block diagram which shows notionally the structure of the measuring apparatus in 3rd Embodiment.
 以下、本発明の実施形態について、図面を用いて説明する。尚、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate.
 なお、以下に示す説明において、測定装置10の構成要素は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。例えば、補正部144、制御部150及び算出部160は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。 In the following description, the constituent elements of the measuring apparatus 10 indicate functional unit blocks, not hardware unit configurations. For example, the correction unit 144, the control unit 150, and the calculation unit 160 include a CPU, a memory, a program that implements the components shown in the figure loaded in the memory, a storage medium such as a hard disk that stores the program, and a network. It is realized by any combination of hardware and software, centering on the connection interface. There are various modifications of the implementation method and apparatus.
[第1実施形態]
 〔処理構成〕
 図1は、第1実施形態における測定装置10の構成を概念的に示すブロック図である。本実施形態の測定装置10は、筐体100、発光部120、反射部材130、第1光検出部140、及び第2光検出部142を備えている。筐体100には、開口102が設けられている。発光部120、反射部材130、第1光検出部140及び第2光検出部142は、筐体100の内部に配置されている。発光部120は、第1波長を含む光を開口102に向けて放射する。第1光検出部140は、開口102に向けて配置されており、第1波長の光を検出する。例えば、第1光検出部140の光軸は開口102を通っており、第1波長の光の強度を検出する。なお、第1光検出部140の光軸は、例えば第1光検出部140の受光面の中心を通り、かつ第1光検出部140の受光面に対して垂直な線として定義される。図1に例示されるように、発光部120の光軸Lと第1光検出部140の光軸は、筐体100の外部の位置αで交わる。反射部材130は、発光部120の光軸Lに重ならない位置において、発光部120の光の放射領域Aの一部を含むように配置されており、発光部120から放射された光の一部を反射する。第2光検出部142は、反射部材130と光の放射領域Aとが重なる位置に向けて配置され、第1光検出部140と同様に、第1波長の光を検出する。例えば、第2光検出部142の光軸は反射部材130と発光部120の放射領域Aとが重なる位置を通っており、第1波長の光の強度を検出する。なお、第2光検出部142の光軸は、例えば第2光検出部142の受光面の中心を通り、かつ第2光検出部142の受光面に対して垂直な線として定義される。図1に例示されるように、本実施形態において、発光部120の光軸Lと第2光検出部142の光軸は、筐体100の内部の位置βで交わる。また、図1に示されるように、補正部144が更に備えられている。補正部144は、例えば、測定装置10の内部に備えられていてもよいし、測定装置10と通信可能に接続された他の装置に備えられていてもよい。以下、詳細に説明する。
[First Embodiment]
[Processing configuration]
FIG. 1 is a block diagram conceptually showing the structure of the measuring apparatus 10 in the first embodiment. The measuring apparatus 10 of this embodiment includes a housing 100, a light emitting unit 120, a reflecting member 130, a first light detection unit 140, and a second light detection unit 142. The housing 100 is provided with an opening 102. The light emitting unit 120, the reflecting member 130, the first light detection unit 140, and the second light detection unit 142 are disposed inside the housing 100. The light emitting unit 120 emits light including the first wavelength toward the opening 102. The first light detection unit 140 is disposed toward the opening 102 and detects light having the first wavelength. For example, the optical axis of the first light detection unit 140 passes through the opening 102 and detects the intensity of the first wavelength light. The optical axis of the first light detection unit 140 is defined as a line that passes through the center of the light receiving surface of the first light detection unit 140 and is perpendicular to the light receiving surface of the first light detection unit 140, for example. As illustrated in FIG. 1, the optical axis L of the light emitting unit 120 and the optical axis of the first light detection unit 140 intersect at a position α outside the housing 100. The reflecting member 130 is disposed so as to include a part of the light emission region A of the light emitting unit 120 at a position that does not overlap the optical axis L of the light emitting unit 120, and a part of the light emitted from the light emitting unit 120. To reflect. The second light detection unit 142 is disposed toward a position where the reflection member 130 and the light emission region A overlap each other, and detects the light having the first wavelength, similarly to the first light detection unit 140. For example, the optical axis of the second light detection unit 142 passes through a position where the reflection member 130 and the emission region A of the light emitting unit 120 overlap, and detects the intensity of the first wavelength light. The optical axis of the second light detection unit 142 is defined as a line that passes through the center of the light receiving surface of the second light detection unit 142 and is perpendicular to the light receiving surface of the second light detection unit 142, for example. As illustrated in FIG. 1, in the present embodiment, the optical axis L of the light emitting unit 120 and the optical axis of the second light detection unit 142 intersect at a position β inside the housing 100. Further, as shown in FIG. 1, a correction unit 144 is further provided. For example, the correction unit 144 may be provided in the measurement apparatus 10 or may be provided in another apparatus that is connected to the measurement apparatus 10 so as to be communicable. Details will be described below.
 測定装置10は、例えば生体の皮膚、例えば真皮組織の間質液に含まれる糖分(例えばグルコース)を測定する装置である。この場合、第1波長は近赤外域(例えば1200nm以上3000nm以下)である。そして測定装置10は、対象物20(例えば、生体の皮膚)を開口102に近接させた状態で使用される。 The measuring device 10 is a device that measures a sugar content (for example, glucose) contained in an interstitial fluid of living skin, for example, dermal tissue. In this case, the first wavelength is in the near infrared region (for example, 1200 nm or more and 3000 nm or less). The measuring device 10 is used in a state in which the object 20 (for example, biological skin) is brought close to the opening 102.
 筐体100は、例えば樹脂や金属を用いて形成されている。筐体100の一面には開口102が設けられている。筐体100は、複数の部品または複数の部材で構成されていてもよい。筐体100に設けられている開口102は、例えば、第1波長の光を透過する透光部材(図示せず)によって塞がれていてもよい。透光部材は、例えばガラスや樹脂で形成された板状の部材である。透光部材は、平板であってもよいし、筐体100の外部の位置αで交わるように設計されていれば、少し湾曲していてもよい。 The housing 100 is formed using, for example, resin or metal. An opening 102 is provided on one surface of the housing 100. The housing 100 may be composed of a plurality of components or a plurality of members. The opening 102 provided in the housing 100 may be closed by, for example, a translucent member (not shown) that transmits light of the first wavelength. The translucent member is a plate-like member made of, for example, glass or resin. The translucent member may be a flat plate or may be slightly curved as long as it is designed to intersect at a position α outside the housing 100.
 発光部120は、光源として、例えばLED(Light Emitting Diode)やレーザダイオードなどの発光素子を有している。この光源は、第1波長の光を他の波長の光よりも強く発光するのが好ましい。また、図示はしていないが、特定の波長のみを透過する光学フィルタが、発光部120の発光素子から放射される光の進路上に配置されていてもよい。発光部120の光軸は、開口102に向けて配置されている。このため、生体の皮膚を筐体100に設けられている開口102に近接させたとき、発光部120の光軸は当該皮膚の表面に対して斜めになる。 The light emitting unit 120 includes a light emitting element such as an LED (Light Emitting Diode) or a laser diode as a light source. This light source preferably emits light of the first wavelength stronger than light of other wavelengths. Although not shown, an optical filter that transmits only a specific wavelength may be arranged on the path of light emitted from the light emitting element of the light emitting unit 120. The optical axis of the light emitting unit 120 is disposed toward the opening 102. For this reason, when the skin of the living body is brought close to the opening 102 provided in the housing 100, the optical axis of the light emitting unit 120 is inclined with respect to the surface of the skin.
 第1光検出部140は、フォトダイオードなどの光電変換素子を有している。この光電変換素子は、第1波長の光に対する感度が他の波長の光の感度よりも高いのが好ましい。または、図示はしていないが、特定の波長に対する感度を上げるために、特定の波長のみを透過する光学フィルタを光電変換素子の直前に配置してもよい。第1光検出部140の受光面は、開口102が設けられている筐体100の外面に対して斜めに配置されている。第1光検出部140の光軸は、図1に例示されるように、発光部120の光軸Lと筐体100の外部の位置αにおいて交わっている。この場合、2つの光軸の交点αと、開口102が設けられている筐体100の外面との間隔は、2mm以下、好ましくは1.5mm以下である。また、間隔は、0,5mm以上であるのが好ましい。また、2つの光軸が成す角度θは、例えば60°以上120°以下である。なお、筐体100の開口102が設けられている面に対して発光部120の光軸が成す角度と、筐体100の開口102が設けられている面に対して第1光検出部140の光軸が成す角度は、互いに等しいのが好ましい。 The first light detection unit 140 includes a photoelectric conversion element such as a photodiode. This photoelectric conversion element preferably has higher sensitivity to light of the first wavelength than sensitivity of light of other wavelengths. Alternatively, although not shown, an optical filter that transmits only a specific wavelength may be disposed immediately before the photoelectric conversion element in order to increase sensitivity to a specific wavelength. The light receiving surface of the first light detection unit 140 is disposed obliquely with respect to the outer surface of the housing 100 in which the opening 102 is provided. As illustrated in FIG. 1, the optical axis of the first light detection unit 140 intersects the optical axis L of the light emitting unit 120 at a position α outside the housing 100. In this case, the distance between the intersection α of the two optical axes and the outer surface of the housing 100 provided with the opening 102 is 2 mm or less, preferably 1.5 mm or less. The interval is preferably 0.5 mm or more. The angle theta 1 which the two optical axes forms is, for example, 60 ° 120 ° or more or less. Note that the angle formed by the optical axis of the light emitting unit 120 with respect to the surface of the housing 100 on which the opening 102 is provided, and the first light detection unit 140 with respect to the surface of the housing 100 on which the opening 102 is provided. The angles formed by the optical axes are preferably equal to each other.
 第2光検出部142も、第1光検出部140と同様に、フォトダイオードなどの光電変換素子を有している。第2光検出部142の光電変換素子も、第1光検出部140と同様に、第1波長の光に対する感度が他の波長の光の感度よりも高いのが好ましい。または、図示はしていないが、特定の波長に対する感度を上げるために、特定の波長のみを透過する光学フィルタを光電変換素子の直前に配置してもよい。第2光検出部142の受光面は、反射部材130に向けられており、開口102が設けられている筐体100の外面に対して斜めに配置されている。第2光検出部142の光軸は、図1に例示されるように、発光部120の光軸Lと筐体100の内部の位置βにおいて交わっている。また、2つの光軸が成す角度θは、例えば60°以上120°以下である。なお、筐体100の開口102が設けられている面に対して発光部120の光軸が成す角度と、筐体100の開口102が設けられている面に対して第2光検出部142の光軸が成す角度は、互いに等しいのが好ましい。 Similar to the first light detection unit 140, the second light detection unit 142 also includes a photoelectric conversion element such as a photodiode. Similarly to the first light detection unit 140, the photoelectric conversion element of the second light detection unit 142 preferably has higher sensitivity to light of the first wavelength than that of light of other wavelengths. Alternatively, although not shown, an optical filter that transmits only a specific wavelength may be disposed immediately before the photoelectric conversion element in order to increase sensitivity to a specific wavelength. The light receiving surface of the second light detection unit 142 faces the reflecting member 130 and is disposed obliquely with respect to the outer surface of the housing 100 in which the opening 102 is provided. As illustrated in FIG. 1, the optical axis of the second light detection unit 142 intersects with the optical axis L of the light emitting unit 120 at a position β inside the housing 100. The angle theta 2 which the two optical axes forms is, for example, 60 ° 120 ° or more or less. The angle formed by the optical axis of the light emitting unit 120 with respect to the surface of the housing 100 on which the opening 102 is provided, and the second light detection unit 142 with respect to the surface of the housing 100 on which the opening 102 is provided. The angles formed by the optical axes are preferably equal to each other.
 反射部材130は、光を反射する性質を有しており、発光部120から放射された光を反射する。また、反射部材130は、図1に例示されるように、発光部120の光軸Lに重ならず、発光部120の光の放射領域Aに重なる位置に配置されている。但し、反射部材130が配置される位置は図1の例に制限されない。 The reflecting member 130 has a property of reflecting light, and reflects the light emitted from the light emitting unit 120. In addition, as illustrated in FIG. 1, the reflecting member 130 is disposed at a position that does not overlap the optical axis L of the light emitting unit 120 but overlaps the light emission region A of the light emitting unit 120. However, the position where the reflecting member 130 is disposed is not limited to the example of FIG.
 反射部材130が配置される位置について、図2の例を用いて説明する。図2は、反射部材130が設けられる面を上面から見た場合の図である。図2では、点線で示される円が、反射部材130が配置される面における、発光部120の光の放射領域Aを示している。また、図2では、点線で示される円の中心が、発光部120の光軸Lを示している。図2に例示されるように、反射部材130は、発光部120の光軸Lに重ならず、放射領域Aの一部分A'(図2の斜線部)で発光部120から放射される光に重なるように配置されている。反射部材130は、この一部分A'を通る光を、第2光検出部142に向けて反射する。なお、図2は放射領域Aが円形である場合を示しているが、これはあくまで一例であり、放射領域Aの形状は円形に制限されない。例えば、発光部120の構造によっては、放射領域Aは円形以外の形状(例えば、多角形形状や様々な形状を組み合わせた形状など)も取り得る。 The position where the reflecting member 130 is disposed will be described with reference to the example of FIG. FIG. 2 is a diagram when the surface on which the reflecting member 130 is provided is viewed from above. In FIG. 2, a circle indicated by a dotted line indicates the light emission region A of the light emitting unit 120 on the surface where the reflecting member 130 is disposed. In FIG. 2, the center of the circle indicated by the dotted line indicates the optical axis L of the light emitting unit 120. As illustrated in FIG. 2, the reflecting member 130 does not overlap the optical axis L of the light emitting unit 120, but converts the light emitted from the light emitting unit 120 in a part A ′ of the radiation region A (shaded portion in FIG. 2). They are arranged so as to overlap. The reflection member 130 reflects the light passing through the part A ′ toward the second light detection unit 142. FIG. 2 shows a case where the radiation area A is circular, but this is only an example, and the shape of the radiation area A is not limited to a circle. For example, depending on the structure of the light emitting unit 120, the radiation region A may have a shape other than a circle (for example, a polygonal shape or a shape obtained by combining various shapes).
 反射部材130は、発光部120から当該反射部材130が配置される面を通る光のうち、例えば5~10%の範囲の光を遮るように配置される。ここで、反射部材130によって反射される光は、反射部材130の位置や形状などによって調整することができる。具体的には、反射部材130の位置や形状などによって一部分A'の面積が調整され、結果として、発光部120から放射される光に対する、反射部材130によって反射される光の割合が調整できる。より明確には、例えば、光軸Lにおける光の強度を基準として所定以上(例えば20%以上等)の光の強度を有する範囲を光の放射範囲と定義した場合に、反射部材130は当該光の放射範囲において例えば5~10%分を占めるように配置される。また理想的には、反射部材130は、第1光検出部140で検出される光量と第2光検出部142で検出される光量とが略等しくなるように配置されていると好ましい。実際には、第1光検出部140で検出される光は対象物20に当たることによって大きく(約90%程度)減衰するため、反射部材130は、発光部120から放射される光の5%程度を反射するような位置に設けられていればよい。 The reflection member 130 is disposed so as to block light in the range of 5 to 10%, for example, of the light passing through the surface on which the reflection member 130 is disposed from the light emitting unit 120. Here, the light reflected by the reflecting member 130 can be adjusted by the position and shape of the reflecting member 130. Specifically, the area of part A ′ is adjusted depending on the position and shape of the reflecting member 130, and as a result, the ratio of the light reflected by the reflecting member 130 to the light emitted from the light emitting unit 120 can be adjusted. More specifically, for example, when a range having a predetermined or higher (for example, 20% or higher) light intensity with respect to the light intensity at the optical axis L is defined as a light emission range, the reflecting member 130 is For example, 5 to 10% of the radiation range is arranged. Ideally, the reflecting member 130 is preferably disposed so that the light amount detected by the first light detection unit 140 and the light amount detected by the second light detection unit 142 are substantially equal. Actually, since the light detected by the first light detection unit 140 is greatly attenuated (about 90%) when it hits the object 20, the reflecting member 130 is about 5% of the light emitted from the light emitting unit 120. It is only necessary to be provided at a position where the light is reflected.
 これにより、発光部120から開口102に向けて放射された光の大部分を通しつつ、第2光検出部142で実行される測定に必要な量の光を反射させることができる。なお、反射部材130の形状は、図2の例に制限されない。反射部材130は、例えば、円弧状や多角形形状、又はそれらを組み合わせた形状等、様々な形状を取り得る。また、反射部材130は、複数個に分割して設けられていてもよい。 Thereby, it is possible to reflect the amount of light necessary for the measurement performed by the second light detection unit 142 while passing most of the light emitted from the light emitting unit 120 toward the opening 102. The shape of the reflecting member 130 is not limited to the example of FIG. The reflecting member 130 can take various shapes such as an arc shape, a polygonal shape, or a combination thereof. Further, the reflecting member 130 may be divided into a plurality of pieces.
 補正部144は、第1光検出部140で検出された光の強度および第2光検出部142で検出された光の強度をそれぞれ受け取る。そして、補正部144は、第2光検出部142で検出された光の強度を用いて、第1光検出部140で検出された光の強度を補正する。具体的には、補正部144は、第1光検出部140で検出された光の強度を、第2光検出部142で検出された光の強度で除算する。これにより、第1光検出部140で検出された光の強度が、第2光検出部142で検出された光の強度を基に補正される。 The correction unit 144 receives the light intensity detected by the first light detection unit 140 and the light intensity detected by the second light detection unit 142, respectively. Then, the correction unit 144 corrects the light intensity detected by the first light detection unit 140 using the light intensity detected by the second light detection unit 142. Specifically, the correction unit 144 divides the light intensity detected by the first light detection unit 140 by the light intensity detected by the second light detection unit 142. Thereby, the light intensity detected by the first light detection unit 140 is corrected based on the light intensity detected by the second light detection unit 142.
 なお、対象物20に含まれる測定対象の量又は濃度は、例えば下記の式1に基づいて算出される。下記の式1において、δは対象物20に含まれる測定対象の量又は濃度、Iは第1光検出部140で検出された光の強度、Iは第2光検出部142で検出された光の強度、εは光の強度から測定対象の量又は濃度を算出する関数をそれぞれ示す。下記式1の右辺において、第1光検出部140で検出された光の強度Iは第2光検出部142で検出された光の強度Iによって補正されている。なお、光の強度から量又は濃度を算出する関数εは、例えば、予め強度が分かっている特定の波長の光と、予め測定対象の量又は濃度が分かっている対象物とを用いて実測すること等によって定義される。また、異なる測定対象毎に複数の関数を求めて測定装置10に設定しておき、図示しない入力部によって測定装置10の測定対象を切り替えるように構成することもできる。 The amount or concentration of the measurement target included in the object 20 is calculated based on, for example, the following formula 1. In Equation 1 below, δ is the amount or concentration of the measurement target contained in the object 20, I 1 is the intensity of light detected by the first light detection unit 140, and I 2 is detected by the second light detection unit 142. The light intensity, ε, represents a function for calculating the amount or concentration of the measurement object from the light intensity. In the right side of Equation 1 below, the light intensity I 1 detected by the first light detector 140 is corrected by the light intensity I 2 detected by the second light detector 142. The function ε for calculating the amount or concentration from the light intensity is measured using, for example, light of a specific wavelength whose intensity is known in advance and an object whose amount or concentration of the measurement object is known in advance. It is defined by. It is also possible to obtain a plurality of functions for different measurement objects and set them in the measurement apparatus 10 so that the measurement object of the measurement apparatus 10 is switched by an input unit (not shown).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 〔第1実施形態の作用と効果〕
 上記したように、測定装置10を使用するときには、生体の皮膚等の対象物20は開口102に近接する。この状態で、発光部120は発光する。発光部120から放射された光は皮膚の少なくとも真皮組織に侵入し、細胞壁等によって散乱される。そして第1光検出部140は、この散乱光の一部を検出する。発光部120から放射された光が第1光検出部140によって検出されるまでの光路において、この光の一部は、皮膚内の特定の成分、例えば間質液に含まれるグルコースなどの糖分によって吸収される。従って、第1光検出部140が検出した光から測定される強度に基づいて、皮膚内の特定の成分の濃度を算出することができる。
[Operation and Effect of First Embodiment]
As described above, when the measuring apparatus 10 is used, the target object 20 such as a living skin is close to the opening 102. In this state, the light emitting unit 120 emits light. The light emitted from the light emitting unit 120 enters at least the dermis tissue of the skin and is scattered by the cell wall or the like. And the 1st light detection part 140 detects a part of this scattered light. In the optical path until the light emitted from the light emitting unit 120 is detected by the first light detection unit 140, a part of this light is caused by a specific component in the skin, for example, sugar such as glucose contained in the interstitial fluid. Absorbed. Accordingly, the concentration of a specific component in the skin can be calculated based on the intensity measured from the light detected by the first light detection unit 140.
 また、本実施形態では、第2光検出部142において、反射部材130で反射された光が検出され、その強度が測定される。反射部材130で反射された光は、測定対象を経由していないため、第2光検出部142で検出された光の強度は実際に発光部120から放射された光の強度に比例する。このため、第2光検出部142で検出された光の強度を用いて、第1光検出部140で検出された光の強度を補正することができる。言い換えると、第1光検出部140で検出される光の強度は、温度などの環境に起因する光源の光の変動をキャンセルした状態に補正される。よって、本実施形態によれば、測定装置10の測定精度を向上させる効果が見込める。 In the present embodiment, the second light detection unit 142 detects the light reflected by the reflecting member 130 and measures the intensity thereof. Since the light reflected by the reflecting member 130 does not pass through the measurement target, the intensity of the light detected by the second light detection unit 142 is proportional to the intensity of the light actually emitted from the light emitting unit 120. For this reason, the light intensity detected by the first light detection unit 140 can be corrected using the light intensity detected by the second light detection unit 142. In other words, the intensity of the light detected by the first light detection unit 140 is corrected to a state in which the fluctuation of the light of the light source due to the environment such as temperature is canceled. Therefore, according to this embodiment, the effect of improving the measurement accuracy of the measurement apparatus 10 can be expected.
 また、本実施形態の第2光検出部142の光軸は、図1に例示されるように、筐体100の内部で発光部120の光軸と交わっている。そのため、筐体100の外部からの光が第2光検出部142に入りにくい構造となっている。また、第2光検出部142の光軸と発光部120の光軸との交点の筐体100の内部での位置をさらに工夫することによって、筐体100の外部からの光が第2光検出部142に入らない構造とする方が望ましい。第2光検出部142をこのように配置することで、本実施形態の第2光検出部142は発光部120から放射された純粋な光を精度よく検出することができ、結果として、環境に起因する光源の光の変動による影響を抑える精度を高めることができる。 Further, the optical axis of the second light detection unit 142 of the present embodiment intersects with the optical axis of the light emitting unit 120 inside the housing 100 as illustrated in FIG. For this reason, light from the outside of the housing 100 is difficult to enter the second light detection unit 142. Further, by further devising the position of the intersection of the optical axis of the second light detection unit 142 and the optical axis of the light emitting unit 120 inside the housing 100, the light from the outside of the housing 100 is detected by the second light. It is desirable that the structure does not enter the portion 142. By arranging the second light detection unit 142 in this way, the second light detection unit 142 of the present embodiment can accurately detect the pure light emitted from the light emitting unit 120, and as a result, the environment The precision which suppresses the influence by the fluctuation | variation of the light of the resulting light source can be improved.
 また、本実施形態において、反射部材130は、例えば、当該反射部材130の材質や表面のコーティング加工などによって、入射する光を乱反射させるように構成されていることが好ましい。これにより、発光部120から放射される光の一部が反射部材130によって乱反射する。光が乱反射することにより、例えば、各測定装置10の製造誤差や、外圧や温度などに起因する筐体100の歪みなどによって反射部材130の位置にずれが生じた場合であっても、第2光検出部142に入射する光の強度のばらつきを抑えることができる。結果として、反射部材130の位置のずれによる影響を低減させ、第2光検出部142による測定精度の向上効果を安定して得ることができる。 Further, in the present embodiment, the reflecting member 130 is preferably configured to irregularly reflect incident light by, for example, the material of the reflecting member 130 or a surface coating process. As a result, part of the light emitted from the light emitting unit 120 is irregularly reflected by the reflecting member 130. Even if the position of the reflecting member 130 is displaced due to, for example, manufacturing error of each measuring device 10 or distortion of the housing 100 due to external pressure, temperature, or the like due to irregular reflection of light, the second Variations in the intensity of light incident on the light detection unit 142 can be suppressed. As a result, it is possible to reduce the influence due to the positional deviation of the reflecting member 130 and to stably obtain the effect of improving the measurement accuracy by the second light detection unit 142.
[第2実施形態]
 〔処理構成〕
 図3は、第2実施形態における測定装置の構成を概念的に示すブロック図である。本実施形態の測定装置10は、以下の点を除いて、第1実施形態の測定装置10と同様の構成である。
[Second Embodiment]
[Processing configuration]
FIG. 3 is a block diagram conceptually showing the structure of the measuring apparatus in the second embodiment. The measurement apparatus 10 of the present embodiment has the same configuration as the measurement apparatus 10 of the first embodiment except for the following points.
 まず、発光部120は、光源122及びレンズ124を有している。光源122は、第1実施形態に示した発光素子を有している。レンズ124は、光源122からの光を集光する。レンズ124による光源122からの光の集光点は、開口102よりも外側に位置している。この集光点は、第1光検出部140の光軸と重なる、言い換えると2つの光軸が交わる位置αと重なるのが好ましい。 First, the light emitting unit 120 includes a light source 122 and a lens 124. The light source 122 has the light emitting element shown in the first embodiment. The lens 124 condenses the light from the light source 122. The condensing point of the light from the light source 122 by the lens 124 is located outside the opening 102. This condensing point preferably overlaps the optical axis of the first light detection unit 140, in other words, overlaps the position α where the two optical axes intersect.
 また、本実施形態の測定装置10は、補正部144、制御部150、算出部160、表示部170、及び入力部180を有している。 In addition, the measurement apparatus 10 according to the present embodiment includes a correction unit 144, a control unit 150, a calculation unit 160, a display unit 170, and an input unit 180.
 入力部180は、測定装置10のユーザによって操作される。入力部180は、例えば押下型又は接触型のスイッチであり、筐体100の外面に位置している。制御部150は、入力部180に入力が行われると、発光部120を発光させる。 The input unit 180 is operated by the user of the measuring apparatus 10. The input unit 180 is, for example, a push type or contact type switch, and is located on the outer surface of the housing 100. The control unit 150 causes the light emitting unit 120 to emit light when input is made to the input unit 180.
 算出部160は、補正部144によって補正された後の、第1光検出部140で検出された光の強度を用いて、測定対象における特定成分の量又は濃度、例えば皮膚の間質液に含まれる糖分(例えばグルコース)の量又は濃度を算出する。算出部160は、例えば上記式1を用いて、皮膚の間質液に含まれる糖分(例えばグルコース)の量又は濃度を算出することができる。そして算出部160は、算出した結果を表示部170に表示させる。表示部170は筐体100の外面に位置しているため、測定装置10のユーザは、表示部170を視認することにより、測定装置10による測定結果を認識することができる。 The calculation unit 160 uses the intensity of light detected by the first light detection unit 140 after being corrected by the correction unit 144, and is included in the amount or concentration of a specific component in the measurement target, for example, interstitial fluid of the skin The amount or concentration of sugar (e.g., glucose) to be obtained is calculated. The calculation unit 160 can calculate the amount or concentration of a sugar (eg, glucose) contained in the interstitial fluid of the skin using, for example, the above formula 1. Then, the calculation unit 160 causes the display unit 170 to display the calculated result. Since the display unit 170 is located on the outer surface of the housing 100, the user of the measurement apparatus 10 can recognize the measurement result obtained by the measurement apparatus 10 by viewing the display unit 170.
 〔第2実施形態の効果〕
 以上、本実施形態によっても、第1実施形態と同様の効果が得られる。
[Effects of Second Embodiment]
As described above, this embodiment can provide the same effects as those of the first embodiment.
[第3実施形態]
 〔処理構成〕
 図4は、第3実施形態における測定装置の構成を概念的に示すブロック図である。本実施形態の測定装置10は、以下の点を除いて、第1及び第2実施形態の測定装置10と同様の構成を有する。なお、図4では、第2実施形態をベースとした構成を例示している。
[Third Embodiment]
[Processing configuration]
FIG. 4 is a block diagram conceptually showing the structure of the measuring apparatus in the third embodiment. The measurement apparatus 10 of the present embodiment has the same configuration as the measurement apparatus 10 of the first and second embodiments except for the following points. FIG. 4 illustrates a configuration based on the second embodiment.
 本実施形態の測定装置10は、開口102内に位置する透光部材110を更に有する。透光部材110は、第1波長を含む光を透過させる。透光部材110は、測定部位に押し当てられたときに変形しない。また、透光部材110は、測定部位の皺を伸ばす機能も有している。また、本実施形態の反射部材130は、図1に例示されるように、透光部材110の外側の面に配置されている。また、反射部材130が透光部材110の外側の面に配置されたことにより、本実施形態における反射光の進路は第1及び第2実施形態と異なる。但し、第2光検出部142の向きは、図2に例示される向きに制限されない。第2光検出部142の向きは、反射部材130からの反射光を捉えられる範囲で、反射部材130と発光部120の光の放射領域Aとが重なる位置に向けられていればよい。また、筐体100の外部の反射部材130からの光以外の光が第2光検出部142に入りにくいように、第2光検出部142への光路経を数mm程度の構造とする方がよい。より望ましくは、筐体100の外部の反射部材130からの光以外の光が第2光検出部142に入らないようにする方がよく、第2光検出部142への光路経をさらに小さくする方が良い。例えば、光量が十分に得られる大きさであれば良く、第2の検出部が3mm程度である場合は光路径を3mm以下、更に望ましくは、光電変換素子の大きさ(0.3~1mm)程度にすることができる。また、筐体100の外部の反射部材130からの光以外の光が第2光検出部142に入らないようにするため、第2光検出部142の受光面側に案内路となるガイドを受光面から反射部材の方向に延在させて設けても良い。また、反射部材130は、表面の加工や材質などによって、入射される光を乱反射するように構成されていると好ましい。 The measuring apparatus 10 according to the present embodiment further includes a light transmissive member 110 located in the opening 102. The translucent member 110 transmits light including the first wavelength. The translucent member 110 is not deformed when pressed against the measurement site. The translucent member 110 also has a function of extending the wrinkles at the measurement site. Moreover, the reflective member 130 of this embodiment is arrange | positioned at the surface of the outer side of the translucent member 110 so that it may be illustrated in FIG. Further, since the reflecting member 130 is disposed on the outer surface of the translucent member 110, the path of the reflected light in this embodiment is different from that in the first and second embodiments. However, the direction of the second light detection unit 142 is not limited to the direction illustrated in FIG. The direction of the second light detection unit 142 may be directed to a position where the reflection member 130 and the light emission region A of the light emitting unit 120 overlap in a range where the reflected light from the reflection member 130 can be captured. In addition, it is preferable that the optical path to the second light detection unit 142 has a structure of about several millimeters so that light other than the light from the reflection member 130 outside the housing 100 does not easily enter the second light detection unit 142. Good. More preferably, it is better to prevent light other than the light from the reflection member 130 outside the housing 100 from entering the second light detection unit 142, and further reduce the optical path to the second light detection unit 142. Better. For example, it is sufficient that the amount of light is sufficiently obtained. When the second detection unit is about 3 mm, the optical path diameter is 3 mm or less, more preferably the size of the photoelectric conversion element (0.3 to 1 mm). Can be about. Further, in order to prevent light other than light from the reflection member 130 outside the housing 100 from entering the second light detection unit 142, a guide serving as a guide path is received on the light receiving surface side of the second light detection unit 142. It may be provided extending from the surface in the direction of the reflecting member. Moreover, it is preferable that the reflecting member 130 is configured to diffusely reflect incident light depending on surface processing or material.
 なお、図3では、図の見やすさの観点から、反射部材130はある程度の厚さを持つように描かれているが、実際には、反射部材130の機能を損なわない程度の厚さとすることができる。よって、透光部材110の外側の面に反射部材130が配置されていても測定の邪魔にはならず、測定装置10を利用するユーザが測定時に煩わしさを感じることが少ない。 In FIG. 3, the reflective member 130 is drawn so as to have a certain thickness from the viewpoint of easy viewing of the drawing, but in practice, the reflective member 130 has a thickness that does not impair the function of the reflective member 130. Can do. Therefore, even if the reflecting member 130 is disposed on the outer surface of the translucent member 110, the measurement is not disturbed, and the user using the measuring apparatus 10 is less likely to feel bothered during the measurement.
 〔第3実施形態の作用と効果〕
 以上、本実施形態では、発光部120から放射された光の一部が、透光部材110を通過し、当該透光部材110の外側の面に位置する反射部材130で反射され、第2光検出部142で検出される。これにより、第2光検出部142は、第1光検出部140と同様に、測定時の温度、透光部材110の境界面における屈折率の変化、または、透光部材110内部の様々な特性変化などによる影響を受けた光を検出できる。そして、このように第2光検出部142で検出された光の強度を用いて第1光検出部140で検出される光を補正することにより、対象物20によって減衰した光を更に精度よく検出することができる。結果として、本実施形態によれば、測定対象を測定する精度を向上させる効果が見込める。
[Operation and effect of the third embodiment]
As described above, in the present embodiment, part of the light emitted from the light emitting unit 120 passes through the translucent member 110 and is reflected by the reflecting member 130 located on the outer surface of the translucent member 110, so that the second light It is detected by the detection unit 142. Thereby, like the 1st light detection part 140, the 2nd light detection part 142 is the temperature at the time of a measurement, the change of the refractive index in the boundary surface of the translucent member 110, or various characteristics inside the translucent member 110. Light affected by changes can be detected. Then, by correcting the light detected by the first light detection unit 140 using the intensity of the light detected by the second light detection unit 142 in this way, the light attenuated by the object 20 can be detected with higher accuracy. can do. As a result, according to the present embodiment, an effect of improving the accuracy of measuring the measurement object can be expected.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
 この出願は、2014年7月3日に出願された日本出願特願2014-138025号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-138025 filed on July 3, 2014, the entire disclosure of which is incorporated herein.

Claims (5)

  1.  筐体と、
     前記筐体の一部に設けられた開口と、
     前記筐体の内部に配置され、第1波長を含む光を前記開口に向けて放射する発光手段と、
     前記筐体の内部に前記開口に向けて配置され、前記第1波長の光を検出する第1光検出手段と、
     前記発光手段の光軸に重ならず、前記発光手段の光の放射領域と重なる位置に配置された反射部材と、
     前記筐体の内部に前記光の放射領域と重なる位置に向けて配置され、前記第1波長の光を検出する第2光検出手段と、
     を備える測定装置。
    A housing,
    An opening provided in a part of the housing;
    A light emitting means disposed inside the housing and emitting light including a first wavelength toward the opening;
    A first light detecting means arranged in the housing toward the opening and detecting the light of the first wavelength;
    A reflecting member disposed not at the optical axis of the light emitting means but at a position overlapping the light emission region of the light emitting means;
    A second light detecting means disposed in the casing toward a position overlapping with the light emission region, and detecting light of the first wavelength;
    A measuring apparatus comprising:
  2.  前記反射部材は、前記発光手段が放射した光を乱反射させる、
     請求項1に記載の測定装置。
    The reflecting member diffusely reflects the light emitted by the light emitting means;
    The measuring apparatus according to claim 1.
  3.  前記開口内に位置する透光部材を更に備え、
     前記反射部材は、前記透光部材の外側の面に配置されている、
     請求項1または2に記載の測定装置。
    Further comprising a translucent member located within the opening;
    The reflective member is disposed on the outer surface of the translucent member,
    The measuring apparatus according to claim 1 or 2.
  4.  前記第2光検出手段で検出された光の強度を用いて、前記第1光検出手段で検出された光の強度を補正する補正手段を更に備える、
     請求項1から3のいずれか1項に記載の測定装置。
    A correction unit that corrects the intensity of the light detected by the first light detection unit using the intensity of the light detected by the second light detection unit;
    The measuring apparatus of any one of Claim 1 to 3.
  5.  前記測定装置は、生体の皮膚を前記開口に近接させた状態で使用され、
     前記第1波長は近赤外域の波長であり、
     さらに、
     前記補正手段によって補正された後の前記第1光検出手段で検出された光の強度に基づいて、前記皮膚に含まれる糖分の量を算出する算出手段を備える、
     請求項4に記載の測定装置。
    The measuring device is used in a state where the skin of a living body is brought close to the opening,
    The first wavelength is a wavelength in the near infrared region,
    further,
    A calculating means for calculating the amount of sugar contained in the skin based on the intensity of light detected by the first light detecting means after being corrected by the correcting means;
    The measuring apparatus according to claim 4.
PCT/JP2015/067867 2014-07-03 2015-06-22 Measuring device WO2016002560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016531275A JP6705593B2 (en) 2014-07-03 2015-06-22 measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014138025 2014-07-03
JP2014-138025 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002560A1 true WO2016002560A1 (en) 2016-01-07

Family

ID=55019104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067867 WO2016002560A1 (en) 2014-07-03 2015-06-22 Measuring device

Country Status (2)

Country Link
JP (1) JP6705593B2 (en)
WO (1) WO2016002560A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253634A (en) * 1988-04-01 1989-10-09 Fuji Photo Film Co Ltd Reflection density measuring apparatus
JPH0943144A (en) * 1995-07-27 1997-02-14 Canon Inc Density sensor
JP2008086705A (en) * 2006-10-05 2008-04-17 Sanyo Electric Co Ltd Measurement assisting material, and optical measuring method using the same
JP2010227558A (en) * 2009-03-05 2010-10-14 Yokogawa Electric Corp Component measuring apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6826424B1 (en) * 2000-12-19 2004-11-30 Haishan Zeng Methods and apparatus for fluorescence and reflectance imaging and spectroscopy and for contemporaneous measurements of electromagnetic radiation with multiple measuring devices
JP2002261384A (en) * 2001-02-28 2002-09-13 Ricoh Co Ltd Optical communication system
JP2005304832A (en) * 2004-04-22 2005-11-04 Olympus Corp Component concentration measuring device and glucose concentration measuring device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01253634A (en) * 1988-04-01 1989-10-09 Fuji Photo Film Co Ltd Reflection density measuring apparatus
JPH0943144A (en) * 1995-07-27 1997-02-14 Canon Inc Density sensor
JP2008086705A (en) * 2006-10-05 2008-04-17 Sanyo Electric Co Ltd Measurement assisting material, and optical measuring method using the same
JP2010227558A (en) * 2009-03-05 2010-10-14 Yokogawa Electric Corp Component measuring apparatus

Also Published As

Publication number Publication date
JP6705593B2 (en) 2020-06-03
JPWO2016002560A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
US10631763B2 (en) Method for glucose monitoring
US10088363B2 (en) Biometric sensor and biometric analysis system including the same
JP2017534325A (en) Optical vital sign sensor
TWI603067B (en) Optical measurement device and method
US10682043B2 (en) Measurement probe and bio-optical measurement system with contact detection
WO2016002560A1 (en) Measuring device
JP2008154687A (en) Optical measurement unit and optical measurement method using it
JP2013088138A (en) Refraction factor measuring device, concentration measuring device and method thereof
JP5200518B2 (en) Intraocular substance measurement device
WO2016002356A1 (en) Measurement device
US9724022B2 (en) Apparatus for non-invasive glucose monitoring
CN206594055U (en) Moisture content determining device
TWI514990B (en) Apparatus for non-invasive glucose monitoring
JP2013053919A (en) Haze value measuring apparatus and haze value measuring method
WO2016002363A1 (en) Measuring device
JP2013068461A (en) Refraction factor measuring apparatus, sugar concentration measuring apparatus and method therefor
KR20130080269A (en) Displacement measuring apparatus, and displacement measuring method using the same
JP6085030B2 (en) Information detector, information measuring instrument, and information detecting method
TWI495864B (en) Apparatus and method for non-invasive blood glucose monitoring and method for analysing biological molecule
WO2016157591A1 (en) Measuring device and measuring method
JP2010156603A (en) Device and method for measuring thickness
JP2021069857A (en) Measurement device
JP6540700B2 (en) Measuring device, measuring method, and program
JPWO2020158348A1 (en) Blood glucose measuring device and blood glucose measuring method
JP2007209779A (en) Pulse wave sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815873

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531275

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815873

Country of ref document: EP

Kind code of ref document: A1