JP5200518B2 - Intraocular substance measurement device - Google Patents

Intraocular substance measurement device Download PDF

Info

Publication number
JP5200518B2
JP5200518B2 JP2007316944A JP2007316944A JP5200518B2 JP 5200518 B2 JP5200518 B2 JP 5200518B2 JP 2007316944 A JP2007316944 A JP 2007316944A JP 2007316944 A JP2007316944 A JP 2007316944A JP 5200518 B2 JP5200518 B2 JP 5200518B2
Authority
JP
Japan
Prior art keywords
light
wavelength
amount
received
substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007316944A
Other languages
Japanese (ja)
Other versions
JP2009136541A (en
Inventor
正寿 米村
伊藤  博
覚 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2007316944A priority Critical patent/JP5200518B2/en
Publication of JP2009136541A publication Critical patent/JP2009136541A/en
Application granted granted Critical
Publication of JP5200518B2 publication Critical patent/JP5200518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、眼球内物質測定装置に係り、特に、被測定者の眼球の特定部位内に含有される物質の濃度を測定する眼球内物質測定装置に関する。   The present invention relates to an intraocular substance measuring apparatus, and more particularly, to an intraocular substance measuring apparatus that measures the concentration of a substance contained in a specific part of a subject's eyeball.

従来より、眼内の物質の濃度を測定する計測器が知られている(例えば、特許文献1)。この計測器では、測定光ビームと基準光ビームとを眼内に照射し、眼底から反射した光を検出して、眼中の物質濃度を決定している。
特表2004−537356号公報
Conventionally, a measuring instrument for measuring the concentration of a substance in an eye is known (for example, Patent Document 1). In this measuring instrument, the concentration of a substance in the eye is determined by irradiating the eye with a measurement light beam and a reference light beam and detecting light reflected from the fundus.
JP-T-2004-537356

しかしながら、上記特許文献1に記載の技術では、眼球の視線方向が傾いた場合に、眼球内の測定対象の物質を含有可能な領域における光路長が変化することを考慮していないため、物質の濃度を精度よく測定することができない、という問題がある。   However, since the technique described in Patent Document 1 does not consider that the optical path length in the region that can contain the substance to be measured in the eyeball changes when the line-of-sight direction of the eyeball is tilted, There is a problem that the concentration cannot be measured accurately.

本発明は、上記の問題点を解決するためになされたもので、眼球内の測定対象の物質の濃度を精度よく測定することができる眼球内物質測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an intraocular substance measuring apparatus capable of accurately measuring the concentration of a substance to be measured in the eyeball.

上記の目的を達成するために本発明に係る眼球内物質測定装置は、被測定者の眼球内の測定対象の物質を含有可能な特定部位を透過して網膜で反射され、かつ、前記物質による光の吸収特性が現れる特定波長を含む波長の第1の光を受光して、受光量を検出すると共に、前記特定部位を透過して網膜で反射され、かつ、前記特定波長を含まない波長の第2の光を受光して、受光量を検出する受光手段と、前記被測定者の眼球の視線方向を特定する特定手段と、前記特定手段によって特定された視線方向に基づいて、前記特定部位における前記第1の光の光路長を推定する光路長推定手段と、前記受光手段によって検出された前記第1の光の受光量、前記検出された前記第2の光の受光量、及び前記光路長推定手段によって推定された前記光路長に基づいて、前記特定部位内の前記物質の濃度を算出する濃度算出手段とを含んで構成されている。 In order to achieve the above object, an intraocular substance measuring device according to the present invention is reflected by the retina through a specific part that can contain the substance to be measured in the eyeball of the subject, and is based on the substance. Receiving first light having a wavelength including a specific wavelength at which light absorption characteristics appear, detecting the amount of received light, transmitting through the specific part and reflected by the retina, and having a wavelength not including the specific wavelength Based on the light receiving means that receives the second light and detects the amount of received light, the specifying means that specifies the line-of-sight direction of the eyeball of the person to be measured, and the specific part based on the line-of-sight direction specified by the specifying means An optical path length estimating means for estimating the optical path length of the first light, a received light amount of the first light detected by the light receiving means, a received light amount of the detected second light, and the optical path The optical path estimated by the length estimation means Based on, and is configured and a concentration calculation means for calculating the concentration of said substance in said specific site.

本発明に係る眼球内物質測定装置によれば、被測定者の眼球内の測定対象の物質を含有可能な特定部位を透過して網膜で反射され、かつ、物質による光の吸収特性が現れる特定波長を含む波長の第1の光を、受光手段によって受光して、受光量を検出する。また、特定部位を透過して網膜で反射され、かつ、特定波長を含まない波長の第2の光を、受光手段によって受光して、受光量を検出する。 According to intraocular substance measuring apparatus in accordance with the present invention, it is reflected in transmission to the retina specific possible sites containing substance to be measured in the eyeball of the subject and the particular appearing absorption characteristics of light by material First light having a wavelength including the wavelength is received by the light receiving means, and the amount of received light is detected. Further, the second light having a wavelength that passes through the specific part and is reflected by the retina and does not include the specific wavelength is received by the light receiving unit, and the amount of received light is detected.

また、特定手段によって、被測定者の眼球の視線方向を特定し、そして、光路長推定手段によって、特定手段によって特定された視線方向に基づいて、特定部位における第1の光の光路長を推定する。   Further, the eye direction of the eyeball of the measurement subject is specified by the specifying unit, and the optical path length of the first light at the specific site is estimated by the optical path length estimation unit based on the line of sight direction specified by the specifying unit. To do.

そして、濃度算出手段によって、受光手段によって検出された第1の光の受光量、検出された第2の光の受光量、及び光路長推定手段によって推定された光路長に基づいて、特定部位内の物質の濃度を算出する。   Based on the received light amount of the first light detected by the light receiving unit, the received light amount of the second light detected by the concentration calculating unit, and the optical path length estimated by the optical path length estimating unit, Calculate the concentration of the substance.

このように、測定対象の物質を含有可能な特定部位における、光の吸収特性が現れる波長を含む波長の光の光路長を考慮して、特定部位を透過して網膜で反射された光の受光量に基づいて、眼球の特定部位内の物質の濃度を算出することにより、眼球内の測定対象の物質の濃度を精度よく測定することができる。   In this way, taking into account the optical path length of light of a wavelength including the wavelength at which light absorption characteristics appear at a specific part that can contain the substance to be measured, light reception through the specific part and reflected by the retina By calculating the concentration of the substance in a specific part of the eyeball based on the amount, the concentration of the substance to be measured in the eyeball can be accurately measured.

本発明に係る眼球内物質測定装置は、特定部位を透過して網膜に照射されるように、第1の光を照射する第1光源と、特定部位を透過して網膜に照射されるように、第2の光を照射する第2光源とを更に含むことができる。 The intraocular substance measurement device according to the present invention is configured so that the first light source that irradiates the first light and the retina is transmitted through the specific part so that the retina is irradiated through the specific part. And a second light source for irradiating the second light .

本発明に係る第1光源及び第2光源は、異なる2つの位置から、特定部位を透過して網膜に照射されるように第2の光と同じ波長の光を発光し、受光手段は、2つの位置からの光の反射光を受光して、受光量を各々検出し、特定手段は、受光手段によって検出された2つの位置からの光の反射光の受光量に基づいて、視線方向を特定することができる。これによって、2つの位置から特定部位を透過して網膜に照射されるように発光された光の受光量に基づいて、視線方向を特定することができる。また、上記の特定手段は、受光手段によって検出された2つの位置からの光の反射光の受光量を比較して、視線方向を特定することができる。 The first light source and the second light source according to the present invention emit light having the same wavelength as the second light so as to pass through a specific part and irradiate the retina from two different positions. The reflected light of the light from one position is received and the amount of received light is detected, and the specifying means specifies the line-of-sight direction based on the received light amount of the reflected light from the two positions detected by the light receiving means. can do. As a result, the line-of-sight direction can be specified based on the amount of light received so as to be transmitted through the specific part from two positions and irradiated on the retina. In addition, the specifying unit can specify the line-of-sight direction by comparing the amounts of light reflected from the two positions detected by the light receiving unit.

上記の2つの位置から発光する第1光源は眼球の網膜に対して特定波長の光を発光し、濃度算出手段は、受光手段によって検出された2つの位置の何れか一方からの第2の光と同じ波長の光の受光量、検出された特定波長の光の受光量、及び光路長推定手段によって推定された光路長に基づいて、特定部位内の物質の濃度を算出することができる。これによって、視線方向の特定用と物質濃度の測定用とに、同じ1つの位置から発光する光を用いるため、簡易な構成とすることができる。 The first light source that emits light from the above two positions emits light of a specific wavelength to the retina of the eyeball, and the concentration calculating means outputs the second light from one of the two positions detected by the light receiving means. Based on the received light amount of the light having the same wavelength as the light, the received light amount of the specific wavelength light detected, and the optical path length estimated by the optical path length estimation means, the concentration of the substance in the specific part can be calculated. Accordingly, since light emitted from the same single position is used for specifying the line-of-sight direction and measuring the substance concentration, a simple configuration can be achieved.

上記の2つの位置から同じ波長の光を発光する発明に係る濃度算出手段は、受光手段によって検出された2つの位置からの第2の光と同じ波長の光の反射光の受光量の比が所定範囲内でない場合には、特定部位内の測定対象の物質の濃度を算出しないようにすることができる。これによって、眼球が濃度測定可能な条件下でない場合に、誤測定を防止することができる。 The concentration calculation means according to the invention that emits light of the same wavelength from the above two positions has a ratio of the amount of received light of the reflected light of the same wavelength as the second light from the two positions detected by the light receiving means. If it is not within the predetermined range, the concentration of the substance to be measured in the specific part can be prevented from being calculated. Thus, erroneous measurement can be prevented when the eyeball is not in a condition that allows concentration measurement.

上記の第1光源は、電流変調により、第1の光及び第2の光を切り替えて発光することができる。 The first light source can emit light by switching between the first light and the second light by current modulation.

本発明に係る眼球内物質測定装置は、特定部位を透過して網膜に照射されるように、第1の光の波長及び第2の光の波長を含む波長の光を発光する光源を更に含み、受光手段は、特定波長の光を透過させる第1フィルタ及び第2光の波長の光を透過させる第2フィルタを備え、第1フィルタを透過した特定波長の光を受光して、受光量を検出すると共に、第2フィルタを透過した第2の光を受光して、受光量を検出することができる。 The intraocular substance measuring device according to the present invention further includes a light source that emits light having a wavelength including the wavelength of the first light and the wavelength of the second light so that the retina is irradiated through the specific site. , the light receiving means comprises a second filter for transmitting light of a wavelength of the first filter and second light transmitting light of a specific wavelength, receive light of a specific wavelength transmitted through the first filter, the received light amount , And the second light transmitted through the second filter can be received to detect the amount of received light.

上記の第2の光を、測定対象の物質による光の吸収特性が現れない波長の光とすることができる。これによって、測定対象の物質による光の吸収特性が現れる波長の光と、光の吸収特性が現れない波長の光とを用いて、物質の濃度を精度よく測定することができる。   Said 2nd light can be made into the light of the wavelength which does not show the light absorption characteristic by the substance of a measuring object. Thus, the concentration of the substance can be accurately measured using light having a wavelength at which the light absorption characteristic of the substance to be measured appears and light having a wavelength at which the light absorption characteristic does not appear.

以上説明したように、本発明の眼球内物質測定装置によれば、測定対象の物質を含有可能な特定部位における、光の吸収特性が現れる波長を含む波長の光の光路長を考慮して、特定部位を透過して網膜で反射された光の受光量に基づいて、眼球の特定部位内の物質の濃度を算出することにより、眼球内の測定対象の物質の濃度を精度よく測定することができる、という効果が得られる。   As described above, according to the intraocular substance measuring device of the present invention, in consideration of the optical path length of light having a wavelength including the wavelength at which light absorption characteristics appear, in a specific part that can contain the substance to be measured, It is possible to accurately measure the concentration of the substance to be measured in the eyeball by calculating the concentration of the substance in the specific part of the eyeball based on the amount of light received through the specific part and reflected by the retina. The effect of being able to be obtained is obtained.

以下、図面を参照して本発明の実施の形態を詳細に説明する。なお、本実施の形態では、被測定者の眼球内のエタノール濃度を測定する眼球内物質測定装置に本発明を適用した場合を例に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a case where the present invention is applied to an intraocular substance measuring apparatus that measures the ethanol concentration in the eyeball of the measurement subject will be described as an example.

図1に示すように、第1の実施の形態に係る眼球内物質測定装置10は、被測定者の眼球に対して、エタノールによる光の吸収特性が現れない波長λ1の光、及びエタノールによる光の吸収特性が現れる波長λ2の光を、電流変調により切り替えて発光する第1光源12と、第1光源12から発光された照射光の反射光を受光して、受光量を検出する第1光検出器14と、第1光源12からの照射光を通過させると共に、眼球内で反射された反射光を反射させて第1光検出器14へ導くハーフミラー16と、被測定者の眼球に対して、エタノールによる光の吸収特性が現れない波長λ1の光を発光する第2光源18と、第2光源18から発光された照射光の反射光を受光して、受光量を検出する第2光検出器20と、第2光源18からの照射光を通過させると共に、眼球内で反射された反射光を反射させて第2光検出器20へ導くハーフミラー22と、第1光源12及び第2光源18による発光を制御すると共に、第1光検出器14及び第2光検出器20の検出結果に基づいて、眼球内のエタノール濃度を測定するコンピュータ24とを備えている。コンピュータ24は、第1光源12、第1光検出器14、第2光源18、及び第2光検出器20の各々と接続されている。   As shown in FIG. 1, the intraocular substance measurement device 10 according to the first exemplary embodiment has light of a wavelength λ1 that does not show the light absorption characteristic of ethanol and light of ethanol on the eyeball of the measurement subject. The first light source 12 that emits light having a wavelength λ2 that changes the current λ2 by switching by current modulation, and the first light that receives the reflected light of the irradiation light emitted from the first light source 12 and detects the amount of received light A half mirror 16 that allows the irradiation light from the detector 14 and the first light source 12 to pass therethrough, reflects the reflected light reflected in the eyeball, and guides it to the first light detector 14, and the eyeball of the measurement subject The second light source 18 that emits light having a wavelength λ1 that does not exhibit the light absorption characteristic of ethanol, and the second light that receives the reflected light of the irradiation light emitted from the second light source 18 and detects the amount of received light Irradiation light from the detector 20 and the second light source 18 While controlling the light emission by the first light source 12 and the second light source 18, the half mirror 22 that reflects and reflects the reflected light reflected in the eyeball to the second light detector 20, and the first light detector 14 and a computer 24 that measures the ethanol concentration in the eyeball based on the detection results of the second photodetector 20. The computer 24 is connected to each of the first light source 12, the first light detector 14, the second light source 18, and the second light detector 20.

第1光源12と第2光源18とは、眼球の視線方向が正面を向いているときの視軸に対して対称となる位置に配置されている。また、第1光源12及び第2光源18は、被測定者の眼球内のエタノールを含有可能な房水を透過して網膜の眼底部で反射されるように、光を発光する。   The 1st light source 12 and the 2nd light source 18 are arrange | positioned in the position which becomes symmetrical with respect to the visual axis when the gaze direction of an eyeball is facing the front. The first light source 12 and the second light source 18 emit light so that the aqueous humor that can contain ethanol in the eyeball of the measurement subject is transmitted and reflected by the fundus of the retina.

ここで、白色光源(波長400nm〜1700nm)を豚の眼球に照射し、眼底から反射された光の一部を光スペクトルアナライザにて検出する実験を行なうと、図2に示すような結果が得られる。この実験結果から、反射光の受光量による測定に使用できる波長域は、1400nm以下であり、800nm付近の波長の光を使用すると、最も強い反射光を得ることができることがわかる。   Here, when a white light source (wavelength of 400 nm to 1700 nm) is irradiated onto the pig's eyeball and an experiment is performed in which a part of the light reflected from the fundus is detected by an optical spectrum analyzer, the result shown in FIG. 2 is obtained. It is done. From this experimental result, it can be seen that the wavelength range that can be used for the measurement based on the amount of received reflected light is 1400 nm or less, and that the strongest reflected light can be obtained when light having a wavelength near 800 nm is used.

そこで、本実施の形態では、第1光源12及び第2光源18は、エタノールによる光の吸収特性が現れない波長λ1の光として、例えば、1400nm以下の波長域の光を用いればよく、特に、800nm付近の波長の光を用いることが好ましい。また、使用する波長λ1の光として、後述するエタノールによる光の吸収が0に近い波長の光を用いることが望ましく、例えば、890nmの波長の光を用いればよい。   Therefore, in the present embodiment, the first light source 12 and the second light source 18 may use light having a wavelength range of 1400 nm or less, for example, as light having a wavelength λ1 that does not exhibit light absorption characteristics by ethanol. It is preferable to use light having a wavelength near 800 nm. In addition, it is desirable to use light having a wavelength near zero absorption of light by ethanol, which will be described later, for example, light having a wavelength of 890 nm.

また、エタノール濃度が1000mg/dLである水溶液の吸収スペクトルと純水の吸収スペクトルとの差(吸光度差スペクトル)を測定する実験を行なうと、図3に示すような実験結果が得られる。この実験結果では、波長906nm付近と1185nm付近とに、エタノールによる光の吸収特性が現れることがわかる。従って、本実施の形態では、第1光源12は、エタノールによる光の吸収特性が現れる波長λ2の光として、例えば、906nmの波長の光を用いればよい。   Further, when an experiment for measuring a difference (absorbance difference spectrum) between an absorption spectrum of an aqueous solution having an ethanol concentration of 1000 mg / dL and an absorption spectrum of pure water, an experimental result as shown in FIG. 3 is obtained. From this experimental result, it can be seen that light absorption characteristics by ethanol appear at wavelengths near 906 nm and 1185 nm. Therefore, in the present embodiment, the first light source 12 may use light having a wavelength of 906 nm, for example, as light having a wavelength λ2 at which the light absorption characteristic by ethanol appears.

コンピュータ24は、CPU、後述する濃度測定処理ルーチンのプログラムを記憶したROM、データ等を記憶するRAM、HDD、及びこれらを接続するバスを含んで構成されている。このコンピュータ24を、ハードウエアとソフトウエアとに基づいて定まる機能実現手段毎に分割した機能ブロックで説明すると、図4に示すように、第1光源12及び第2光源18の各々の発光を制御する光源制御部30と、第1光検出器14によって検出された波長λ1の光の受光量、波長λ2の光の受光量、及び第2光検出器20によって検出された波長λ1の光の受光量を取得する受光量取得部32と、第1光検出器14による波長λ1の光の受光量及び第2光検出器20による波長λ1の光の受光量に基づいて、被測定者の眼球の視線方向を特定する視線方向特定部34と、視線方向と眼球の房水における第1光源12からの波長λ2の光の光路長との関係を示した光路長決定テーブルを記憶したテーブル記憶部36と、視線方向特定部34によって特定された視線方向及び光路長決定テーブルに基づいて、眼球の房水における第1光源12からの波長λ2の光の光路長を推定する光路長推定部38と、推定された光路長、第1光検出器14による波長λ1の光の受光量、及び波長λ2の光の受光量に基づいて、眼球の房水内のエタノール濃度を算出する濃度算出部40と、ディスプレイで構成され、算出されたエタノール濃度を表示する表示部42とを備えている。   The computer 24 includes a CPU, a ROM that stores a program for a density measurement processing routine, which will be described later, a RAM that stores data, an HDD, and a bus that connects them. When the computer 24 is described with function blocks divided for each function realizing means determined based on hardware and software, the light emission of each of the first light source 12 and the second light source 18 is controlled as shown in FIG. Receiving light of the wavelength λ1 detected by the first light detector 14, the received light amount of the light of wavelength λ2, and the received light of the wavelength λ1 detected by the second photodetector 20. Based on the received light amount acquisition unit 32 that acquires the amount of light, the received light amount of the light of wavelength λ1 by the first photodetector 14, and the received light amount of the light of wavelength λ1 by the second photodetector 20, the eyeball of the measurement subject A line-of-sight direction specifying unit 34 that specifies the line-of-sight direction, and a table storage unit 36 that stores a relationship between the line-of-sight direction and the optical path length of the light of wavelength λ2 from the first light source 12 in the aqueous humor of the eyeball. And gaze direction identification 34, the optical path length estimation unit 38 that estimates the optical path length of the light of the wavelength λ2 from the first light source 12 in the aqueous humor of the eyeball, and the estimated optical path length, Based on the amount of light received at the wavelength λ1 and the amount of light received at the wavelength λ2 by the first photodetector 14, a concentration calculator 40 that calculates the ethanol concentration in the aqueous humor of the eyeball and a display And a display unit 42 for displaying the ethanol concentration.

次に、被測定者の視線方向の特定方法について説明する。まず、人の目は再帰性の反射特性を示すことが知られている。再帰性の反射特性とは、図5に示すように、光源から眼球に向かって光を照射すると、網膜の眼底部で反射された光が、照射光と同じ光路上を戻る特性である。また、反射光量は、目の視軸に対する入射角度に依存し、視軸に対する入射角度が大きくなるほど、反射光量が小さくなることが知られている(渡邊他、「網膜再帰反射を利用した遠隔サッカード検出手法の研究」、日本バーチャルリアリティ学会論文誌、Vol9、No.1、pp.105−114、2004)。   Next, a method for specifying the gaze direction of the measurement subject will be described. First, it is known that the human eye shows a reflexive reflection characteristic. As shown in FIG. 5, the recursive reflection characteristic is a characteristic in which light reflected from the fundus of the retina returns on the same optical path as the irradiation light when light is irradiated from the light source toward the eyeball. The amount of reflected light depends on the angle of incidence with respect to the visual axis of the eye, and it is known that the amount of reflected light decreases as the angle of incidence with respect to the visual axis increases (Watanabe et al., “Remote soccer using retina reflexes” ”Research on the detection method”, Journal of the Virtual Reality Society of Japan, Vol 9, No. 1, pp. 105-114, 2004).

上記図1に示すように、第1光源12と第2光源18とを眼球から等距離に配置して、同一波長λ1の光を眼球に対して照射すると、第1光検出器14及び第2光検出器20の各々によって、図6に示すような受光量Iが検出される。   As shown in FIG. 1, when the first light source 12 and the second light source 18 are arranged at an equal distance from the eyeball and the eyeball is irradiated with light having the same wavelength λ1, the first photodetector 14 and the second light source Each of the photodetectors 20 detects a received light amount I as shown in FIG.

上記図6において、φは視軸の方向(視線方向)の角度であり、θ1、θ2は、視軸の方向の角度が0(正面)の状態における、第1光源12及び第2光源18の各々の光路の視軸に対する角度である。θ1=θ2である場合、φが0であると、第1光検出器14及び第2光検出器20の出力はほぼ同じとなる。また、φが正の方向へ傾くと、第1光検出器14の出力が減り、第2光検出器20の出力が増え、一方、φが負の方向へ傾くと、第1光検出器14の出力が増え、第2光検出器20の出力が減る。すなわち、第1光検出器14及び第2光検出器20の出力の比を取ると、φ=0の時、出力比が1となり、φが傾いた場合は、出力比が1より大きくなるか、1より小さくなる。従って、第1光検出器14及び第2光検出器20の出力比から、視軸の方向(視線方向)を特定することができる。   In FIG. 6, φ is an angle in the direction of the visual axis (line-of-sight direction), and θ1 and θ2 are the angles of the first light source 12 and the second light source 18 in a state where the angle in the direction of the visual axis is 0 (front). It is an angle with respect to the visual axis of each optical path. When θ1 = θ2, if φ is 0, the outputs of the first photodetector 14 and the second photodetector 20 are substantially the same. When φ is inclined in the positive direction, the output of the first photodetector 14 is decreased and the output of the second photodetector 20 is increased. On the other hand, when φ is inclined in the negative direction, the first photodetector 14 is increased. Output increases, and the output of the second photodetector 20 decreases. That is, when the output ratio of the first photodetector 14 and the second photodetector 20 is taken, the output ratio is 1 when φ = 0, and if φ is tilted, is the output ratio greater than 1? Less than 1. Therefore, the direction of the visual axis (gaze direction) can be specified from the output ratio of the first photodetector 14 and the second photodetector 20.

従って、本実施の形態では、上記図6に示すような、視線方向と、第1光検出器14の受光量及び第2光検出器20の受光量の各々との関係から、視線方向と、第1光検出器14の受光量及び第2光検出器20の受光量の比との関係を求めておく。また、視線方向特定部34において、第1光検出器14によって検出された波長λ1の受光量と第2光検出器20によって検出された波長λ1の受光量との比に基づいて、上記のように求められた視線方向と第1光検出器14及び第2光検出器20の受光量の比との関係から、被測定者の視線方向を特定する。   Therefore, in the present embodiment, as shown in FIG. 6 above, from the relationship between the line-of-sight direction and the amount of light received by the first photodetector 14 and the amount of light received by the second photodetector 20, the line-of-sight direction, The relationship between the amount of light received by the first photodetector 14 and the ratio of the amount of received light of the second photodetector 20 is obtained. Further, based on the ratio of the received light amount of the wavelength λ1 detected by the first photodetector 14 and the received light amount of the wavelength λ1 detected by the second photodetector 20 in the line-of-sight direction specifying unit 34, as described above. From the relationship between the line-of-sight direction obtained in step 1 and the ratio of the amounts of light received by the first photodetector 14 and the second photodetector 20, the line-of-sight direction of the measurement subject is specified.

また、第1光検出器14によって検出された波長λ1の受光量と第2光検出器20によって検出された波長λ1の受光量との比が所定の範囲を超える場合、対象となる眼球が測定可能な条件下に無い(視線方向が測定可能な範囲を超えている場合や、目を閉じている場合等)と判断することができる。   In addition, when the ratio between the amount of light received at the wavelength λ1 detected by the first photodetector 14 and the amount of received light at the wavelength λ1 detected by the second photodetector 20 exceeds a predetermined range, the target eyeball is measured. It can be determined that the condition is not possible (when the line-of-sight direction exceeds the measurable range or when the eyes are closed).

次に、眼球の房水における波長λ2の光の光路長の推定方法について説明する。まず、眼球内において、測定対象の物質としてのエタノールを含有可能な特定部位として、角膜と水晶体との間にある房水がある。この房水に光を透過させた場合、エタノールによる光の吸光度は、Lambert−Beerの法則により、以下の(1)式で表される。
Log(I/I)=nkL ・・・(1)
Next, a method for estimating the optical path length of the light of wavelength λ2 in the aqueous humor of the eyeball will be described. First, in the eyeball, as a specific part capable of containing ethanol as a substance to be measured, there is aqueous humor between the cornea and the lens. When light is transmitted through this aqueous humor, the absorbance of light by ethanol is expressed by the following equation (1) according to Lambert-Beer's law.
Log (I 0 / I t ) = nkL (1)

ここで、Iは房水への入射光量、Iは房水からの出射光量、nはエタノールの濃度、Lは光路長、kは光の波長に対する吸収係数である。即ち、入射光と出射光とから濃度nを求める場合、光路長Lの値が既知でなければならないが、光の入射角によって、房水における光路長に変化が生じる。 Here, I 0 is the amount of light incident on the aqueous humor, I t is the amount of light emitted from the aqueous humor, n represents the concentration of ethanol, L is the optical path length, k is the absorption coefficient for the wavelength of light. That is, when the concentration n is obtained from incident light and outgoing light, the value of the optical path length L must be known, but the optical path length in the aqueous humor varies depending on the incident angle of the light.

図7に示すように、光が入射する範囲において、角膜の曲率半径が一定であると仮定すると、視軸(視線方向)に沿った光の房水における光路長Lが入射角θの光の房水における光路長Lθと異なるための幾何的な条件は、角膜の後面曲率半径(房水側の曲率半径)RがLと異なることである。一般に、角膜の後面曲率半径は、6.2〜6.8mmであり、視軸に沿った光の房水における光路長(房水深さ)は、2.4〜4.2mmであることが知られている(田幸敏治ら編、「光学的測定ハンドブック」、朝倉書店、1981)。ここで、L=3.00mm、R=6.00mm、θ=30degとした場合、Lθは3.21mmとなり、視軸に沿った光の房水における光路長に対して、7%の光路長変化を生じることになる。即ち、この変化分を考慮に入れなければ、測定対象の物質の濃度測定に誤差が生じると言える。 As shown in FIG. 7, when it is assumed that the radius of curvature of the cornea is constant in the light incident range, the light path length L 0 in the aqueous humor along the visual axis (the direction of the line of sight) is the light having the incident angle θ. geometric conditions for different optical path lengths L theta in aqueous humor is that R r (the radius of curvature of the aqueous humor side) rear surface radius of curvature of the cornea is different from L 0. In general, the posterior radius of curvature of the cornea is 6.2 to 6.8 mm, and the optical path length (aqueous humor depth) in the aqueous humor along the visual axis is 2.4 to 4.2 mm. (Edited by Toshiharu Tadashi et al., “Optical Measurement Handbook”, Asakura Shoten, 1981). Here, when L 0 = 3.00 mm, R r = 6.00 mm, and θ = 30 deg, L θ is 3.21 mm, which is 7% of the optical path length in the aqueous humor along the visual axis. This causes a change in the optical path length. That is, if this change is not taken into account, it can be said that an error occurs in the concentration measurement of the substance to be measured.

本実施の形態では、上述した視線方向(視軸)に対する光の入射角と光路長との関係に基づいて、視線方向に対する入射角毎に、房水における光路長を求めておき、求められた光路長が、視線方向に対する入射角に対応して格納された光路長決定テーブルが、テーブル記憶部36に記憶されている。   In the present embodiment, the optical path length in the aqueous humor is obtained for each incident angle with respect to the viewing direction based on the relationship between the incident angle of light with respect to the viewing direction (visual axis) and the optical path length. An optical path length determination table in which the optical path length is stored corresponding to the incident angle with respect to the line-of-sight direction is stored in the table storage unit 36.

また、光路長推定部38は、視線方向特定部34によって特定された視線方向に対する入射角に対応する房水における光路長を、光路長決定テーブルから取得し、光路長の推定値とする。   Further, the optical path length estimation unit 38 acquires the optical path length in the aqueous humor corresponding to the incident angle with respect to the visual line direction specified by the visual line direction specifying unit 34 from the optical path length determination table, and uses the optical path length as an estimated value.

次に、房水内のエタノール濃度の算出方法について説明する。上記図1に示すように、第1光源12を用いて、エタノールによる光の吸収特性が現れない波長λ1(890nm)の光、及び吸収特性が現れる波長λ2(906nm)の光を眼球に照射し、第1光検出器14によって反射光を検出する場合、波長λ1の光の反射光について第1光検出器14で検出される受光量It1は、以下の(2)式で表すことができる。 Next, a method for calculating the ethanol concentration in the aqueous humor will be described. As shown in FIG. 1 above, the first light source 12 is used to irradiate the eyeball with light having a wavelength λ1 (890 nm) that does not exhibit the light absorption characteristic of ethanol and light having a wavelength λ2 (906 nm) that exhibits the absorption characteristic. When the reflected light is detected by the first photodetector 14, the amount of received light It1 detected by the first photodetector 14 with respect to the reflected light of the wavelength λ1 can be expressed by the following equation (2). .

Figure 0005200518
Figure 0005200518

ここで、I01は、第1光源12による波長λ1の出力光量であり、βは、光路上における全ての光損失を考慮した効率であって、ハーフミラー16での損失、眼球内での損失(エタノールによる損失は含まない)、及び反射光と第1光検出器14との結合損失の影響を含んだ値である。 Here, I 01 is the amount of light output at the wavelength λ 1 by the first light source 12, and β is the efficiency in consideration of all the optical losses on the optical path, and is the loss in the half mirror 16 and the loss in the eyeball. (The loss due to ethanol is not included), and the value includes the influence of the coupling loss between the reflected light and the first photodetector 14.

次に、波長λ2の光の反射光について第1光検出器14で検出される受光量It2は、以下の(3)式で表すことができる。 Next, the amount of received light It2 detected by the first photodetector 14 with respect to the reflected light of the wavelength λ2 can be expressed by the following equation (3).

Figure 0005200518
Figure 0005200518

ここで、I02は第1光源12による波長λ2の出力光量であり、γは、上記βと同様、光路上における全ての光損失を考慮した効率であって、ハーフミラー16での損失、眼球内での損失、及び反射光と光検出器との結合損失の影響を含んだ値である。また、cは眼内でのエタノールの吸収を考慮した効率である。 Here, I 02 is the output light amount of the wavelength λ2 from the first light source 12, and γ is the efficiency in consideration of all the light loss on the optical path, as in β, and is the loss in the half mirror 16, the eyeball It is a value including the effect of the loss in the light and the coupling loss between the reflected light and the photodetector. C is the efficiency considering the absorption of ethanol in the eye.

上記(2)式と上記(3)式との比を求めると、以下の(4)式が得られる。   When the ratio between the above formula (2) and the above formula (3) is obtained, the following formula (4) is obtained.

Figure 0005200518
Figure 0005200518

ここで、(I02×γ)/(I01×β)は一定の値であるので、αとおくと、上記(4)式から、以下の(5)式が得られる。 Here, since (I 02 × γ) / (I 01 × β) is a constant value, when α is set, the following equation (5) is obtained from the above equation (4).

Figure 0005200518
Figure 0005200518

なお、αについては、眼内にエタノールが含まれていない状態(c=1)で、It1とIt2とを測定することにより求めることができる。 Note that the alpha, in a state that does not contain ethanol in the eye (c = 1), can be determined by measuring the I t1 and I t2.

また、cは、以下の(6)式で表わすことができる。   C can be expressed by the following equation (6).

Figure 0005200518
Figure 0005200518

上記(6)式を上記(5)式に代入すると、以下の(7)式が得られる。   Substituting the above equation (6) into the above equation (5) yields the following equation (7).

Figure 0005200518
Figure 0005200518

ここで、nはエタノールの濃度、kはエタノールの吸収係数、Lは光路長である。上記(7)式よりnを求めると、以下の(8)式が得られる。   Here, n is the ethanol concentration, k is the ethanol absorption coefficient, and L is the optical path length. When n is obtained from the above equation (7), the following equation (8) is obtained.

Figure 0005200518
Figure 0005200518

従って、本実施の形態では、濃度算出部40において、推定された光路長L、第1光検出器14による波長λ1の光の受光量It1、波長λ2の光の受光量It2、既知の値であるエタノールの吸収係数k、予め求められた値αに基づいて、上記(8)式に従って、眼球の房水内のエタノール濃度nを算出する。 Therefore, in the present embodiment, the concentration calculator 40 estimates the estimated optical path length L, the amount of received light I t1 of light having a wavelength λ1 by the first photodetector 14, the amount of received light I t2 of light having a wavelength λ2, and the known The ethanol concentration n in the aqueous humor of the eyeball is calculated according to the above equation (8) based on the value of the absorption coefficient k of ethanol and the value α obtained in advance.

次に、第1の実施の形態に係る眼球内物質測定装置10の作用について説明する。まず、被測定者の眼球の視線方向が正面を向いている状態で、眼球の視軸に対して対称となる位置に、第1光源12及び第2光源18を配置する。そして、コンピュータ24において、図8に示す濃度測定処理ルーチンが実行される。   Next, the operation of the intraocular substance measurement device 10 according to the first embodiment will be described. First, the first light source 12 and the second light source 18 are arranged at positions that are symmetric with respect to the visual axis of the eyeball in a state where the line-of-sight direction of the eyeball of the measurement subject is facing the front. Then, the computer 24 executes a concentration measurement processing routine shown in FIG.

まず、ステップ100において、第1光源12から波長λ1の光を発光させると共に、第2光源18から波長λ1の光を発光させる。第1光源12からの照射光は、眼球の房水を透過して、網膜の眼底部で反射し、再度房水を透過して、反射光が眼球の外へ出る。そして、第1光検出器14によって、反射光の受光量It1が検出される。また、第2光源18からの照射光は、照射光を眼球の房水を透過して、網膜の眼底部で反射し、再度房水を透過して、反射光が眼球の外へ出る。そして、第2光検出器20によって、反射光の受光量It0が検出される。 First, in step 100, the first light source 12 emits light of wavelength λ1, and the second light source 18 emits light of wavelength λ1. Irradiation light from the first light source 12 passes through the aqueous humor of the eyeball, reflects off the fundus of the retina, passes through the aqueous humor again, and the reflected light goes out of the eyeball. Then, the received light amount It1 of the reflected light is detected by the first photodetector 14. Further, the irradiation light from the second light source 18 transmits the irradiation light through the aqueous humor of the eyeball, reflects it at the fundus of the retina, passes through the aqueous humor again, and the reflected light goes out of the eyeball. Then, the second light detector 20 detects the amount of received light It0 .

そして、ステップ102において、第1光検出器14で検出された受光量It1を取得し、メモリ(図示省略)に記憶し、ステップ106において、第2光検出器20で検出された受光量It0を取得し、メモリに記憶する。 In step 102, the received light amount It1 detected by the first photodetector 14 is acquired and stored in a memory (not shown). In step 106, the received light amount I detected by the second photodetector 20 is obtained. t0 is acquired and stored in the memory.

そして、ステップ108において、上記ステップ102で記憶された受光量It1と上記ステップ106で記憶された受光量It0との比を算出し、ステップ110で、上記ステップ108で算出された受光量の比が、所定範囲内であるか否かを判定する。なお、所定範囲については、実験的または統計的に、眼球の網膜の眼底部で反射するように波長λ1の光を照射したときの受光量の比を予め求め、求められた受光量の比に基づいて、所定範囲を設定すればよい。 In step 108, the ratio between the received light amount It1 stored in step 102 and the received light amount It0 stored in step 106 is calculated. In step 110, the received light amount calculated in step 108 is calculated. It is determined whether or not the ratio is within a predetermined range. For the predetermined range, experimentally or statistically, the ratio of the amount of light received when the light of wavelength λ1 is irradiated so as to be reflected by the fundus of the retina of the eyeball is obtained in advance, and the obtained ratio of the amount of received light is calculated. Based on this, a predetermined range may be set.

上記ステップ110で、受光量の比が、所定範囲外である場合には、対象となる眼球が測定可能な条件下に無いと判断し、エタノール濃度を測定せずに、濃度測定処理ルーチンを終了する。一方、受光量の比が、所定範囲内である場合には、対象となる眼球が測定可能な条件下にあると判断し、ステップ112へ移行する。   If the received light amount ratio is outside the predetermined range in step 110, it is determined that the target eyeball is not in a measurable condition, and the concentration measurement routine is terminated without measuring the ethanol concentration. To do. On the other hand, if the ratio of the amount of received light is within the predetermined range, it is determined that the target eyeball is in a measurable condition, and the process proceeds to step 112.

ステップ112では、上記ステップ108で算出された受光量の比に基づいて、被測定者の眼球の視線方向を特定し、ステップ114において、上記ステップ112で特定された視線方向に対する第1光源12の入射角、及びテーブル記憶部36の光路長決定テーブルに基づいて、第1光源12からの波長λ2の光の房水における光路長を推定する。   In step 112, the line-of-sight direction of the eyeball of the person to be measured is specified based on the ratio of the amount of received light calculated in step 108. In step 114, the first light source 12 with respect to the line-of-sight direction specified in step 112 is determined. Based on the incident angle and the optical path length determination table of the table storage unit 36, the optical path length in the aqueous humor of the light of wavelength λ2 from the first light source 12 is estimated.

そして、ステップ116において、第1光源12から波長λ2の光を発光させ、照射光を眼球の房水を透過させて、網膜の眼底部で反射させ、第1光検出器14によって、反射光の受光量It2を検出させる。そして、ステップ118において、第1光検出器14で検出された受光量It2を取得し、メモリに記憶する。 In step 116, light having a wavelength λ2 is emitted from the first light source 12, and the irradiated light is transmitted through the aqueous humor of the eyeball and reflected by the fundus of the retina. The first photodetector 14 reflects the reflected light. The amount of received light It2 is detected. In step 118, the received light amount It2 detected by the first photodetector 14 is acquired and stored in the memory.

次に、ステップ120において、上記ステップ102で記憶された受光量It1、上記ステップ118で記憶された受光量It2、上記ステップ114で推定された光路長L、事前に測定した値α、及び既知の値kを用いて、上記(8)式に従って、眼球の房水内のエタノール濃度nを算出する。そして、ステップ122で、表示部42に上記ステップ120で算出されたエタノール濃度を表示させて、濃度測定処理ルーチンを終了する。 Next, in step 120, the received light amount I t1 stored in step 102, the received light amount I t2 stored in step 118, the optical path length L estimated in step 114, the value α measured in advance, and Using the known value k, the ethanol concentration n in the aqueous humor of the eyeball is calculated according to the above equation (8). In step 122, the ethanol concentration calculated in step 120 is displayed on the display unit 42, and the concentration measurement routine is terminated.

以上説明したように、第1の実施の形態に係る眼球内物質測定装置によれば、測定対象となるエタノールを含有可能な房水における、光の吸収特性が現れる波長の光の光路長を考慮して、房水を透過して網膜で反射された光の受光量に基づいて、眼球の房水内のエタノール濃度を算出することにより、眼球内のエタノール濃度を精度よく測定することができる。   As described above, according to the intraocular substance measurement device according to the first embodiment, in the aqueous humor that can contain ethanol to be measured, the optical path length of the light having the wavelength at which the light absorption characteristic appears is taken into consideration. Then, the ethanol concentration in the eyeball can be accurately measured by calculating the ethanol concentration in the aqueous humor of the eyeball based on the amount of light received through the aqueous humor and reflected by the retina.

また、2つの光検出器で検出された受光量の比が所定範囲外であると判定された場合には、眼球が濃度測定可能な条件下でないと判断して、濃度測定を中止し、誤測定を防止することができる。   Also, if it is determined that the ratio of the amounts of light received detected by the two photodetectors is outside the predetermined range, it is determined that the eyeball is not in a condition where the concentration can be measured, the concentration measurement is stopped, and an error occurs. Measurement can be prevented.

また、視線方向の特定とエタノール濃度の測定とを一緒に行なうことができる。   Further, the identification of the direction of the line of sight and the measurement of the ethanol concentration can be performed together.

また、房水におけるエタノールによる光の吸光度は、房水における光路長に比例するため、光路長を推定することにより、視線方向のばらつきによる測定誤差を減らすことができる。   Moreover, since the light absorbance of ethanol in the aqueous humor is proportional to the optical path length in the aqueous humor, the measurement error due to the variation in the line-of-sight direction can be reduced by estimating the optical path length.

また、波長λ1、λ2を発生する光源に、電流変調により波長を切り替える1つの半導体レーザを用いることにより、測定系の小型化と低コスト化とを実現することができる。   Further, by using a single semiconductor laser that switches the wavelength by current modulation as the light source that generates the wavelengths λ1 and λ2, it is possible to reduce the size and cost of the measurement system.

また、第1光源からの受光量を用いてエタノール濃度の測定を行なうために、第1光源からの波長λ1、λ2の光をともに同じ光路を通過させるため、上記(5)式におけるαについて、最初に1度測定するだけで済ませることができる。   In addition, in order to measure the ethanol concentration using the amount of light received from the first light source, in order to allow both light of wavelengths λ1 and λ2 from the first light source to pass through the same optical path, You only need to measure once at the beginning.

なお、上記の実施の形態では、目の視軸が正面方向を向いている状態において視軸に対して対称となる位置に、第1光源及び第2光源を配置した場合を例に説明したが、これに限定されるものではなく、視軸に対して対称とならない異なる2つの位置に、第1光源及び第2光源を配置してもよい。この場合には、視線方向と、第1光検出器の受光量及び第2光検出器の受光量の各々との関係を求めておき、視線方向と、第1光検出器の受光量及び第2光検出器の受光量の比との関係に基づいて、視線方向を特定すればよい。   In the above embodiment, the case where the first light source and the second light source are arranged at positions symmetrical to the visual axis in a state where the visual axis of the eye faces the front direction has been described as an example. The first light source and the second light source may be arranged at two different positions that are not symmetric with respect to the visual axis. In this case, the relationship between the line-of-sight direction and the amount of light received by the first photodetector and the amount of light received by the second photodetector is obtained, and the line-of-sight direction, the amount of light received by the first photodetector, The line-of-sight direction may be specified based on the relationship with the ratio of the amount of light received by the two photodetectors.

次に、第2の実施の形態について説明する。なお、第2の実施の形態に係る眼球内物質測定装置の構成は、第1の実施の形態と同様の構成であるため、同一符号を付して説明を省略する。   Next, a second embodiment will be described. In addition, since the structure of the intraocular substance measuring device which concerns on 2nd Embodiment is the structure similar to 1st Embodiment, it attaches | subjects the same code | symbol and abbreviate | omits description.

第2の実施の形態では、鏡を用いた詐称や眼鏡等の反射による誤測定を防止している点が第1の実施の形態と異なっている。   The second embodiment is different from the first embodiment in that misrepresentation using a mirror and erroneous measurement due to reflection of glasses or the like are prevented.

被測定者が鏡を用いた場合や、被測定者が眼鏡等をかけている場合には、以下に説明するように、誤測定が起こりうる。   When the measurement subject uses a mirror or when the measurement subject wears glasses or the like, an erroneous measurement may occur as described below.

図9に示すように、第1光源12と第2光源18とによって、同一波長λ1の光を眼球に向かって照射し、眼球の視線方向を特定する場合に、眼球の前に鏡を特定の角度で置くと、第2光源18から出た光(図9の照射光1参照)は、鏡で反射され、反射された光(図9の反射光1参照)が第1光検出器14によって検出される。逆に、第1光源12から出た光(図9の照射光2参照)は鏡で反射され、反射された光(図9の反射光2参照)が第2光検出器20によって検出される。このとき、第1光検出器14によって検出された受光量と第2光検出器20によって検出された受光量とが一定以上であれば、測定対象となる眼球が測定可能な条件下にあると判断されてしまう可能性がある。   As shown in FIG. 9, when the first light source 12 and the second light source 18 irradiate light of the same wavelength λ1 toward the eyeball and specify the line-of-sight direction of the eyeball, a mirror is specified in front of the eyeball. When placed at an angle, the light emitted from the second light source 18 (see irradiation light 1 in FIG. 9) is reflected by a mirror, and the reflected light (see reflected light 1 in FIG. 9) is reflected by the first photodetector 14. Detected. Conversely, the light emitted from the first light source 12 (see irradiation light 2 in FIG. 9) is reflected by a mirror, and the reflected light (see reflected light 2 in FIG. 9) is detected by the second photodetector 20. . At this time, if the amount of received light detected by the first photodetector 14 and the amount of received light detected by the second photodetector 20 are equal to or greater than a certain level, the eyeball to be measured is in a condition that allows measurement. There is a possibility of being judged.

第2の実施の形態に係る眼球内物質測定装置では、以下に説明するように、第1光源12及び第2光源18による発光を時間的に分けて行なう。まず、第2光源18のみによる発光を行い、第2光検出器20によって受光量を検出する。次に、第2光源18による発光を止め、第1光源12のみによる発光を行い、第1光検出器14によって受光量を検出する。   In the intraocular substance measurement device according to the second embodiment, light emission by the first light source 12 and the second light source 18 is performed in a time-divided manner as described below. First, light is emitted only by the second light source 18 and the amount of received light is detected by the second photodetector 20. Next, the light emission by the second light source 18 is stopped, the light emission by only the first light source 12 is performed, and the received light amount is detected by the first photodetector 14.

このように第1光源12及び第2光源18による発光を時間的に分けると、網膜の再帰性反射を利用するため、詐称が無い場合には、第1光検出器14及び第2光検出器20の各々で、一定以上の受光量が検出される。一方、詐称がある場合には、第1光検出器14及び第2光検出器20の各々で検出される受光量が一定以下になる。従って、第1光検出器14及び第2光検出器20の各々で検出される受光量が一定以下である場合には、対象となる眼球が測定可能な条件下にないと判断することができる。これによって、鏡を用いた詐称や、眼鏡等の反射による誤測定を防止することができる。   In this way, when the light emission by the first light source 12 and the second light source 18 is temporally divided, the retroreflection of the retina is used, and if there is no misrepresentation, the first photodetector 14 and the second photodetector. Each of 20 detects an amount of light received above a certain level. On the other hand, when there is a misrepresentation, the amount of received light detected by each of the first photodetector 14 and the second photodetector 20 becomes below a certain level. Therefore, when the amount of received light detected by each of the first photodetector 14 and the second photodetector 20 is below a certain level, it can be determined that the target eyeball is not in a measurable condition. . As a result, misrepresentation using a mirror and erroneous measurement due to reflection of glasses or the like can be prevented.

なお、眼球内物質測定装置の他の動作については第1の実施の形態と同様であるため、説明を省略する。   Note that other operations of the intraocular substance measuring apparatus are the same as those in the first embodiment, and thus description thereof is omitted.

次に、第3の実施の形態について説明する。なお、第3の実施の形態に係る眼球内物質測定装置の構成は、第1の実施の形態と同様の構成であるため、同一符号を付して説明を省略する。   Next, a third embodiment will be described. In addition, since the structure of the intraocular substance measuring device which concerns on 3rd Embodiment is the structure similar to 1st Embodiment, it attaches | subjects the same code | symbol and abbreviate | omits description.

第3の実施の形態では、眼球内のエタノール濃度を測定する処理のプロセスの中で、鏡を用いた詐称や眼鏡等の反射による誤測定を防止している点が、第2の実施の形態と異なっている。   In the third embodiment, in the process of measuring the ethanol concentration in the eyeball, false measurement using a mirror and reflection due to reflection of glasses, etc. are prevented. Is different.

第3の実施の形態に係る眼球内物質測定装置によれば、図10に示すように、第1光源12によって波長λ1及び波長λ2の光を発光して、眼球内のエタノール濃度を測定するが、鏡などによる詐称が行われた場合は、反射光が第1光検出器14で検出されないため、第1光検出器14で検出される受光量が一定以下となる。従って、第1光検出器14で検出される波長λ1の光の受光量又は波長λ2の光の受光量が、一定以下である場合に、対象となる眼球が測定可能な条件下にないと判断することができる。これによって、鏡を用いた詐称や眼鏡等の反射による誤測定を防止することができる。   According to the intraocular substance measurement device according to the third embodiment, as shown in FIG. 10, the first light source 12 emits light of wavelengths λ1 and λ2, and the ethanol concentration in the eyeball is measured. In the case of misrepresentation by a mirror or the like, since the reflected light is not detected by the first photodetector 14, the amount of received light detected by the first photodetector 14 becomes a certain level or less. Therefore, when the received light amount of the wavelength λ1 or the received light amount of the wavelength λ2 detected by the first photodetector 14 is below a certain level, it is determined that the target eyeball is not in a measurable condition. can do. As a result, false measurement using a mirror and erroneous measurement due to reflection of glasses or the like can be prevented.

なお、眼球内物質測定装置の他の動作については第1の実施の形態と同様であるため、説明を省略する。   Note that other operations of the intraocular substance measuring apparatus are the same as those in the first embodiment, and thus description thereof is omitted.

次に、第4の実施の形態について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。   Next, a fourth embodiment will be described. In addition, about the part which becomes the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第4の実施の形態では、光検出器にフィルタを設け、所定波長の光の受光量を検出している点が第1の実施の形態と異なっている。   The fourth embodiment is different from the first embodiment in that a filter is provided in the photodetector and the amount of light received with a predetermined wavelength is detected.

図11に示すように、第4の実施の形態に係る眼球内物質測定装置410は、被測定者の眼球に対して、エタノールによる光の吸収特性が現れない波長λ1、及びエタノールによる光の吸収特性が現れる波長λ2を含む波長域の光を発光する第1光源412と、第1光源412から発光された照射光の反射光のうち、波長λ1の光及び波長λ2の光の各々を受光して、受光量を検出する第1光検出器414と、ハーフミラー16と、被測定者の眼球に対して、エタノールによる光の吸収特性が現れない波長λ1を含む波長域の光を発光する第2光源418と、第2光源418から発光された照射光の反射光のうち、波長λ1の光を受光して、受光量を検出する第2光検出器420と、ハーフミラー22と、第1光源412及び第2光源418による発光を制御すると共に、第1光検出器414で検出する光の波長を切り替え、第1光検出器414及び第2光検出器420の検出結果に基づいて、眼球内のエタノール濃度を測定するコンピュータ424とを備えている。   As shown in FIG. 11, the intraocular substance measurement device 410 according to the fourth embodiment has a wavelength λ1 at which the light absorption characteristic due to ethanol does not appear with respect to the eyeball of the measurement subject, and the light absorption due to ethanol. The first light source 412 that emits light in a wavelength region including the wavelength λ2 where the characteristic appears and the reflected light of the irradiation light emitted from the first light source 412 receive each of the light of wavelength λ1 and the light of wavelength λ2. The first photodetector 414 that detects the amount of received light, the half mirror 16, and the first eye that emits light in a wavelength region including the wavelength λ1 at which the absorption characteristic of light by ethanol does not appear on the eyeball of the measurement subject. Of the reflected light of the irradiation light emitted from the two light sources 418 and the second light source 418, the second light detector 420 that receives light of wavelength λ1 and detects the amount of received light, the half mirror 22, and the first By the light source 412 and the second light source 418 A computer that controls light emission and switches the wavelength of light detected by the first photodetector 414, and measures the ethanol concentration in the eyeball based on the detection results of the first photodetector 414 and the second photodetector 420. 424.

第1光検出器414は、波長λ1の光を透過させる第1フィルタ及び波長λ2の光を透過させる第2フィルタからなるフィルタ群414Aを備え、コンピュータ424による制御に応じて、受光面の前にセットするフィルタを切り替える。第1光検出器414は、受光面の前に第1フィルタをセットした場合に、第1フィルタを透過した波長λ1の光を受光して、受光量を検出し、受光面の前に第2フィルタをセットした場合、第2フィルタを透過した波長λ2の光を受光して、受光量を検出する。   The first photodetector 414 includes a filter group 414A including a first filter that transmits light of wavelength λ1 and a second filter that transmits light of wavelength λ2, and is arranged in front of the light receiving surface according to control by the computer 424. Switch the filter to be set. When the first filter is set in front of the light receiving surface, the first photodetector 414 receives the light having the wavelength λ1 that has passed through the first filter, detects the amount of received light, and detects the second light in front of the light receiving surface. When the filter is set, the light of wavelength λ2 that has passed through the second filter is received and the amount of received light is detected.

第2光検出器420は、受光面の前に、波長λ1の光を透過させるフィルタ420Aを備え、フィルタ420Aを透過した波長λ1の光を受光して、受光量を検出する。   The second photodetector 420 includes a filter 420A that transmits light of wavelength λ1 in front of the light receiving surface, and receives the light of wavelength λ1 that has passed through the filter 420A to detect the amount of light received.

また、コンピュータ424において、濃度測定処理ルーチンを実行すると、まず、第1光検出器414の受光面の前に、波長λ1の光を透過させるフィルタをセットさせる。そして、第1光源412によって光を発光させ、照射光を眼球の房水を透過させて、網膜の眼底部で反射させ、第1光検出器414によって、フィルタを透過した波長λ1の反射光の受光量を検出させる。また、第2光源418によって光を発光させ、照射光を眼球の房水を透過させて、網膜の眼底部で反射させ、第2光検出器420によって、フィルタ420Aを透過した波長λ1の反射光の受光量を検出させる。   When the computer 424 executes the concentration measurement processing routine, first, a filter that transmits light having the wavelength λ1 is set in front of the light receiving surface of the first photodetector 414. Then, light is emitted by the first light source 412, the irradiation light is transmitted through the aqueous humor of the eyeball, reflected by the fundus of the retina, and the reflected light having the wavelength λ 1 transmitted through the filter by the first photodetector 414. The amount of received light is detected. In addition, light is emitted by the second light source 418, the irradiated light is transmitted through the aqueous humor of the eyeball, reflected by the fundus of the retina, and reflected by the wavelength λ1 transmitted by the second photodetector 420 through the filter 420A. The amount of received light is detected.

そして、検出された受光量の比に基づいて、被測定者の眼球の視線方向を特定し、特定された視線方向に対する第1光源412からの光の入射角、及び光路長決定テーブルに基づいて、第1光源412からの波長λ2の光の房水における光路長を推定する。   Then, based on the ratio of the detected amount of received light, the line-of-sight direction of the eyeball of the measurement subject is specified, and based on the incident angle of light from the first light source 412 with respect to the specified line-of-sight direction and the optical path length determination table. Then, the optical path length in the aqueous humor of the light of wavelength λ2 from the first light source 412 is estimated.

次に、第1光検出器414の受光面の前に、波長λ2の光を透過させるフィルタをセットさせ、第1光源412によって光を発光させ、照射光を眼球の房水を透過させて、網膜の眼底部で反射させ、第1光検出器414によって、フィルタを透過した波長λ2の反射光の受光量を検出させる。そして、検出された各受光量及び推定された光路長に基づいて、眼球の房水内のエタノール濃度を算出する。   Next, a filter that transmits light of wavelength λ2 is set in front of the light receiving surface of the first photodetector 414, light is emitted by the first light source 412, and irradiation light is transmitted through the aqueous humor of the eyeball. The amount of light reflected by the fundus of the retina is detected by the first photodetector 414 and the reflected light having the wavelength λ2 that has passed through the filter is detected. Then, the ethanol concentration in the aqueous humor of the eyeball is calculated based on each detected amount of received light and the estimated optical path length.

次に、第5の実施の形態について説明する。なお、第1の実施の形態と同様の構成となる部分については、同一符号を付して説明を省略する。   Next, a fifth embodiment will be described. In addition, about the part which becomes the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted.

第5の実施の形態では、エタノールによる光の吸収特性が現れる波長の光と光の吸収特性が現れない波長の光とが異なる光源によって発光されている点が第1の実施の形態と異なっている。   The fifth embodiment is different from the first embodiment in that light having a wavelength at which light absorption characteristics due to ethanol appear and light having a wavelength at which light absorption characteristics do not appear are emitted by different light sources. Yes.

図12に示すように、第5の実施の形態に係る眼球内物質測定装置510は、被測定者の眼球に対して、エタノールによる光の吸収特性が現れない波長λ1の光を発光する第1光源512と、第1光検出器14と、ハーフミラー16と、第2光源18と、第2光検出器20と、ハーフミラー22と、エタノールによる光の吸収特性が現れる波長λ2の光を発光する第3光源522と、第3光源522から発光された照射光の反射光を受光して、受光量を検出する第3光検出器524と、第1光源522からの照射光を通過させると共に、眼球内で反射された反射光を反射させて第3光検出器524へ導くハーフミラー526と、第1光源512、第2光源18、及び第3光源522による発光を制御すると共に、第1光検出器14、第2光検出器20、及び第3光検出器524の検出結果に基づいて、眼球内のエタノール濃度を測定するコンピュータ524とを備えている。   As shown in FIG. 12, the intraocular substance measurement device 510 according to the fifth embodiment emits light having a wavelength λ1 that does not show the light absorption characteristic of ethanol to the eyeball of the measurement subject. The light source 512, the first photodetector 14, the half mirror 16, the second light source 18, the second photodetector 20, the half mirror 22, and the light of the wavelength λ2 at which the light absorption characteristic by ethanol appears. The third light source 522, the third light detector 524 that receives the reflected light of the irradiation light emitted from the third light source 522, detects the amount of received light, and passes the irradiation light from the first light source 522. The first mirror 526 controls the light emission of the first light source 512, the second light source 18, and the third light source 522 while reflecting the reflected light reflected in the eyeball and guiding the reflected light to the third photodetector 524. Photodetector 14, second photodetection And a computer 524 for measuring the ethanol concentration in the eyeball based on the detection results of the detector 20 and the third photodetector 524.

コンピュータ524では、視線方向に対する第3光源522からの光の入射角と第3光源522からの光の光路長との関係に基づいて予め求められた光路長が格納された光路長決定テーブルが、テーブル記憶部36に記憶されている。また、光路長推定部38は、特定された視線方向に対する入射角に対応する光路長を、光路長決定テーブルから取得し、第3光源522からの光路長の推定値とする。   In the computer 524, an optical path length determination table storing optical path lengths obtained in advance based on the relationship between the incident angle of light from the third light source 522 with respect to the line-of-sight direction and the optical path length of light from the third light source 522, It is stored in the table storage unit 36. In addition, the optical path length estimation unit 38 acquires the optical path length corresponding to the incident angle with respect to the identified line-of-sight direction from the optical path length determination table, and uses it as the estimated value of the optical path length from the third light source 522.

なお、眼球内物質測定装置510の他の構成については、第1の実施の形態と同様であるため、説明を省略する。また、動作については第1の実施の形態と同様であるため、説明を省略する。   Other configurations of the intraocular substance measurement device 510 are the same as those in the first embodiment, and thus description thereof is omitted. Since the operation is the same as that of the first embodiment, the description thereof is omitted.

なお、上記の第1の実施の形態〜第5の実施の形態では、視線方向に対する入射角と光路長との関係を格納した光路長決定テーブルを用いて、光路長を推定する場合を例に説明したが、これに限定されるものではなく、視線方向に対する入射角と光路長との関係を示す関係式を求めておき、この関係式に従って、視線方向に対する入射角に対応する光路長を推定するようにしてもよい。   In the first to fifth embodiments described above, an example in which the optical path length is estimated using the optical path length determination table storing the relationship between the incident angle with respect to the line-of-sight direction and the optical path length is taken as an example. Although described above, the present invention is not limited to this. A relational expression indicating the relationship between the incident angle with respect to the line-of-sight direction and the optical path length is obtained, and the optical path length corresponding to the incident angle with respect to the line-of-sight direction is estimated according to this relational expression. You may make it do.

また、エタノールによる光の吸収特性が現れる波長の第1の光と、吸収特性が現れない波長の第2の光とを眼球に対して発光する場合を例に説明したが、これに限定されるものではなく、第1の光の波長を、吸収特性が現れる波長を含む波長としてもよく、また、第2の光の波長を、第1の光に含まれる吸収特性が現れる波長を含まない波長としてもよい。また、第2の光は、第1の光に含まれる吸収特性が現れる波長を含まなければ、吸収特性が現れる波長を含んでいてもよい。この場合には、第1の光に対する光の吸収係数と、第2の光に対する光の吸収係数とを考慮して導出された式に従って、エタノール濃度を算出するようにすればよい。   Further, the case where the first light having a wavelength at which the light absorption characteristic due to ethanol appears and the second light having a wavelength at which the absorption characteristic does not appear is emitted to the eyeball as an example, but the present invention is not limited thereto. The wavelength of the first light may be a wavelength including the wavelength at which the absorption characteristic appears, and the wavelength of the second light is not the wavelength at which the absorption characteristic included in the first light is included. It is good. In addition, the second light may include a wavelength at which the absorption characteristic appears as long as the second light does not include the wavelength at which the absorption characteristic included in the first light appears. In this case, the ethanol concentration may be calculated according to an equation derived in consideration of the light absorption coefficient for the first light and the light absorption coefficient for the second light.

また、測定対象の物質をエタノールとした場合を例に説明したが、これに限定するものではなく、例えば、グルコースを測定対象の物質とし、眼球内の特定部位に含まれるグルコースの濃度を測定するようにしてもよい。   Moreover, although the case where the measurement target substance is ethanol has been described as an example, the present invention is not limited to this. For example, glucose is a measurement target substance, and the concentration of glucose contained in a specific part in the eyeball is measured. You may do it.

また、第1光検出器の受光量及び第2光検出器の受光量を用いて、眼球の視線方向を特定した場合を例に説明したが、これに限定されるものではなく、カメラによって眼球を撮像し、撮像画像に対して画像認識処理を行うことにより、眼球の視線方向を特定するようにしてもよい。   Moreover, although the case where the line-of-sight direction of the eyeball was specified using the received light amount of the first photodetector and the received light amount of the second photodetector has been described as an example, the present invention is not limited to this, and the eyeball is determined by the camera. May be specified, and the line-of-sight direction of the eyeball may be specified by performing image recognition processing on the captured image.

また、エタノールを含有可能な部位が、眼球内の房水である場合を例に説明したが、これに限定されるものではなく、エタノールを含有可能であって、視軸上に存在する部位であればよい。例えば、エタノールを含有可能な部位を、結晶体または硝子体としてもよい。   In addition, the case where the part that can contain ethanol is aqueous humor in the eyeball has been described as an example, but the present invention is not limited to this, and the part that can contain ethanol and exists on the visual axis. I just need it. For example, the portion that can contain ethanol may be a crystalline body or a vitreous body.

本発明の第1の実施の形態に係る眼球内物質測定装置の構成を示した概略図である。It is the schematic which showed the structure of the intraocular substance measuring device which concerns on the 1st Embodiment of this invention. 照射する光の波長に応じた反射光の受光量を示すグラフである。It is a graph which shows the light reception amount of the reflected light according to the wavelength of the light to irradiate. 照射する光の波長に応じた吸光度の大きさを示すグラフである。It is a graph which shows the magnitude | size of the light absorbency according to the wavelength of the light to irradiate. 本発明の第1の実施の形態に係る眼球内物質測定装置のコンピュータの構成を示した概略図である。It is the schematic which showed the structure of the computer of the intraocular substance measuring device which concerns on the 1st Embodiment of this invention. 眼球の再帰性の反射特性を示すイメージ図である。It is an image figure which shows the reflexive reflection characteristic of an eyeball. 第1光検出器の出力、第2光検出器の出力、及び視線方向の関係を示すグラフである。It is a graph which shows the relationship between the output of a 1st photodetector, the output of a 2nd photodetector, and a gaze direction. 眼球の房水において、視軸に沿った光の房水における光路長と、入射角θの光の房水における光路長とを説明するためのイメージ図である。In the aqueous humor of an eyeball, it is an image figure for demonstrating the optical path length in the aqueous humor of the light along a visual axis, and the optical path length in the aqueous humor of the light of incident angle (theta). 本発明の第1の実施の形態に係るコンピュータで実行される濃度測定処理ルーチンの内容を示すフローチャートである。It is a flowchart which shows the content of the density | concentration measurement process routine performed with the computer which concerns on the 1st Embodiment of this invention. 眼球の前に鏡を置く詐称が行なわれた場合を示すイメージ図である。It is an image figure which shows the case where the misrepresentation which puts a mirror in front of an eyeball is performed. 眼球の前に鏡を置く詐称が行われた場合に、反射光が第1光検出器で検出されない様子を示すイメージ図である。It is an image figure which shows a mode that reflected light is not detected with a 1st photodetector, when the misrepresentation which puts a mirror in front of an eyeball is performed. 本発明の第4の実施の形態に係る眼球内物質測定装置の構成を示す概略図である。It is the schematic which shows the structure of the intraocular substance measuring device which concerns on the 4th Embodiment of this invention. 本発明の第5の実施の形態に係る眼球内物質測定装置の構成を示す概略図である。It is the schematic which shows the structure of the intraocular substance measuring device which concerns on the 5th Embodiment of this invention.

符号の説明Explanation of symbols

10、410、510 眼球内物質測定装置
12、412、512 第1光源
14、414 第1光検出器
16、22、526 ハーフミラー
18、418 第2光源
20、420 第2光検出器
24、424、524 コンピュータ
30 光源制御部
34 視線方向特定部
36 テーブル記憶部
38 光路長推定部
40 濃度算出部
414A フィルタ群
420A フィルタ
522 第3光源
524 第3光検出器
10, 410, 510 Intraocular substance measuring device 12, 412, 512 First light source 14, 414 First light detector 16, 22, 526 Half mirror 18, 418 Second light source 20, 420 Second light detector 24, 424 524 Computer 30 Light source control unit 34 Line-of-sight direction specification unit 36 Table storage unit 38 Optical path length estimation unit 40 Density calculation unit 414A Filter group 420A Filter 522 Third light source 524 Third photodetector

Claims (8)

被測定者の眼球内の測定対象の物質を含有可能な特定部位を透過して網膜で反射され、かつ、前記物質による光の吸収特性が現れる特定波長を含む波長の第1の光を受光して、受光量を検出すると共に、前記特定部位を透過して網膜で反射され、かつ、前記特定波長を含まない波長の第2の光を受光して、受光量を検出する受光手段と、
前記被測定者の眼球の視線方向を特定する特定手段と、
前記特定手段によって特定された視線方向に基づいて、前記特定部位における前記第1の光の光路長を推定する光路長推定手段と、
前記受光手段によって検出された前記第1の光の受光量、前記検出された前記第2の光の受光量、及び前記光路長推定手段によって推定された前記光路長に基づいて、前記特定部位内の前記物質の濃度を算出する濃度算出手段と、
を含む眼球内物質測定装置。
Receives first light having a wavelength including a specific wavelength that passes through a specific part of the eyeball of the measurement subject that can contain the substance to be measured and is reflected by the retina and appears to absorb light by the substance. A light receiving means for detecting the amount of received light, receiving second light having a wavelength that passes through the specific part and is reflected by the retina and does not include the specific wavelength,
A specifying means for specifying a line-of-sight direction of the eyeball of the measurement subject;
An optical path length estimating means for estimating an optical path length of the first light in the specific part based on the line-of-sight direction specified by the specifying means;
Based on the received light amount of the first light detected by the light receiving unit, the received light amount of the second light, and the optical path length estimated by the optical path length estimating unit, Concentration calculating means for calculating the concentration of the substance of
Intraocular substance measuring device including:
前記特定部位を透過して網膜に照射されるように、前記第1の光を照射する第1光源と、
前記特定部位を透過して網膜に照射されるように、前記第2の光を照射する第2光源とを更に含む請求項1記載の眼球内物質測定装置。
A first light source that irradiates the first light so as to pass through the specific part and irradiate the retina ;
The intraocular substance measurement device according to claim 1, further comprising a second light source that irradiates the second light so as to pass through the specific part and irradiate the retina .
前記第1光源及び前記第2光源は、異なる2つの位置から、前記特定部位を透過して網膜に照射されるように前記第2の光と同じ波長の光を発光し、
前記受光手段は、前記2つの位置からの前記光の反射光を受光して、受光量を各々検出し、
前記特定手段は、前記受光手段によって検出された前記2つの位置からの前記光の反射光の受光量に基づいて、前記視線方向を特定する請求項2記載の眼球内物質測定装置。
The first light source and the second light source emit light having the same wavelength as the second light so as to be transmitted to the retina from two different positions.
The light receiving means receives the reflected light of the light from the two positions and detects the amount of light received,
The intraocular substance measurement apparatus according to claim 2, wherein the specifying unit specifies the line-of-sight direction based on a received light amount of the reflected light from the two positions detected by the light receiving unit.
前記第1光源は、前記眼球の網膜に対して前記特定波長の光を発光し、
前記濃度算出手段は、前記受光手段によって検出された前記2つの位置の何れか一方からの前記第2の光と同じ波長の光の受光量、前記検出された前記特定波長の光の受光量、及び前記光路長推定手段によって推定された前記光路長に基づいて、前記特定部位内の前記物質の濃度を算出する請求項3記載の眼球内物質測定装置。
The first light source emits the light of the specific wavelength with respect to the retina before Symbol eyeball,
The concentration calculation unit is configured to receive an amount of received light having the same wavelength as the second light from any one of the two positions detected by the light receiving unit, an amount of received light of the detected specific wavelength , The intraocular substance measurement device according to claim 3, wherein the concentration of the substance in the specific part is calculated based on the optical path length estimated by the optical path length estimation means.
前記濃度算出手段は、前記受光手段によって検出された前記2つの位置からの前記第2の光と同じ波長の光の反射光の受光量の比が所定範囲内でない場合には、前記特定部位内の測定対象の物質の濃度を算出しない請求項3又は4記載の眼球内物質測定装置。 When the ratio of the amount of reflected light of light having the same wavelength as the second light from the two positions detected by the light receiving means is not within a predetermined range, the concentration calculating means The intraocular substance measuring device according to claim 3 or 4, wherein the concentration of the substance to be measured is not calculated. 前記第1光源は、電流変調により、前記第1の光及び前記第2の光を切り替えて発光する請求項2〜請求項5の何れか1項記載の眼球内物質測定装置。 The intraocular substance measuring device according to claim 2, wherein the first light source emits light by switching between the first light and the second light by current modulation. 前記特定部位を透過して網膜に照射されるように、前記第1の光の波長及び前記第2の光の波長を含む波長の光を発光する光源を更に含み、
前記受光手段は、前記特定波長の光を透過させる第1フィルタ及び前記第2光の波長の光を透過させる第2フィルタを備え、前記第1フィルタを透過した前記特定波長の光を受光して、受光量を検出すると共に、前記第2フィルタを透過した前記第2の光を受光して、受光量を検出する請求項1記載の眼球内物質測定装置。
A light source that emits light having a wavelength including the wavelength of the first light and the wavelength of the second light so as to be transmitted to the retina through the specific site;
It said light receiving means, wherein a second filter for transmitting light of a wavelength of the first filter and the second light transmitting light of a specific wavelength, said first filter receiving light transmitted through said specific wavelength The intraocular substance measurement device according to claim 1, wherein the received light amount is detected and the second light transmitted through the second filter is received to detect the received light amount.
前記第2の光を、前記測定対象の物質による光の吸収特性が現れない波長の光とした請求項1〜請求項7の何れか1項記載の眼球内物質測定装置。   The intraocular substance measuring device according to any one of claims 1 to 7, wherein the second light is light having a wavelength at which light absorption characteristics of the substance to be measured do not appear.
JP2007316944A 2007-12-07 2007-12-07 Intraocular substance measurement device Expired - Fee Related JP5200518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007316944A JP5200518B2 (en) 2007-12-07 2007-12-07 Intraocular substance measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007316944A JP5200518B2 (en) 2007-12-07 2007-12-07 Intraocular substance measurement device

Publications (2)

Publication Number Publication Date
JP2009136541A JP2009136541A (en) 2009-06-25
JP5200518B2 true JP5200518B2 (en) 2013-06-05

Family

ID=40867815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007316944A Expired - Fee Related JP5200518B2 (en) 2007-12-07 2007-12-07 Intraocular substance measurement device

Country Status (1)

Country Link
JP (1) JP5200518B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201000973D0 (en) * 2010-01-21 2010-03-10 Glynn Chris Non-evasive spectrophotometer and related method
US9597020B2 (en) 2012-10-16 2017-03-21 Electronics And Telecommunications Research Institute Measuring device and glucose concentration measurement method of the measuring device
JP6841146B2 (en) * 2017-04-21 2021-03-10 富士ゼロックス株式会社 Eye light measuring device and eye light measuring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243142A1 (en) * 1992-12-19 1994-06-23 Boehringer Mannheim Gmbh Device for in-vivo determination of an optical property of the aqueous humor of the eye
JP3599878B2 (en) * 1996-03-01 2004-12-08 テルモ株式会社 Blood glucose meter
JP2002000570A (en) * 2000-06-23 2002-01-08 Tokyo Boeki Medical System Kk Positioning device for measuring eyeball
ATE533398T1 (en) * 2001-08-02 2011-12-15 Jonathan Gerlitz NON-INVASIVE BLOOD SUGAR MONITOR
JP2008307285A (en) * 2007-06-15 2008-12-25 Toyota Central R&D Labs Inc Instrument for measuring living body component

Also Published As

Publication number Publication date
JP2009136541A (en) 2009-06-25

Similar Documents

Publication Publication Date Title
US7450981B2 (en) Apparatus and method for measuring blood component using light trans-reflectance
JP5053845B2 (en) Method, system and software apparatus for determining at least one position in a sample using optical coherence tomography
JP5578542B2 (en) Eye refractive power measuring device
JP2012075641A5 (en)
CN106793950B (en) Non-invasive in situ glucose level detection using electromagnetic radiation
WO2015136956A1 (en) Measurement device and measurement method
US20160041615A1 (en) Information processing apparatus, focus detection method, and information processing system
US10437325B2 (en) Retinal see through display power level determination method and apparatus
US20150150450A1 (en) System and Method of Blink Detection for an Adaptive Optics System
JP2011511694A (en) Apparatus and method for noninvasively measuring substance concentration in blood using light retroreflected from the retina
JP5200518B2 (en) Intraocular substance measurement device
CN111329442A (en) Eyesight health detection method and device and electronic equipment
CN103826529A (en) Hair treatment device with hair detector
WO2019027051A1 (en) Contact lens and detection method
US11160448B2 (en) Optical measurement apparatus for eyeball
EP2753230B1 (en) Ophthalmic apparatus and method for measuring an eye
EP3547895B1 (en) Visualization systems and methods for optimized optical coherence tomography
JP2009119153A (en) Optical coherent tomography system
JP2014032146A (en) Concentration measuring device, and method for controlling the concentration measuring device
WO2014151293A1 (en) Continuous noninvasive measurement of analyte concentration using an optical bridge
KR101578767B1 (en) Vein enhencer and the method for enhence the vein thereof
KR101069930B1 (en) Apparatus and Method of Measuring the Corneal Opacity
KR102043804B1 (en) Measuring apparatus and method for measuring of glucose concentration
US20130003019A1 (en) Ophthalmologic apparatus and ophthalmologic system
JP6705593B2 (en) measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees