WO2016002135A1 - 鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法 - Google Patents

鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法 Download PDF

Info

Publication number
WO2016002135A1
WO2016002135A1 PCT/JP2015/002880 JP2015002880W WO2016002135A1 WO 2016002135 A1 WO2016002135 A1 WO 2016002135A1 JP 2015002880 W JP2015002880 W JP 2015002880W WO 2016002135 A1 WO2016002135 A1 WO 2016002135A1
Authority
WO
WIPO (PCT)
Prior art keywords
soc
storage battery
lead storage
charging
voltage
Prior art date
Application number
PCT/JP2015/002880
Other languages
English (en)
French (fr)
Inventor
毅 千葉
杉江 一宏
吉原 靖之
守 向野
岸本 圭司
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016530814A priority Critical patent/JP6638650B2/ja
Publication of WO2016002135A1 publication Critical patent/WO2016002135A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/04Arrangement of batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a deterioration determination device for a lead storage battery and a deterioration determination method for a lead storage battery that determine whether or not the lead storage battery is deteriorated, a charge control device that charges a lead storage battery and a secondary battery connected in parallel to each other, and charging Control method.
  • a vehicle having an engine as a main power source includes a battery as a power source of a starter motor for starting the engine.
  • a battery As the battery, a lead storage battery is generally used.
  • Patent Literature a vehicle including a power source unit in which a secondary battery other than a lead storage battery such as a nickel metal hydride secondary battery or a lithium ion secondary battery capable of sufficient rapid charging is connected in parallel with the lead storage battery is known (Patent Literature). 1).
  • Patent Document 1 further improvement has been desired.
  • a first aspect of the present invention is a power supply unit including a lead storage battery and a secondary battery other than the lead storage battery connected in parallel to each other, and a voltage detection for detecting a voltage of the power supply unit.
  • An acquisition unit that acquires an internal resistance of the secondary battery, a storage unit that stores in advance a total current value supplied from the power supply unit to the starter motor when the engine is started by the starter motor, and the starter A starting voltage which is a voltage of the power source when the engine is started by the motor for motor is detected by the voltage detector, the detected starting voltage, and an internal resistance of the secondary battery acquired by the acquiring unit;
  • a calculation unit that calculates an internal resistance of the lead storage battery using the overall current value stored in the storage unit; an internal resistance of the lead storage battery calculated by the calculation unit; and a predetermined resistance threshold value And And compare, when the internal resistance of the lead-acid battery is higher than the threshold resistance value, in which and a determination portion and the lead-acid battery is deteriorated.
  • FIG. 1 is a block diagram schematically showing a configuration of a vehicle including a battery control unit according to a first embodiment. It is a figure which shows schematically the transition of the voltage of a power supply part. It is a figure which shows the equivalent circuit of ISG, lead acid battery, and nickel metal hydride battery. It is a flowchart which shows roughly operation
  • FIG. 7 is a timing chart schematically showing a charging current when the power supply unit of FIG. 6 is charged at a constant voltage of 13.7V. It is a flowchart which shows the charge operation of 2nd Embodiment schematically. It is a figure which shows roughly an example of SOC of the lead storage battery and nickel hydride storage battery which increase by the charging operation of FIG. It is a flowchart which shows roughly the charge operation of 3rd Embodiment.
  • FIG. 3 It is a figure which shows roughly an example of SOC of the lead storage battery and nickel hydride storage battery which increase by the charging operation of FIG. 3 is a timing chart schematically showing the operation of a switch element. It is a timing chart which shows the output voltage of ISG schematically. It is a block diagram which shows roughly the structure of the vehicle containing the battery control part and ECU of 4th Embodiment. It is a flowchart which shows schematically the charge operation of 4th Embodiment. It is a figure which shows roughly an example of SOC of the lead storage battery and nickel hydride storage battery which increase by the charging operation of FIG. 3 is a timing chart schematically showing the operation of a switch element.
  • the deterioration determination device for the lead storage battery and the lead aims at providing the deterioration determination method of a storage battery.
  • the present inventor has a power supply unit including a lead storage battery and a secondary battery other than the lead storage battery (nickel metal hydride storage battery in the present embodiment) connected in parallel to each other as in the technique described in Patent Document 1.
  • a power supply unit including a lead storage battery and a secondary battery other than the lead storage battery (nickel metal hydride storage battery in the present embodiment) connected in parallel to each other as in the technique described in Patent Document 1.
  • FIG. 5 is a diagram schematically showing the transition of the internal resistance between the lead storage battery and the nickel metal hydride storage battery used in the vehicle.
  • the upper diagram in FIG. 5 shows changes in individual internal resistances of the lead storage battery and the nickel metal hydride storage battery.
  • the lower diagram of FIG. 5 shows the transition of the combined internal resistance in which the internal resistances of the lead storage battery and the nickel metal hydride storage battery are combined.
  • Lead-acid batteries used in vehicles are generally replaced in 3 years. Therefore, as shown in the upper diagram of FIG. 5, the internal resistance Rpb of the lead-acid battery continues to increase for three years from the initial value Rpb0, but returns to the initial value Rpb0 for every replacement after three years.
  • nickel-metal hydride storage batteries are designed with a lifespan of 9 years or more, similar to vehicles. Therefore, as shown in the upper diagram of FIG. 5, the internal resistance Rni of the nickel metal hydride storage battery continues to increase for nine years from the initial value Rni0.
  • the combined internal resistance Rt of the lead acid battery and the nickel metal hydride battery continues to increase for three years from the initial value R0, and then decreases due to replacement of the lead acid battery after three years.
  • the combined internal resistance Rt is reduced only to a resistance value R3 higher than the initial value R0.
  • the combined internal resistance Rt decreases due to replacement of the lead storage battery, but only decreases to a resistance value R6 higher than the resistance value R3.
  • the deterioration determination of the lead storage battery is performed by comparing the predetermined resistance threshold value Rd and the combined internal resistance Rt, it can be determined that the deterioration has occurred at an appropriate timing three years after the start of use of the vehicle.
  • the combined internal resistance Rt reaches the resistance threshold value Rd in Td year (3 ⁇ Td ⁇ 6) from the start of use of the vehicle. For this reason, within 3 years from the replacement of the lead storage battery, it is determined that the lead storage battery has deteriorated even though it has not deteriorated. Therefore, it is necessary to determine the deterioration of the lead storage battery not by the combined internal resistance Rt but by the internal resistance Rpb of the lead storage battery alone.
  • the present inventor has come up with the invention of each aspect included in the first aspect according to the present disclosure as follows based on the above examination.
  • a first aspect according to the present disclosure includes a power supply unit including a lead storage battery and a secondary battery other than the lead storage battery connected in parallel to each other, a voltage detection unit that detects a voltage of the power supply unit, and the secondary battery
  • An acquisition unit for acquiring the internal resistance of the engine a storage unit for preliminarily storing an entire current value supplied from the power supply unit to the starting motor when the engine is started by the starting motor, and starting the engine by the starting motor
  • the starting voltage which is the voltage of the power supply unit at the time is detected by the voltage detecting unit, the detected starting voltage, the internal resistance of the secondary battery acquired by the acquiring unit, and stored in the storage unit
  • the total current value is used to calculate the internal resistance of the lead storage battery, and the internal resistance of the lead storage battery calculated by the calculation section is compared with a predetermined resistance threshold value.
  • Lead storage If the internal resistance is higher than the resistance threshold, those comprising, a determination unit and the lead-acid battery is deteriorated.
  • the starting voltage that is the voltage of the power source when the engine is started by the starting motor is detected by the voltage detector.
  • the internal resistance of the secondary battery, and the total current value supplied to the starting motor from the power source when the engine is started by the starting motor is Calculated.
  • the total current value supplied from the power supply unit to the starting motor when the engine is started by the starting motor depends on the specifications of the starting motor and the engine. Therefore, when the starting motor and engine are determined, the overall current value is also determined. Therefore, the entire current value can be stored in the storage unit in advance.
  • the combined internal resistance of the secondary battery and the lead storage battery connected in parallel to each other is calculated using the total current value stored in the storage unit and the detected starting voltage.
  • the internal resistance of the lead storage battery is calculated from the calculated combined internal resistance and the acquired internal resistance of the secondary battery.
  • the determination unit determines that the lead storage battery has deteriorated. Therefore, the deterioration of the lead storage battery can be accurately determined using the internal resistance of the lead storage battery alone.
  • the automatic stop of the engine by idle stop control may be prohibited.
  • the determination unit determines that the lead storage battery has deteriorated
  • the determination unit prohibits the automatic stop of the engine by the idle stop control. Therefore, it is possible to avoid a situation in which the engine that is automatically stopped cannot be started due to deterioration of the lead storage battery.
  • the starting motor may be a motor that starts the engine that is automatically stopped by the idle stop control.
  • the starting motor may be a motor that starts the engine by an operation of an ignition switch by a user.
  • Another aspect according to the present disclosure is a deterioration determination method for a lead storage battery in a deterioration determination apparatus for a lead storage battery including a power supply unit including a lead storage battery and a secondary battery other than the lead storage battery connected in parallel to each other,
  • the calculation step for calculating the internal resistance is compared with the internal resistance of the lead storage battery calculated in the calculation step and a predetermined resistance threshold value.
  • the lead-acid battery is intended to include, a determining step of determining to be deteriorated.
  • the internal resistance of the lead storage battery is calculated in the calculation step using the value.
  • the total current value supplied from the power supply unit to the starting motor when the engine is started by the starting motor depends on the specifications of the starting motor and the engine. Therefore, when the starting motor and engine are determined, the overall current value is also determined. Therefore, a predetermined overall current value can be used.
  • the internal resistance of the lead storage battery is calculated from the calculated combined internal resistance and the internal resistance of the secondary battery.
  • the determination step when the internal resistance of the lead storage battery is higher than the resistance threshold, it is determined that the lead storage battery has deteriorated. Therefore, the deterioration of the lead storage battery can be accurately determined using the internal resistance of the lead storage battery alone.
  • FIG. 1 is a block diagram schematically showing the configuration of the vehicle 1 including the battery control unit 80 of the first embodiment.
  • Vehicle 1 is a hybrid electric vehicle having an engine as a main power source and a motor as an auxiliary power source.
  • the vehicle 1 includes an engine 10, a starter motor 20, an integrated starter generator (ISG) 30, an electrical load 40, a power supply unit 45, an electronic control unit (ECU) 70, and the battery control unit 80 of the first embodiment.
  • ISG integrated starter generator
  • ECU electronice control unit
  • the power supply unit 45 includes a lead storage battery 50 and a battery pack 60.
  • the battery pack 60 includes a nickel metal hydride storage battery 61 and a resistance detection unit 62.
  • the lead storage battery 50 and the nickel metal hydride storage battery 61 are connected in parallel to each other.
  • the starter motor 20 (an example of a starting motor) starts the engine 10 when the ignition switch is operated by the user.
  • ISG30 (an example of a starting motor) has both a power generation function and an electric function.
  • a brake pedal (not shown) is operated while the vehicle 1 is traveling and starts to decelerate, torque is transmitted from the wheels to the ISG 30, and the ISG 30 generates power by the power generation function.
  • the generated power exceeds the electrical load of the electrical load 40, the lead storage battery 50 and the nickel hydride storage battery 61 of the power supply unit 45 are charged by the generated power. This regenerates energy.
  • the engine 10 is automatically stopped by the idle stop control of the ECU 70.
  • the vehicle 1 starts the vehicle 1 is driven by the electric function of the ISG 30 and the engine 10 is started.
  • the electrical load 40 includes a load such as an electrical component equipped in the vehicle 1 such as an air conditioner and a room light.
  • the nominal voltages of the lead storage battery 50 and the nickel metal hydride storage battery 61 are, for example, 12V in the first embodiment.
  • the electric power output from the power supply unit 45 is used to drive the starter motor 20 and the ISG 30 that start the engine 10 of the vehicle 1 and to power the electrical load 40.
  • the resistance detector 62 of the battery pack 60 detects the internal resistance Rni of the nickel metal hydride storage battery 61.
  • the resistance detection unit 62 includes, for example, a current detection unit including a shunt resistor and a voltage detection unit that detects a terminal voltage of the nickel metal hydride storage battery 61.
  • the resistance detection unit 62 is provided to determine whether or not the nickel metal hydride storage battery 61 is abnormal and to protect the battery pack 60.
  • the resistance detector 62 is configured to output a warning signal to the ECU 70 when detecting that the internal resistance Rni of the nickel metal hydride storage battery 61 is equal to or greater than a predetermined value, for example.
  • the ECU 70 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) in which a predetermined control program is stored, a RAM (Random Access Memory) in which data is temporarily stored, these Peripheral circuits are provided.
  • the ECU 70 is configured to be able to communicate with the battery control unit 80.
  • the ECU 70 controls the overall operation of the vehicle 1 including the engine 10, the starter motor 20, the ISG 30, and the electrical load 40.
  • the ECU 70 automatically stops the engine 10 when a predetermined stop condition such as the vehicle 1 is stopped for a predetermined time at an intersection or the like, and again when a predetermined start condition such as release of operation of a brake pedal (not shown) is satisfied. Idle stop control for starting the engine 10 is performed.
  • the prohibition signal (described later) is notified from the battery control unit 80, the ECU 70 does not automatically stop the engine 10 by the idle stop control.
  • the battery control unit 80 includes, for example, a CPU that executes predetermined arithmetic processing, a ROM that stores a predetermined control program, a RAM that temporarily stores data, and peripheral circuits thereof.
  • the battery control unit 80 includes a storage unit 81 and a voltage detection unit 82 configured by, for example, a flash memory.
  • the battery control unit 80 functions as the calculation unit 83 and the determination unit 84 by executing a control program stored in the ROM.
  • the storage unit 81 stores in advance an overall current value It supplied from the power supply unit 45 to the starter motor 20 or ISG 30 when the starter motor 20 or ISG 30 starts the engine 10.
  • the total current value It depends on the specifications of the engine 10, the starter motor 20, and the ISG 30. Therefore, when engine 10, starter motor 20, and ISG 30 are determined, overall current value It is also determined.
  • the starter motor 20 starts the engine 10
  • the power supply unit 45 starts the ISG 30. Is approximately the same value as the total current value supplied to the.
  • the total current value It is, for example, 500A.
  • the storage unit 81 stores in advance a resistance threshold value Rth for determining whether or not the lead storage battery 50 is deteriorated.
  • Storage unit 81 stores in advance a voltage threshold value Vth for determining whether or not engine 10 has been started.
  • the voltage detection unit 82 detects the voltage Vt of the power supply unit 45.
  • the voltage detection unit 82 outputs the detected voltage Vt to the calculation unit 83.
  • the calculation unit 83 compares the voltage Vt of the power supply unit 45 detected by the voltage detection unit 82 with the voltage threshold value Vth stored in the storage unit 81, and determines whether the engine 10 is started by the starter motor 20 or the ISG 30. Determine whether or not.
  • FIG. 2 is a diagram schematically showing the transition of the voltage Vt of the power supply unit 45.
  • a large current for example, 500A as described above
  • the voltage Vt of the power supply unit 45 temporarily temporarily decreases to the minimum voltage Vmin (an example of the starting voltage). And then slowly returns to the original voltage.
  • the calculation unit 83 determines that the engine 10 has been started when the voltage Vt of the power supply unit 45 drops below the voltage threshold value Vth stored in the storage unit 81.
  • the calculation unit 83 acquires the minimum voltage Vmin detected by the voltage detection unit 82 from the voltage detection unit 82.
  • the voltage threshold Vth is set to an appropriate value of about 10 V, for example, according to the specifications of the engine 10, the starter motor 20, the ISG 30, and the power supply unit 45, and is stored in the storage unit 81 in advance.
  • the calculation unit 83 determines that the engine 10 has been started by the starter motor 20 or the ISG 30, the calculation unit 83 acquires the internal resistance Rni of the nickel-metal hydride storage battery 61 from the resistance detection unit 62.
  • the calculation unit 83 includes the minimum voltage Vmin detected by the voltage detection unit 82, the total current value It stored in the storage unit 81, and the nickel hydride storage battery 61 acquired from the resistance detection unit 62. Using the internal resistance Rni, the internal resistance Rpb of the lead storage battery 50 is calculated.
  • FIG. 3 is a diagram showing an equivalent circuit of the ISG 30, the lead storage battery 50, and the nickel hydride storage battery 61.
  • the following equation (1) is established.
  • Rt Vmin / It (1)
  • Vmin is the minimum voltage detected by the voltage detection part 82
  • It is the whole electric current value memorize
  • Rt is the synthesis
  • Internal resistance The combined internal resistance Rt of the lead storage battery 50 and the nickel metal hydride storage battery 61 connected in parallel is calculated by the equation (1).
  • the calculation unit 83 outputs the calculated internal resistance Rpb of the lead storage battery 50 to the determination unit 84.
  • the determination unit 84 compares the internal resistance Rpb of the lead storage battery 50 calculated by the calculation unit 83 with the resistance threshold Rth stored in the storage unit 81 to determine whether or not the lead storage battery 50 has deteriorated. To do. That is, the determination unit 84 determines that the lead storage battery 50 has deteriorated if the calculated internal resistance Rpb of the lead storage battery 50 exceeds the resistance threshold Rth.
  • the resistance threshold Rth is set to an appropriate value according to the specifications of the lead storage battery 50 and is stored in the storage unit 81 in advance.
  • the determination part 84 determines with the lead acid battery 50 having deteriorated, it will output the prohibition signal which prohibits idle stop control to ECU70.
  • the determination unit 84 outputs an exchange signal for prompting the user to replace the lead storage battery 50 to the ECU 70.
  • FIG. 4 is a flowchart schematically showing the operation of the battery control unit 80.
  • the voltage detection part 82 detects the voltage Vt of the power supply part 45, and outputs it to the calculating part 83 (S1).
  • the computing unit 83 determines whether or not the detected voltage Vt is less than the voltage threshold Vth (S2). If the detected voltage Vt is equal to or higher than the voltage threshold Vth (NO in S2), the process returns to S1. If the detected voltage Vt is less than the voltage threshold Vth (YES in S2), the voltage detection unit 82 detects the minimum voltage Vmin of the power supply unit 45, and the calculation unit 83 obtains the minimum voltage Vmin from the voltage detection unit 82. Obtain (S3, an example of a detection step).
  • the calculation unit 83 acquires the internal resistance Rni of the nickel hydride storage battery 61 from the resistance detection unit 62 of the battery pack 60 (S4, an example of an acquisition step).
  • the calculation unit 83 uses the total current value It stored in the storage unit 81, the detected minimum voltage Vmin, and the internal resistance Rni of the nickel-metal hydride storage battery 61 acquired from the resistance detection unit 62, 3), the internal resistance Rpb of the lead storage battery 50 is calculated, and the calculated internal resistance Rpb is output to the determination unit 84 (S5, an example of calculation step).
  • the determination unit 84 determines whether or not the calculated internal resistance Rpb of the lead storage battery 50 exceeds the resistance threshold Rth (S6, an example of a determination step). If the internal resistance Rpb of the lead storage battery 50 does not exceed the resistance threshold Rth (NO in S6), the process returns to S1. If the internal resistance Rpb of the lead storage battery 50 exceeds the resistance threshold value Rth (YES in S6), the determination unit 84 notifies the ECU 70 of a prohibition signal for prohibiting the idle stop control (S7).
  • the determination unit 84 increments the count value Cdg (S8).
  • the determination unit 84 determines whether or not the count value Cdg exceeds a predetermined threshold value Cth (S9). If the count value Cdg does not exceed the threshold value Cth (NO in S9), the process returns to S1. If the count value Cdg exceeds the threshold Cth (YES in S9), the ECU 70 is notified of an exchange signal for prompting the user to replace the lead storage battery 50 (S10).
  • the ECU 70 may prompt the user to replace the lead storage battery 50 by generating sound, displaying characters, or lighting a replacement LED.
  • the battery pack 60 of the first embodiment includes the resistance detection unit 62 that detects the internal resistance Rni of the nickel metal hydride storage battery 61 in order to protect the nickel metal hydride storage battery 61. Therefore, the battery control unit 80 of the first embodiment uses the internal resistance Rni of the nickel hydride storage battery 61 detected by the existing resistance detection unit 62.
  • the total current value It supplied from the power supply unit 45 to the starter motor 20 or the ISG 30 when the engine 10 is started depends on the specifications of the engine 10, the starter motor 20, and the ISG 30. Therefore, when the engine 10, the starter motor 20, and the ISG 30 are determined, the overall current value It is also determined.
  • the battery control unit 80 of the first embodiment calculates the internal resistance Rpb of the lead storage battery 50 using these. Therefore, the internal resistance Rpb of the lead storage battery 50 can be obtained with a simple configuration without providing a large current sensor that detects the current flowing only in the lead storage battery 50. As a result, according to the first embodiment, it can be accurately determined whether or not the lead storage battery 50 is deteriorated.
  • the internal resistance Rpb is calculated using the minimum voltage Vmin of the power supply unit 45 when the engine 10 is started (that is, when a large current of 500 A flows, for example). For example, when the engine 10 is stopped by idle stop control, a current of 10 to 20 A is supplied from the power supply unit 45 to the electrical load 40. In this case, since the current is small, the difference between the normal voltage of the power supply unit 45 and the minimum voltage Vmin is small. For this reason, the difference between the minimum voltage Vmin when the lead storage battery 50 is normal and the minimum voltage Vmin when the lead storage battery 50 is deteriorated becomes small.
  • the difference between the normal voltage of the power supply unit 45 and the minimum voltage Vmin is large. For this reason, the difference between the minimum voltage Vmin when the lead storage battery 50 is normal and the minimum voltage Vmin when the lead storage battery 50 is deteriorated increases. As a result, according to the first embodiment, it can be accurately determined whether or not the lead storage battery 50 is deteriorated.
  • the calculation unit 83 of the battery control unit 80 starts the engine 10 by the starter motor 20 or the ISG 30 depending on whether or not the voltage Vt of the power supply unit 45 has dropped below the voltage threshold Vth. It is determined whether or not.
  • the ECU 70 may be configured to notify the battery control unit 80 that the engine 10 has been started.
  • the calculation unit 83 may acquire the minimum voltage Vmin from the voltage detection unit 82 when receiving a notification from the ECU 70 that the engine 10 has been started.
  • the vehicle 1 includes the battery control unit 80 separately from the ECU 70.
  • the ECU 70 may be configured to include each functional block of the battery control unit 80, and the battery control unit 80 may be omitted.
  • the ECU 70 may acquire the minimum voltage Vmin detected by the voltage detection unit 82 when controlling the start of the engine 10.
  • the battery pack 60 includes the nickel metal hydride storage battery 61.
  • the battery pack 60 may include other secondary batteries such as a lithium ion secondary battery, a lithium ion polymer secondary battery, and a nickel zinc storage battery.
  • the starter motor 20 is provided to start the engine 10 by the operation of the ignition switch by the user.
  • the starter motor 20 may be eliminated, and the ISG 30 may start the engine 10 by operating the ignition switch by the user.
  • the ECU 70 obtains the minimum voltage Vmin of the power supply unit 45 from the voltage detection unit 82 when the engine 10 is started by the starter motor 20 or the ISG 30, and the minimum voltage Vmin is obtained in advance. If it is less than a predetermined threshold value, automatic stop of the engine 10 by idle stop control may be prohibited. In this case, the ECU 70 may set different threshold values for when the engine 10 is started by the starter motor 20 and when the engine 10 is started by the ISG 30.
  • the second aspect of the present disclosure provides a charge control device and a charge control in which both the lead storage battery and the secondary battery are not insufficiently charged with a simple configuration when charging the lead storage battery and the secondary battery connected in parallel with each other. It aims to provide a method.
  • the present inventor configures a power supply unit by connecting a lead storage battery and a secondary battery other than the lead storage battery (in this embodiment, a nickel metal hydride storage battery) in parallel to each other, as in the technique described in Patent Document 1 above. did. And this inventor examined the change of the charging current of each battery at the time of carrying out constant voltage charge of the power supply part comprised in this way.
  • FIG. 24 is a timing chart schematically showing a charging current when a power supply unit configured by connecting a lead storage battery and a nickel metal hydride storage battery in parallel with each other is subjected to constant voltage charging.
  • the charging current Ipb indicates the charging current flowing through the lead storage battery
  • the charging current Ini indicates the charging current flowing through the nickel hydride storage battery
  • the charging current It indicates the sum of the charging currents Ipb and Ini.
  • the charging in FIG. 24 was performed under the following conditions.
  • As the lead acid battery a lead acid battery having a nominal voltage of 12 V in which six cell lead acid batteries are connected in series was used.
  • As the nickel-metal hydride storage battery a nickel-metal hydride storage battery having a nominal voltage of 10 V, in which 10 cells of nickel-metal hydride storage batteries are connected in series, is the same as the lead storage battery. Assuming a generator (alternator) used in the vehicle, charging was performed at a constant voltage of 14.5V.
  • the inventor has inferred that this cause is due to a difference in charge characteristics between a lead storage battery and a nickel metal hydride storage battery or a lithium ion secondary battery.
  • the inventor inferred that the following phenomenon occurred in each battery immediately after the start of charging.
  • the dissolution and precipitation type lead-acid battery when the supply of the charging current is started, the chemical reaction of charging is immediately started between the electrode and the electrolytic solution on the electrode surface.
  • the electrode is composed of a crystal of a layer structure
  • the interlayer of the crystal first spreads and lithium ions can easily enter the electrode. It takes time to reach such a state. For this reason, in the lithium ion secondary battery, the chemical reaction of charging is not started immediately. Therefore, during the initial period T0 (about 5 seconds) at the beginning of charging, the charging current of the lead storage battery is larger than the charging current of the nickel hydride storage battery or the lithium ion secondary battery.
  • the present inventor has inferred that the chemical reaction proceeds as follows in each battery after the initial period T0 at the beginning of charging.
  • the chemical reaction between the electrode and the electrolyte solution on the electrode surface is completed, it becomes a state of full charge in a pseudo state, and it takes time for the chemical reaction to proceed from the electrode surface to the lower layer. .
  • the chemical reaction of charging proceeds smoothly.
  • the chemical reaction of charging proceeds smoothly. Therefore, after the initial period T0 at the beginning of charging, the charging current of the nickel hydride storage battery or the lithium ion secondary battery becomes larger than the charging current of the lead storage battery.
  • the charging control for the nickel metal hydride storage battery mounted on the vehicle will be described. If the state of charge (SOC) of the nickel-metal hydride storage battery is too high, the regenerative energy of the engine cannot be stored, so that the energy efficiency decreases. On the other hand, if the SOC of the nickel-metal hydride storage battery is too low, it will hinder the supply of a large current required when starting the engine or restarting the engine stopped by the idle stop control.
  • SOC state of charge
  • an upper limit value (for example, 80%) and a lower limit value (for example, 20%) of the SOC are set.
  • Charging and discharging of the nickel metal hydride storage battery are controlled so that the SOC of the nickel metal hydride storage battery is maintained within this range. Therefore, when the SOC of the nickel metal hydride storage battery reaches the upper limit during charging, the charging is stopped.
  • the nickel metal hydride storage battery mounted on the vehicle is set to have a smaller capacity than the lead storage battery. For this reason, even with the same amount of charged electricity, the SOC of the nickel metal hydride storage battery varies greatly compared to the SOC of the lead storage battery. As a result, the SOC of the nickel metal hydride storage battery reaches the upper limit relatively quickly.
  • the charging proceeds with the charging current as shown in FIG. 24. Therefore, before the lead storage battery is fully charged, the SOC of the nickel metal hydride storage battery reaches the upper limit value. Charging will be stopped. As a result, when the charge control is not devised, the lead storage battery continues to be in a state of insufficient charge that is not fully charged.
  • a power supply unit including a lead storage battery and a secondary battery other than the lead storage battery connected in parallel to each other, and the power supply unit by constant voltage charging at a predetermined voltage value determined in advance.
  • a charge control unit that charges the lead storage battery and the secondary battery, and the predetermined voltage value is an initial period at the beginning of charging at the predetermined voltage value, based on the charge current of the secondary battery. The charging current is increased, and after the initial period, the charging current of the secondary battery is predetermined to be larger than the charging current of the lead storage battery.
  • the lead storage battery and the secondary battery of the power supply unit including the lead storage battery and the secondary battery other than the lead storage battery connected in parallel are charged by constant voltage charging at a predetermined voltage value determined in advance.
  • the predetermined voltage value is set in advance to a value at which the charging current of the lead storage battery is larger than the charging current of the secondary battery during the initial period at the beginning of charging at the predetermined voltage value. For this reason, insufficient charging of the lead storage battery is avoided.
  • the charging current of the secondary battery is predetermined to be larger than the charging current of the lead storage battery. For this reason, insufficient charging of the secondary battery is avoided.
  • the 1st SOC acquisition part which acquires SOC of the said lead acid battery
  • storage part which preserve
  • Charge voltage is the said predetermined voltage
  • a voltage adjustment unit that adjusts the value or a predetermined low voltage value lower than the predetermined voltage value, and the charge control unit controls the voltage adjustment unit to acquire the lead acquired by the first SOC acquisition unit
  • the charging voltage is adjusted to the predetermined low voltage value until the SOC of the storage battery reaches the SOC threshold, and the charging voltage is adjusted to the predetermined voltage value after the SOC of the lead storage battery reaches the SOC threshold.
  • the lead storage battery and the secondary battery of the power supply unit are charged by two-stage constant voltage charging, and the predetermined low voltage value is such that the charge current of the lead storage battery is larger than the charge current of the secondary battery. It may be determined in advance in Kunar value.
  • the lead storage battery and the secondary battery are charged at a constant voltage at a predetermined low voltage value until the SOC of the lead storage battery reaches the SOC threshold.
  • the predetermined low voltage value is set in advance to a value at which the charging current of the lead storage battery is larger than the charging current of the secondary battery. For this reason, until the SOC of the lead storage battery reaches the SOC threshold, the lead storage battery is charged faster than the secondary battery. Therefore, according to this aspect, it is possible to avoid insufficient charging such that the SOC of the lead storage battery is less than the SOC threshold.
  • the lead storage battery and the secondary battery are charged at a constant voltage with a predetermined voltage value.
  • the predetermined voltage value is such that the charging current of the lead-acid battery is larger than the charging current of the secondary battery during the initial period of the start of charging at the predetermined voltage value, and after the initial period, the charging current of the lead-acid battery is secondary
  • the value is predetermined to increase the charging current of the battery. For this reason, after the SOC of the lead storage battery reaches the SOC threshold, charging of the secondary battery proceeds faster than the lead storage battery. Therefore, according to this aspect, the secondary battery can be prevented from being insufficiently charged. As a result, according to this aspect, it is possible to avoid both the lead storage battery and the secondary battery from being insufficiently charged with a simple configuration.
  • a second SOC acquisition unit that acquires the SOC of the secondary battery
  • the storage unit is a first SOC upper limit value less than 100% that is predetermined as the SOC of the secondary battery.
  • the charge control unit may stop the two-stage constant voltage charging when the SOC of the secondary battery acquired by the second SOC acquisition unit reaches the first SOC upper limit value.
  • the secondary battery when the SOC of the secondary battery reaches the first SOC upper limit value that is less than 100%, the two-stage constant voltage charging is stopped. Therefore, the secondary battery can be prevented from being overcharged.
  • the charge control unit may increase the SOC threshold value as the SOC of the secondary battery at the start of charging acquired by the second SOC acquisition unit increases.
  • charging is stopped when the SOC of the secondary battery reaches a first SOC upper limit value that is less than 100% set in advance. Therefore, the larger the SOC of the secondary battery at the start of charging, the shorter the constant voltage charging time at the second voltage value. For this reason, the possibility that the lead storage battery becomes insufficiently charged increases as the SOC of the secondary battery at the start of charging increases.
  • the SOC threshold value is set to a larger value as the SOC of the secondary battery at the start of charging is larger. Accordingly, the constant voltage charging time at the first voltage value becomes longer. As a result, it is possible to reduce the possibility of the lead storage battery becoming insufficiently charged.
  • the storage unit stores a second SOC upper limit value that exceeds a predetermined 100% as the SOC of the lead storage battery
  • the charge control unit stores the SOC of the lead storage battery in the first mode.
  • the two-stage constant voltage charging is stopped. Therefore, when charging is continued until the SOC of the lead storage battery reaches the second SOC upper limit value, it is possible to suppress excessive sulfation that occurs in the lead storage battery due to insufficient charging.
  • the storage unit stores an SOC lower limit value lower than the SOC threshold value that is predetermined as the SOC of the lead storage battery, and the charge control unit is configured so that the SOC of the lead storage battery is the SOC.
  • the value falls below the lower limit value
  • the number of times of reduction is counted, and the number of times counted is charged at a predetermined number of times by charging the lead storage battery and the secondary battery of the power supply unit by the two-stage constant voltage charging, and the counting
  • the charging voltage may be adjusted to the second voltage value, and the lead storage battery and the secondary battery of the power supply unit may be charged at a constant voltage.
  • the number of times of reduction is counted.
  • Each battery of the power supply unit is charged by two-stage constant voltage charging every predetermined number of times. Therefore, when charging is continued until the SOC of the lead storage battery reaches the second SOC upper limit value, it is possible to suppress excessive sulfation that occurs in the lead storage battery due to insufficient charging.
  • the charging voltage is adjusted to the second voltage value, and each battery of the power supply unit is charged by constant voltage charging at the second voltage value. For this reason, the overcharge such that the SOC of the lead storage battery reaches the second SOC upper limit value is performed every predetermined number of times, and is not performed when it is less than the predetermined number of times. As a result, it is possible to avoid excessive deterioration of the lead storage battery due to overcharge.
  • the charging control unit may adjust the charging voltage to the second voltage value when the SOC of the lead storage battery reaches the SOC threshold value.
  • the lead storage battery and the secondary battery of a part may be pulse-charged with an on period having a length equal to or shorter than the initial period.
  • each battery of the power supply unit is pulse-charged with an on period that is shorter than the initial period. Since the on period is equal to or shorter than the initial period, the charging current of the lead storage battery is larger than the charging current of the secondary battery in the on period. Therefore, although the charging voltage is adjusted to the second voltage value, in the charge charging, the lead storage battery is charged faster than the secondary battery. As a result, it is possible to avoid the lead storage battery from being insufficiently charged.
  • a secondary battery SOC acquisition unit that acquires the SOC of the secondary battery, and a storage unit that stores a first SOC upper limit value less than 100% predetermined as the SOC of the secondary battery;
  • the charge control unit further includes the power supply by constant voltage charging at the predetermined voltage value while the SOC of the secondary battery acquired by the secondary battery SOC acquisition unit is less than the first SOC upper limit value.
  • the lead storage battery and the secondary battery of the unit are charged in advance. You may switch to the pulse charge which repeats an ON period and an OFF period alternately.
  • the lead storage battery and the secondary battery are charged at a constant voltage with a predetermined voltage value.
  • the predetermined voltage value is such that the charging current of the lead-acid battery is larger than the charging current of the secondary battery during the initial period of the start of charging at the predetermined voltage value, and after the initial period, the charging current of the lead-acid battery is secondary It is set to a value that increases the charging current of the battery. For this reason, in the constant voltage charging, the charging of the secondary battery proceeds faster than the lead storage battery. Therefore, according to this aspect, the secondary battery can be prevented from being insufficiently charged.
  • the charging is switched to pulse charging that alternately repeats a predetermined on period and off period.
  • the charging current of the lead storage battery is larger than the charging current of the secondary battery. For this reason, charge of a lead storage battery progresses quickly compared with a secondary battery. Therefore, according to this aspect, the lead storage battery can be prevented from being insufficiently charged. As a result, according to this aspect, it is possible to avoid both the lead storage battery and the secondary battery from being insufficiently charged with a simple configuration.
  • the charging control unit may predetermine the on period to be equal to or shorter than the initial period.
  • the on period is set to a length equal to or shorter than the initial period. For this reason, in the ON period, the charging current of the lead storage battery is larger than the charging current of the secondary battery. Therefore, in the pulse charging, the lead storage battery is charged faster than the secondary battery. Therefore, according to this aspect, it is possible to avoid the lead storage battery from being insufficiently charged.
  • the storage unit stores, as the SOC of the secondary battery, a predetermined SOC protection threshold value that is less than 100% and exceeds the first SOC upper limit value.
  • the control unit may stop the pulse charging when the SOC of the secondary battery acquired by the secondary battery SOC acquisition unit becomes equal to or higher than the SOC protection threshold during the pulse charging.
  • the storage unit stores a predetermined first SOC lower limit value lower than the first SOC upper limit value as the SOC of the secondary battery, and the charge control unit performs the pulse charging.
  • the pulse charging may be switched to the constant voltage charging.
  • the pulse charge is switched to the constant voltage charge.
  • the charging of the secondary battery proceeds faster than the lead storage battery. Therefore, according to this aspect, it is possible to avoid that the SOC of the secondary battery is maintained below the first SOC lower limit value.
  • a lead storage battery SOC acquisition unit that acquires the SOC of the lead storage battery is further provided, and the storage unit has a second SOC upper limit value that is predetermined as 100% or more as the SOC of the lead storage battery.
  • the charging control unit may stop the pulse charging when the SOC of the lead storage battery acquired by the lead storage battery SOC acquisition unit is equal to or higher than the second SOC upper limit value during the pulse charging.
  • the pulse charging is stopped. Therefore, even if the SOC of the lead storage battery becomes equal to or higher than the second SOC upper limit value, charging can be continued and the lead storage battery can be prevented from being overcharged.
  • the storage unit stores 100% and a value exceeding 100% as the second SOC upper limit value, and is preset to less than 100% as the SOC of the lead storage battery.
  • 2SOC lower limit value is stored, and when the SOC of the lead storage battery falls below the second SOC lower limit value, the charging control unit counts the number of times of decrease and starts the constant voltage charging, and the counted number of times is predetermined. For each number of times, a value exceeding 100% may be used as the second SOC upper limit value, and when the counted number is less than the predetermined number, 100% may be used as the second SOC upper limit value.
  • the SOC of the lead storage battery falls below the SOC lower limit value
  • the number of drops is counted and constant voltage charging is started.
  • a value exceeding 100% is used as the second SOC upper limit value every predetermined number of times. Therefore, in the case where charging is continued until the SOC of the lead storage battery becomes equal to or higher than the second SOC upper limit value, it is possible to suppress excessive advancement of sulfation generated in the lead storage battery due to insufficient charging.
  • the overcharge that the SOC of the lead storage battery exceeds 100% is performed every predetermined number of times, and is not performed when it is less than the predetermined number of times. As a result, it is possible to avoid excessive deterioration of the lead storage battery due to overcharge.
  • Another aspect according to the present disclosure includes a lead storage battery connected in parallel to each other and a power supply unit including a secondary battery other than the lead storage battery, and charging that controls charging of the lead storage battery and the secondary battery of the power supply unit
  • a charge control method for a control device comprising: a predetermined voltage charging step of performing constant voltage charging of the lead storage battery and the secondary battery of the power supply unit at a predetermined voltage value, wherein the predetermined voltage value is: In the initial period at the beginning of charging at the predetermined voltage value, the charging current of the lead storage battery is larger than the charging current of the secondary battery, and after the initial period, the charging current of the lead storage battery is more than the secondary current. The value is predetermined to increase the charging current of the secondary battery.
  • a lead storage battery SOC acquisition step for acquiring the SOC of the lead storage battery, and a predetermined low value lower than the predetermined voltage value until the SOC of the lead storage battery reaches a predetermined SOC threshold value of 100% or less.
  • a low voltage charging step of charging the lead storage battery and the secondary battery of the power supply unit at a constant voltage with a voltage value, wherein the predetermined voltage charging step has reached the SOC threshold of the lead storage battery The predetermined low voltage value may be executed later, and may be set in advance to a value at which a charging current of the lead storage battery is larger than a charging current of the secondary battery.
  • the secondary battery SOC acquisition step for acquiring the SOC of the secondary battery, and the secondary battery SOC acquired in the secondary battery SOC acquisition step is less than a predetermined 100% SOC.
  • a pulse charging step of charging the lead storage battery and the secondary battery of the power supply unit by pulse charging that repeats a predetermined on-period and off-period when the SOC exceeds the upper limit of 1 SOC, and the predetermined voltage charging step May be executed while the SOC of the secondary battery acquired in the secondary battery SOC acquisition step is less than the first SOC upper limit value.
  • FIG. 6 is a block diagram schematically showing the configuration of the vehicle 1 including the battery control unit 180 and the ECU 70 of the second embodiment.
  • Vehicle 1 is a hybrid electric vehicle having an engine as a main power source and a motor as an auxiliary power source.
  • the vehicle 1 includes an engine 10, a starter motor 20, an integrated starter generator (ISG) 30, a voltage adjustment unit 31, a switch element 35, an electrical load 40, a power supply unit 45, an electronic control unit (ECU) 70, and a battery control unit 180.
  • ISG integrated starter generator
  • ECU electronice control unit
  • the power supply unit 45 includes a lead storage battery 50, current sensors 51 and 63, and a nickel hydride storage battery (Ni-MH) 61.
  • the lead storage battery 50 and the nickel metal hydride storage battery 61 are connected in parallel to each other.
  • the connection point K2 on the negative electrode side of the lead storage battery 50 and the nickel hydride storage battery 61 is grounded.
  • the starter motor 20, ISG 30, and electrical load 40 are connected in parallel with the power supply unit 45.
  • a power supply voltage Vcc is supplied from the power supply unit 45 to the battery control unit 180 and the ECU 70.
  • the lead storage battery 50 includes a 6-cell lead storage battery connected in series. With this configuration, the nominal voltage of the lead storage battery 50 is 12V.
  • the nickel hydride storage battery 61 includes 10 cells of nickel hydride storage batteries connected in series. With this configuration, the nominal voltage of the nickel metal hydride storage battery 61 is 12V.
  • the electric power output from the power supply unit 45 is used to drive the starter motor 20 and the ISG 30 that start the engine 10 of the vehicle 1 and to power the electrical load 40.
  • the current sensor 51 detects a charging current or a discharging current flowing through the lead storage battery 50.
  • the current sensor 51 is attached on the branch line L1 branched from the connection point K1 on the positive electrode side of the lead storage battery 50 and the nickel metal hydride storage battery 61.
  • the current sensor 51 is provided for calculating the charge electricity amount and the discharge electricity amount of the lead storage battery 50.
  • the current sensor 63 detects a charging current or a discharging current flowing through the nickel metal hydride storage battery 61.
  • the current sensor 63 is attached on the branch line L2 branched from the connection point K1 on the positive electrode side of the lead storage battery 50 and the nickel hydride storage battery 61.
  • the current sensor 63 is provided for calculating the charge electricity amount and the discharge electricity amount of the nickel metal hydride storage battery 61.
  • the current sensors 51 and 63 are, for example, Hall effect type current sensors including Hall elements.
  • the current sensors 51 and 63 may include a shunt resistor and detect a current based on a voltage drop of the shunt resistor.
  • the starter motor 20 starts the engine 10 when the ignition switch is operated by the user.
  • the ISG 30 has both a power generation function and an electric function.
  • the ISG 30 is driven by the engine 10 and generates power by a power generation function.
  • the generated power exceeds the electrical load of the electrical load 40
  • the lead storage battery 50 and the nickel hydride storage battery 61 of the power supply unit 45 are charged by the generated power.
  • a brake pedal (not shown) is operated while the vehicle 1 is traveling and starts decelerating, torque is transmitted from the wheels to the ISG 30, and the ISG 30 generates power by a power generation function.
  • the lead-acid battery 50 and the nickel-metal hydride storage battery 61 of the power supply unit 45 are charged by the generated power. This regenerates energy.
  • the engine 10 is automatically stopped by the idle stop control of the ECU 70.
  • the vehicle 1 starts the vehicle 1 is driven by the electric function of the ISG 30 and the engine 10 is started.
  • the voltage adjustment unit 31 adjusts the output voltage of the ISG 30. If the output voltage by the power generation function of the ISG 30 is not adjusted, it changes depending on the rotation speed of the engine 10, the current value of the load current, and the field current. The voltage adjustment unit 31 adjusts the output voltage of the ISG 30 to a constant value by increasing or decreasing the field current, for example.
  • the voltage adjustment unit 31 includes, for example, a semiconductor circuit in which a power transistor and a voltage detection circuit are integrated. In the second embodiment, the voltage adjustment unit 31 adjusts the output voltage of the ISG 30 in two stages, for example, DC 13.7V (an example of a first voltage value) and DC 15.0V (an example of a second voltage value). To do.
  • the switch element 35 is provided between the ISG 30 and the power supply unit 45.
  • the switch element 35 is turned on when the engine 10 is stopped.
  • the switch element 35 is turned off when charging of the lead storage battery 50 and the nickel metal hydride storage battery 61 is stopped.
  • On / off of the switch element 35 is controlled by the battery control unit 180.
  • the switch element 35 may be a mechanical relay.
  • the switch element 35 may be a semiconductor switch such as a power MOSFET or an insulated gate bipolar transistor.
  • the electrical load 40 includes a load such as an electrical component equipped in the vehicle 1 such as an air conditioner and a room light.
  • the ECU 70 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) in which a predetermined control program is stored, a RAM (Random Access Memory) in which data is temporarily stored, these Peripheral circuits are provided.
  • the ECU 70 is configured to be able to communicate with the battery control unit 180.
  • the ECU 70 controls the overall operation of the vehicle 1 including the engine 10, the starter motor 20, the ISG 30, the voltage adjustment unit 31, and the electrical load 40.
  • the ECU 70 receives the control signal SG output from the battery control unit 180 and controls the voltage adjustment unit 31.
  • the battery control unit 180 includes, for example, a CPU that executes predetermined arithmetic processing, a ROM that stores a predetermined control program, a RAM that temporarily stores data, and peripheral circuits thereof.
  • the battery control unit 180 includes a storage unit 181 composed of, for example, a flash memory.
  • the battery control unit 180 functions as a first SOC calculation unit 182, a second SOC calculation unit 183, a voltage control unit 184, and a switch control unit 185 by executing a control program stored in the ROM.
  • the storage unit 181 stores in advance a table 88 representing a relationship between an SOC threshold value Spb1 of 100% or less that is predetermined as the SOC of the lead storage battery 50 and the SOC value Sni1 of the nickel metal hydride storage battery 61 at the start of charging.
  • FIG. 7 is a diagram schematically showing an example of the table 88.
  • the SOC threshold value Spb1 when the SOC value Sni1 of the nickel metal hydride storage battery 61 at the start of charging is Sni1 ⁇ 30, the SOC threshold value Spb1 is 97, and 30 ⁇ Sni1 ⁇ 40. In this case, the SOC threshold value Spb1 is 98. When 40 ⁇ Sni1 ⁇ 50, the SOC threshold value Spb1 is 99. When 50 ⁇ Sni1, the SOC threshold value Spb1 is 100. As shown in FIG. 7, the larger the SOC value Sni1 of the nickel metal hydride storage battery 61 at the start of charging, the larger the SOC threshold Spb1 of the lead storage battery 50 is used. The reason for this will be described later with reference to FIG.
  • the storage unit 181 includes an SOC upper limit value Sni2 (an example of the first SOC upper limit value) that is predetermined as the upper limit value of the SOC of the nickel metal hydride storage battery 61, and an SOC lower limit value Sni3 that is predetermined as the lower limit value.
  • Storage unit 181 stores in advance an SOC upper limit value Spb2 (an example of a second SOC upper limit value) that exceeds 100% that is predetermined as the upper limit value of the SOC of lead-acid battery 50.
  • Spb2 105%.
  • Storage unit 181 stores in advance a SOC lower limit value Spb3 that is set in advance as the lower limit value of the SOC of the lead storage battery 50.
  • the battery control unit 180 controls the charging and discharging of the nickel metal hydride storage battery 61 such that the SOC of the nickel metal hydride storage battery 61 is maintained within the range between the SOC upper limit value Sni2 and the SOC lower limit value Sni3.
  • the battery control unit 180 controls the charging and discharging of the lead storage battery 50 so that the SOC of the lead storage battery 50 is maintained at the SOC lower limit Spb3 or more.
  • the first SOC calculation unit 182 calculates the amount of charge and the amount of discharge of the lead storage battery 50 using the current value detected by the current sensor 51.
  • the first SOC calculation unit 182 calculates the SOC of the lead storage battery 50 using the calculated amount of charge and discharge of the lead storage battery 50.
  • the first SOC calculation unit 182 calculates the SOC every 100 msec, for example.
  • the first SOC calculation unit 182 and the current sensor 51 correspond to an example of a first SOC acquisition unit.
  • the second SOC calculation unit 183 calculates the charge electricity amount and the discharge electricity amount of the nickel metal hydride storage battery 61 using the current value detected by the current sensor 63.
  • the second SOC calculation unit 183 calculates the SOC of the nickel metal hydride storage battery 61 using the calculated charge electricity amount and discharge electricity amount of the nickel metal hydride storage battery 61.
  • the second SOC calculation unit 183 calculates the SOC every 100 msec, for example.
  • the second SOC calculation unit 183 and the current sensor 63 correspond to an example of a second SOC acquisition unit.
  • the voltage control unit 184 outputs a control signal SG to the ECU 70 to control the charging voltage during charging of the lead storage battery 50 and the nickel metal hydride storage battery 61.
  • the voltage controller 184 acquires the SOC of the lead storage battery 50 from the first SOC calculator 182.
  • the voltage control unit 184 outputs a control signal SG to the ECU 70 so that the charging voltage is controlled to 13.7 V until the obtained SOC of the lead storage battery 50 reaches the SOC threshold value Spb1.
  • the ECU 70 controls the voltage adjusting unit 31 to set the output voltage of the ISG 30 to 13.7V.
  • the voltage control unit 184 outputs a control signal SG to the ECU 70 so as to control the charging voltage to 15.0 V after the SOC of the lead storage battery 50 calculated by the first SOC calculation unit 182 reaches the SOC threshold value Spb1. .
  • the ECU 70 controls the voltage adjusting unit 31 to set the output voltage of the ISG 30 to 15.0V.
  • the voltage control unit 184 and the ECU 70 charge the lead storage battery 50 and the nickel hydride storage battery 61 by two-stage constant voltage charging.
  • FIG. 8 is a timing chart schematically showing a charging current when the power supply unit 45 of FIG. 6 is charged at a constant voltage of 13.7V.
  • FIG. 8 differs from FIG. 24 in that the charging current Ini of the nickel metal hydride storage battery 61 does not exceed the charging current Ipb of the lead storage battery 50.
  • the cause of this is estimated as follows. In the dissolution / precipitation type lead-acid battery 50, even when the voltage is 13.7 V, the chemical reaction of charging proceeds although the speed is low. However, in the nickel metal hydride storage battery 61, since the voltage is too low at 13.7 V, the hydrogen storage alloy does not easily store hydrogen, so that the chemical reaction of charging hardly proceeds. Therefore, when the power supply unit 45 of FIG. 6 is charged at a constant voltage of 13.7 V, the charging current Ipb of the lead storage battery 50 becomes larger than the charging current Ini of the nickel metal hydride storage battery 61.
  • the total charging current It is about half that of FIG. 24 in FIG. For this reason, it takes time to charge the lead storage battery 50 and the nickel metal hydride storage battery 61.
  • the output voltage of the ISG 30 is adjusted to 13.7 V, the charging of the lead storage battery 50 can be advanced faster than the nickel metal hydride storage battery 61.
  • the voltage control unit 184 determines the SOC threshold value Spb1 using the SOC of the nickel-metal hydride storage battery 61 at the time when the supply of the charging current from the ISG 30 is started and the table 88 shown in FIG. .
  • the switch control unit 185 controls on / off of the switch element 35.
  • the switch control unit 185 turns on the switch element 35 when the engine 10 is stopped.
  • the switch control unit 185 turns off the switch element 35 and stops charging.
  • the switch control unit 185 turns off the switch element 35 and stops charging.
  • FIG. 9 is a flowchart schematically showing the charging operation of the second embodiment.
  • FIG. 10 is a diagram schematically showing an example of the SOC of the lead storage battery 50 and the nickel metal hydride storage battery 61 that are increased by the charging operation of FIG. 9.
  • the vertical axis in FIG. 10 represents the SOC of the lead storage battery 50
  • the horizontal axis represents the SOC of the nickel metal hydride storage battery 61.
  • charging periods Tch1 and Tch11 represent periods in which constant voltage charging at 13.7V is performed
  • charging periods Tch2 and Tch12 represent periods in which constant voltage charging at 15.0V is performed.
  • the SOC of the lead storage battery 50 and the nickel metal hydride storage battery 61 changes as represented by the charging periods Tch1 and Tch2.
  • the SOC of the lead storage battery 50 and the nickel metal hydride storage battery 61 represented by the charging periods Tch11 and Tch12 represents a comparative example described later.
  • the switch element 35 is turned on.
  • the voltage control unit 184 acquires the SOC value of the lead storage battery 50 from the first SOC calculation unit 182. Voltage control unit 184 determines whether or not the obtained SOC value of lead storage battery 50 is less than SOC lower limit value Spb3. If the SOC value of lead storage battery 50 is less than SOC lower limit Spb3 (YES in S101), voltage control unit 184 increases count value Ct by 1 in S102.
  • the voltage control unit 184 outputs a control signal SG requesting the output voltage of the ISG 30 to be adjusted to 13.7 V to the ECU 70.
  • the ECU 70 controls the voltage adjusting unit 31 to adjust the output voltage of the ISG 30 to 13.7V.
  • the lead storage battery 50 and the nickel metal hydride storage battery 61 of the power supply unit 45 are charged at a constant voltage of 13.7V.
  • the voltage control unit 184 acquires the SOC value of the lead storage battery 50 from the first SOC calculation unit 182. The voltage control unit 184 determines whether or not the obtained SOC value of the lead storage battery 50 is equal to or higher than the SOC threshold value Spb1. If the SOC value of lead storage battery 50 is less than SOC threshold value Spb1 (NO in S107), the process returns to S107, and constant voltage charging at 13.7 V is continued.
  • the SOC of the lead storage battery 50 increases faster than the SOC of the nickel metal hydride storage battery 61 in the charging period Tch1.
  • the SOC value Sni1 of the nickel-metal hydride storage battery 61 obtained in S5 of FIG. 9 is 20 ⁇ Sni1 ⁇ 30.
  • the SOC threshold value Spb1 extracted from the table 88 (FIG. 7) in S5 of FIG. 9 is 97 as shown in FIG.
  • the voltage control unit 184 determines whether the SOC is a predetermined voltage charge (S108).
  • a control signal SG that requests to adjust the output voltage of the ISG 30 to 15.0 V is output to the ECU 70.
  • the ECU 70 controls the voltage adjustment unit 31 to adjust the output voltage of the ISG 30 to 15.0V.
  • the lead storage battery 50 and the nickel hydride storage battery 61 of the power supply unit 45 are charged at a constant voltage of 15.0V.
  • the charging current of the nickel-metal hydride storage battery 61 is larger than the charging current of the lead storage battery 50 except for the initial period T0 at the beginning of charging. Therefore, as shown in FIG. 10, the SOC of the nickel-metal hydride storage battery 61 increases faster than the SOC of the lead storage battery 50 in the charging period Tch2.
  • the switch control unit 185 acquires the SOC value of the nickel-metal hydride storage battery 61 from the second SOC calculation unit 183.
  • the switch control unit 185 determines whether or not the acquired SOC value of the nickel metal hydride storage battery 61 is equal to or higher than the SOC upper limit value Sni2. If the SOC value of nickel-metal hydride storage battery 61 is less than SOC upper limit value Sni2 (NO in S109), switch control unit 185 acquires the SOC value of lead storage battery 50 from first SOC calculation unit 182 in S110.
  • the switch control unit 185 determines whether or not the SOC value of the lead storage battery 50 is equal to or higher than the SOC upper limit value Spb2. If the SOC value of lead storage battery 50 is less than SOC upper limit value Spb2 (NO in S110), the process returns to S109, and constant voltage charging at 15.0 V is continued.
  • S109 if the SOC value of the nickel-metal hydride storage battery 61 is equal to or higher than the SOC upper limit value Sni2 (YES in S109), in S110, the switch control unit 185 turns off the switch element 35 to stop the charging, and FIG. The process ends.
  • S110 if the SOC value of lead storage battery 50 is equal to or higher than SOC upper limit Spb2 (YES in S110), the process proceeds to S111.
  • the voltage control unit 184 acquires the SOC value of the nickel metal hydride storage battery 61 from the second SOC calculation unit 183 in S112. .
  • the voltage control unit 184 determines whether or not the acquired SOC value of the nickel metal hydride storage battery 61 is less than the SOC upper limit value Sni2. If the SOC value of nickel-metal hydride storage battery 61 is greater than or equal to SOC upper limit value Sni2 (NO in S112), the process proceeds to S11.
  • S112 if the SOC value of the nickel metal hydride storage battery 61 is less than the SOC upper limit value Sni2 (YES in S112), the process proceeds to S108.
  • S103 if the count value Ct is less than N (YES in S103), the process proceeds to S108. As a result, normal constant voltage charging at 15.0 V is performed in S108.
  • the constant voltage charging at a voltage of 13.7 V and the constant voltage charging at a voltage of 15.0 V are included. Step constant voltage charging is performed.
  • the SOC value of the lead storage battery 50 exceeds the SOC lower limit value Spb3, and when the SOC value of the lead storage battery 50 decreases to the SOC lower limit value Spb3 or less (N-1) times, the voltage The normal constant voltage charging at 15.0V is performed.
  • the lead storage battery 50 is overcharged with an SOC value exceeding 100%. Thereby, it is possible to suppress the sulfation generated in the insufficiently charged lead storage battery 50 from proceeding excessively.
  • the SOC value Sni1 of the nickel metal hydride storage battery 61 at the start of charging in the charging period Tch1 is Sni1 ⁇ 30. Therefore, as described using FIG. 7, the SOC threshold value Spb1 of the lead storage battery 50 is set to 97%. As shown in FIG. 10, when the SOC value of the lead storage battery 50 reaches the SOC threshold value Spb1 (97% in FIG. 10) (that is, at the end of the charging period Tch1), the SOC value of the nickel hydride storage battery 61 is 50%. Not reached.
  • the SOC value Sni1 of the nickel-metal hydride storage battery 61 at the start of charging in the charging period Tch11 is 50%.
  • the SOC value of the lead storage battery 50 reaches 97%
  • the SOC value of the nickel metal hydride storage battery 61 is close to 70%.
  • the charging period Tch12 is shortened. Therefore, the SOC value of the lead storage battery 50 does not exceed 100% at the end of the charging period Tch12 when the SOC value of the nickel hydride storage battery 61 has reached 80%.
  • the SOC threshold value Spb1 of the lead storage battery 50 is set to a larger value as the SOC value of the nickel metal hydride storage battery 61 at the start of charging is larger. Therefore, at the end of the constant voltage charging time (charging period Tch1) at 13.7 V, the SOC value of the lead storage battery 50 is close to 100%. Thereby, even if the time of constant voltage charging at 15.0 V (charging period Tch2) is short, the SOC value of the lead storage battery 50 exceeds 100%. As a result, it is possible to suppress the sulfation that occurs in the insufficiently charged lead storage battery 50 from proceeding excessively.
  • FIG. 11 is a flowchart schematically showing the charging operation of the third embodiment.
  • FIG. 12 is a diagram schematically showing an example of the SOC of the lead storage battery 50 and the nickel metal hydride storage battery 61 that are increased by the charging operation of FIG. 11.
  • FIG. 13 is a timing chart schematically showing the operation of the switch element 35.
  • the configuration of the third embodiment is the same as that of the second embodiment shown in FIG. Hereinafter, the third embodiment will be described focusing on differences from the second embodiment.
  • S101 to S107 are the same as S101 to S107 of FIG. 9 of the second embodiment. Due to the constant voltage charging at 13.7 V in S106 and S107, the SOC of the lead storage battery 50 is higher than the SOC of the nickel metal hydride storage battery 61 in the charging period Tch1 in FIG. 12, as in the second embodiment (FIG. 10). However, it increases quickly.
  • voltage control unit 184 requests a control signal to adjust the output voltage of ISG 30 to 15.0V.
  • SG is output to ECU70.
  • the ECU 70 controls the voltage adjustment unit 31 to adjust the output voltage of the ISG 30 to 15.0V.
  • S109 to S112 are the same as S109 to S112 of FIG. 9 of the second embodiment.
  • the charging current of the lead storage battery 50 is larger than the charging current of the nickel hydride storage battery 61 in the initial period T0 at the beginning of charging.
  • the on period Ton and the off period Toff are alternately repeated to turn on and off the switch element 35.
  • the state in the vicinity of the electrode returns to the initial state in about 5 seconds when the application of voltage is stopped. For this reason, for every ON period Ton of the switch element 35, it will be in the same state as the initial period T0 at the beginning of charge of FIG. Therefore, in the ON period Ton of the switch element 35, the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61. Therefore, as shown in FIG. 12, in the charging period Tch3, the SOC of the nickel metal hydride storage battery 61 hardly increases and the SOC of the lead storage battery 50 mainly increases.
  • the overcharge which the SOC value of the lead storage battery 50 exceeds 100% is performed.
  • it can suppress that the sulfation which arises in the lead storage battery 50 with insufficient charge progresses similarly to 2nd Embodiment.
  • the lead storage battery 50 does not deteriorate excessively by overcharge similarly to 2nd Embodiment.
  • the switch control unit 185 of the battery control unit 180 turns on and off the switch element 35 to perform pulse charging.
  • the switch control unit 185 may switch the output voltage of the ISG 30 in a pulsed manner, as shown in FIG.
  • FIG. 14 is a timing chart schematically showing the output voltage of the ISG 30.
  • the voltage control unit 184 sends a control signal SG requesting the ECU 70 to alternately repeat the first period T1 of the output voltage 15.0V and the second period T2 of the output voltage 13.7V. Output.
  • the ECU 70 controls the voltage adjusting unit 31 to control the output voltage of the ISG 30 as shown in FIG.
  • the second period T2 is, for example, 5 seconds.
  • the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61 as described with reference to FIG. Therefore, in the second period T2, the SOC of the lead storage battery 50 increases faster than the SOC of the nickel metal hydride storage battery 61, as in the charging period Tch1 of FIG.
  • the second period T2 is not limited to 5 seconds, and may be 10 seconds, for example.
  • the first period T1 is, for example, 4 seconds. Unlike the off period Toff of the third embodiment (FIG. 13), in the second period T2, the charging voltage is not 0 but 13.7V. Therefore, the period during which the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61 is considered to be shorter than the initial period T0 shown in FIG. Therefore, in the operation of FIG. 14, the first period T1 is set to 4 seconds, for example, and is shorter than the initial period T0 of about 5 seconds.
  • the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61.
  • the SOC of the lead storage battery 50 increases faster than the SOC of the nickel metal hydride storage battery 61.
  • the charging in FIG. 14 is continued at 13.7 V even in the second period T2, and the charging is not repeatedly turned on and off as shown in FIG. Therefore, strictly speaking, the charging in FIG. 14 is not pulse charging. However, in this specification, charging as shown in FIG. 14 is also included in pulse charging.
  • the output voltage of the ISG 30 is adjusted to 13.7 V in S6 of FIG.
  • the output voltage of the ISG 30 in the second period T2 is adjusted to 13.7V.
  • the output voltage of the ISG 30 may be adjusted to a voltage at which the hydrogen storage alloy of the negative electrode of the nickel hydride storage battery 61 does not easily store hydrogen, and the lead storage battery 50 is charged.
  • the upper limit may be 1.38 to 1.39 V per cell of the nickel metal hydride storage battery 61.
  • the output voltage of the ISG 30 may be limited to 13.8 to 13.9V.
  • the output voltage of the ISG 30 is adjusted to 15.0 V in S8 of FIG.
  • the output voltage of the ISG 30 in the first period T1 is adjusted to 15.0V.
  • the output voltage of the ISG 30 may be 14.5V, for example.
  • the output voltage of the ISG 30 may be a high voltage at which the ISG 30 can output and the lead storage battery 50 and the nickel metal hydride storage battery 61 are not damaged or failed.
  • the vehicle 1 includes the battery control unit 180 separately from the ECU 70.
  • the ECU 70 may be configured to include each functional block of the battery control unit 180, and the battery control unit 180 may be omitted.
  • the nickel hydride storage battery 61 is connected in parallel with the lead storage battery 50.
  • another secondary battery such as a lithium ion secondary battery, a lithium ion polymer secondary battery, or a nickel zinc storage battery may be connected in parallel with the lead storage battery 50.
  • the vehicle 1 includes the ISG 30.
  • a normal alternator may be provided instead of the ISG 30.
  • the voltage adjustment unit 31 adjusts the output voltage of the alternator.
  • FIG. 15 is a block diagram schematically showing the configuration of the vehicle 1 including the battery control unit 280 and the ECU 70 of the fourth embodiment.
  • Vehicle 1 is a hybrid electric vehicle having an engine as a main power source and a motor as an auxiliary power source.
  • the vehicle 1 includes an engine 10, a starter motor 20, an integrated starter generator (ISG) 30, a voltage adjustment unit 31, a switch element 35, an electrical load 40, a power supply unit 45, an electronic control unit (ECU) 70, and a battery control unit 280.
  • ISG integrated starter generator
  • ECU electronice control unit
  • the power supply unit 45 includes a lead storage battery 50, current sensors 51 and 63, and a nickel hydride storage battery (Ni-MH) 61.
  • the lead storage battery 50 and the nickel metal hydride storage battery 61 are connected in parallel to each other.
  • the connection point K2 on the negative electrode side of the lead storage battery 50 and the nickel hydride storage battery 61 is grounded.
  • the starter motor 20, ISG 30, and electrical load 40 are connected in parallel with the power supply unit 45.
  • a power supply voltage Vcc is supplied from the power supply unit 45 to the battery control unit 280 and the ECU 70.
  • the lead storage battery 50 includes a 6-cell lead storage battery connected in series. With this configuration, the nominal voltage of the lead storage battery 50 is 12V.
  • the nickel hydride storage battery 61 includes 10 cells of nickel hydride storage batteries connected in series. With this configuration, the nominal voltage of the nickel metal hydride storage battery 61 is 12V.
  • the electric power output from the power supply unit 45 is used to drive the starter motor 20 and the ISG 30 that start the engine 10 of the vehicle 1 and to power the electrical load 40.
  • the current sensor 51 detects a charging current or a discharging current flowing through the lead storage battery 50.
  • the current sensor 51 is attached on the branch line L1 branched from the connection point K1 on the positive electrode side of the lead storage battery 50 and the nickel metal hydride storage battery 61.
  • the current sensor 51 is provided for calculating the charge electricity amount and the discharge electricity amount of the lead storage battery 50.
  • the current sensor 63 detects a charging current or a discharging current flowing through the nickel metal hydride storage battery 61.
  • the current sensor 63 is attached on the branch line L2 branched from the connection point K1 on the positive electrode side of the lead storage battery 50 and the nickel hydride storage battery 61.
  • the current sensor 63 is provided for calculating the charge electricity amount and the discharge electricity amount of the nickel metal hydride storage battery 61.
  • the current sensors 51 and 63 are, for example, Hall effect type current sensors including Hall elements.
  • the current sensors 51 and 63 may include a shunt resistor and detect a current based on a voltage drop of the shunt resistor.
  • the starter motor 20 starts the engine 10 when the ignition switch is operated by the user.
  • the ISG 30 has both a power generation function and an electric function.
  • the ISG 30 is driven by the engine 10 and generates power by a power generation function.
  • the generated power exceeds the electrical load of the electrical load 40
  • the lead storage battery 50 and the nickel hydride storage battery 61 of the power supply unit 45 are charged by the generated power.
  • a brake pedal (not shown) is operated while the vehicle 1 is traveling and starts decelerating, torque is transmitted from the wheels to the ISG 30, and the ISG 30 generates power by a power generation function.
  • the lead-acid battery 50 and the nickel-metal hydride storage battery 61 of the power supply unit 45 are charged by the generated power. This regenerates energy.
  • the engine 10 is automatically stopped by the idle stop control of the ECU 70.
  • the vehicle 1 starts the vehicle 1 is driven by the electric function of the ISG 30 and the engine 10 is started.
  • the voltage adjustment unit 31 adjusts the output voltage of the ISG 30. If the output voltage by the power generation function of the ISG 30 is not adjusted, it changes depending on the rotation speed of the engine 10, the current value of the load current, and the field current. The voltage adjustment unit 31 adjusts the output voltage of the ISG 30 to a constant value by increasing or decreasing the field current, for example.
  • the voltage adjustment unit 31 includes, for example, a semiconductor circuit in which a power transistor and a voltage detection circuit are integrated. In the fourth embodiment, the voltage adjusting unit 31 adjusts the output voltage of the ISG 30 to, for example, DC 14.5 V (an example of a charging voltage value).
  • the switch element 35 is provided between the ISG 30 and the power supply unit 45.
  • the switch element 35 is turned on when the engine 10 is stopped.
  • the switch element 35 is turned off when charging of the lead storage battery 50 and the nickel metal hydride storage battery 61 is stopped.
  • On / off of the switch element 35 is controlled by the battery control unit 280.
  • the switch element 35 may be a mechanical relay.
  • the switch element 35 may be a semiconductor switch such as a power MOSFET or an insulated gate bipolar transistor.
  • the electrical load 40 includes a load such as an electrical component equipped in the vehicle 1 such as an air conditioner and a room light.
  • the ECU 70 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) in which a predetermined control program is stored, a RAM (Random Access Memory) in which data is temporarily stored, these Peripheral circuits are provided.
  • the ECU 70 is configured to be able to communicate with the battery control unit 280.
  • the ECU 70 controls the overall operation of the vehicle 1 including the engine 10, the starter motor 20, the ISG 30, the voltage adjustment unit 31, and the electrical load 40.
  • the battery control unit 280 includes, for example, a CPU that executes predetermined arithmetic processing, a ROM that stores a predetermined control program, a RAM that temporarily stores data, and peripheral circuits thereof.
  • the battery control unit 280 includes a storage unit 281 configured with, for example, a flash memory.
  • the battery control unit 280 functions as a first SOC calculation unit 282, a second SOC calculation unit 283, and a switch control unit 285 by executing a control program stored in the ROM.
  • Storage unit 281 stores in advance an SOC upper limit value Sni2 (an example of a first SOC upper limit value) that is determined in advance as the upper limit value of the SOC of nickel-metal hydride storage battery 61.
  • Sni2 80%.
  • the SOC upper limit value Sni2 is not limited to 80%, and may be 75%, for example.
  • the SOC upper limit value Sni2 may be an SOC value that can store the regenerative energy of the engine 10.
  • Storage unit 281 stores in advance a SOC lower limit value Sni3 (an example of a first SOC lower limit value) that is set in advance as the lower limit value of the SOC of nickel-metal hydride storage battery 61.
  • Sni3 20%.
  • the SOC lower limit value Sni3 is not limited to 20%, and may be 25%, for example.
  • the SOC lower limit value Sni3 may be an SOC value that can supply a large current when the engine 10 is started or restarted.
  • the storage unit 281 stores in advance a SOC protection threshold value Sni4 that is predetermined to a value that exceeds the SOC upper limit value Sni2.
  • Sni4 90%.
  • the SOC protection threshold Sni4 is not limited to 90%, and may be 85%, for example.
  • the SOC protection threshold value Sni4 may be determined so that the SOC value of the nickel metal hydride storage battery 61 does not become excessive.
  • Storage unit 281 stores in advance an SOC upper limit value Spb2 (an example of a second SOC upper limit value) that is predetermined as 100% or more as the upper limit value of the SOC of lead-acid battery 50.
  • Spb2 100%.
  • Storage unit 281 stores in advance an SOC lower limit value Spb3 (an example of a second SOC lower limit value) that is set in advance as the lower limit value of the SOC of lead-acid battery 50.
  • Spb3 80%.
  • the SOC lower limit value Spb3 is not limited to 80%, and may be 75%, for example.
  • the battery control unit 280 controls charging and discharging of the nickel-metal hydride storage battery 61 so that the SOC of the nickel-metal hydride storage battery 61 is maintained within the range between the SOC upper limit value Sni2 and the SOC lower limit value Sni3.
  • Battery control unit 280 controls charging and discharging of lead storage battery 50 such that the SOC of lead storage battery 50 is maintained at or above SOC lower limit Spb3.
  • the first SOC calculation unit 282 calculates the amount of charge and the amount of discharge of the lead storage battery 50 using the current value detected by the current sensor 51.
  • the first SOC calculation unit 282 calculates the SOC of the lead storage battery 50 using the calculated amount of charge and discharge of the lead storage battery 50.
  • the first SOC calculation unit 282 calculates the SOC every 100 msec, for example.
  • the first SOC calculation unit 282 and the current sensor 51 correspond to an example of a lead storage battery SOC acquisition unit.
  • the second SOC calculation unit 283 calculates the charge electricity amount and the discharge electricity amount of the nickel metal hydride storage battery 61 using the current value detected by the current sensor 63.
  • the second SOC calculation unit 283 calculates the SOC of the nickel-metal hydride storage battery 61 using the calculated amount of charge and discharge of the nickel-metal hydride storage battery 61.
  • the second SOC calculation unit 283 calculates the SOC every 100 msec, for example.
  • the second SOC calculation unit 283 and the current sensor 63 correspond to an example of a secondary battery SOC acquisition unit.
  • the switch control unit 285 controls on / off of the switch element 35.
  • the switch control unit 285 turns on the switch element 35 when the engine 10 is stopped.
  • the switch control unit 285 turns off the switch element 35 and stops charging.
  • the switch control unit 285 turns off the switch element 35 and stops charging.
  • the switch control unit 285 turns on the switch element 35 while the SOC of the nickel metal hydride storage battery 61 calculated by the second SOC calculation unit 283 is less than the SOC upper limit value Spb2.
  • the switch control unit 285 turns on and off the switch element 35 to change from constant voltage charging to pulse charging. Switch.
  • FIG. 16 is a flowchart schematically showing the charging operation of the fourth embodiment.
  • FIG. 17 is a diagram schematically showing an example of the SOCs of the lead storage battery 50 and the nickel metal hydride storage battery 61 that are increased by the charging operation of FIG.
  • FIG. 18 is a timing chart schematically showing the operation of the switch element 35.
  • a charging period Tch1 represents a period during which constant voltage charging is performed
  • a charging period Tch2 represents a period during which pulse charging is performed.
  • the charging period Tch3 represents a period during which pulse charging is performed in a fifth embodiment to be described later. In the normal state (that is, when the operation of FIG. 16 is started), the switch element 35 is turned on.
  • the switch control unit 285 acquires the SOC value of the lead storage battery 50 from the first SOC calculation unit 282. The switch control unit 285 determines whether or not the obtained SOC value of the lead storage battery 50 is less than the SOC lower limit value Spb3. If the SOC value of lead storage battery 50 is less than SOC lower limit value Spb3 (YES in S201), switch control unit 285 keeps switch element 35 on in S202 (an example of a predetermined voltage charging step). Thereby, constant voltage charging is performed.
  • the charge current of the nickel hydride storage battery 61 is larger than the charge current of the lead storage battery 50 except for the initial period T0 at the beginning of charging. Therefore, as shown in FIG. 17, the SOC of the nickel-metal hydride storage battery 61 increases faster than the SOC of the lead storage battery 50 in the charging period Tch1.
  • the switch control unit 285 acquires the SOC value of the nickel-metal hydride storage battery 61 from the second SOC calculation unit 283.
  • the switch control unit 285 determines whether or not the obtained SOC value of the nickel metal hydride storage battery 61 is equal to or higher than the SOC upper limit value Sni2. If the SOC value of nickel metal hydride storage battery 61 is less than SOC upper limit value Sni2 (NO in S203), the process returns to S202, and constant voltage charging is continued.
  • the charging current of the lead storage battery 50 is larger than the charging current of the nickel metal hydride storage battery 61 in the initial period T0 at the beginning of charging.
  • the ON period Ton and the OFF period Toff are alternately repeated to turn on and off the switch element 35.
  • the state in the vicinity of the electrode returns to the initial state in about 5 seconds when the application of voltage is stopped.
  • the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61.
  • the SOC of the nickel-metal hydride storage battery 61 hardly increases and the SOC of the lead storage battery 50 mainly increases.
  • the switch control unit 285 acquires the SOC value of the nickel-metal hydride storage battery 61 from the second SOC calculation unit 283. The switch control unit 285 determines whether or not the obtained SOC value of the nickel metal hydride storage battery 61 is less than the SOC lower limit value Sni3. If the SOC value of nickel-metal hydride storage battery 61 is equal to or greater than SOC lower limit value Sni3 (NO in S205), in S206, switch control unit 285 determines whether the SOC value of nickel-metal hydride storage battery 61 is greater than or equal to SOC protection threshold value Sni4. Determine whether.
  • the switch control unit 285 acquires the SOC value of the lead storage battery 50 from the first SOC calculation unit 282 in S207.
  • Switch control unit 285 determines whether or not the SOC value of lead storage battery 50 is equal to or higher than SOC upper limit Spb2. If the SOC value of lead storage battery 50 is less than SOC upper limit Spb2 (NO in S207), the process returns to S204, and pulse charging is continued.
  • S205 if the SOC value of the nickel-metal hydride storage battery 61 is less than the SOC lower limit value Sni3 (YES in S205), the process returns to S202. Accordingly, the switch control unit 285 turns on the switch element 35 and switches from pulse charging to constant voltage charging. As a result, the SOC value of the nickel metal hydride storage battery 61 that has decreased below the SOC lower limit value Sni3 increases.
  • the switch control unit 285 acquires the SOC value of the nickel metal hydride storage battery 61 from the second SOC calculation unit 283 in S209. .
  • the switch control unit 285 determines whether or not the obtained SOC value of the nickel metal hydride storage battery 61 is less than the SOC upper limit value Sni2. If the SOC value of nickel-metal hydride storage battery 61 is greater than or equal to SOC upper limit value Sni2 (NO in S209), the process proceeds to S208.
  • (Fifth embodiment) 19 and 20 are flowcharts schematically showing the charging operation of the fifth embodiment.
  • the configuration of the fifth embodiment is the same as that of the fourth embodiment shown in FIG.
  • the fifth embodiment will be described focusing on differences from the fourth embodiment.
  • the storage unit 281 stores in advance two values of 100% and a value exceeding 100% (for example, 105% in the fifth embodiment) as the SOC upper limit value Spb2.
  • the value exceeding 100% is not limited to 105%, and may be 110%, for example, and may be set to an appropriate value according to the characteristics of the lead storage battery 50.
  • S201 is the same as S201 of FIG. 16 of the fourth embodiment. If the SOC value of the lead storage battery 50 is less than the SOC lower limit value Spb3 (YES in S201), the switch control unit 285 increases the count value Ct by 1 in S211.
  • the SOC upper limit value Spb2 is set to 105%. Therefore, if NO in S5 of FIG. 20 and NO in S6, pulse charging is continued until YES in S7. Therefore, as shown in FIG. 17, the lead storage battery 50 has a charge period Tch3 as shown in FIG. The battery is charged until the SOC value reaches 105%.
  • the SOC value of the lead storage battery 50 is overcharged exceeding 100%. Thereby, it is possible to suppress the sulfation generated in the insufficiently charged lead storage battery 50 from proceeding excessively.
  • the overcharge is not performed every time the SOC value of the lead storage battery 50 falls below the SOC lower limit value Spb3, but the SOC value of the lead storage battery 50 falls to less than the SOC lower limit value Spb3.
  • N 5
  • the lead storage battery 50 does not deteriorate excessively due to overcharging.
  • FIG. 21 is a block diagram schematically showing the configuration of the vehicle 1 including the battery control unit 280 and the ECU 70 of the sixth embodiment.
  • the sixth embodiment will be described focusing on differences from the fourth embodiment.
  • the voltage adjusting unit 31 adjusts the output voltage of the ISG 30 in, for example, two stages of DC 15.0V and DC 13.7V.
  • the battery control unit 280 further includes a voltage control unit 284.
  • the voltage control unit 284 outputs a control signal SG to the ECU 70 to control the charging voltage during charging of the lead storage battery 50 and the nickel metal hydride storage battery 61.
  • the ECU 70 receives the control signal SG output from the battery control unit 280 and controls the voltage adjustment unit 31.
  • FIG. 22 is a timing chart schematically showing a charging current when the power supply unit 45 of FIG. 15 is charged at a constant voltage of 13.7V.
  • the charging current Ini of the nickel hydride storage battery 61 does not exceed the charging current Ipb of the lead storage battery 50.
  • the cause of this is estimated as follows. In the dissolution / precipitation type lead-acid battery 50, even when the voltage is 13.7 V, the chemical reaction of charging proceeds although the speed is low. However, in the nickel metal hydride storage battery 61, since the voltage is too low at 13.7 V, the hydrogen storage alloy does not easily store hydrogen, so that the chemical reaction of charging hardly proceeds. Therefore, when the power supply unit 45 in FIG. 15 is charged at a constant voltage of 13.7 V, the charging current Ipb of the lead storage battery 50 becomes larger than the charging current Ini of the nickel metal hydride storage battery 61.
  • the total charging current It is about half that of FIG. 24 in FIG. For this reason, it takes time to charge the lead storage battery 50 and the nickel metal hydride storage battery 61.
  • the lead storage battery 50 can be charged faster than the nickel metal hydride storage battery 61.
  • the switch control unit 285 of the battery control unit 280 performs pulse charging by turning on / off the switch element 35 in S204 of FIG. 16 and in S204 of FIG. 20 in the fifth embodiment.
  • the voltage control unit 284 switches the output voltage of the ISG 30 in a pulse form as shown in FIG.
  • FIG. 23 is a timing chart schematically showing the output voltage of the ISG 30.
  • the voltage control unit 284 sends the control signal SG requesting the ECU 70 to alternately repeat the first period T1 of the output voltage 15.0V and the second period T2 of the output voltage 13.7V. Output.
  • the ECU 70 controls the voltage adjusting unit 31 to control the output voltage of the ISG 30 as shown in FIG.
  • the second period T2 is, for example, 5 seconds.
  • the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61 as described with reference to FIG. Therefore, in the second period T2, the SOC of the lead storage battery 50 increases faster than the SOC of the nickel metal hydride storage battery 61, as in the charging period Tch2 of FIG.
  • the second period T2 is not limited to 5 seconds, and may be 10 seconds, for example.
  • the first period T1 is, for example, 4 seconds. Unlike the off period Toff in the fourth embodiment (FIG. 18), the charging voltage is not 0 but 13.7 V in the second period T2. Therefore, the period during which the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61 is considered to be shorter than the initial period T0 shown in FIG. Therefore, in the operation of FIG. 23, the first period T1 is set to 4 seconds, for example, and is shorter than the initial period T0 of about 5 seconds.
  • the charging current Ipb of the lead storage battery 50 is larger than the charging current Ini of the nickel metal hydride storage battery 61.
  • the SOC of the lead storage battery 50 increases faster than the SOC of the nickel metal hydride storage battery 61.
  • the charging in FIG. 23 is not pulse charging. However, in this specification, charging as shown in FIG. 23 is also included in pulse charging.
  • the output voltage of the ISG 30 in the second period T2 is adjusted to 13.7V.
  • the output voltage of the ISG 30 may be adjusted to a voltage at which the hydrogen storage alloy of the negative electrode of the nickel hydride storage battery 61 does not easily store hydrogen, and the lead storage battery 50 is charged.
  • the upper limit may be 1.38 to 1.39 V per cell of the nickel metal hydride storage battery 61.
  • the output voltage of the ISG 30 may be set to 13.8 to 13.9V as the upper limit.
  • the output voltage of the ISG 30 is adjusted to 14.5V.
  • the output voltage of the ISG 30 in the first period T1 is adjusted to 15.0V.
  • the output voltage of the ISG 30 may be a high voltage at which the ISG 30 can output and the lead storage battery 50 and the nickel metal hydride storage battery 61 are not damaged or failed.
  • the vehicle 1 includes the battery control unit 280 separately from the ECU 70.
  • the ECU 70 may be configured to include each functional block of the battery control unit 280, and the battery control unit 280 may be omitted.
  • the nickel metal hydride storage battery 61 is connected in parallel with the lead storage battery 50.
  • another secondary battery such as a lithium ion secondary battery, a lithium ion polymer secondary battery, or a nickel zinc storage battery may be connected in parallel with the lead storage battery 50.
  • the vehicle 1 includes the ISG 30.
  • a normal alternator may be provided instead of the ISG 30.
  • the voltage adjustment unit 31 adjusts the output voltage of the alternator.
  • the degradation determination apparatus for a lead storage battery and the degradation determination method for a lead storage battery according to the present disclosure are useful as an apparatus and a method that can suitably determine the degradation of the lead storage battery.
  • the charging control device and the charging control method according to the present disclosure are useful as a device and a method that can suitably charge lead storage batteries and secondary batteries connected in parallel to each other.

Abstract

 本開示の鉛蓄電池の劣化判定装置は、互いに並列接続された鉛蓄電池と鉛蓄電池以外の二次電池とを含む電源部と、電源部の電圧を検出する電圧検出部と、二次電池の内部抵抗を取得する取得部と、始動用モータによるエンジンの始動時に電源部から始動用モータに供給される全体電流値を予め記憶する記憶部と、始動用モータによるエンジンの始動時の電源部の電圧である始動電圧と二次電池の内部抵抗と全体電流値とを用いて、鉛蓄電池の内部抵抗を算出する演算部と、算出された鉛蓄電池の内部抵抗と予め定められた抵抗閾値とを比較して、鉛蓄電池の内部抵抗が抵抗閾値より高い場合に、鉛蓄電池が劣化していると判定する判定部と、を備える。

Description

鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法
 本開示は、鉛蓄電池が劣化しているか否かを判定する鉛蓄電池の劣化判定装置及び鉛蓄電池の劣化判定方法と、互いに並列接続された鉛蓄電池及び二次電池を充電する充電制御装置及び充電制御方法とに関する。
 エンジンを主たる動力源とする車両は、エンジンを始動するためのスタータモータの電源としてバッテリを備える。このバッテリとしては、一般に鉛蓄電池が使用される。
 また、近年、車両が走行中にブレーキにより減速を開始したときに発生するエネルギーによって発電機により発電した電力でバッテリを充電することが行われている(エネルギー回生)。しかし、エネルギーを回生するときには急速充電が行われることになるが、鉛蓄電池では、十分な急速充電が行えないため、エネルギーを有効に回生するのが困難となっている。
 そこで、十分な急速充電が行えるニッケル水素二次電池又はリチウムイオン二次電池などの鉛蓄電池以外の二次電池が鉛蓄電池と並列に接続された電源部を備える車両が知られている(特許文献1参照)。
 しかし、上記特許文献1では、更なる改善が望まれていた。
特開2012-90404号公報
 上記課題を解決するために、本発明の第1の態様は、互いに並列接続された鉛蓄電池と前記鉛蓄電池以外の二次電池とを含む電源部と、前記電源部の電圧を検出する電圧検出部と、前記二次電池の内部抵抗を取得する取得部と、始動用モータによるエンジンの始動時に前記電源部から前記始動用モータに供給される全体電流値を予め記憶する記憶部と、前記始動用モータによる前記エンジンの始動時の前記電源部の電圧である始動電圧を前記電圧検出部により検出し、前記検出された始動電圧と、前記取得部により取得された前記二次電池の内部抵抗と、前記記憶部に記憶された前記全体電流値とを用いて、前記鉛蓄電池の内部抵抗を算出する演算部と、前記演算部により算出された前記鉛蓄電池の内部抵抗と予め定められた抵抗閾値とを比較して、前記鉛蓄電池の内部抵抗が前記抵抗閾値より高い場合に、前記鉛蓄電池が劣化していると判定する判定部と、を備えるものである。
 本態様によれば、更なる改善を図ることができる。
第1実施形態にかかるバッテリ制御部を含む車両の構成を概略的に示すブロック図である。 電源部の電圧の推移を概略的に示す図である。 ISG、鉛蓄電池、及びニッケル水素蓄電池の等価回路を示す図である。 バッテリ制御部の動作を概略的に示すフローチャートである。 車両に用いられる鉛蓄電池とニッケル水素蓄電池との内部抵抗の推移を概略的に示す図である。 第2実施形態のバッテリ制御部及びECUを含む車両の構成を概略的に示すブロック図である。 鉛蓄電池50の閾値と、充電開始時のニッケル水素蓄電池のSOC値との関係を表すテーブルの一例を概略的に示す図である。 図6の電源部を13.7Vで定電圧充電したときの充電電流を概略的に示すタイミングチャートである。 第2実施形態の充電動作を概略的に示すフローチャートである。 図9の充電動作によって増加する鉛蓄電池及びニッケル水素蓄電池のSOCの一例を概略的に示す図である。 第3実施形態の充電動作を概略的に示すフローチャートである。 図11の充電動作によって増加する鉛蓄電池及びニッケル水素蓄電池のSOCの一例を概略的に示す図である。 スイッチ素子の動作を概略的に示すタイミングチャートである。 ISGの出力電圧を概略的に示すタイミングチャートである。 第4実施形態のバッテリ制御部及びECUを含む車両の構成を概略的に示すブロック図である。 第4実施形態の充電動作を概略的に示すフローチャートである。 図16の充電動作によって増加する鉛蓄電池及びニッケル水素蓄電池のSOCの一例を概略的に示す図である。 スイッチ素子の動作を概略的に示すタイミングチャートである。 第5実施形態の充電動作を概略的に示すフローチャートである。 第5実施形態の充電動作を概略的に示すフローチャートである。 第6実施形態のバッテリ制御部及びECUを含む車両の構成を概略的に示すブロック図である。 図15の電源部を13.7Vで定電圧充電したときの充電電流を概略的に示すタイミングチャートである。 ISGの出力電圧を概略的に示すタイミングチャートである。 鉛蓄電池とニッケル水素蓄電池とを互いに並列接続して構成された電源部を定電圧充電したときの充電電流を概略的に示すタイミングチャートである。
 (本開示に係る第1の態様を発明するに至った経緯)
 まず、本開示に係る第1の態様の着眼点について説明する。
 本開示の第1の態様は、鉛蓄電池以外の二次電池が鉛蓄電池と並列に接続された電源部を備えた構成において、鉛蓄電池の劣化を精度良く判定できる鉛蓄電池の劣化判定装置及び鉛蓄電池の劣化判定方法を提供することを目的とする。
 近年、エンジンを主たる動力源とする車両の排ガスを削減するために、アイドルストップ機能を有する車両が普及しつつある。上述のようなエネルギーの回生機能を有し、かつアイドルストップ機能を有する車両では、鉛蓄電池が頻繁に充放電される。このため、鉛蓄電池の劣化が懸念される。しかしながら、上記特許文献1では、鉛蓄電池が劣化しているか否かを判定することについては、十分に検討されていない。
 そこで、本発明者は、上記特許文献1に記載の技術と同様に、互いに並列接続された鉛蓄電池と鉛蓄電池以外の二次電池(本実施の形態ではニッケル水素蓄電池)とを含む電源部を車両に用いる場合の鉛蓄電池の劣化について検討した。電池の劣化が進むと、電池の内部抵抗が増大する。
 図5は、車両に用いられる鉛蓄電池とニッケル水素蓄電池との内部抵抗の推移を概略的に示す図である。図5の上図は、鉛蓄電池とニッケル水素蓄電池との個々の内部抵抗の推移を示す。図5の下図は、鉛蓄電池とニッケル水素蓄電池との内部抵抗が合成された合成内部抵抗の推移を示す。
 車両に用いられる鉛蓄電池は、一般に、3年で交換される。したがって、図5の上図に示されるように、鉛蓄電池の内部抵抗Rpbは、初期値Rpb0から3年間増大し続けるが、3年後の交換毎に、初期値Rpb0に戻る。一方、ニッケル水素蓄電池は、車両と同様の9年以上の寿命で設計されている。したがって、図5の上図に示されるように、ニッケル水素蓄電池の内部抵抗Rniは、初期値Rni0から9年間増大し続ける。
 その結果、鉛蓄電池とニッケル水素蓄電池との合成内部抵抗Rtは、初期値R0から3年間増大し続けた後、3年後の鉛蓄電池の交換により低下する。しかし、ニッケル水素蓄電池の内部抵抗が増大しているため、合成内部抵抗Rtは、初期値R0より高い抵抗値R3までしか低下しない。6年後にも、同様に、合成内部抵抗Rtは、鉛蓄電池の交換により低下するが、抵抗値R3より高い抵抗値R6までしか低下しない。
 したがって、鉛蓄電池の劣化判定を、予め定められた抵抗閾値Rdと合成内部抵抗Rtとを比較して行うと、車両の使用開始から3年後は、適切なタイミングで劣化と判定できる。しかし、鉛蓄電池の交換後は、車両の使用開始からTd年(3<Td<6)で合成内部抵抗Rtが抵抗閾値Rdに到達する。このため、鉛蓄電池の交換から3年以内に、鉛蓄電池は劣化していないにも拘らず、劣化したと判定してしまう。したがって、合成内部抵抗Rtではなくて、鉛蓄電池単独の内部抵抗Rpbによって、鉛蓄電池の劣化を判定する必要がある。
 そこで、鉛蓄電池に流れる電流を検出する電流センサと鉛蓄電池の端子電圧を検出する電圧センサとを設け、検出された電流と端子電圧とから、鉛蓄電池の内部抵抗を算出することが考えられる。しかしながら、エンジンの始動時等には大電流が流れるため、このような大電流を検出するためには、高価で大型の電流センサが必要となり、コスト及び設置スペースの増大を招く。
 本発明者は、上記検討を踏まえ、以下のように本開示にかかる第1の態様に含まれる各態様の発明を想到するに至った。
 本開示にかかる第1の態様は、互いに並列接続された鉛蓄電池と前記鉛蓄電池以外の二次電池とを含む電源部と、前記電源部の電圧を検出する電圧検出部と、前記二次電池の内部抵抗を取得する取得部と、始動用モータによるエンジンの始動時に前記電源部から前記始動用モータに供給される全体電流値を予め記憶する記憶部と、前記始動用モータによる前記エンジンの始動時の前記電源部の電圧である始動電圧を前記電圧検出部により検出し、前記検出された始動電圧と、前記取得部により取得された前記二次電池の内部抵抗と、前記記憶部に記憶された前記全体電流値とを用いて、前記鉛蓄電池の内部抵抗を算出する演算部と、前記演算部により算出された前記鉛蓄電池の内部抵抗と予め定められた抵抗閾値とを比較して、前記鉛蓄電池の内部抵抗が前記抵抗閾値より高い場合に、前記鉛蓄電池が劣化していると判定する判定部と、を備えるものである。
 本態様によれば、始動用モータによるエンジンの始動時の電源部の電圧である始動電圧が電圧検出部により検出される。検出された始動電圧と、二次電池の内部抵抗と、始動用モータによるエンジンの始動時に電源部から始動用モータに供給される全体電流値とを用いて、鉛蓄電池の内部抵抗が演算部により算出される。始動用モータによるエンジンの始動時に電源部から始動用モータに供給される全体電流値は、始動用モータ及びエンジンの仕様に依存する。このため、始動用モータ及びエンジンが決まると、全体電流値も決まる。したがって、全体電流値を記憶部に予め記憶させておくことができる。
 まず、記憶部に記憶されている全体電流値と、検出された始動電圧とを用いて、互いに並列接続された二次電池と鉛蓄電池との合成内部抵抗が算出される。次に、この算出された合成内部抵抗と、取得された二次電池の内部抵抗とから、鉛蓄電池の内部抵抗が算出される。鉛蓄電池の内部抵抗が抵抗閾値より高い場合に、鉛蓄電池が劣化していると判定部により判定される。したがって、鉛蓄電池単独の内部抵抗を用いて、鉛蓄電池の劣化を精度良く判定できる。
 上記第1の態様において、例えば、前記判定部は、前記鉛蓄電池が劣化していると判定すると、アイドルストップ制御による前記エンジンの自動停止を禁止してもよい。
 本態様によれば、鉛蓄電池が劣化していると判定部によって判定されると、アイドルストップ制御によるエンジンの自動停止が判定部によって禁止される。したがって、自動停止しているエンジンが、鉛蓄電池の劣化により始動できなくなるという事態を避けることができる。
 上記第1の態様において、例えば、前記始動用モータは、前記アイドルストップ制御により自動停止している前記エンジンを始動させるモータであってもよい。
 上記第1の態様において、例えば、前記始動用モータは、ユーザによるイグニションスイッチの操作によって前記エンジンを始動させるモータであってもよい。
 本開示にかかる他の態様は、互いに並列接続された鉛蓄電池と前記鉛蓄電池以外の二次電池とを含む電源部を備える鉛蓄電池の劣化判定装置における鉛蓄電池の劣化判定方法であって、前記二次電池の内部抵抗を取得する取得ステップと、始動用モータによるエンジンの始動時の前記電源部の電圧である始動電圧を検出する検出ステップと、前記検出ステップにおいて検出された前記始動電圧と、前記取得ステップにおいて取得された前記二次電池の内部抵抗と、前記始動用モータによる前記エンジンの始動時に前記電源部から前記始動用モータに供給される全体電流値とを用いて、前記鉛蓄電池の内部抵抗を算出する演算ステップと、前記演算ステップにおいて算出された前記鉛蓄電池の内部抵抗と予め定められた抵抗閾値とを比較して、前記鉛蓄電池の内部抵抗が前記抵抗閾値より高い場合に、前記鉛蓄電池が劣化していると判定する判定ステップと、を含むものである。
 本態様によれば、検出ステップにおいて検出された始動電圧と、取得ステップにおいて取得された二次電池の内部抵抗と、始動用モータによるエンジンの始動時に電源部から始動用モータに供給される全体電流値とを用いて、鉛蓄電池の内部抵抗が演算ステップにおいて算出される。始動用モータによるエンジンの始動時に電源部から始動用モータに供給される全体電流値は、始動用モータ及びエンジンの仕様に依存する。このため、始動用モータ及びエンジンが決まると、全体電流値も決まる。したがって、予め決められた全体電流値を用いることができる。
 まず、全体電流値と、検出された始動電圧とを用いて、並列接続された二次電池と鉛蓄電池との合成内部抵抗が算出される。次に、この算出された合成内部抵抗と、二次電池の内部抵抗とから、鉛蓄電池の内部抵抗が算出される。判定ステップにおいて、鉛蓄電池の内部抵抗が抵抗閾値より高い場合に、鉛蓄電池が劣化していると判定される。したがって、鉛蓄電池単独の内部抵抗を用いて、鉛蓄電池の劣化を精度良く判定できる。
 (第1実施形態)
 以下、図面を参照しつつ本発明の第1実施形態が説明される。なお、以下の各実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、各図では、同様の要素には同様の符号が付され、適宜、説明が省略される。
 図1は、本第1実施形態のバッテリ制御部80を含む車両1の構成を概略的に示すブロック図である。
 車両1は、エンジンを主たる動力源とし、モータを補助的動力源とするハイブリッド自動車(Hybrid Electric Vehicle)である。車両1は、エンジン10、スタータモータ20、Integrated Starter Generator(ISG)30、電装負荷40、電源部45、電子制御ユニット(ECU)70、本第1実施形態のバッテリ制御部80を備える。
 電源部45は、鉛蓄電池50及び電池パック60を含む。電池パック60は、ニッケル水素蓄電池61及び抵抗検出部62を含む。鉛蓄電池50とニッケル水素蓄電池61とは、互いに並列に接続されている。スタータモータ20(始動用モータの一例)は、ユーザによりイグニションスイッチが操作されるとエンジン10を始動する。
 ISG30(始動用モータの一例)は、発電機能と電動機能とを兼有する。車両1が走行中にブレーキペダル(図示省略)が操作されて減速を開始すると、車輪からISG30にトルクが伝えられ、ISG30は、発電機能により発電する。この発電された電力が電装負荷40の電気負荷を超えるときは、この発電された電力により電源部45の鉛蓄電池50及びニッケル水素蓄電池61が充電される。これによって、エネルギーの回生が行われる。車両1が停止すると、ECU70のアイドルストップ制御によって、エンジン10が自動停止する。車両1の発進時には、ISG30の電動機能により、車両1が駆動され、かつ、エンジン10が始動される。
 電装負荷40は、例えば空気調和機及び室内灯等、車両1に装備された電装品等の負荷を含む。鉛蓄電池50及びニッケル水素蓄電池61の公称電圧は、この第1実施形態では例えば12Vである。電源部45から出力される電力は、車両1のエンジン10を始動するスタータモータ20及びISG30の駆動、電装負荷40の電源に使用される。
 電池パック60の抵抗検出部62は、ニッケル水素蓄電池61の内部抵抗Rniを検出する。抵抗検出部62は、例えば、シャント抵抗を含む電流検出部と、ニッケル水素蓄電池61の端子電圧を検出する電圧検出部とを備える。抵抗検出部62は、ニッケル水素蓄電池61が異常か否かを判定して電池パック60を保護するために設けられている。抵抗検出部62は、例えば、ニッケル水素蓄電池61の内部抵抗Rniが所定値以上であることを検出すると、警告信号をECU70に出力するように構成されている。
 ECU70は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)、所定の制御プログラムが保存されたROM(Read Only Memory)、データを一時的に保存するRAM(Random Access Memory)、これらの周辺回路等を備える。ECU70は、バッテリ制御部80と互いに通信可能に構成されている。
 ECU70は、エンジン10、スタータモータ20、ISG30、電装負荷40を含む車両1の全体の動作を制御する。ECU70は、車両1が交差点等で所定時間停止する等の所定の停止条件を満たすとエンジン10を自動停止し、かつ、ブレーキペダル(図示省略)の操作解除等の所定の始動条件を満たすと再びエンジン10を始動するアイドルストップ制御を行う。ECU70は、バッテリ制御部80から禁止信号(後述)が通知されると、アイドルストップ制御によるエンジン10の自動停止を行わない。
 バッテリ制御部80は、例えば、所定の演算処理を実行するCPU、所定の制御プログラムが保存されたROM、データを一時的に保存するRAM、これらの周辺回路等を備える。バッテリ制御部80は、例えばフラッシュメモリなどで構成された記憶部81、電圧検出部82を備える。バッテリ制御部80は、ROMに保存された制御プログラムを実行することにより、演算部83、判定部84として機能する。
 記憶部81は、スタータモータ20又はISG30がエンジン10を始動するときに、電源部45からスタータモータ20又はISG30に供給される全体電流値Itを予め記憶する。全体電流値Itは、エンジン10、スタータモータ20、及びISG30の仕様に依存する。したがって、エンジン10、スタータモータ20、及びISG30が決まると、全体電流値Itも決まる。この第1実施形態では、スタータモータ20がエンジン10を始動するときに、電源部45からスタータモータ20に供給される全体電流値と、ISG30がエンジン10を始動するときに、電源部45からISG30に供給される全体電流値とは、ほぼ同じ値となる。全体電流値Itは、例えば500Aである。
 記憶部81は、鉛蓄電池50が劣化しているか否かを判定するための抵抗閾値Rthを予め記憶する。記憶部81は、エンジン10が始動されたか否かを判定するための電圧閾値Vthを予め記憶する。
 電圧検出部82は、電源部45の電圧Vtを検出する。電圧検出部82は、検出した電圧Vtを演算部83に出力する。演算部83は、電圧検出部82により検出された電源部45の電圧Vtと、記憶部81に記憶されている電圧閾値Vthとを比較して、スタータモータ20又はISG30によりエンジン10が始動されたか否かを判定する。
 図2は、電源部45の電圧Vtの推移を概略的に示す図である。スタータモータ20又はISG30によりエンジン10が始動されると、電源部45からスタータモータ20又はISG30に大電流(上述のように例えば500A)が供給される。このため、図2に示されるように、時刻T0に、スタータモータ20又はISG30によりエンジン10が始動されると、一時的に電源部45の電圧Vtが最小電圧Vmin(始動電圧の一例)まで急激に低下し、その後、緩やかに元の電圧に戻る。
 演算部83は、電源部45の電圧Vtが、記憶部81に記憶されている電圧閾値Vth以下に低下すると、エンジン10が始動されたと判定する。演算部83は、電圧検出部82により検出された最小電圧Vminを、電圧検出部82から取得する。電圧閾値Vthは、エンジン10、スタータモータ20、ISG30、電源部45の仕様に応じて、例えば10V程度の適切な値に定められて、記憶部81に予め記憶されている。
 図1に戻って、演算部83(取得部の一例)は、スタータモータ20又はISG30によりエンジン10が始動されたと判定すると、抵抗検出部62からニッケル水素蓄電池61の内部抵抗Rniを取得する。演算部83(演算部の一例)は、電圧検出部82により検出された最小電圧Vminと、記憶部81に記憶されている全体電流値Itと、抵抗検出部62から取得したニッケル水素蓄電池61の内部抵抗Rniとを用いて、鉛蓄電池50の内部抵抗Rpbを算出する。
 図3は、ISG30、鉛蓄電池50、及びニッケル水素蓄電池61の等価回路を示す図である。図3の等価回路において、下記式(1)が成立する。
Rt=Vmin/It (1)
 但し、Vminは電圧検出部82により検出された最小電圧であり、Itは記憶部81に記憶されている全体電流値であり、Rtは並列に接続された鉛蓄電池50及びニッケル水素蓄電池61の合成内部抵抗である。式(1)によって、並列に接続された鉛蓄電池50及びニッケル水素蓄電池61の合成内部抵抗Rtが算出される。
 また、図3の等価回路において、下記式(2)が成立する。
1/Rt=1/Rpb+1/Rni (2)
 但し、Rpbは鉛蓄電池50の内部抵抗であり、Rniはニッケル水素蓄電池61の内部抵抗である。
 上記式(1)、(2)より、下記式(3)が得られる。
1/Rpb=It/Vmin-1/Rni (3)
 上記式(3)によって、鉛蓄電池50の内部抵抗Rpbが算出される。
 図1に戻って、演算部83は、算出した鉛蓄電池50の内部抵抗Rpbを判定部84に出力する。判定部84は、演算部83により算出された鉛蓄電池50の内部抵抗Rpbと、記憶部81に記憶されている抵抗閾値Rthとを比較して、鉛蓄電池50が劣化しているか否かを判定する。すなわち、判定部84は、算出された鉛蓄電池50の内部抵抗Rpbが、抵抗閾値Rthを超えていれば、鉛蓄電池50が劣化していると判定する。抵抗閾値Rthは、鉛蓄電池50の仕様に応じて適切な値に定められて、記憶部81に予め記憶されている。
 判定部84は、鉛蓄電池50が劣化していると判定すると、アイドルストップ制御を禁止する禁止信号をECU70に出力する。判定部84は、鉛蓄電池50の劣化判定が所定回数連続すると、鉛蓄電池50の交換をユーザに促すための交換信号をECU70に出力する。
 図4は、バッテリ制御部80の動作を概略的に示すフローチャートである。まず、電圧検出部82は、電源部45の電圧Vtを検出して、演算部83に出力する(S1)。演算部83は、検出された電圧Vtが電圧閾値Vth未満か否かを判定する(S2)。検出された電圧Vtが電圧閾値Vth以上であれば(S2でNO)、処理は、S1に戻る。検出された電圧Vtが電圧閾値Vth未満であれば(S2でYES)、電圧検出部82は、電源部45の最小電圧Vminを検出し、演算部83は、最小電圧Vminを電圧検出部82から取得する(S3、検出ステップの一例)。
 演算部83は、電池パック60の抵抗検出部62から、ニッケル水素蓄電池61の内部抵抗Rniを取得する(S4、取得ステップの一例)。演算部83は、記憶部81に記憶されている全体電流値Itと、検出された最小電圧Vminと、抵抗検出部62から取得したニッケル水素蓄電池61の内部抵抗Rniとを用いて、上記式(3)により、鉛蓄電池50の内部抵抗Rpbを算出し、算出した内部抵抗Rpbを判定部84に出力する(S5、演算ステップの一例)。
 判定部84は、算出された鉛蓄電池50の内部抵抗Rpbが、抵抗閾値Rthを超えているか否かを判定する(S6、判定ステップの一例)。鉛蓄電池50の内部抵抗Rpbが、抵抗閾値Rthを超えていなければ(S6でNO)、処理は、S1に戻る。鉛蓄電池50の内部抵抗Rpbが、抵抗閾値Rthを超えていれば(S6でYES)、判定部84は、アイドルストップ制御を禁止する禁止信号をECU70に通知する(S7)。
 判定部84は、カウント値Cdgをインクリメントする(S8)。判定部84は、カウント値Cdgが、予め定められた閾値Cthを超えたか否かを判定する(S9)。カウント値Cdgが、閾値Cthを超えていなければ(S9でNO)、処理は、S1に戻る。カウント値Cdgが、閾値Cthを超えていれば(S9でYES)、鉛蓄電池50の交換をユーザに促すための交換信号をECU70に通知する(S10)。
 ECU70は、音声発生、文字表示又は交換用LEDの点灯により、鉛蓄電池50の交換をユーザに促してもよい。
 以上説明されたように、この第1実施形態の電池パック60は、ニッケル水素蓄電池61の保護のために、ニッケル水素蓄電池61の内部抵抗Rniを検出する抵抗検出部62を含む。そこで、この第1実施形態のバッテリ制御部80は、この既存の抵抗検出部62により検出されるニッケル水素蓄電池61の内部抵抗Rniを利用している。
 また、エンジン10の始動時に電源部45からスタータモータ20又はISG30に供給される全体電流値Itは、エンジン10、スタータモータ20、及びISG30の仕様に依存する。このため、エンジン10、スタータモータ20、及びISG30が決まると、全体電流値Itも決まる。
 そこで、この第1実施形態のバッテリ制御部80は、これらを利用して、鉛蓄電池50の内部抵抗Rpbを算出している。したがって、鉛蓄電池50のみに流れる電流を検出する大型の電流センサなどを備えることなく、簡易な構成で、鉛蓄電池50の内部抵抗Rpbを得ることができる。その結果、この第1実施形態によれば、鉛蓄電池50が劣化しているか否かを精度良く判定することができる。
 また、この第1実施形態では、エンジン10が始動されたとき(つまり例えば500Aの大電流が流れたとき)の電源部45の最小電圧Vminを用いて、内部抵抗Rpbが算出されている。例えばアイドルストップ制御によりエンジン10が停止しているときは、電源部45から電装負荷40に10~20Aの電流が供給される。この場合、電流が小さいため、電源部45の通常時の電圧と最小電圧Vminとの差が小さい。このため、鉛蓄電池50が正常なときの最小電圧Vminと、鉛蓄電池50が劣化しているときの最小電圧Vminとの差が小さくなる。
 これに対して、電源部45から大電流が供給されると、電源部45の通常時の電圧と最小電圧Vminとの差が大きい。このため、鉛蓄電池50が正常なときの最小電圧Vminと、鉛蓄電池50が劣化しているときの最小電圧Vminとの差が大きくなる。その結果、この第1実施形態によれば、鉛蓄電池50が劣化しているか否かを精度良く判定することができる。
 (第1実施形態の変形形態)
 本発明は上記第1実施形態に限られない。以下、本発明の第1実施形態の変形形態が説明される。
 (1)上記第1実施形態では、バッテリ制御部80の演算部83は、電源部45の電圧Vtが電圧閾値Vth未満に低下したか否かによって、スタータモータ20又はISG30によってエンジン10が始動されたか否かを判定している。代替的に、ECU70は、エンジン10が始動されたことをバッテリ制御部80に通知するように構成してもよい。この場合には、演算部83は、エンジン10が始動された旨の通知をECU70から受けたときに、最小電圧Vminを電圧検出部82から取得すればよい。
 (2)上記第1実施形態では、車両1は、ECU70とは別に、バッテリ制御部80を備えている。代替的に、ECU70が、バッテリ制御部80の各機能ブロックを備えるように構成して、バッテリ制御部80をなくしてもよい。この場合には、ECU70は、エンジン10の始動を制御したときに、電圧検出部82により検出される最小電圧Vminを取得すればよい。
 (3)上記第1実施形態では、電池パック60は、ニッケル水素蓄電池61を含む。代替的に、電池パック60は、リチウムイオン二次電池、リチウムイオンポリマー二次電池、ニッケル亜鉛蓄電池等の、他の二次電池を含んでもよい。
 (4)上記第1実施形態では、ユーザによるイグニションスイッチの操作によってエンジン10を始動させるスタータモータ20を備える。代替的に、スタータモータ20をなくして、ISG30が、ユーザによるイグニションスイッチの操作によってエンジン10を始動させてもよい。
 (5)上記第1実施形態において、ECU70は、スタータモータ20又はISG30によってエンジン10が始動されたときに、電源部45の最小電圧Vminを電圧検出部82から取得して、最小電圧Vminが予め定められた閾値未満であれば、アイドルストップ制御によるエンジン10の自動停止を禁止するようにしてもよい。この場合において、ECU70は、スタータモータ20によってエンジン10が始動されたときと、ISG30によってエンジン10が始動されたときとで、閾値を異なる値に定めてもよい。
 (本開示に係る第2の態様を発明するに至った経緯)
 まず、本開示に係る第2の態様の着眼点について説明する。
 本開示の第2の態様は、互いに並列接続された鉛蓄電池及び二次電池を充電する際に、簡易な構成で、鉛蓄電池及び二次電池の両方が充電不足にならない充電制御装置及び充電制御方法を提供することを目的とする。
 上記特許文献1に記載の車両では、鉛蓄電池以外の二次電池と鉛蓄電池とは、発電機(オルタネータ)から出力される電力により充電される。この場合、鉛蓄電池以外の二次電池と鉛蓄電池とが互いに並列接続されているため、発電機により充電する際には、鉛蓄電池及び二次電池の両方が充電不足にならないように制御する必要がある。しかしながら、上記特許文献1では、互いに並列接続された鉛蓄電池以外の二次電池と鉛蓄電池とを充電する際に、鉛蓄電池及び二次電池の両方が充電不足にならないようにすることについては、十分に検討されていない。
 そこで、本発明者は、上記特許文献1に記載の技術と同様に、鉛蓄電池と鉛蓄電池以外の二次電池(本実施の形態ではニッケル水素蓄電池)とを互いに並列接続して電源部を構成した。そして、本発明者は、このように構成された電源部を定電圧充電した場合の各電池の充電電流の変化について検討した。
 図24は、鉛蓄電池とニッケル水素蓄電池とを互いに並列接続して構成された電源部を定電圧充電したときの充電電流を概略的に示すタイミングチャートである。図24において、充電電流Ipbは鉛蓄電池に流れる充電電流を示し、充電電流Iniは、ニッケル水素蓄電池に流れる充電電流を示し、充電電流Itは、充電電流Ipb,Iniの合計を示す。
 図24における充電は、以下の条件で行われた。鉛蓄電池として、6セルの鉛蓄電池が直列接続された公称電圧が12Vの鉛蓄電池が用いられた。ニッケル水素蓄電池として、10セルのニッケル水素蓄電池が直列接続された公称電圧が鉛蓄電池と同じ12Vのニッケル水素蓄電池が用いられた。車両に用いられる発電機(オルタネータ)を想定して、14.5Vの定電圧で充電が行われた。
 その結果、図24に示されるように、充電開始当初の初期期間T0(5秒程度)の間は、Ipb>Iniになるが、初期期間T0の後は、Ini>Ipbになることが判明した。また、図示は省略されているが、鉛蓄電池とリチウムイオン二次電池とを互いに並列接続した場合にも、同様の充電特性を示すことが判明した。
 この原因について、本発明者は、鉛蓄電池と、ニッケル水素蓄電池又はリチウムイオン二次電池との充電特性の相違に起因すると推量した。
 まず、本発明者は、充電開始直後には、各電池において、以下のような現象が生じていると推量した。溶解析出型の鉛蓄電池では、充電電流の供給が開始されると、電極表面において、電極と電解液との間で充電の化学反応が即座に開始される。
 これに対して、負極に水素吸蔵合金を用いるニッケル水素蓄電池では、充電電流の供給が開始されても、水が還元されて水素吸蔵合金の表面で生成された水素原子が水素吸蔵合金に吸蔵されて金属水素化物になる反応が即座には開始されない。また、正極においても、水酸化ニッケルが酸化されてオキシ水酸化ニッケル及び水が生成される反応が開始されるのに時間を要する。このため、ニッケル水素蓄電池では、充電の化学反応が即座には開始されない。
 また、電極が層構造の結晶からなるインターカレーション型のリチウムイオン二次電池では、充電電流の供給が開始されても、最初は、結晶の層間が広がってリチウムイオンが電極内に容易に入り込めるような状態になるまでに時間を要する。このため、リチウムイオン二次電池では、充電の化学反応が即座には開始されない。したがって、充電開始当初の初期期間T0(5秒程度)の間は、鉛蓄電池の充電電流は、ニッケル水素蓄電池又はリチウムイオン二次電池の充電電流に比べて、大きくなる。
 次に、本発明者は、充電開始当初の初期期間T0の後は、各電池において、以下のように化学反応が進むと推量した。鉛蓄電池では、電極表面における電極と電解液との間での化学反応が一通り終了すると、擬似的に満充電のような状態となり、電極表面より下層まで化学反応が進行するのに時間を要する。
 これに対して、一旦、水素吸蔵合金が水素原子の吸蔵を開始し、水酸化ニッケルからオキシ水酸化ニッケル及び水の生成反応が始まったニッケル水素蓄電池では、充電の化学反応が滑らかに進む。また、一旦、リチウムイオンが電極内に容易に入り込めるような状態になったリチウムイオン二次電池では、充電の化学反応が滑らかに進む。したがって、充電開始当初の初期期間T0の後は、鉛蓄電池の充電電流に比べて、ニッケル水素蓄電池又はリチウムイオン二次電池の充電電流が大きくなる。
 ここで、車両に搭載されるニッケル水素蓄電池に対する充電制御が説明される。ニッケル水素蓄電池の充電状態(SOC)が高過ぎると、エンジンの回生エネルギーを蓄えることができなくなるため、却ってエネルギー効率が低下する。一方、ニッケル水素蓄電池のSOCが低過ぎると、エンジンの始動時又はアイドルストップ制御で停止中のエンジンの再始動時に必要な大電流の供給に支障を来す。
 このため、一般に、車両に搭載されるニッケル水素蓄電池では、SOCの上限値(例えば80%)及び下限値(例えば20%)が設定される。この範囲内にニッケル水素蓄電池のSOCが維持されるように、ニッケル水素蓄電池の充電及び放電が制御される。したがって、充電中にニッケル水素蓄電池のSOCが上限値に達すると充電が停止される。この場合において、車両に搭載されるニッケル水素蓄電池は、鉛蓄電池に比べて小さい容量に設定されている。このため、同じ充電電気量でも、鉛蓄電池のSOCに比べてニッケル水素蓄電池のSOCが大きく変動する。その結果、ニッケル水素蓄電池のSOCは、比較的早く上限値に達する。
 したがって、単に通常の定電圧充電を行ったのでは、図24に示されるような充電電流で充電が進むため、鉛蓄電池が満充電になる前に、ニッケル水素蓄電池のSOCが上限値に達して充電が停止されることになる。その結果、充電制御に工夫をしない場合には、鉛蓄電池は、満充電にならない充電不足の状態が続く。
 これに対して、鉛蓄電池とニッケル水素蓄電池とを個別に充電できるように電源部の充電制御回路を構成することが考えられる。この構成により、鉛蓄電池及びニッケル水素蓄電池の両方が充電不足にならないように充電を制御することができる。しかしながら、このように構成された充電制御回路では、回路構成が複雑化及び大型化するため、コスト及び設置スペースの増大を招く。
 そこで、本発明者は、上記検討を踏まえ、以下のように本開示にかかる第2の態様に含まれる各態様の発明を想到するに至った。
 本開示にかかる第2の態様は、互いに並列接続された鉛蓄電池及び前記鉛蓄電池以外の二次電池を含む電源部と、予め定められた所定電圧値での定電圧充電により前記電源部の前記鉛蓄電池及び前記二次電池を充電する充電制御部と、を備え、前記所定電圧値は、前記所定電圧値での充電開始当初の初期期間は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなり、かつ、前記初期期間の後は、前記鉛蓄電池の充電電流より前記二次電池の充電電流が大きくなる値に予め定められているものである。
 本態様では、予め定められた所定電圧値での定電圧充電により、互いに並列接続された鉛蓄電池及び鉛蓄電池以外の二次電池を含む電源部の、鉛蓄電池及び二次電池が充電される。所定電圧値は、所定電圧値での充電開始当初の初期期間は、二次電池の充電電流より鉛蓄電池の充電電流が大きくなる値に予め定められている。このため、鉛蓄電池の充電不足が回避される。また、初期期間の後は、鉛蓄電池の充電電流より二次電池の充電電流が大きくなる値に予め定められている。このため、二次電池の充電不足が回避される。その結果、本態様によれば、簡易な構成で、鉛蓄電池及び二次電池の両方が充電不足になるのを避けることができる。
 上記第2の態様において、前記鉛蓄電池のSOCを取得する第1SOC取得部と、前記鉛蓄電池のSOCとして予め定められた100%以下のSOC閾値を保存する記憶部と、充電電圧を前記所定電圧値又は前記所定電圧値より低い所定低電圧値に調整する電圧調整部と、をさらに備え、前記充電制御部は、前記電圧調整部を制御して、前記第1SOC取得部により取得された前記鉛蓄電池のSOCが前記SOC閾値に達するまでは、前記充電電圧を前記所定低電圧値に調整し、前記鉛蓄電池のSOCが前記SOC閾値に達した後は、前記充電電圧を前記所定電圧値に調整する2段階定電圧充電により、前記電源部の前記鉛蓄電池及び前記二次電池を充電し、前記所定低電圧値は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなる値に予め定められていてもよい。
 本態様では、鉛蓄電池のSOCがSOC閾値に達するまでは、鉛蓄電池及び二次電池は、所定低電圧値で定電圧充電される。所定低電圧値は、二次電池の充電電流より鉛蓄電池の充電電流が大きくなる値に予め定められている。このため、鉛蓄電池のSOCがSOC閾値に達するまでは、二次電池に比べて鉛蓄電池の充電が早く進む。したがって、本態様によれば、鉛蓄電池のSOCがSOC閾値未満になるような充電不足になるのを避けることができる。
 また、本態様では、鉛蓄電池のSOCがSOC閾値に達した後は、鉛蓄電池及び二次電池は、所定電圧値で定電圧充電される。所定電圧値は、所定電圧値での充電開始当初の初期期間は、二次電池の充電電流より鉛蓄電池の充電電流が大きくなり、かつ、初期期間の後は、鉛蓄電池の充電電流より二次電池の充電電流が大きくなる値に予め定められている。このため、鉛蓄電池のSOCがSOC閾値に達した後は、鉛蓄電池に比べて二次電池の充電が早く進む。したがって、本態様によれば、二次電池が充電不足になるのを避けることができる。その結果、本態様によれば、簡易な構成で、鉛蓄電池及び二次電池の両方が充電不足になるのを避けることができる。
 上記第2の態様において、例えば、前記二次電池のSOCを取得する第2SOC取得部をさらに備え、前記記憶部は、前記二次電池のSOCとして予め定められた100%未満の第1SOC上限値を保存し、前記充電制御部は、前記第2SOC取得部により取得された前記二次電池のSOCが前記第1SOC上限値に達すると、前記2段階定電圧充電を停止してもよい。
 本態様によれば、二次電池のSOCが予め定められた100%未満の第1SOC上限値に達すると、2段階定電圧充電が停止される。したがって、二次電池が過充電になるのを避けることができる。
 上記第2の態様において、例えば、前記充電制御部は、前記第2SOC取得部により取得された充電開始時の前記二次電池のSOCが大きいほど、前記SOC閾値を大きい値にしてもよい。
 本態様では、二次電池のSOCが予め定められた100%未満の第1SOC上限値に達すると、充電が停止される。したがって、充電開始時の二次電池のSOCが大きいほど、第2電圧値での定電圧充電の時間が短くなる。このため、充電開始時の二次電池のSOCが大きいほど、鉛蓄電池が充電不足になる可能性が高くなる。これに対して、本態様によれば、充電開始時の二次電池のSOCが大きいほど、SOC閾値が大きい値にされる。したがって、第1電圧値での定電圧充電の時間が長くなる。その結果、鉛蓄電池が充電不足になる可能性を低くすることができる。
 上記第2の態様において、例えば、前記記憶部は、前記鉛蓄電池のSOCとして予め定められた100%を超える第2SOC上限値を保存し、前記充電制御部は、前記鉛蓄電池のSOCが前記第2SOC上限値に達すると、前記2段階定電圧充電を停止してもよい。
 本態様では、鉛蓄電池のSOCが、予め定められた100%を超える第2SOC上限値に達すると、2段階定電圧充電が停止される。したがって、鉛蓄電池のSOCが第2SOC上限値に達するまで充電が継続された場合には、充電不足によって鉛蓄電池に生じるサルフェーションが過度に進むのを抑制することができる。
 上記第2の態様において、例えば、前記記憶部は、前記鉛蓄電池のSOCとして予め定められた前記SOC閾値未満のSOC下限値を保存し、前記充電制御部は、前記鉛蓄電池のSOCが前記SOC下限値以下に低下すると、低下した回数をカウントし、前記カウントした回数が所定回数ごとに、前記2段階定電圧充電により、前記電源部の前記鉛蓄電池及び前記二次電池を充電し、前記カウントした回数が前記所定回数未満の場合は、前記充電電圧を前記第2電圧値に調整して、前記電源部の前記鉛蓄電池及び前記二次電池を定電圧充電してもよい。
 本態様では、鉛蓄電池のSOCがSOC下限値以下に低下すると、その低下した回数がカウントされる。カウントした回数が所定回数ごとに、2段階定電圧充電により、電源部の各電池が充電される。したがって、鉛蓄電池のSOCが第2SOC上限値に達するまで充電が継続された場合には、充電不足によって鉛蓄電池に生じるサルフェーションが過度に進むのを抑制することができる。
 一方、カウントした回数が所定回数未満の場合は、充電電圧が第2電圧値に調整されて、第2電圧値での定電圧充電により電源部の各電池が充電される。このため、鉛蓄電池のSOCが第2SOC上限値に達するような過充電は、所定回数ごとに行われ、所定回数未満の場合は行われない。その結果、過充電により鉛蓄電池が過度に劣化するのを避けることができる。
 上記第2の態様において、例えば、前記充電制御部は、前記2段階定電圧充電において、前記鉛蓄電池のSOCが前記SOC閾値に達して前記充電電圧を前記第2電圧値に調整すると、前記電源部の前記鉛蓄電池及び前記二次電池を、オン期間が前記初期期間以下の長さでパルス充電してもよい。
 本態様では、鉛蓄電池のSOCがSOC閾値に達して充電電圧が第2電圧値に調整されると、電源部の各電池は、オン期間が初期期間以下の長さでパルス充電される。オン期間が初期期間以下の長さであるため、オン期間では、二次電池の充電電流に比べて鉛蓄電池の充電電流が大きくなる。したがって、充電電圧が第2電圧値に調整されているものの、パルス充電では、二次電池に比べて鉛蓄電池の充電が早く進む。その結果、鉛蓄電池が充電不足になるのを避けることができる。
 上記第2の態様において、前記二次電池のSOCを取得する二次電池SOC取得部と、前記二次電池のSOCとして予め定められた100%未満の第1SOC上限値を保存する記憶部と、をさらに備え、前記充電制御部は、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記第1SOC上限値未満の間は、前記所定電圧値での定電圧充電により前記電源部の前記鉛蓄電池及び前記二次電池を充電し、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記第1SOC上限値以上になると、前記定電圧充電から予め定められたオン期間及びオフ期間を交互に繰り返すパルス充電に切り替えてもよい。
 本態様では、二次電池のSOCが第1SOC上限値未満の間は、鉛蓄電池及び二次電池は、所定電圧値で定電圧充電される。所定電圧値は、所定電圧値での充電開始当初の初期期間は、二次電池の充電電流より鉛蓄電池の充電電流が大きくなり、かつ、初期期間の後は、鉛蓄電池の充電電流より二次電池の充電電流が大きくなる値に定められている。このため、定電圧充電では、鉛蓄電池に比べて二次電池の充電が早く進む。したがって、本態様によれば、二次電池が充電不足になるのを避けることができる。
 また、本態様では、二次電池のSOCが第1SOC上限値以上になると、予め定められたオン期間及びオフ期間を交互に繰り返すパルス充電に切り替えられる。パルス充電では、二次電池の充電電流より鉛蓄電池の充電電流が大きい。このため、二次電池に比べて鉛蓄電池の充電が早く進む。したがって、本態様によれば、鉛蓄電池が充電不足になるのを避けることができる。その結果、本態様によれば、簡易な構成で、鉛蓄電池及び二次電池の両方が充電不足になるのを避けることができる。
 上記第2の態様において、例えば、前記充電制御部は、前記オン期間を、前記初期期間以下の長さに予め定めてもよい。
 本態様では、オン期間は、初期期間以下の長さに定められている。このため、オン期間では、二次電池の充電電流より鉛蓄電池の充電電流が大きい。したがって、パルス充電では、二次電池に比べて鉛蓄電池の充電が早く進む。よって、本態様によれば、鉛蓄電池が充電不足になるのを避けることができる。
 上記第2の態様において、例えば、前記記憶部は、前記二次電池のSOCとして、100%未満であって前記第1SOC上限値を超える値に予め定められたSOC保護閾値を保存し、前記充電制御部は、前記パルス充電中に、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記SOC保護閾値以上になると、前記パルス充電を停止してもよい。
 パルス充電では、二次電池に比べて鉛蓄電池の充電が早く進むが、鉛蓄電池に比べると遅いながらも、二次電池の充電も進む。しかし、本態様によれば、パルス充電中に、二次電池のSOCが、100%未満であって第1SOC上限値を超える値に予め定められたSOC保護閾値以上になると、パルス充電が停止される。したがって、二次電池のSOCが過大になるのを避けることができる。
 上記第2の態様において、例えば、前記記憶部は、前記二次電池のSOCとして前記第1SOC上限値未満に予め定められた第1SOC下限値を保存し、前記充電制御部は、前記パルス充電中に、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記第1SOC下限値未満になると、前記パルス充電を前記定電圧充電に切り替えてもよい。
 本態様では、パルス充電中に、二次電池のSOCが、第1SOC上限値未満に予め定められた第1SOC下限値未満になると、パルス充電が定電圧充電に切り替えられる。定電圧充電では、鉛蓄電池に比べて二次電池の充電が早く進む。したがって、本態様によれば、二次電池のSOCが第1SOC下限値未満に維持されるのを避けることができる。
 上記第2の態様において、例えば、前記鉛蓄電池のSOCを取得する鉛蓄電池SOC取得部をさらに備え、前記記憶部は、前記鉛蓄電池のSOCとして100%以上に予め定められた第2SOC上限値を保存し、前記充電制御部は、前記パルス充電中に、前記鉛蓄電池SOC取得部により取得された前記鉛蓄電池のSOCが前記第2SOC上限値以上になると、前記パルス充電を停止してもよい。
 本態様では、パルス充電中に、鉛蓄電池のSOCが、100%以上に予め定められた第2SOC上限値以上になると、パルス充電が停止される。したがって、鉛蓄電池のSOCが第2SOC上限値以上になっても充電が継続されて、鉛蓄電池が過充電になるのを避けることができる。
 上記第2の態様において、例えば、前記記憶部は、前記第2SOC上限値として、100%及び100%を超える値を保存し、かつ、前記鉛蓄電池のSOCとして100%未満に予め定められた第2SOC下限値を保存し、前記充電制御部は、前記鉛蓄電池のSOCが前記第2SOC下限値以下に低下すると、低下した回数をカウントして前記定電圧充電を開始し、前記カウントした回数が所定回数ごとに、前記第2SOC上限値として前記100%を超える値を使用し、前記カウントした回数が前記所定回数未満の場合は、前記第2SOC上限値として100%を使用してもよい。
 本態様では、鉛蓄電池のSOCがSOC下限値以下に低下すると、その低下した回数がカウントされて定電圧充電が開始される。カウントした回数が所定回数ごとに、第2SOC上限値として100%を超える値が使用される。したがって、鉛蓄電池のSOCが第2SOC上限値以上になるまで充電が継続された場合には、充電不足によって鉛蓄電池に生じるサルフェーションが過度に進むのを抑制することができる。
 一方、カウントした回数が所定回数未満の場合は、第2SOC上限値として100%が使用される。このため、鉛蓄電池のSOCが100%を超えるような過充電は、所定回数ごとに行われ、所定回数未満の場合は行われない。その結果、過充電により鉛蓄電池が過度に劣化するのを避けることができる。
 本開示にかかる他の態様は、互いに並列接続された鉛蓄電池及び前記鉛蓄電池以外の二次電池を含む電源部を備え、前記電源部の前記鉛蓄電池及び前記二次電池の充電を制御する充電制御装置の充電制御方法であって、予め定められた所定電圧値で、前記電源部の前記鉛蓄電池及び前記二次電池を定電圧充電する所定電圧充電ステップ、を含み、前記所定電圧値は、前記所定電圧値での充電開始当初の初期期間は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなり、かつ、前記初期期間の後は、前記鉛蓄電池の充電電流より前記二次電池の充電電流が大きくなる値に予め定められているものである。
 上記他の態様において、前記鉛蓄電池のSOCを取得する鉛蓄電池SOC取得ステップと、前記鉛蓄電池のSOCが予め定められた100%以下のSOC閾値に達するまでは、前記所定電圧値より低い所定低電圧値で、前記電源部の前記鉛蓄電池及び前記二次電池を定電圧充電する低電圧充電ステップと、をさらに含み、前記所定電圧充電ステップは、前記鉛蓄電池のSOCが前記SOC閾値に達した後に実行され、前記所定低電圧値は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなる値に予め定められていてもよい。
 上記他の態様において、前記二次電池のSOCを取得する二次電池SOC取得ステップと、前記二次電池SOC取得ステップにおいて取得された前記二次電池のSOCが予め定められた100%未満の第1SOC上限値以上になると、予め定められたオン期間及びオフ期間を繰り返すパルス充電により前記電源部の前記鉛蓄電池及び前記二次電池を充電するパルス充電ステップと、をさらに含み、前記所定電圧充電ステップは、前記二次電池SOC取得ステップにおいて取得された前記二次電池のSOCが前記第1SOC上限値未満の間に実行されてもよい。
 (第2実施形態)
 図6は、第2実施形態のバッテリ制御部180及びECU70を含む車両1の構成を概略的に示すブロック図である。
 車両1は、エンジンを主たる動力源とし、モータを補助的動力源とするハイブリッド自動車(Hybrid Electric Vehicle)である。車両1は、エンジン10、スタータモータ20、Integrated Starter Generator(ISG)30、電圧調整部31、スイッチ素子35、電装負荷40、電源部45、電子制御ユニット(ECU)70、バッテリ制御部180を備える。
 電源部45は、鉛蓄電池50、電流センサ51,63及びニッケル水素蓄電池(Ni-MH)61を含む。鉛蓄電池50とニッケル水素蓄電池61とは、互いに並列に接続されている。鉛蓄電池50及びニッケル水素蓄電池61の負極側の接続点K2は、接地されている。スタータモータ20、ISG30、及び電装負荷40は、電源部45と並列接続されている。電源部45からバッテリ制御部180及びECU70には、電源電圧Vccが供給されている。
 鉛蓄電池50は、直列接続された6セルの鉛蓄電池を含む。この構成により、鉛蓄電池50の公称電圧は、12Vになっている。ニッケル水素蓄電池61は、直列接続された10セルのニッケル水素蓄電池を含む。この構成により、ニッケル水素蓄電池61の公称電圧は、12Vになっている。電源部45から出力される電力は、車両1のエンジン10を始動するスタータモータ20及びISG30の駆動、電装負荷40の電源に使用される。
 電流センサ51は、鉛蓄電池50に流れる充電電流又は放電電流を検出する。電流センサ51は、鉛蓄電池50及びニッケル水素蓄電池61の正極側の接続点K1から分岐した分岐線路L1上に取り付けられている。電流センサ51は、鉛蓄電池50の充電電気量及び放電電気量を算出するために設けられている。
 電流センサ63は、ニッケル水素蓄電池61に流れる充電電流又は放電電流を検出する。電流センサ63は、鉛蓄電池50及びニッケル水素蓄電池61の正極側の接続点K1から分岐した分岐線路L2上に取り付けられている。電流センサ63は、ニッケル水素蓄電池61の充電電気量及び放電電気量を算出するために設けられている。
 電流センサ51,63は、例えばホール素子を含むホール効果型電流センサである。代替的に、電流センサ51,63は、シャント抵抗を含み、シャント抵抗の電圧降下に基づき電流を検出するものであってもよい。
 スタータモータ20は、ユーザによりイグニションスイッチが操作されるとエンジン10を始動する。
 ISG30は、発電機能と電動機能とを兼有する。ISG30は、車両1のエンジン10が動作しているときは、エンジン10により駆動され、発電機能により発電する。この発電された電力が電装負荷40の電気負荷を超えるときは、この発電された電力により電源部45の鉛蓄電池50及びニッケル水素蓄電池61が充電される。また、車両1が走行中にブレーキペダル(図示省略)が操作されて減速を開始すると、車輪からISG30にトルクが伝えられ、ISG30は、発電機能により発電する。この発電された電力により電源部45の鉛蓄電池50及びニッケル水素蓄電池61が充電される。これによって、エネルギーの回生が行われる。車両1が停止すると、ECU70のアイドルストップ制御によって、エンジン10が自動停止する。車両1の発進時には、ISG30の電動機能により、車両1が駆動され、かつ、エンジン10が始動される。
 電圧調整部31は、ISG30の出力電圧を調整する。ISG30の発電機能による出力電圧は、調整されないままでは、エンジン10の回転数、負荷電流の電流値、フィールド電流によって変化する。電圧調整部31は、例えばフィールド電流を増減させて、ISG30の出力電圧を一定値に調整する。電圧調整部31は、例えばパワートランジスタ及び電圧検出回路が集積回路化された半導体回路を含む。この第2実施形態では、電圧調整部31は、ISG30の出力電圧を、例えば、DC13.7V(第1電圧値の一例)とDC15.0V(第2電圧値の一例)との2段階に調整する。
 スイッチ素子35は、ISG30と電源部45との間に設けられている。スイッチ素子35は、エンジン10が停止しているときは、オンにされている。スイッチ素子35は、鉛蓄電池50及びニッケル水素蓄電池61の充電を停止するときに、オフにされる。スイッチ素子35のオンオフは、バッテリ制御部180により制御される。スイッチ素子35は、機械的リレーでもよい。代替的に、スイッチ素子35は、パワーMOSFET、絶縁ゲート型バイポーラトランジスタなどの半導体スイッチでもよい。電装負荷40は、例えば空気調和機及び室内灯等、車両1に装備された電装品等の負荷を含む。
 ECU70は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)、所定の制御プログラムが保存されたROM(Read Only Memory)、データを一時的に保存するRAM(Random Access Memory)、これらの周辺回路等を備える。ECU70は、バッテリ制御部180と互いに通信可能に構成されている。
 ECU70は、エンジン10、スタータモータ20、ISG30、電圧調整部31、電装負荷40を含む車両1の全体の動作を制御する。ECU70は、バッテリ制御部180から出力される制御信号SGを受け取って、電圧調整部31を制御する。
 バッテリ制御部180は、例えば、所定の演算処理を実行するCPU、所定の制御プログラムが保存されたROM、データを一時的に保存するRAM、これらの周辺回路等を備える。バッテリ制御部180は、例えばフラッシュメモリで構成された記憶部181を備える。バッテリ制御部180は、ROMに保存された制御プログラムを実行することにより、第1SOC演算部182、第2SOC演算部183、電圧制御部184、スイッチ制御部185として機能する。
 記憶部181は、鉛蓄電池50のSOCとして予め定められた100%以下のSOC閾値Spb1と、充電開始時のニッケル水素蓄電池61のSOC値Sni1との関係を表すテーブル88を予め記憶する。
 図7は、テーブル88の一例を概略的に示す図である。この第2実施形態では、図7に示されるように、充電開始時のニッケル水素蓄電池61のSOC値Sni1が、Sni1<30の場合には、SOC閾値Spb1は97とされ、30≦Sni1<40の場合には、SOC閾値Spb1は98とされ、40≦Sni1<50の場合には、SOC閾値Spb1は99とされ、50≦Sni1の場合には、SOC閾値Spb1は100とされる。図7に示されるように、充電開始時のニッケル水素蓄電池61のSOC値Sni1が大きいほど、鉛蓄電池50のSOC閾値Spb1は、大きい値が用いられる。この理由については、図10を参照して後述される。
 図6に戻って、記憶部181は、ニッケル水素蓄電池61のSOCの上限値として予め定められたSOC上限値Sni2(第1SOC上限値の一例)と、下限値として予め定められたSOC下限値Sni3とを予め記憶する。この第2実施形態では例えば、Sni2=80%であり、Sni3=20%である。
 記憶部181は、鉛蓄電池50のSOCの上限値として予め定められた100%を超えるSOC上限値Spb2(第2SOC上限値の一例)を予め記憶する。この第2実施形態では例えば、Spb2=105%である。
 記憶部181は、鉛蓄電池50のSOCの下限値として予め定められたSOC下限値Spb3を予め記憶する。SOC下限値Spb3は、例えばSOC閾値Spb1未満に設定されている。この第2実施形態では例えば、Spb3=80%である。
 バッテリ制御部180は、ニッケル水素蓄電池61のSOCが、SOC上限値Sni2とSOC下限値Sni3との範囲内に維持されるように、ニッケル水素蓄電池61の充電及び放電を制御する。バッテリ制御部180は、鉛蓄電池50のSOCが、SOC下限値Spb3以上に維持されるように、鉛蓄電池50の充電及び放電を制御する。
 第1SOC演算部182は、電流センサ51により検出された電流値を用いて、鉛蓄電池50の充電電気量及び放電電気量を算出する。第1SOC演算部182は、算出した鉛蓄電池50の充電電気量及び放電電気量を用いて、鉛蓄電池50のSOCを算出する。第1SOC演算部182は、SOCの算出を、例えば100msecごとに行う。第1SOC演算部182及び電流センサ51は、第1SOC取得部の一例に相当する。
 第2SOC演算部183は、電流センサ63により検出された電流値を用いて、ニッケル水素蓄電池61の充電電気量及び放電電気量を算出する。第2SOC演算部183は、算出したニッケル水素蓄電池61の充電電気量及び放電電気量を用いて、ニッケル水素蓄電池61のSOCを算出する。第2SOC演算部183は、SOCの算出を、例えば100msecごとに行う。第2SOC演算部183及び電流センサ63は、第2SOC取得部の一例に相当する。
 電圧制御部184は、ECU70に制御信号SGを出力して、鉛蓄電池50及びニッケル水素蓄電池61の充電中における充電電圧を制御する。電圧制御部184は、第1SOC演算部182から鉛蓄電池50のSOCを取得する。電圧制御部184は、取得した鉛蓄電池50のSOCがSOC閾値Spb1に達するまでは、充電電圧を13.7Vに制御するように、ECU70に制御信号SGを出力する。ECU70は、制御信号SGが入力されると、電圧調整部31を制御して、ISG30の出力電圧を13.7Vとする。
 電圧制御部184は、第1SOC演算部182により算出された鉛蓄電池50のSOCがSOC閾値Spb1に達した後は、充電電圧を15.0Vに制御するように、ECU70に制御信号SGを出力する。ECU70は、制御信号SGが入力されると、電圧調整部31を制御して、ISG30の出力電圧を15.0Vとする。このように、電圧制御部184及びECU70は、2段階定電圧充電によって、鉛蓄電池50及びニッケル水素蓄電池61を充電する。
 図8は、図6の電源部45を13.7Vで定電圧充電したときの充電電流を概略的に示すタイミングチャートである。
 図8では、上記図24と異なり、鉛蓄電池50の充電電流Ipbをニッケル水素蓄電池61の充電電流Iniが上回ることがない。この原因は、以下のように推量される。溶解析出型の鉛蓄電池50では、電圧が13.7Vでも、速度は遅いものの、充電の化学反応は進行する。しかしながら、ニッケル水素蓄電池61では、13.7Vでは電圧が低すぎるため、水素吸蔵合金が水素を容易に吸蔵できる状態にならないことから、充電の化学反応が殆ど進行しない。したがって、図6の電源部45を13.7Vで定電圧充電すると、鉛蓄電池50の充電電流Ipbは、ニッケル水素蓄電池61の充電電流Iniより大きくなる。
 図8と上記図24とを比較すると分かるように、全体の充電電流Itは、図8では上記図24の半分程度になる。このため、鉛蓄電池50及びニッケル水素蓄電池61の充電に時間を要することになる。しかしながら、ISG30の出力電圧は13.7Vに調整することにより、ニッケル水素蓄電池61に比べて、鉛蓄電池50の充電を早く進行させることができる。
 図6に戻って、電圧制御部184は、ISG30から充電電流の供給が開始された時点のニッケル水素蓄電池61のSOCと、図7に示されるテーブル88とを用いて、SOC閾値Spb1を決定する。
 電圧制御部184は、第1SOC演算部182により算出された鉛蓄電池50のSOCがSOC下限値Spb3以下に低下した回数をカウントする。カウント値がN(この第2実施形態では例えばN=5)回ごとに、電圧制御部184は、上記2段階定電圧制御を行う。カウント値が1~(N-1)回のとき、すなわちN回未満のときは、電圧制御部184は、上記2段階定電圧制御を行わずに、ECU70を介してISG30の出力電圧を15.0Vに制御して、通常の定電圧充電を行う。
 スイッチ制御部185は、スイッチ素子35のオンオフを制御する。スイッチ制御部185は、エンジン10が停止しているときは、スイッチ素子35をオンにする。スイッチ制御部185は、充電中に、第2SOC演算部183により算出されたニッケル水素蓄電池61のSOCがSOC上限値Sni2以上に増大すると、スイッチ素子35をオフにして、充電を停止する。
 スイッチ制御部185は、充電中に、第1SOC演算部182により算出された鉛蓄電池50のSOCがSOC上限値Spb2以上に増大すると、スイッチ素子35をオフにして、充電を停止する。
 図9は、第2実施形態の充電動作を概略的に示すフローチャートである。図10は、図9の充電動作によって増加する鉛蓄電池50及びニッケル水素蓄電池61のSOCの一例を概略的に示す図である。図10の縦軸は鉛蓄電池50のSOCを表し、横軸はニッケル水素蓄電池61のSOCを表す。図10において、充電期間Tch1,Tch11は、13.7Vでの定電圧充電が行われる期間を表し、充電期間Tch2,Tch12は、15.0Vでの定電圧充電が行われる期間を表す。
 なお、本第2実施形態では、充電期間Tch1,Tch2で表されるように、鉛蓄電池50及びニッケル水素蓄電池61のSOCが変化する。充電期間Tch11,Tch12で表される鉛蓄電池50及びニッケル水素蓄電池61のSOCは、後述の比較例を表す。また、通常状態では(つまり図9の動作が開始されるときには)、スイッチ素子35はオンにされている。
 図9のS101(鉛蓄電池SOC取得ステップの一例)において、まず、電圧制御部184は、第1SOC演算部182から、鉛蓄電池50のSOC値を取得する。電圧制御部184は、取得した鉛蓄電池50のSOC値が、SOC下限値Spb3未満であるか否かを判定する。鉛蓄電池50のSOC値がSOC下限値Spb3未満であれば(S101でYES)、S102において、電圧制御部184は、カウント値Ctを1増加させる。
 S103において、電圧制御部184は、カウント値CtがN(この第2実施形態ではN=5)未満であるか否かを判定する。カウント値CtがN以上であれば(S103でNO)、S104において、電圧制御部184は、カウント値Ctを0にリセットする。S105において、電圧制御部184は、第2SOC演算部183から、ニッケル水素蓄電池61のSOC値Sni1を取得する。電圧制御部184は、テーブル88を参照して、取得したニッケル水素蓄電池61のSOC値Sni1に対応する鉛蓄電池50のSOC閾値Spb1を抽出する。
 S106(低電圧充電ステップの一例)において、電圧制御部184は、ISG30の出力電圧を13.7Vに調整するように要求する制御信号SGを、ECU70に出力する。ECU70は、この制御信号SGを受け取ると、電圧調整部31を制御し、ISG30の出力電圧を13.7Vに調整する。これによって、電源部45の鉛蓄電池50及びニッケル水素蓄電池61は、13.7Vで定電圧充電される。
 S107において、電圧制御部184は、第1SOC演算部182から、鉛蓄電池50のSOC値を取得する。電圧制御部184は、取得した鉛蓄電池50のSOC値が、SOC閾値Spb1以上であるか否かを判定する。鉛蓄電池50のSOC値がSOC閾値Spb1未満であれば(S107でNO)、処理はS107に戻り、13.7Vでの定電圧充電が継続される。
 図8を用いて説明されたように、電圧が13.7Vでは、鉛蓄電池50の充電電流の方が、ニッケル水素蓄電池61の充電電流より大きい。したがって、図10に示されるように、充電期間Tch1では、ニッケル水素蓄電池61のSOCよりも、鉛蓄電池50のSOCの方が、早く増加する。なお、図10では、図9のS5で取得されるニッケル水素蓄電池61のSOC値Sni1は、20≦Sni1<30である。このため、図9のS5でテーブル88(図7)から抽出されるSOC閾値Spb1は、図10に示されるように、97になっている。
 図9に戻って、S107(鉛蓄電池SOC取得ステップの一例)において、鉛蓄電池50のSOC値が、SOC閾値Spb1以上であれば(S107でYES)、電圧制御部184は、S108(所定電圧充電ステップの一例)において、ISG30の出力電圧を15.0Vに調整するように要求する制御信号SGを、ECU70に出力する。ECU70は、この制御信号SGを受け取ると、電圧調整部31を制御し、ISG30の出力電圧を15.0Vに調整する。これによって、電源部45の鉛蓄電池50及びニッケル水素蓄電池61は、15.0Vで定電圧充電される。
 図24を用いて説明されたように、電圧が15.0Vでは、充電開始当初の初期期間T0を除くと、ニッケル水素蓄電池61の充電電流の方が、鉛蓄電池50の充電電流より大きい。したがって、図10に示されるように、充電期間Tch2では、鉛蓄電池50のSOCよりも、ニッケル水素蓄電池61のSOCの方が、早く増加する。
 図9に戻って、S109において、スイッチ制御部185は、第2SOC演算部183から、ニッケル水素蓄電池61のSOC値を取得する。スイッチ制御部185は、取得したニッケル水素蓄電池61のSOC値が、SOC上限値Sni2以上であるか否かを判定する。ニッケル水素蓄電池61のSOC値が、SOC上限値Sni2未満であれば(S109でNO)、S110において、スイッチ制御部185は、第1SOC演算部182から、鉛蓄電池50のSOC値を取得する。スイッチ制御部185は、鉛蓄電池50のSOC値が、SOC上限値Spb2以上であるか否かを判定する。鉛蓄電池50のSOC値が、SOC上限値Spb2未満であれば(S110でNO)、処理はS109に戻り、15.0Vでの定電圧充電が継続される。
 S109において、ニッケル水素蓄電池61のSOC値が、SOC上限値Sni2以上であれば(S109でYES)、S110において、スイッチ制御部185は、スイッチ素子35をオフにして充電を停止し、図9の処理は終了する。S110において、鉛蓄電池50のSOC値が、SOC上限値Spb2以上であれば(S110でYES)、処理はS111に進む。
 S101において、鉛蓄電池50のSOC値がSOC下限値Spb3以上であれば(S101でNO)、S112において、電圧制御部184は、第2SOC演算部183から、ニッケル水素蓄電池61のSOC値を取得する。電圧制御部184は、取得したニッケル水素蓄電池61のSOC値が、SOC上限値Sni2未満であるか否かを判定する。ニッケル水素蓄電池61のSOC値がSOC上限値Sni2以上であれば(S112でNO)、処理はS11に進む。
 S112において、ニッケル水素蓄電池61のSOC値がSOC上限値Sni2未満であれば(S112でYES)、処理はS108に進む。また、S103において、カウント値CtがN未満であれば(S103でYES)、処理はS108に進む。その結果、S108において、15.0Vでの通常の定電圧充電が行われる。
 図9のS109,S110に示されるように、ニッケル水素蓄電池61のSOC値又は鉛蓄電池50のSOC値のいずれかがSOC上限値以上に増加すると、スイッチ素子35がオフにされて、充電が停止される。図10の例では、ニッケル水素蓄電池61のSOC値がSOC上限値Sni2に達することにより、充電が停止されている。
 このように、鉛蓄電池50のSOC値が、N回、SOC下限値Spb3以下に低下する度に、電圧が13.7Vでの定電圧充電及び電圧が15.0Vでの定電圧充電を含む2段階定電圧充電が行われる。鉛蓄電池50のSOC値がSOC下限値Spb3を超えている場合、及び、鉛蓄電池50のSOC値が、SOC下限値Spb3以下に低下するのが(N-1)回までの場合には、電圧が15.0Vでの通常の定電圧充電が行われる。
 この第2実施形態によれば、図10に示されるように、鉛蓄電池50のSOC値が100%を超える過充電を行っている。これによって、充電不足の鉛蓄電池50に生じるサルフェーションが過度に進むのを抑制することができる。過充電は、鉛蓄電池50のSOC値がSOC下限値Spb3以下に低下する度に毎回行われるのではなくて、鉛蓄電池50のSOC値がSOC下限値Spb3以下に低下するのがN(この第2実施形態では例えばN=5)回ごとに行われる。このため、過充電により、鉛蓄電池50が過度に劣化することはない。
 上記図7に示されるように、充電開始時のニッケル水素蓄電池61のSOC値Sni1が大きいほど、鉛蓄電池50のSOC閾値Spb1は、大きい値が用いられる。この理由について、図10を参照して説明される。
 図10では、充電期間Tch1の充電開始時のニッケル水素蓄電池61のSOC値Sni1は、Sni1<30になっている。したがって、図7を用いて説明されたように、鉛蓄電池50のSOC閾値Spb1は97%とされる。図10に示されるように、鉛蓄電池50のSOC値がSOC閾値Spb1(図10では97%)に達した時点(つまり充電期間Tch1の終了時点)では、ニッケル水素蓄電池61のSOC値は50%に達していない。
 したがって、ニッケル水素蓄電池61のSOC値が80%に達するまでに時間を要するため、15.0Vでの定電圧充電の時間(充電期間Tch2)は十分にある。このため、図10に示されるように、ニッケル水素蓄電池61のSOC値が80%に達した時点では、鉛蓄電池50のSOC値は、100%を超えている。したがって、鉛蓄電池50の充電不足を解消することができる。
 一方、図10の比較例では、充電期間Tch11の充電開始時のニッケル水素蓄電池61のSOC値Sni1は、50%になっている。この場合には、鉛蓄電池50のSOC値が97%に達した時点では、ニッケル水素蓄電池61のSOC値は、70%に近い値になっている。このため、ニッケル水素蓄電池61のSOC値は、短時間で80%に達することから、充電期間Tch12は短くなる。したがって、ニッケル水素蓄電池61のSOC値が80%に達した充電期間Tch12の終了時点には、鉛蓄電池50のSOC値は、100%を超えていない。
 そこで、本第2実施形態では、図7に示されるように、充電開始時のニッケル水素蓄電池61のSOC値が大きいほど、鉛蓄電池50のSOC閾値Spb1が大きい値にされる。したがって、13.7Vでの定電圧充電の時間(充電期間Tch1)の終了時点では、鉛蓄電池50のSOC値は、100%に近くなっている。これによって、15.0Vでの定電圧充電の時間(充電期間Tch2)が短くても、鉛蓄電池50のSOC値が100%を超えている。その結果、充電不足の鉛蓄電池50に生じるサルフェーションが過度に進むのを抑制することができる。
 (第3実施形態)
 図11は、第3実施形態の充電動作を概略的に示すフローチャートである。図12は、図11の充電動作によって増加する鉛蓄電池50及びニッケル水素蓄電池61のSOCの一例を概略的に示す図である。図13は、スイッチ素子35の動作を概略的に示すタイミングチャートである。第3実施形態の構成は、図6に示される第2実施形態と同じである。以下、第2実施形態との相違点を中心に第3実施形態が説明される。
 図11において、S101~S107は、第2実施形態の図9のS101~S107と同じである。S106,S107の13.7Vでの定電圧充電によって、図12の充電期間Tch1では、第2実施形態(図10)と同様に、ニッケル水素蓄電池61のSOCよりも、鉛蓄電池50のSOCの方が、早く増加する。
 S107において、鉛蓄電池50のSOC値が、SOC閾値Spb1以上であれば(S107でYES)、S115において、電圧制御部184は、ISG30の出力電圧を15.0Vに調整するように要求する制御信号SGを、ECU70に出力する。ECU70は、この制御信号SGを受け取ると、電圧調整部31を制御し、ISG30の出力電圧を15.0Vに調整する。また、スイッチ制御部185は、スイッチ素子35を制御して、スイッチ素子35のオン期間Tonとオフ期間Toffとを(この第3実施形態では例えばTon=Toff=5秒)交互に繰り返す。これによって、電源部45の鉛蓄電池50及びニッケル水素蓄電池61は、電圧が15.0Vでパルス充電される。S109~S112は、第2実施形態の図9のS109~S112と同じである。
 図24を用いて説明されたように、電圧が15.0Vの定電圧充電では、充電開始当初の初期期間T0は、ニッケル水素蓄電池61の充電電流より、鉛蓄電池50の充電電流の方が大きい。一方、第3実施形態では、図13に示されるように、オン期間Ton及びオフ期間Toffが交互に繰り返されてスイッチ素子35がオンオフされる。
 スイッチ素子35のオフ期間Toffでは、電圧が0になる。鉛蓄電池50でも、ニッケル水素蓄電池61でも、電極近傍の状態は、電圧の印加が停止されると、5秒程度で初期状態に戻る。このため、スイッチ素子35のオン期間Tonごとに、図24の充電開始当初の初期期間T0と同じ状態になる。したがって、スイッチ素子35のオン期間Tonでは、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい。したがって、図12に示されるように、充電期間Tch3では、ニッケル水素蓄電池61のSOCは殆ど増加せず、主に、鉛蓄電池50のSOCが増加する。そして、鉛蓄電池50のSOC値がSOC上限値Spb2(第3実施形態では例えばSpb2=105%)に達すると(図11のS110でYES)、スイッチ素子35がオフにされて(図11のS111)、充電が停止される。
 このように、第3実施形態でも、図12に示されるように、鉛蓄電池50のSOC値が100%を超える過充電を行っている。これによって、第3実施形態でも、第2実施形態と同様に、充電不足の鉛蓄電池50に生じるサルフェーションが過度に進むのを抑制することができる。また、第3実施形態でも、第2実施形態と同様に、過充電により、鉛蓄電池50が過度に劣化することはない。
 (第2、第3実施形態の変形形態)
 本発明は上記第2、第3実施形態に限られない。以下、本発明の第2、第3実施形態の変形形態が説明される。
 (1)上記第3実施形態では、図11のS115において、バッテリ制御部180のスイッチ制御部185は、スイッチ素子35をオンオフさせてパルス充電を行っている。代替的に、図11のS115において、スイッチ制御部185は、図14に示されるように、ISG30の出力電圧をパルス状に切り替えるようにしてもよい。
 図14は、ISG30の出力電圧を概略的に示すタイミングチャートである。図14に示される動作では、電圧制御部184は、出力電圧15.0Vの第1期間T1と出力電圧13.7Vの第2期間T2とを交互に繰り返すことを要求する制御信号SGをECU70に出力する。ECU70は、この制御信号SGを受け取ると、電圧調整部31を制御して、図14に示されるように、ISG30の出力電圧を制御する。
 第2期間T2は、例えば5秒である。充電電圧が13.7Vの第2期間T2では、図8を用いて説明されたように、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい。したがって、第2期間T2では、図10の充電期間Tch1と同様に、ニッケル水素蓄電池61のSOCより、鉛蓄電池50のSOCの方が早く増加する。第2期間T2は、5秒に限られず、例えば10秒でもよい。
 第1期間T1は、例えば4秒である。上記第3実施形態(図13)のオフ期間Toffと異なり、第2期間T2では、充電電圧が0ではなくて13.7Vになっている。したがって、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい期間は、図24に示される初期期間T0より短いと考えられる。そこで、図14の動作では、第1期間T1を例えば4秒として、5秒程度の初期期間T0より短い値としている。
 したがって、第1期間T1でも、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい。このため、第1期間T1でも、ニッケル水素蓄電池61のSOCより、鉛蓄電池50のSOCの方が早く増加する。その結果、図14の動作でも、上記第3実施形態(図12)と同様に、鉛蓄電池50のSOCをSOC上限値Spb2(例えばSpb2=105%)まで充電することができる。
 図14の充電では、第2期間T2でも13.7Vで充電が継続され、図13のように充電のオンオフが交互に繰り返されるのではない。このため、図14の充電は、厳密に言うとパルス充電ではない。しかし、本明細書では、図14のような充電も、パルス充電に含まれるものとする。
 (2)上記第2実施形態では、図9のS6において、ISG30の出力電圧が13.7Vに調整されている。また、上記図14の動作では、第2期間T2におけるISG30の出力電圧が13.7Vに調整されている。しかし、13.7Vに限られない。ISG30の出力電圧は、ニッケル水素蓄電池61の負極の水素吸蔵合金が水素を容易に吸蔵できる状態にならない電圧であって、鉛蓄電池50の充電が進む電圧に調整されればよい。例えば、ニッケル水素蓄電池61の1セル当り1.38~1.39Vを上限とすればよい。言い換えると、この第2実施形態では、ニッケル水素蓄電池61は、直列接続された10セルのニッケル水素蓄電池を含むため、ISG30の出力電圧を13.8~13.9Vを上限とすればよい。
 (3)上記第2実施形態では、図9のS8において、ISG30の出力電圧が15.0Vに調整されている。また、上記図14の動作では、第1期間T1におけるISG30の出力電圧が15.0Vに調整されている。しかし、15.0Vに限られない。ISG30の出力電圧は、例えば14.5Vでもよい。ISG30の出力電圧は、ISG30が出力可能であって、鉛蓄電池50及びニッケル水素蓄電池61が破損又は故障しないような高電圧としてもよい。
 (4)上記第2、第3実施形態では、車両1は、ECU70とは別に、バッテリ制御部180を備えている。代替的に、ECU70が、バッテリ制御部180の各機能ブロックを備えるように構成して、バッテリ制御部180をなくしてもよい。
 (5)上記第2、第3実施形態では、鉛蓄電池50と並列に、ニッケル水素蓄電池61が接続されている。代替的に、リチウムイオン二次電池、リチウムイオンポリマー二次電池、ニッケル亜鉛蓄電池等の、他の二次電池が、鉛蓄電池50と並列に接続されていてもよい。
 (6)上記第2、第3実施形態では、車両1は、ISG30を備える。代替的に、ISG30に代えて、通常のオルタネータを備えるようにしてもよい。この場合には、電圧調整部31は、オルタネータの出力電圧を調整する。
 (第4実施形態)
 図15は、第4実施形態のバッテリ制御部280及びECU70を含む車両1の構成を概略的に示すブロック図である。
 車両1は、エンジンを主たる動力源とし、モータを補助的動力源とするハイブリッド自動車(Hybrid Electric Vehicle)である。車両1は、エンジン10、スタータモータ20、Integrated Starter Generator(ISG)30、電圧調整部31、スイッチ素子35、電装負荷40、電源部45、電子制御ユニット(ECU)70、バッテリ制御部280を備える。
 電源部45は、鉛蓄電池50、電流センサ51,63及びニッケル水素蓄電池(Ni-MH)61を含む。鉛蓄電池50とニッケル水素蓄電池61とは、互いに並列に接続されている。鉛蓄電池50及びニッケル水素蓄電池61の負極側の接続点K2は、接地されている。スタータモータ20、ISG30、及び電装負荷40は、電源部45と並列接続されている。電源部45からバッテリ制御部280及びECU70には、電源電圧Vccが供給されている。
 鉛蓄電池50は、直列接続された6セルの鉛蓄電池を含む。この構成により、鉛蓄電池50の公称電圧は、12Vになっている。ニッケル水素蓄電池61は、直列接続された10セルのニッケル水素蓄電池を含む。この構成により、ニッケル水素蓄電池61の公称電圧は、12Vになっている。電源部45から出力される電力は、車両1のエンジン10を始動するスタータモータ20及びISG30の駆動、電装負荷40の電源に使用される。
 電流センサ51は、鉛蓄電池50に流れる充電電流又は放電電流を検出する。電流センサ51は、鉛蓄電池50及びニッケル水素蓄電池61の正極側の接続点K1から分岐した分岐線路L1上に取り付けられている。電流センサ51は、鉛蓄電池50の充電電気量及び放電電気量を算出するために設けられている。
 電流センサ63は、ニッケル水素蓄電池61に流れる充電電流又は放電電流を検出する。電流センサ63は、鉛蓄電池50及びニッケル水素蓄電池61の正極側の接続点K1から分岐した分岐線路L2上に取り付けられている。電流センサ63は、ニッケル水素蓄電池61の充電電気量及び放電電気量を算出するために設けられている。
 電流センサ51,63は、例えばホール素子を含むホール効果型電流センサである。代替的に、電流センサ51,63は、シャント抵抗を含み、シャント抵抗の電圧降下に基づき電流を検出するものであってもよい。
 スタータモータ20は、ユーザによりイグニションスイッチが操作されるとエンジン10を始動する。
 ISG30は、発電機能と電動機能とを兼有する。ISG30は、車両1のエンジン10が動作しているときは、エンジン10により駆動され、発電機能により発電する。この発電された電力が電装負荷40の電気負荷を超えるときは、この発電された電力により電源部45の鉛蓄電池50及びニッケル水素蓄電池61が充電される。また、車両1が走行中にブレーキペダル(図示省略)が操作されて減速を開始すると、車輪からISG30にトルクが伝えられ、ISG30は、発電機能により発電する。この発電された電力により電源部45の鉛蓄電池50及びニッケル水素蓄電池61が充電される。これによって、エネルギーの回生が行われる。車両1が停止すると、ECU70のアイドルストップ制御によって、エンジン10が自動停止する。車両1の発進時には、ISG30の電動機能により、車両1が駆動され、かつ、エンジン10が始動される。
 電圧調整部31は、ISG30の出力電圧を調整する。ISG30の発電機能による出力電圧は、調整されないままでは、エンジン10の回転数、負荷電流の電流値、フィールド電流によって変化する。電圧調整部31は、例えばフィールド電流を増減させて、ISG30の出力電圧を一定値に調整する。電圧調整部31は、例えばパワートランジスタ及び電圧検出回路が集積回路化された半導体回路を含む。この第4実施形態では、電圧調整部31は、ISG30の出力電圧を、例えば、DC14.5V(充電電圧値の一例)に調整する。
 スイッチ素子35は、ISG30と電源部45との間に設けられている。スイッチ素子35は、エンジン10が停止しているときは、オンにされている。スイッチ素子35は、鉛蓄電池50及びニッケル水素蓄電池61の充電を停止するときに、オフにされる。スイッチ素子35のオンオフは、バッテリ制御部280により制御される。スイッチ素子35は、機械的リレーでもよい。代替的に、スイッチ素子35は、パワーMOSFET、絶縁ゲート型バイポーラトランジスタなどの半導体スイッチでもよい。電装負荷40は、例えば空気調和機及び室内灯等、車両1に装備された電装品等の負荷を含む。
 ECU70は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)、所定の制御プログラムが保存されたROM(Read Only Memory)、データを一時的に保存するRAM(Random Access Memory)、これらの周辺回路等を備える。ECU70は、バッテリ制御部280と互いに通信可能に構成されている。
 ECU70は、エンジン10、スタータモータ20、ISG30、電圧調整部31、電装負荷40を含む車両1の全体の動作を制御する。
 バッテリ制御部280は、例えば、所定の演算処理を実行するCPU、所定の制御プログラムが保存されたROM、データを一時的に保存するRAM、これらの周辺回路等を備える。バッテリ制御部280は、例えばフラッシュメモリで構成された記憶部281を備える。バッテリ制御部280は、ROMに保存された制御プログラムを実行することにより、第1SOC演算部282、第2SOC演算部283、スイッチ制御部285として機能する。
 記憶部281は、ニッケル水素蓄電池61のSOCの上限値として予め定められたSOC上限値Sni2(第1SOC上限値の一例)を予め記憶する。この第4実施形態では例えば、Sni2=80%である。なお、SOC上限値Sni2は、80%に限られず、例えば75%でもよい。上述のように、SOC上限値Sni2が高過ぎると、ニッケル水素蓄電池61がエンジン10の回生エネルギーを蓄えることができなくなる。そこで、SOC上限値Sni2は、エンジン10の回生エネルギーを蓄えることができる程度のSOC値であればよい。
 記憶部281は、ニッケル水素蓄電池61のSOCの下限値として予め定められたSOC下限値Sni3(第1SOC下限値の一例)を予め記憶する。この第4実施形態では例えば、Sni3=20%である。なお、SOC下限値Sni3は、20%に限られず、例えば25%でもよい。上述のように、SOC下限値Sni3が低過ぎると、エンジン10の始動時又はアイドルストップ制御で停止中のエンジン10の再始動時に必要な大電流の供給に支障を来す。そこで、SOC下限値Sni3は、エンジン10の始動時又は再始動時に大電流を供給できる程度のSOC値であればよい。
 記憶部281は、SOC上限値Sni2を超える値に予め定められたSOC保護閾値Sni4を予め記憶する。この第4実施形態では例えば、Sni4=90%である。なお、SOC保護閾値Sni4は、90%に限られず、例えば85%でもよい。SOC保護閾値Sni4は、ニッケル水素蓄電池61のSOC値が過大にならないように、定められていればよい。
 記憶部281は、鉛蓄電池50のSOCの上限値として100%以上に予め定められたSOC上限値Spb2(第2SOC上限値の一例)を予め記憶する。この第4実施形態では例えば、Spb2=100%である。
 記憶部281は、鉛蓄電池50のSOCの下限値として予め定められたSOC下限値Spb3(第2SOC下限値の一例)を予め記憶する。この第4実施形態では例えば、Spb3=80%である。なお、SOC下限値Spb3は、80%に限られず、例えば75%でもよい。鉛蓄電池50のSOC値が過度に低くなると、鉛蓄電池50の劣化が早くなる。そこで、SOC下限値Spb3は、鉛蓄電池50の劣化が早くならないように、定められていればよい。
 バッテリ制御部280は、ニッケル水素蓄電池61のSOCが、SOC上限値Sni2とSOC下限値Sni3との範囲内に維持されるように、ニッケル水素蓄電池61の充電及び放電を制御する。バッテリ制御部280は、鉛蓄電池50のSOCが、SOC下限値Spb3以上に維持されるように、鉛蓄電池50の充電及び放電を制御する。
 第1SOC演算部282は、電流センサ51により検出された電流値を用いて、鉛蓄電池50の充電電気量及び放電電気量を算出する。第1SOC演算部282は、算出した鉛蓄電池50の充電電気量及び放電電気量を用いて、鉛蓄電池50のSOCを算出する。第1SOC演算部282は、SOCの算出を、例えば100msecごとに行う。第1SOC演算部282及び電流センサ51は、鉛蓄電池SOC取得部の一例に相当する。
 第2SOC演算部283は、電流センサ63により検出された電流値を用いて、ニッケル水素蓄電池61の充電電気量及び放電電気量を算出する。第2SOC演算部283は、算出したニッケル水素蓄電池61の充電電気量及び放電電気量を用いて、ニッケル水素蓄電池61のSOCを算出する。第2SOC演算部283は、SOCの算出を、例えば100msecごとに行う。第2SOC演算部283及び電流センサ63は、二次電池SOC取得部の一例に相当する。
 スイッチ制御部285は、スイッチ素子35のオンオフを制御する。スイッチ制御部285は、エンジン10が停止しているときは、スイッチ素子35をオンにする。スイッチ制御部285は、充電中に、第2SOC演算部283により算出されたニッケル水素蓄電池61のSOCがSOC上限値Sni2以上に増大すると、スイッチ素子35をオフにして、充電を停止する。
 スイッチ制御部285は、充電中に、第1SOC演算部282により算出された鉛蓄電池50のSOCがSOC上限値Spb2以上に増大すると、スイッチ素子35をオフにして、充電を停止する。
 スイッチ制御部285は、第2SOC演算部283により算出されたニッケル水素蓄電池61のSOCがSOC上限値Spb2未満の間は、スイッチ素子35をオンにする。スイッチ制御部285は、充電中に、第2SOC演算部283により算出されたニッケル水素蓄電池61のSOCがSOC上限値Spb2以上に増大すると、スイッチ素子35をオンオフさせて、定電圧充電からパルス充電に切り替える。
 図16は、第4実施形態の充電動作を概略的に示すフローチャートである。図17は、図16の充電動作によって増加する鉛蓄電池50及びニッケル水素蓄電池61のSOCの一例を概略的に示す図である。図18は、スイッチ素子35の動作を概略的に示すタイミングチャートである。
 図17の縦軸は鉛蓄電池50のSOCを表し、横軸はニッケル水素蓄電池61のSOCを表す。図17において、充電期間Tch1は、定電圧充電が行われる期間を表し、充電期間Tch2は、パルス充電が行われる期間を表す。なお、充電期間Tch3は、後述される第5実施形態でパルス充電が行われる期間を表す。また、通常状態では(つまり図16の動作が開始されるときには)、スイッチ素子35はオンにされている。
 図16のS201において、まず、スイッチ制御部285は、第1SOC演算部282から、鉛蓄電池50のSOC値を取得する。スイッチ制御部285は、取得した鉛蓄電池50のSOC値が、SOC下限値Spb3未満であるか否かを判定する。鉛蓄電池50のSOC値がSOC下限値Spb3未満であれば(S201でYES)、S202(所定電圧充電ステップの一例)において、スイッチ制御部285は、スイッチ素子35をオンのままとする。これによって定電圧充電が行われる。
 図24を用いて説明されたように、電圧が14.5Vでは、充電開始当初の初期期間T0を除くと、ニッケル水素蓄電池61の充電電流の方が、鉛蓄電池50の充電電流より大きい。したがって、図17に示されるように、充電期間Tch1では、鉛蓄電池50のSOCよりも、ニッケル水素蓄電池61のSOCの方が、早く増加する。
 S203(二次電池SOC取得ステップの一例)において、スイッチ制御部285は、第2SOC演算部283から、ニッケル水素蓄電池61のSOC値を取得する。スイッチ制御部285は、取得したニッケル水素蓄電池61のSOC値が、SOC上限値Sni2以上であるか否かを判定する。ニッケル水素蓄電池61のSOC値が、SOC上限値Sni2未満であれば(S203でNO)、処理はS202に戻り、定電圧充電が継続される。
 S203において、ニッケル水素蓄電池61のSOC値が、SOC上限値Sni2以上であれば(S203でYES)、スイッチ制御部285は、S204(パルス充電ステップの一例)において、スイッチ素子35を制御して、スイッチ素子35のオン期間Tonとオフ期間Toffとを(この第4実施形態では例えばTon=Toff=5秒)交互に繰り返す。これによって、電源部45の鉛蓄電池50及びニッケル水素蓄電池61は、電圧が14.5Vでパルス充電される。
 図24を用いて説明されたように、電圧が14.5Vの定電圧充電では、充電開始当初の初期期間T0は、ニッケル水素蓄電池61の充電電流より、鉛蓄電池50の充電電流の方が大きい。一方、S4では、図18に示されるように、オン期間Ton及びオフ期間Toffが交互に繰り返されてスイッチ素子35がオンオフされる。
 スイッチ素子35のオフ期間Toffでは、電圧が0になる。鉛蓄電池50でも、ニッケル水素蓄電池61でも、電極近傍の状態は、電圧の印加が停止されると、5秒程度で初期状態に戻る。このため、スイッチ素子35のオン期間Tonごとに、図24の充電開始当初の初期期間T0と同じ状態になる。したがって、スイッチ素子35のオン期間Tonでは、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい。このため、図17に示されるように、充電期間Tch2では、ニッケル水素蓄電池61のSOCは殆ど増加せず、主に、鉛蓄電池50のSOCが増加する。
 図16に戻って、S205において、スイッチ制御部285は、第2SOC演算部283から、ニッケル水素蓄電池61のSOC値を取得する。スイッチ制御部285は、取得したニッケル水素蓄電池61のSOC値が、SOC下限値Sni3未満であるか否かを判定する。ニッケル水素蓄電池61のSOC値が、SOC下限値Sni3以上であれば(S205でNO)、S206において、スイッチ制御部285は、ニッケル水素蓄電池61のSOC値が、SOC保護閾値Sni4以上であるか否かを判定する。
 ニッケル水素蓄電池61のSOC値が、SOC保護閾値Sni4未満であれば(S206でNO)、S207において、スイッチ制御部285は、第1SOC演算部282から、鉛蓄電池50のSOC値を取得する。スイッチ制御部285は、鉛蓄電池50のSOC値が、SOC上限値Spb2以上であるか否かを判定する。鉛蓄電池50のSOC値が、SOC上限値Spb2未満であれば(S207でNO)、処理はS204に戻り、パルス充電が継続される。
 S205において、ニッケル水素蓄電池61のSOC値が、SOC下限値Sni3未満であれば(S205でYES)、処理はS202に戻る。これによって、スイッチ制御部285は、スイッチ素子35をオンにして、パルス充電から定電圧充電に切り替える。その結果、SOC下限値Sni3未満に低下したニッケル水素蓄電池61のSOC値が増大する。
 S206において、ニッケル水素蓄電池61のSOC値が、SOC保護閾値Sni4以上であれば(S206でYES)、S208において、スイッチ制御部285は、スイッチ素子35をオフにして、パルス充電を停止する。
 S207において、鉛蓄電池50のSOC値がSOC上限値Spb2(この第4実施形態では例えばSpb2=100%)になると(S207でYES)、処理はS208に進む。
 S201において、鉛蓄電池50のSOC値がSOC下限値Spb3以上であれば(S201でNO)、S209において、スイッチ制御部285は、第2SOC演算部283から、ニッケル水素蓄電池61のSOC値を取得する。スイッチ制御部285は、取得したニッケル水素蓄電池61のSOC値が、SOC上限値Sni2未満であるか否かを判定する。ニッケル水素蓄電池61のSOC値がSOC上限値Sni2以上であれば(S209でNO)、処理はS208に進む。
 S209において、ニッケル水素蓄電池61のSOC値がSOC上限値Sni2未満であれば(S209でYES)、処理はS202に進む。
 図16のS206,S207に示されるように、ニッケル水素蓄電池61のSOC値がSOC保護閾値Sni4以上又は鉛蓄電池50のSOC値がSOC上限値以上に増加すると、スイッチ素子35がオフにされて、パルス充電が停止される。図17の例では、鉛蓄電池50のSOC値がSOC上限値Spb2以上に達することにより、パルス充電が停止されている。
 以上のように、第4実施形態では、図17に示されるように、充電期間Tch1において、ニッケル水素蓄電池61のSOC値が80%になるまで定電圧充電され、充電期間Tch2において、鉛蓄電池50のSOC値が100%になるまでパルス充電されている。これによって、第4実施形態によれば、鉛蓄電池50及びニッケル水素蓄電池61の両方が充電不足にならないようにすることができる。
 (第5実施形態)
 図19、図20は、第5実施形態の充電動作を概略的に示すフローチャートである。第5実施形態の構成は、図15に示される第4実施形態と同じである。以下、第4実施形態との相違点を中心に第5実施形態が説明される。
 記憶部281は、第5実施形態では、SOC上限値Spb2として、100%と、100%を超える値(この第5実施形態では例えば105%)との2つの値を予め記憶する。
 スイッチ制御部285は、第1SOC演算部282により算出された鉛蓄電池50のSOCがSOC下限値Spb3未満に低下した回数をカウントする。カウント値がN(この第5実施形態では例えばN=5)回ごとに、スイッチ制御部285は、SOC上限値Spb2として、100%を超える値(この第5実施形態では例えば105%)を用いる。カウント値が1~(N-1)回のとき、すなわちN回未満のときは、スイッチ制御部285は、SOC上限値Spb2として、100%を用いる。なお、100%を超える値は、105%に限られず、例えば110%でもよく、鉛蓄電池50の特性に応じて適切な値に設定すればよい。
 図19において、S201は、第4実施形態の図16のS201と同じである。鉛蓄電池50のSOC値がSOC下限値Spb3未満であれば(S201でYES)、S211において、スイッチ制御部285は、カウント値Ctを1増加させる。
 S212において、スイッチ制御部285は、カウント値CtがN(この第5実施形態ではN=5)未満であるか否かを判定する。カウント値CtがN未満であれば(S212でYES)、S213において、スイッチ制御部285は、SOC上限値Spb2を100%に設定する。続いて、処理はS202に進む。
 一方、S212において、カウント値CtがN以上であれば(S212でNO)、S14において、スイッチ制御部285は、カウント値Ctを0にリセットする。S215において、スイッチ制御部285は、SOC上限値Spb2を105%に設定する。続いて、処理はS202に進む。S202~S209は、第4実施形態の図16のS202~S209と同じである。
 このように、鉛蓄電池50のSOC値が、N回、SOC下限値Spb3未満に低下する度に、SOC上限値Spb2は、105%に設定される。したがって、図20のS5でNO、S6でNOであれば、S7でYESとなるまでパルス充電が継続されるので、図17に示されるように、パルス充電の充電期間Tch3によって、鉛蓄電池50のSOC値が105%になるまで充電される。
 この第5実施形態によれば、図17の充電期間Tch3に示されるように、鉛蓄電池50のSOC値が100%を超える過充電を行っている。これによって、充電不足の鉛蓄電池50に生じるサルフェーションが過度に進むのを抑制することができる。過充電は、鉛蓄電池50のSOC値がSOC下限値Spb3未満に低下する度に毎回行われるのではなくて、鉛蓄電池50のSOC値がSOC下限値Spb3未満に低下するのがN(この第5実施形態では例えばN=5)回ごとに行われる。このため、過充電により、鉛蓄電池50が過度に劣化することはない。
 (第6実施形態)
 図21は、第6実施形態のバッテリ制御部280及びECU70を含む車両1の構成を概略的に示すブロック図である。以下、第4実施形態との相違点を中心に第6実施形態が説明される。
 第6実施形態では、電圧調整部31は、ISG30の出力電圧を、例えば、DC15.0Vと、DC13.7Vとの2段階に調整する。
 第6実施形態では、バッテリ制御部280は、電圧制御部284をさらに備える。電圧制御部284は、ECU70に制御信号SGを出力して、鉛蓄電池50及びニッケル水素蓄電池61の充電中における充電電圧を制御する。ECU70は、バッテリ制御部280から出力される制御信号SGを受け取って、電圧調整部31を制御する。
 図22は、図15の電源部45を13.7Vで定電圧充電したときの充電電流を概略的に示すタイミングチャートである。
 図22では、上記図24と異なり、鉛蓄電池50の充電電流Ipbをニッケル水素蓄電池61の充電電流Iniが上回ることがない。この原因は、以下のように推量される。溶解析出型の鉛蓄電池50では、電圧が13.7Vでも、速度は遅いものの、充電の化学反応は進行する。しかしながら、ニッケル水素蓄電池61では、13.7Vでは電圧が低すぎるため、水素吸蔵合金が水素を容易に吸蔵できる状態にならないことから、充電の化学反応が殆ど進行しない。したがって、図15の電源部45を13.7Vで定電圧充電すると、鉛蓄電池50の充電電流Ipbは、ニッケル水素蓄電池61の充電電流Iniより大きくなる。
 図22と上記図24とを比較すると分かるように、全体の充電電流Itは、図22では上記図24の半分程度になる。このため、鉛蓄電池50及びニッケル水素蓄電池61の充電に時間を要することになる。しかしながら、ISG30の出力電圧が13.7Vに調整されると、ニッケル水素蓄電池61に比べて、鉛蓄電池50の充電を早く進行させることができる。
 上記第4実施形態では図16のS204において、上記第5実施形態では図20のS204において、バッテリ制御部280のスイッチ制御部285は、スイッチ素子35をオンオフさせてパルス充電を行っている。代替的に、第6実施形態では、電圧制御部284は、図23に示されるように、ISG30の出力電圧をパルス状に切り替える。
 図23は、ISG30の出力電圧を概略的に示すタイミングチャートである。図23に示される動作では、電圧制御部284は、出力電圧15.0Vの第1期間T1と出力電圧13.7Vの第2期間T2とを交互に繰り返すことを要求する制御信号SGをECU70に出力する。ECU70は、この制御信号SGを受け取ると、電圧調整部31を制御して、図23に示されるように、ISG30の出力電圧を制御する。
 第2期間T2は、例えば5秒である。充電電圧が13.7Vの第2期間T2では、図22を用いて説明されたように、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい。したがって、第2期間T2では、図17の充電期間Tch2と同様に、ニッケル水素蓄電池61のSOCより、鉛蓄電池50のSOCの方が早く増加する。第2期間T2は、5秒に限られず、例えば10秒でもよい。
 第1期間T1は、例えば4秒である。上記第4実施形態(図18)のオフ期間Toffと異なり、第2期間T2では、充電電圧が0ではなくて13.7Vになっている。したがって、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい期間は、図24に示される初期期間T0より短いと考えられる。そこで、図23の動作では、第1期間T1を例えば4秒として、5秒程度の初期期間T0より短い値としている。
 したがって、第1期間T1でも、鉛蓄電池50の充電電流Ipbの方が、ニッケル水素蓄電池61の充電電流Iniより大きい。このため、第1期間T1でも、ニッケル水素蓄電池61のSOCより、鉛蓄電池50のSOCの方が早く増加する。その結果、図23の動作でも、上記第4、第5実施形態と同様に、鉛蓄電池50のSOCをSOC上限値Spb2(第4実施形態ではSpb2=100%、第5実施形態ではSpb2=105%)まで充電することができる。
 図23の充電では、第2期間T2でも13.7Vで充電が継続され、図18のように充電のオンオフが交互に繰り返されるのではない。このため、図23の充電は、厳密に言うとパルス充電ではない。しかし、本明細書では、図23のような充電も、パルス充電に含まれるものとする。
 (第4~第6実施形態の変形形態)
 本発明は上記第4~第6実施形態に限られない。以下、本発明の第4~第6実施形態の変形形態が説明される。
 (1)上記第6実施形態では、第2期間T2におけるISG30の出力電圧が13.7Vに調整されている。しかし、13.7Vに限られない。ISG30の出力電圧は、ニッケル水素蓄電池61の負極の水素吸蔵合金が水素を容易に吸蔵できる状態にならない電圧であって、鉛蓄電池50の充電が進む電圧に調整されればよい。例えば、ニッケル水素蓄電池61の1セル当り1.38~1.39Vを上限とすればよい。言い換えると、この第4実施形態では、ニッケル水素蓄電池61は、直列接続された10セルのニッケル水素蓄電池を含むため、ISG30の出力電圧を13.8~13.9Vを上限とすればよい。
 (2)上記第4実施形態では、ISG30の出力電圧が14.5Vに調整されている。また、上記第6実施形態では、第1期間T1におけるISG30の出力電圧が15.0Vに調整されている。しかし、これらの電圧値に限られない。ISG30の出力電圧は、ISG30が出力可能であって、鉛蓄電池50及びニッケル水素蓄電池61が破損又は故障しないような高電圧としてもよい。
 (3)上記第4~第6実施形態では、車両1は、ECU70とは別に、バッテリ制御部280を備えている。代替的に、ECU70が、バッテリ制御部280の各機能ブロックを備えるように構成して、バッテリ制御部280をなくしてもよい。
 (4)上記第4~第6実施形態では、鉛蓄電池50と並列に、ニッケル水素蓄電池61が接続されている。代替的に、リチウムイオン二次電池、リチウムイオンポリマー二次電池、ニッケル亜鉛蓄電池等の、他の二次電池が、鉛蓄電池50と並列に接続されていてもよい。
 (5)上記第4~第6実施形態では、車両1は、ISG30を備える。代替的に、ISG30に代えて、通常のオルタネータを備えるようにしてもよい。この場合には、電圧調整部31は、オルタネータの出力電圧を調整する。
 本開示に係る鉛蓄電池の劣化判定装置及び鉛蓄電池の劣化判定方法は、鉛蓄電池の劣化を好適に判定することができる装置及び方法として有用である。また、本開示に係る充電制御装置及び充電制御方法は、互いに並列接続された鉛蓄電池及び二次電池を好適に充電できる装置及び方法として有用である。
 

Claims (21)

  1.  互いに並列接続された鉛蓄電池と前記鉛蓄電池以外の二次電池とを含む電源部と、
     前記電源部の電圧を検出する電圧検出部と、
     前記二次電池の内部抵抗を取得する取得部と、
     始動用モータによるエンジンの始動時に前記電源部から前記始動用モータに供給される全体電流値を予め記憶する記憶部と、
     前記始動用モータによる前記エンジンの始動時の前記電源部の電圧である始動電圧を前記電圧検出部により検出し、前記検出された始動電圧と、前記取得部により取得された前記二次電池の内部抵抗と、前記記憶部に記憶された前記全体電流値とを用いて、前記鉛蓄電池の内部抵抗を算出する演算部と、
     前記演算部により算出された前記鉛蓄電池の内部抵抗と予め定められた抵抗閾値とを比較して、前記鉛蓄電池の内部抵抗が前記抵抗閾値より高い場合に、前記鉛蓄電池が劣化していると判定する判定部と、
    を備える、
     鉛蓄電池の劣化判定装置。
  2.  前記判定部は、前記鉛蓄電池が劣化していると判定すると、アイドルストップ制御による前記エンジンの自動停止を禁止する、
     請求項1に記載の鉛蓄電池の劣化判定装置。
  3.  前記始動用モータは、前記アイドルストップ制御により自動停止している前記エンジンを始動させるモータである、
     請求項2に記載の鉛蓄電池の劣化判定装置。
  4.  前記始動用モータは、ユーザによるイグニションスイッチの操作によって前記エンジンを始動させるモータである、
     請求項1に記載の鉛蓄電池の劣化判定装置。
  5.  互いに並列接続された鉛蓄電池と前記鉛蓄電池以外の二次電池とを含む電源部を備える鉛蓄電池の劣化判定装置における鉛蓄電池の劣化判定方法であって、
     前記二次電池の内部抵抗を取得する取得ステップと、
     始動用モータによるエンジンの始動時の前記電源部の電圧である始動電圧を検出する検出ステップと、
     前記検出ステップにおいて検出された前記始動電圧と、前記取得ステップにおいて取得された前記二次電池の内部抵抗と、前記始動用モータによる前記エンジンの始動時に前記電源部から前記始動用モータに供給される全体電流値とを用いて、前記鉛蓄電池の内部抵抗を算出する演算ステップと、
     前記演算ステップにおいて算出された前記鉛蓄電池の内部抵抗と予め定められた抵抗閾値とを比較して、前記鉛蓄電池の内部抵抗が前記抵抗閾値より高い場合に、前記鉛蓄電池が劣化していると判定する判定ステップと、
    を含む、
     鉛蓄電池の劣化判定方法。
  6.  互いに並列接続された鉛蓄電池及び前記鉛蓄電池以外の二次電池を含む電源部と、
     予め定められた所定電圧値での定電圧充電により前記電源部の前記鉛蓄電池及び前記二次電池を充電する充電制御部と、
    を備え、
     前記所定電圧値は、前記所定電圧値での充電開始当初の初期期間は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなり、かつ、前記初期期間の後は、前記鉛蓄電池の充電電流より前記二次電池の充電電流が大きくなる値に予め定められている、
     充電制御装置。
  7.  前記鉛蓄電池のSOCを取得する第1SOC取得部と、
     前記鉛蓄電池のSOCとして予め定められた100%以下のSOC閾値を保存する記憶部と、
     充電電圧を前記所定電圧値又は前記所定電圧値より低い所定低電圧値に調整する電圧調整部と、
    をさらに備え、
     前記充電制御部は、前記電圧調整部を制御して、前記第1SOC取得部により取得された前記鉛蓄電池のSOCが前記SOC閾値に達するまでは、前記充電電圧を前記所定低電圧値に調整し、前記鉛蓄電池のSOCが前記SOC閾値に達した後は、前記充電電圧を前記所定電圧値に調整する2段階定電圧充電により、前記電源部の前記鉛蓄電池及び前記二次電池を充電し、
     前記所定低電圧値は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなる値に予め定められている、
     請求項6に記載の充電制御装置。
  8.  前記二次電池のSOCを取得する第2SOC取得部をさらに備え、
     前記記憶部は、前記二次電池のSOCとして予め定められた100%未満の第1SOC上限値を保存し、
     前記充電制御部は、前記第2SOC取得部により取得された前記二次電池のSOCが前記第1SOC上限値に達すると、前記2段階定電圧充電を停止する、
     請求項7に記載の充電制御装置。
  9.  前記充電制御部は、前記第2SOC取得部により取得された充電開始時の前記二次電池のSOCが大きいほど、前記SOC閾値を大きい値にする、
     請求項8に記載の充電制御装置。
  10.  前記記憶部は、前記鉛蓄電池のSOCとして予め定められた100%を超える第2SOC上限値を保存し、
     前記充電制御部は、前記鉛蓄電池のSOCが前記第2SOC上限値に達すると、前記2段階定電圧充電を停止する、
     請求項7~9のいずれか1項に記載の充電制御装置。
  11.  前記記憶部は、前記鉛蓄電池のSOCとして予め定められた前記SOC閾値未満のSOC下限値を保存し、
     前記充電制御部は、
     前記鉛蓄電池のSOCが前記SOC下限値以下に低下すると、低下した回数をカウントし、
     前記カウントした回数が所定回数ごとに、前記2段階定電圧充電により、前記電源部の前記鉛蓄電池及び前記二次電池を充電し、
     前記カウントした回数が前記所定回数未満の場合は、前記充電電圧を前記所定電圧値に調整して、前記電源部の前記鉛蓄電池及び前記二次電池を定電圧充電する、
     請求項10に記載の充電制御装置。
  12.  前記充電制御部は、前記2段階定電圧充電において、前記鉛蓄電池のSOCが前記SOC閾値に達して前記充電電圧を前記所定電圧値に調整すると、前記電源部の前記鉛蓄電池及び前記二次電池を、オン期間が前記初期期間以下の長さでパルス充電する、
     請求項7~11のいずれか1項に記載の充電制御装置。
  13.  前記二次電池のSOCを取得する二次電池SOC取得部と、
     前記二次電池のSOCとして予め定められた100%未満の第1SOC上限値を保存する記憶部と、
    をさらに備え、
     前記充電制御部は、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記第1SOC上限値未満の間は、前記所定電圧値での定電圧充電により前記電源部の前記鉛蓄電池及び前記二次電池を充電し、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記第1SOC上限値以上になると、前記定電圧充電から予め定められたオン期間及びオフ期間を交互に繰り返すパルス充電に切り替える、
     請求項6に記載の充電制御装置。
  14.  前記充電制御部は、前記オン期間を、前記初期期間以下の長さに予め定めている、
     請求項13に記載の充電制御装置。
  15.  前記記憶部は、前記二次電池のSOCとして、100%未満であって前記第1SOC上限値を超える値に予め定められたSOC保護閾値を保存し、
     前記充電制御部は、前記パルス充電中に、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記SOC保護閾値以上になると、前記パルス充電を停止する、
     請求項13又は14に記載の充電制御装置。
  16.  前記記憶部は、前記二次電池のSOCとして前記第1SOC上限値未満に予め定められた第1SOC下限値を保存し、
     前記充電制御部は、前記パルス充電中に、前記二次電池SOC取得部により取得された前記二次電池のSOCが前記第1SOC下限値未満になると、前記パルス充電を前記定電圧充電に切り替える、
     請求項13~15のいずれか1項に記載の充電制御装置。
  17.  前記鉛蓄電池のSOCを取得する鉛蓄電池SOC取得部をさらに備え、
     前記記憶部は、前記鉛蓄電池のSOCとして100%以上に予め定められた第2SOC上限値を保存し、
     前記充電制御部は、前記パルス充電中に、前記鉛蓄電池SOC取得部により取得された前記鉛蓄電池のSOCが前記第2SOC上限値以上になると、前記パルス充電を停止する、
     請求項13~16のいずれか1項に記載の充電制御装置。
  18.  前記記憶部は、前記第2SOC上限値として、100%及び100%を超える値を保存し、かつ、前記鉛蓄電池のSOCとして100%未満に予め定められた第2SOC下限値を保存し、
     前記充電制御部は、
     前記鉛蓄電池のSOCが前記第2SOC下限値以下に低下すると、低下した回数をカウントして前記定電圧充電を開始し、
     前記カウントした回数が所定回数ごとに、前記第2SOC上限値として前記100%を超える値を使用し、
     前記カウントした回数が前記所定回数未満の場合は、前記第2SOC上限値として100%を使用する、
     請求項17に記載の充電制御装置。
  19.  互いに並列接続された鉛蓄電池及び前記鉛蓄電池以外の二次電池を含む電源部を備え、前記電源部の前記鉛蓄電池及び前記二次電池の充電を制御する充電制御装置の充電制御方法であって、
     予め定められた所定電圧値で、前記電源部の前記鉛蓄電池及び前記二次電池を定電圧充電する所定電圧充電ステップ、
    を含み、
     前記所定電圧値は、前記所定電圧値での充電開始当初の初期期間は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなり、かつ、前記初期期間の後は、前記鉛蓄電池の充電電流より前記二次電池の充電電流が大きくなる値に予め定められている、
     充電制御方法。
  20.  前記鉛蓄電池のSOCを取得する鉛蓄電池SOC取得ステップと、
     前記鉛蓄電池のSOCが予め定められた100%以下のSOC閾値に達するまでは、前記所定電圧値より低い所定低電圧値で、前記電源部の前記鉛蓄電池及び前記二次電池を定電圧充電する低電圧充電ステップと、
    をさらに含み、
     前記所定電圧充電ステップは、前記鉛蓄電池のSOCが前記SOC閾値に達した後に実行され、
     前記所定低電圧値は、前記二次電池の充電電流より前記鉛蓄電池の充電電流が大きくなる値に予め定められている、
     請求項19に記載の充電制御方法。
  21.  前記二次電池のSOCを取得する二次電池SOC取得ステップと、
     前記二次電池SOC取得ステップにおいて取得された前記二次電池のSOCが予め定められた100%未満の第1SOC上限値以上になると、予め定められたオン期間及びオフ期間を繰り返すパルス充電により前記電源部の前記鉛蓄電池及び前記二次電池を充電するパルス充電ステップと、
    をさらに含み、
     前記所定電圧充電ステップは、前記二次電池SOC取得ステップにおいて取得された前記二次電池のSOCが前記第1SOC上限値未満の間に実行される、
     請求項19に記載の充電制御方法。
PCT/JP2015/002880 2014-07-03 2015-06-09 鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法 WO2016002135A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016530814A JP6638650B2 (ja) 2014-07-03 2015-06-09 鉛蓄電池の劣化判定装置および鉛蓄電池の劣化判定方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014-137339 2014-07-03
JP2014137339 2014-07-03
JP2014169543 2014-08-22
JP2014-169543 2014-08-22
JP2014-174708 2014-08-29
JP2014174708 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016002135A1 true WO2016002135A1 (ja) 2016-01-07

Family

ID=55018717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002880 WO2016002135A1 (ja) 2014-07-03 2015-06-09 鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法

Country Status (2)

Country Link
JP (1) JP6638650B2 (ja)
WO (1) WO2016002135A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043624A (ja) * 2016-09-14 2018-03-22 本田技研工業株式会社 車両用電源装置
CN112055913A (zh) * 2018-05-31 2020-12-08 本田技研工业株式会社 充电控制装置、输送设备以及程序
WO2023061062A1 (zh) * 2021-10-13 2023-04-20 中兴通讯股份有限公司 一种输出控制方法、控制单元及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6719853B1 (ja) * 2019-03-25 2020-07-08 マレリ株式会社 充電制御装置、充電制御方法および充電制御プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068953A1 (ja) * 2012-10-30 2014-05-08 三洋電機株式会社 蓄電池システム
WO2014068864A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 車載用蓄電システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014068864A1 (ja) * 2012-10-29 2014-05-08 三洋電機株式会社 車載用蓄電システム
WO2014068953A1 (ja) * 2012-10-30 2014-05-08 三洋電機株式会社 蓄電池システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018043624A (ja) * 2016-09-14 2018-03-22 本田技研工業株式会社 車両用電源装置
CN112055913A (zh) * 2018-05-31 2020-12-08 本田技研工业株式会社 充电控制装置、输送设备以及程序
WO2023061062A1 (zh) * 2021-10-13 2023-04-20 中兴通讯股份有限公司 一种输出控制方法、控制单元及计算机可读存储介质

Also Published As

Publication number Publication date
JPWO2016002135A1 (ja) 2017-04-27
JP6638650B2 (ja) 2020-01-29

Similar Documents

Publication Publication Date Title
US9849793B2 (en) Electrical storage system for vehicle
US9731619B2 (en) Vehicle and control method for vehicle
US20140176085A1 (en) Battery controller of vehicle
US20110148361A1 (en) Battery system and method for detecting current restriction state in a battery system
US20160233693A1 (en) Electric storage system
JP5389425B2 (ja) ハイブリッドカーの充放電制御方法
JP2010104175A (ja) 故障診断回路、電源装置、及び故障診断方法
JP6791123B2 (ja) 蓄電素子の監視装置、蓄電装置および蓄電素子の監視方法
CN105874681B (zh) 电源系统
WO2016002135A1 (ja) 鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法
JP2010140762A (ja) リチウムイオン電池の状態を判別する判別装置
JP2007018871A (ja) 二次電池の制御装置及びこの装置を搭載するシステム
JP2008312282A (ja) 車両用電源装置の制御方法
JP4433752B2 (ja) 組電池の充放電制御装置
JP2015180140A (ja) 車両用電源システム
JP2008131772A (ja) 電源装置
JP6435679B2 (ja) 鉛蓄電池の劣化判定装置及び鉛蓄電池の劣化判定方法
JP6699533B2 (ja) 電池システム
JP6624035B2 (ja) 電池システム
JP5609807B2 (ja) バッテリ装置のヒステリシス低減システム
JP6102714B2 (ja) 蓄電システム
JP5621873B2 (ja) 車両用電源システム
JP2020171142A (ja) 制御装置
JP2013243869A (ja) 二次電池の制御装置
JP2007051943A (ja) 電流センサの異常検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016530814

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815037

Country of ref document: EP

Kind code of ref document: A1