WO2023061062A1 - 一种输出控制方法、控制单元及计算机可读存储介质 - Google Patents

一种输出控制方法、控制单元及计算机可读存储介质 Download PDF

Info

Publication number
WO2023061062A1
WO2023061062A1 PCT/CN2022/114846 CN2022114846W WO2023061062A1 WO 2023061062 A1 WO2023061062 A1 WO 2023061062A1 CN 2022114846 W CN2022114846 W CN 2022114846W WO 2023061062 A1 WO2023061062 A1 WO 2023061062A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
battery
output
control unit
battery pack
Prior art date
Application number
PCT/CN2022/114846
Other languages
English (en)
French (fr)
Inventor
陈勇
熊勇
杨锐
王章磊
刘志娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2023061062A1 publication Critical patent/WO2023061062A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of control technology, and in particular to an output control method, a control unit, and a computer-readable storage medium.
  • batteries With the development of the electric vehicle and energy storage battery industry, batteries will be used in various scenarios. In different scenarios, there are different requirements for the output characteristics of the battery, and the output characteristics of the battery are related to the cells used inside. Physical and chemical properties are highly correlated.
  • the embodiment of the present application provides an output control method, which is applied to the control unit.
  • the output terminal of the control unit is connected to the control terminal of the switch circuit, the switch circuit is set on the power supply output line of the battery pack, and the state detection terminal of the battery pack is connected to at the first input terminal of the control unit;
  • the method includes: obtaining the current state parameters of the battery pack; inputting the current state parameters into the preset virtual battery model, calculating the control parameters used to control the switch circuit, and using the control parameters sent to the switch circuit; wherein, the switch circuit outputs the target output voltage or the target output current under the control of the control parameter.
  • the embodiment of the present application also provides a control unit, including: an acquisition module and a calculation module; the control unit is connected to the output end of the switch circuit, the switch circuit is set on the power supply output line of the battery pack, and the control unit is also connected to the output terminal of the battery pack
  • the state detection terminal the acquisition module is used to obtain the current state parameters of the battery pack
  • the calculation module is used to input the current state parameters into the preset virtual battery model, calculate the control parameters used to control the switch circuit, and use the control parameters sent to the switch circuit; wherein, the switch circuit outputs the target output voltage or the target output current under the control of the control parameter.
  • the embodiment of the present application also provides a computer-readable storage medium storing a computer program, and implementing the above output control method when the computer program is executed by a processor.
  • FIG. 1 is a schematic block diagram of a circuit to which an output control method according to an embodiment of the present application is applied;
  • FIG. 2 is a schematic flowchart of an output control method according to an embodiment of the present application.
  • FIG. 3 is an example diagram of a curve of an ideal battery model output characteristic of an output control method according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a Rint battery model in an output control method according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a Thevenin model of a first-order RC in an output control method according to an embodiment of the present application
  • FIG. 6 is a schematic diagram of a PNGV model in an output control method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a second-order RC model in an output control method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a GNL model in an output control method according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a control unit according to an embodiment of the present application.
  • the main purpose of the embodiments of the present application is to provide an output control method, a control unit, and a computer-readable storage medium, and provide a method capable of outputting battery output characteristics that meet user expectations.
  • batteries are required to be used in various scenarios, and are also required to have various output characteristics suitable for each scenario, and batteries are analog energy storage devices, and their external charging and discharging The characteristics are highly related to the physical and chemical characteristics of the batteries used inside. Once the battery is designed and manufactured, its output characteristics are basically fixed and cannot be changed by the user. Therefore, the user can only redesign and manufacture different chemical systems for different application scenarios. Batteries with different voltage levels and different capacities, and when designing batteries, there are usually strict restrictions on the type of cells and the way of series and parallel connection. The versatility of design and development is poor, and the design cycle is long, which will greatly increase the cost.
  • an embodiment of the present application relates to an output control method.
  • the general idea is to virtualize the output characteristics of the battery in a software-defined manner, and then control the battery on the output line as needed.
  • a switching circuit that converts the output characteristics of the internal real battery to the desired output characteristics of the virtual battery.
  • the output control method of this embodiment is specifically used in the control unit 1. Please refer to FIG. 1.
  • the output terminal of the control unit 1 is connected to the control terminal of the switch circuit 2.
  • the switch circuit 2 is arranged on the power supply output line of the battery pack 3.
  • the battery pack The state detection terminal of 3 is connected to the first input terminal of the control unit 1 .
  • the output end of the switch unit 2 is used to connect to loads, other battery packs or power sources.
  • FIG. 2 Please refer to FIG. 2 for a specific flowchart of the output control method of this embodiment.
  • Step 101 acquiring the current state parameters of the battery pack.
  • Step 102 input the current state parameters into the preset virtual battery model, and calculate the control parameters for controlling the switch circuit.
  • Step 103 sending the control parameter to the switch circuit, so as to control the switch circuit to output a target output voltage or a target output current.
  • control unit will obtain the current state parameters of the battery pack, and input the current state parameters into the preset virtual battery model to calculate the control parameters used to control the switch circuit, and send the control parameters to For the switch circuit, the switch circuit can output the target output voltage or target output current of the virtual battery under the control of the control parameter.
  • the embodiments of the present application only need to set or modify the model or parameters of the virtual battery to calculate the control parameters of the control switch circuit, and then use The control parameter controls the switch circuit, and can output the target output voltage or current that meets the user's expectations according to the current state parameters of the real battery pack, and gets rid of the restriction of the battery's internal battery characteristics on the battery, and does not need to redesign and manufacture a new battery.
  • the control unit first acquires the current state parameters of the battery pack.
  • the current state parameters at least include any one or any combination of the following: output voltage U out , output current I out , temperature T out , State of charge SOC out and capacity C out , and then input the current state parameters of the battery pack into the preset virtual battery model.
  • the model of the virtual battery can be understood as a mapping relationship between the input quantity of the virtual battery and the output quantity of the virtual battery.
  • the control unit takes the current state parameter of the battery pack as the input quantity of the virtual battery, Inputting into the preset virtual battery model, the target output voltage or target output current expected by the user can be obtained.
  • the control unit can obtain the output voltage or output current of the switching circuit, and control the output of the switching circuit through feedback The voltage or output current reaches the target output voltage or target output current of the virtual battery, so as to meet the output characteristics expected by the user.
  • the model of the virtual battery can be understood as the mapping relationship between the input quantity of the virtual battery and the control parameters of the switch circuit.
  • the control unit takes the current state parameter of the battery pack as the input quantity of the virtual battery , input into the preset virtual battery model, the control parameters used to control the switch circuit can be obtained, the control unit will send the obtained control parameters to the switch unit, and the switch unit will output the virtual battery under the control of the control parameters The target output voltage or target output current to meet the output characteristics expected by users.
  • the user can directly input the type of the target battery and the parameters of the target battery through the setting unit integrated in the control unit 1, and the control unit 1 will determine according to the type of the target battery and/or the parameters of the target battery input by the user.
  • a model of a virtual battery is a model of a virtual battery.
  • the setting unit 4 may not be integrated in the control unit 1, the output end of the switch unit 2 will be connected to the third input end of the control unit 1 through the setting unit 4, and the user is also The type of the target battery and the parameters of the target battery are input by setting the unit.
  • the switch circuit may specifically be a DC conversion circuit, wherein the DC conversion circuit at least includes any one of the following conversion circuits: a bidirectional H-bridge conversion circuit, a BUCK conversion circuit, and a BOOST conversion circuit.
  • the output terminal of the switch circuit 2 is connected to the third input terminal of the control unit 1, and the control unit 1 can continuously adjust the voltage or current output by the switch circuit 2 to make it follow the target output voltage or The target output current is output.
  • the model of the virtual battery includes an ideal battery model and an equivalent circuit model, wherein the ideal battery model is used to characterize the output static characteristics of the virtual battery, the output voltage of the ideal battery model is equal to the open circuit voltage of the ideal battery model, etc.
  • the effective circuit model is used to characterize the output dynamic characteristics of the virtual battery.
  • the ideal battery model can be represented by a data mapping table or a function formula.
  • An example of the output characteristic curve of a part of the ideal battery model using the data mapping table is shown in Figure 3.
  • Curve 1 is the SOC (state of charge, charge) of the iron-lithium battery. Electric state) and the real battery pack’s OCV (Open circuit voltage, open circuit voltage)
  • curve 2 is the relationship curve between the SOC of the lead-acid battery and the real battery pack’s OCV
  • curve 3 is the simulated one One linear output curve
  • curve 4 is to simulate another linear output curve.
  • curves 3 and 4 are not real relationship curves between the SOC and OCV of the battery pack. They can be understood as abstract batteries, representing a set of user needs. an output characteristic.
  • the ideal battery model can be expressed as E(SOC out ,T out ,%), E(SOC out ,T out ,%) is similar to the relationship between the OCV of the real battery pack and the SOC of the battery pack There are differences between the mapping relationships corresponding to different types of ideal battery models.
  • control unit will input the current state parameters of the battery pack into the model of the virtual battery as input parameters of the virtual battery.
  • the control unit will take the target output voltage U out (SOC out , T out , I out %) of the virtual battery as the adjustment target, and output control parameters to the switching circuit to continuously control the output of the switching circuit, so that the virtual battery The external output of , exhibits the characteristics of the virtual battery defined by the battery model.
  • the equivalent circuit model can be understood as one or more resistors and capacitors connected in series and parallel to the ideal battery model.
  • the connection methods and parameters of the resistors and capacitors of different equivalent circuit models are usually Different, the corresponding dynamic characteristics will also be different. After adding the equivalent circuit model on the basis of the ideal battery model, the dynamic characteristics of the output of the virtual battery can be better improved.
  • control unit can acquire the type and parameters of the target battery desired by the user through the setting unit.
  • the type of the target battery includes but not limited to lithium batteries, lead-acid batteries, etc.
  • the parameters of the target battery include but not Information limited to capacity, voltage, internal resistance or battery series-parallel connection, battery model, etc. can be converted into battery type and basic parameters. Segment linear or other nonlinear input and output features, and then according to the above information, the model of the virtual battery is obtained.
  • the equivalent circuit model at least includes any one of the following models: a zero-order Rint model, a first-order RC Thevenin model, a PNGV model, a second-order RC model, and a GNL model.
  • a zero-order Rint model please refer to Figure 4
  • Figure 5 for the equivalent circuit diagram of the first-order RC Thevenin model
  • Figure 6 for the equivalent circuit diagram of the PNGV model
  • Figure 7 for the equivalent circuit diagram of the second-order RC model
  • Figure 8 for the equivalent circuit diagram of the GNL model.
  • R 1 in the model represents the equivalent polarization internal resistance of the battery expected by the user
  • C 1 represents the equivalent polarization of the battery expected by the user Capacitance
  • R 0 represents the equivalent internal resistance of the battery expected by the user.
  • the above parameter values can be calculated by testing the dynamic characteristics of the battery expected by the user, or obtained by offline and online parameter identification, or can be directly defined according to needs.
  • the output voltage of the virtual battery is used as the main controlled object.
  • the current I out and T out can also be controlled by using a similar output control method as the controlled object, so that the virtual battery
  • the external output takes on the characteristics of the virtual battery defined by the battery model.
  • the type of the target battery expected by the user and the parameters of the target battery can be obtained through the setting unit, and they are mapped to parameters such as the voltage U out , current I out , SOC out and capacity C out of the quantified virtual battery And the functional relationship or data table of the state, and then obtain the current state parameters of the real battery pack voltage U in , current I in , temperature T in , SOC in and capacity C in, etc.
  • the second input terminal of the control unit is connected to the state detection terminal of the battery pack connected in parallel with the battery pack.
  • the control unit can monitor the changes in the parameters of other external batteries, power sources or loads, such as voltage and current, and use the above output control method to control the settings in each battery pack.
  • the switch unit on the power supply output line can convert the battery type and basic parameters expected by the user according to the current state parameters of the battery pack, so that the external output characteristics of the virtual battery can be controlled to imitate other batteries connected in parallel, and realize intelligence with other batteries Use in parallel, or adapt the output to the characteristics of the load and power supply.
  • the external output characteristics of the battery can be made to be similar to lithium batteries, lead-acid batteries and other types of batteries, regardless of the actual battery type inside, and it is not necessary to distinguish whether the batteries are of the same manufacturer or type. , The same new and old degree. Solve the problem that different manufacturers, different types of batteries, and batteries of different ages are difficult to use in parallel, which greatly facilitates the utilization of old batteries and expansion of capacity.
  • this output control method it is only necessary to set or adjust the model of the virtual battery, and the output characteristics of the battery can be changed without redesigning hardware.
  • other nonlinear and linear output characteristics can also be defined, such as constant voltage output, linear drop output, piecewise linear output, etc. It can adapt to various new application scenarios such as different voltage levels, different power, and dynamically changing loads.
  • the output characteristics of the battery can be effectively improved.
  • a general battery may have a lower battery discharge voltage due to low activity at low temperature.
  • the battery voltage may drop below the load’s working voltage range and end the discharge prematurely.
  • the voltage of the battery can be raised by the switch unit before discharging, so that the output of the battery does not exhibit low-temperature characteristics, and the battery can discharge more power.
  • An embodiment of the present application relates to a control unit, please refer to FIG. 9, including: an acquisition module 201 and a calculation module 202; It is also connected to the state detection terminal of the battery pack.
  • the acquisition module 201 will acquire the current state parameters of the battery pack, and the calculation module 202 will input the current state parameters into the preset virtual battery model, calculate the control parameters used to control the switch circuit, and send the control parameters to the switch circuit .
  • the switch circuit will output a target output voltage or a target output current under the control of the control parameters.
  • the switch circuit is a DC conversion circuit, wherein the DC conversion circuit includes any one of the following conversion circuits: a bidirectional H-bridge conversion circuit, a BUCK conversion circuit, and a BOOST conversion circuit.
  • control unit further includes a determination module 203, the determination module 203 is connected to the calculation unit 202, the determination module 203 will obtain the type of the target battery and the parameters of the target battery input by the user, and determine the virtual battery model, wherein the model of the virtual battery includes an ideal battery model and an equivalent circuit model, and the calculation unit 202 will input the current state parameters into the model of the virtual battery as input parameters of the virtual battery.
  • the determination module 203 is connected to the calculation unit 202, the determination module 203 will obtain the type of the target battery and the parameters of the target battery input by the user, and determine the virtual battery model, wherein the model of the virtual battery includes an ideal battery model and an equivalent circuit model, and the calculation unit 202 will input the current state parameters into the model of the virtual battery as input parameters of the virtual battery.
  • the ideal battery model is used to represent the output static characteristics of the virtual battery
  • the output voltage of the ideal battery model is equal to the open circuit voltage of the ideal battery model
  • the equivalent circuit model is used to represent the output dynamic characteristics of the virtual battery.
  • the equivalent circuit model may include any one of the following models: zero-order Rint model, first-order RC Thevenin model, PNGV model, second-order RC model, and GNL model.
  • the second input terminal of the control unit is connected to the state detection terminal of the battery pack connected in parallel with the battery pack
  • the control unit further includes a determination module 203
  • the determination module 203 is connected to the calculation unit 202, and the determination module 203 will be based on The obtained voltage or current output by the battery pack connected in parallel with the battery pack is used to determine the model of the virtual battery.
  • this embodiment is a system embodiment corresponding to the embodiment corresponding to FIG. 2 , and this embodiment can be implemented in cooperation with the embodiment corresponding to FIG. 2 .
  • the relevant technical details mentioned in the embodiment corresponding to FIG. 2 are still valid in this embodiment, and will not be repeated here in order to reduce repetition.
  • the relevant technical details mentioned in this embodiment may also be applied in the embodiment corresponding to FIG. 2 .
  • modules involved in this embodiment are logical modules.
  • a logical unit can be a physical unit, or a part of a physical unit, or multiple physical units. Combination of units.
  • units that are not closely related to solving the technical problem proposed in the present application are not introduced in this embodiment, but this does not mean that there are no other units in this embodiment.
  • An embodiment of the present application relates to a computer-readable storage medium storing a computer program.
  • the above method embodiments are implemented when the computer program is executed by the processor.
  • a storage medium includes several instructions to make a device ( It may be a single-chip microcomputer, a chip, etc.) or a processor (processor) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请涉及控制技术领域,本申请的实施例提供了一种输出控制方法、控制单元及计算机可读存储介质。该方法应用于控制单元,控制单元的输出端连接于开关电路的控制端,开关电路设置在电池包的供电输出线路上,电池包的状态检测端连接于控制单元的第一输入端。

Description

一种输出控制方法、控制单元及计算机可读存储介质
交叉引用
本申请基于申请号为“202111190386.3”、申请日为2021年10月13日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请涉及控制技术领域,尤其涉及一种输出控制方法、控制单元及计算机可读存储介质。
背景技术
随着电动汽车及储能电池行业的发展,电池会被应用于各种场景,在不同的场景下,对电池的输出特性有着不同的要求,而电池的输出特性是与其内部所采用电芯的物理化学等特性高度相关的。
由于电池的输出特性在其设计和制造好后就基本固定了,用户无法随意改变,电池的通用性差,使得用户在面对不同的应用场景时,不得不根据不同的应用场景,重新设计和制造不同化学体系类型、不同电压等级或者不同容量的电池,会造成严重的资源浪费,且重新设计和制造电池也会大大增加成本。
发明内容
本申请的实施例提供了一种输出控制方法,应用于控制单元,控制单元的输出端连接于开关电路的控制端,开关电路设置在电池包的供电输出线路上,电池包的状态检测端连接于控制单元的第一输入端;方法包括:获取电池包的当前状态参数;将当前状态参数输入到预设的虚拟电池的模型中,计算得到用于控制开关电路的控制参数,并将控制参数发送给开关电路;其中,开关电路在控制参数的控制下,输出目标输出电压或目标输出电流。
本申请实施例还提供了一种控制单元,包括:获取模块和计算模块;控制单元连接于开关电路的输出端,开关电路设置在电池包的供电输出线路上,控制单元还连接于电池包的状态检测端;获取模块用于获取电池包的当前状态参数;计算模块用于将当前状态参数输入到预设的虚拟电池的模型中,计算得到用于控制开关电路的控制参数,并将控制参数发送给开关电路;其中,开关电路在控制参数的控制下,输出目标输出电压或目标输出电流。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述输出控制方法。
附图说明
图1是根据本申请一个实施例的输出控制方法所应用在的电路的方框示意图;
图2是根据本申请一个实施例的输出控制方法的流程示意图;
图3是根据本申请一个实施例的输出控制方法的理想电池模型输出特性的曲线示例图;
图4是根据本申请一个实施例的输出控制方法中Rint电池模型的示意图;
图5是根据本申请一个实施例的输出控制方法中一阶RC的Thevenin模型的示意图;
图6是根据本申请一个实施例的输出控制方法中PNGV模型的示意图;
图7是根据本申请一个实施例的输出控制方法中二阶RC模型的示意图;
图8是根据本申请一个实施例的输出控制方法中GNL模型的示意图;
图9是根据本申请一个实施例的控制单元的方框示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便, 不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合相互引用。
本申请实施例的主要目的在于提供一种输出控制方法、控制单元及计算机可读存储介质,提供了一种可以输出满足用户期望的电池输出特性的方法。
随着电动汽车及储能电池行业的发展,电池要应用于各种场景,也被要求具有适应于各场景的各种输出特性,而电池属于模拟类的储能装置,其对外呈现的充放电特性与其内部所采用电芯的物理化学特性高度相关,电池一经设计制造好后其输出特性基本固定,用户无法随意改变,因此,用户只能针对不同的应用场景,重新设计和制造不同化学体系、不同电压等级和不同容量的电池,而电池设计时,对电芯的类型以及串并联方式等的限制通常很严格,设计开发的通用性差,设计周期长,会大大增加成本。
另外,发明人发现,由于不同厂家、不同型号或不同新旧程度的电池的充放电特性存在差异,若并联多个不同性能的电池共同放电,可能出现某些电池已经完全放电了,而有些电池还未放完电的现象,这可能导致已经完全放电的电池会进入过放保护状态进而无法继续使用,并且,并联多个不同性能的电池共同充放电也可能会出现偏流等问题,会严重影响电池的使用寿命和安全性,严重时甚至可能引发起火爆炸等问题。这些严苛的限制使得不同厂家、不同型号或不同新旧程度的电池,在更换或扩容时无法兼容,只能全部更换为同一厂家、同一型号以及新旧程度相同的电池,这会造成巨大的经济损失。
针对上述背景技术中的问题,本申请的一个实施例涉及一种输出控制方法,总体思想是:通过软件定义的方式,将电池的输出特性虚拟化,进而可以根据需要,通过控制电池输出线路上的开关电路,将内部真实电池的输出特性转换为所需的虚拟电池的输出特性。
本实施例的输出控制方法具体用于控制单元1,请参考图1,控制单元1的输出端连接于开关电路2的控制端,开关电路2设置在电池包3的供电输出线路上,电池包3的状态检测端连接于控制单元1的第一输入端。在一个实施例中,开关单元2的输出端用于连接于负载、其他电池包或电源。
本实施例的输出控制方法的具体流程图请参考图2。
步骤101,获取电池包的当前状态参数。
步骤102,将当前状态参数输入到预设的虚拟电池的模型中,计算得到用于控制开关电路的控制参数。
步骤103,将控制参数发送给开关电路,以控制开关电路输出目标输出电压或目标输出电流。
本实施例中,控制单元会获取电池包的当前状态参数,并将当前状态参数输入到预设的虚拟电池的模型中,以计算得到用来控制开关电路的控制参数,并将该控制参数发送给开关电路,开关电路在该控制参数的控制下,可以输出虚拟电池的目标输出电压或目标输出电流。相较于针对不同的应用场景重新设计和制造适应于各应用场景的电池,本申请的实施例只需设置或修改虚拟电池的模型或模型的参数,以计算控制开关电路的控制参数,进而利用该控制参数控制开关电路,就可以根据真实电池包的当前状态参数,输出满足用户预期的目标输出电压或电流,摆脱了电池内部电芯特性对电池使用的限制,无需重新设计制造新的电池以适应新的应用场景,有效降低了成本。
下面对本实施方式的输出控制方法的实现细节进行具体的说明,以下内容仅为方便理解提供的实现细节,并非实施本方案的必须。
具体地,控制单元会先获取电池包的当前状态参数,在一个实施例中,当前状态参数至少包括以下任意一个或任意组合:电池包的输出电压U out、输出电流I out、温度T out、荷电状态SOC out和容量C out,再将电池包的当前状态参数输入到预设的虚拟电池的模型中。
在一个实施例中,可以将虚拟电池的模型理解为是虚拟电池的输入量与虚拟电池的输出量之间的映射关系,此时控制单元将电池包的当前状态参数作为虚拟电池的输入量,输入到预设的虚拟电池的模型中,就可以得到用户期望的目标输出电压或目标输出电流,此时控制单元可以获取开关电路的输出电压或输出电流,并通过反馈的方式控制开关电路的输出电压或输出电流达到虚拟电池的目标输出电压或目标输出电流,以满足用户期望的输出特性。
在另一个实施例中,可以将虚拟电池的模型理解为是虚拟电池的输入量与开关电路的控制参数之间的映射关系,此时控制单元将电池包的当前状态参数作为虚拟电池的输入量,输入到预设的虚拟电池的模型中,就可以得到用来控制开关电路的控制参数,控制单元会将得到的控制参数发送给开关单元,由开 关单元在控制参数的控制下,输出虚拟电池的目标输出电压或目标输出电流,以满足用户期望的输出特性。
在一个实施例中,用户可以直接通过控制单元1中集成的设置单元输入目标电池的类型和目标电池的参数,控制单元1会根据用户输入的目标电池的类型和/或目标电池的参数,确定虚拟电池的模型。
在另一个实施例中,请参考图1,设置单元4也可以不集成在控制单元1中,开关单元2的输出端会通过设置单元4连接于控制单元1的第三输入端,用户同样是通过设置单元来输入目标电池的类型和目标电池的参数的。
在一个实施例中,开关电路具体可以为直流转换电路,其中,直流转换电路至少包括以下任意一个转换电路:双向H桥转换电路、BUCK转换电路和BOOST转换电路。
在一个实施例中,请参考图1,开关电路2的输出端连接于控制单元1的第三输入端,控制单元1可以不断调整开关电路2输出的电压或电流,使其按照目标输出电压或目标输出电流进行输出。
在一个实施例中,虚拟电池的模型包括理想电池模型和等效电路模型,其中,理想电池模型用于表征虚拟电池的输出静态特性,理想电池模型的输出电压等于理想电池模型的开路电压,等效电路模型用于表征虚拟电池的输出动态特性。
举例来说,理想电池模型可以用数据映射表或者函数公式进行表示,利用数据映射表的部分理想电池模型的输出特性曲线示例如图3,曲线1为铁锂电池的SOC(state of charge,荷电状态)与真实的电池包的OCV(Open circuit voltage,开路电压)之间的关系曲线,曲线2为铅酸电池的SOC与真实的电池包的OCV之间的关系曲线,曲线3为模拟某一线性输出曲线,曲线4为模拟另一线性输出曲线,显然,曲线3和曲线4不是真实的电池包的SOC与OCV之间的关系曲线,可以理解为是抽象的电池,代表用户需求的一种输出特性。
利用函数公式可以将理想电池模型表示为E(SOC out,T out,...),E(SOC out,T out,...)类似真实的电池包的OCV与电池包的SOC之间的关系,不同类型的理想电池模型对应的映射关系之间是存在差异的,可以通过测试用户期望的电池的OCV与SOC的数据来获得E(SOC out,T out,...),也可以直接由用户直接定义为其他线性 或非线性的映射关系,再将理想电池模型作为虚拟电池的模型,即,U out(SOC out,T out,I out...)=E(SOC out,T out,...)。
在一个实施例中,控制单元会将电池包的当前状态参数作为虚拟电池的输入参数,输入到虚拟电池的模型中。
举例来说,由于虚拟电池的SOC out与真实的电池包的SOC in往往是同步变化的,即,SOC out=SOC in,故可以把获得的SOC in输入给理想电池模型,此时,理想电池模型为E out(SOC in,T out,...),则此时虚拟电池的模型为:U out(SOC out,T out,I out...)=E out(SOC in,T out,...)。需要说明的是,U out只是显性的目标,其还可包括温度T out、电流I out等影响因素。此后,控制单元会将把虚拟电池的目标输出电压U out(SOC out,T out,I out...)作为调整目标,向开关电路输出控制参数,以连续控制开关电路的输出,使虚拟电池的外部输出呈现出电池模型定义的虚拟电池的特性。
在一个实施例中,等效电路模型可以理解为是一个或多个电阻、电容以串、并联的方式连接于理想电池模型上,不同等效电路模型的电阻、电容的连接方式及参数通常是不同的,其对应的动态特性也会是不同的,在理想电池模型的基础上加入等效电路模型后,可以较好地改善虚拟电池的输出的动态特性。
在一个实施例中,控制单元可以通过设置单元获取用户期望的目标电池的类型和目标电池的参数,目标电池的类型类型包括但不限于锂电池、铅酸电池等,目标电池的参数包括但不限于容量、电压、内阻或电池串并联方式、电池型号等可转换为电池类型和基本参数的信息,另外,还可以获取其他不同于普通电池特征的类型,如恒压模式、线性下降、分段线性或其他非线性输入输出特征,再根据上述信息,得到虚拟电池的模型。
在一个实施例中,等效电路模型至少包括以下任意一个模型:零阶的Rint模型、一阶RC的Thevenin模型、PNGV模型、二阶RC模型和GNL模型。零阶的Rint模型的等效电路图请参考图4,一阶RC的Thevenin模型的等效电路图请参考图5,PNGV模型的等效电路图请参考图6,二阶RC模型的等效电路图请参考图7,GNL模型的等效电路图请参考图8。
举例来说,根据零阶的Rint模型,可以得到如下表达式:U=E-I*R 0;其中,E为虚拟电池的模型的输入参数,U为目标输出电压;根据一阶RC的Thevenin 模型,可以得到如下表达式:U=E-I*R 0-U 1和dU 1/dt=I/C 1-U 1/(R 1*C 1),其余模型同理,均可以得到U与E之间的关系。
以等效电路模型为一阶RC的Thevenin电池模型为例进行下面的说明,模型中的R 1代表用户期望的电池等效的极化内阻,C 1代表用户期望的电池等效的极化电容,R 0代表用户期望的电池等效内阻。
上述参数值可通过测试用户期望电池的动态特性计算获得,或者通过离线在线参数辨识获得,也可直接根据需要进行定义。一阶RC的Thevenin电池模型的输入和输出之间的关系具体可以表示为:U=E-I*R 0-U 1与dU 1/dt=I/C 1-U 1/(R 1*C 1),由此可见,U与E的差值,与其他参数之间是存在映射关系的。以此例子推广可以知道,当等效电路模型中存在其他参数时,U与E的差值可以被记为U d(R 0,R 1,...,C 1,C 2,...,I out,T out,...)。此时,虚拟电池的模型可以为U out(SOC out,T out,I out...)=E out(SOC out,T out,...)+U d(R 0,R 1,...,C 1,C 2,...,I out,T out,...),由于通常情况下,SOC out=SOC in,故将电池包的当前状态参数输入到虚拟电池的模型,就可以得到:U out(SOC out,T out,I out...)=E out(SOC in,T out,...)+U d(R 0,R 1,...,C 1,C 2,...,I out,T out,...),控制单元会把虚拟电池的目标输出电压U out(SOC out,T out,I out...)作为调整目标,向开关电路输出控制参数,以连续控制开关电路的输出,使虚拟电池的外部输出呈现出电池模型定义的虚拟电池的特性。
需要说明的是,图6中的R e、R s、图7中的R 2以及图8中的R s,仅是利用不同的下标区分了各个电阻,图6中的C s、C p、图7中的C 2以及图8中的C Q,也仅是利用不同的下标区分了各个电容,对其具体含义,在此不再赘述。
在上述实施例中,是将虚拟电池的输出电压作为主要被控对象,类似的原理,也可以将电流I out和T out等作为被控对象采用类似的输出控制方法进行控制,使虚拟电池的外部输出呈现出电池模型定义的虚拟电池的特性。
需要说明的是,上述实施例中,仅利用了SOC out=SOC in这一个条件,将电池包的当前状态参数输入到虚拟电池的模型中,以建立电池包与目标输出电压或目标输出电流之间对应关系,而仅SOC通常是不能表现出真实的电池包的相关输出特性的,因此,仅利用SOC out=SOC in这一个条件,可以使真实的电池包与目标输出电压或目标输出电流之间实现充分地解耦,但除此之外,本申请的 实施例也可以选择电池包的其他当前状态参数,例如为电压U in、电流I in、温度T in和容量C in等,建立这些当前状态参数与目标输出电压或目标输出电流之间的对应关系。
在一个实施例中,可以通过设置单元获取用户期望的目标电池的类型和目标电池的参数,并将它们映射为量化的虚拟电池的电压U out、电流I out、SOC out和容量C out等参数及状态的函数关系或数据表,再获取真实的电池包的当前状态参数电压U in、电流I in、温度T in、SOC in和容量C in等,可以根据上述信息得到以下表达式:f out(U out,SOC out,T out,I out,t...)=f(U in,SOC in,T in,I in,t...),将该表达式作为为转换函数关系或映射表,显然,该表达式是时间t或内部电池的U in、SOC in、T in和I in等的一个或多个的函数,该表达式例如为U out(SOC out,T out...)=a*U in,其中,a为常数,用户可以通过调整a,来将虚拟电池的目标输出电压与电池包实际输出的电压的比率放大或缩小,调整系数a可模拟任意串数的电池。
在一个实施例中,控制单元的第二输入端连接于与电池包并联连接的电池包的状态检测端,在将当前状态参数输入到预设的虚拟电池的模型中之前,需要先根据获取的与电池包并联连接的电池包输出的电压或电流,确定虚拟电池的模型。
若需要将电池应用在与其他电池并联使用的场景中,则可以由控制单元监控外部其他电池、电源或负载的电压、电流等参数的变化规律,并利用上述输出控制方法控制设置在各电池包供电输出线路上的开关单元,以根据电池包的当前状态参数,转换得到用户期望的电池类型和基本参数,这样就可以控制虚拟电池的外部输出特性去模仿并联的其他电池,实现与其他电池智能并联使用,或使其输出适应负载和电源的特性。
本实施例中,根据该输出控制方法,可使电池外部输出特性呈现类似锂电池、铅酸电池等类型电池的特性,而不用管其内部真实的电池类型,不用区分是否相同厂家、相同型号电池、相同新旧程度。解决不同厂家、不同型号电池、不同新旧程度电池难以并联使用的问题,极大的方便了电池的利旧扩容。
并且,根据此输出控制方法,只需设置或调整虚拟电池的模型,无需重新设计硬件即可改变电池的输出特性。不限于类似电池特性,也可定义其他非线性、线性输出特性,例如恒压输出、线性下降输出、分段线性输出等。可适应 不同电压等级、不同功率、动态变化的负载等各种新应用场景。
此外,根据该输出控制方法,可以有效改善电池的输出特性。例如一般电池可能会因为低温活性低而导致电池放电电压变得更低,在低温下大电流放电时,电池的电压可能会跌落到低于负载可工作电压范围以下而提前结束放电,但通过本申请的实施例的输出控制方法,可以通过开关单元对电池的电压进行升高后再放电,以使电池的输出不呈现低温特性,则电池可以放出更多的电量。
本申请一个实施例涉及一种控制单元,请参考图9,包括:获取模块201和计算模块202;控制单元连接于开关电路的输出端,开关电路设置在电池包的供电输出线路上,控制单元还连接于电池包的状态检测端。
获取模块201会获取电池包的当前状态参数,计算模块202会将当前状态参数输入到预设的虚拟电池的模型中,计算得到用于控制开关电路的控制参数,并将控制参数发送给开关电路。
具体地,开关电路在控制参数的控制下,会输出目标输出电压或目标输出电流。
在一个实施例中,开关电路为直流转换电路,其中,直流转换电路包括以下任意一个转换电路:双向H桥转换电路、BUCK转换电路和BOOST转换电路。
在一个实施例中,请参考图9,控制单元还包括确定模块203,确定模块203连接于计算单元202,确定模块203会获取用户输入的目标电池的类型和目标电池的参数,确定虚拟电池的模型,其中,虚拟电池的模型包括理想电池模型和等效电路模型,计算单元202会将当前状态参数作为虚拟电池的输入参数,输入到虚拟电池的模型中。
其中,理想电池模型是用来表征虚拟电池的输出静态特性的,理想电池模型的输出电压等于理想电池模型的开路电压,等效电路模型用来表征虚拟电池的输出动态特性。等效电路模型可以包括以下任意一个模型:零阶的Rint模型、一阶RC的Thevenin模型、PNGV模型、二阶RC模型和GNL模型。
在一个实施例中,控制单元的第二输入端连接于与电池包并联连接的电池包的状态检测端,控制单元还包括确定模块203,确定模块203连接于计算单元202,确定模块203会根据获取的与电池包并联连接的电池包输出的电压或 电流,确定虚拟电池的模型。
不难发现,本实施例为与图2对应的实施例相对应的系统实施例,本实施例可与图2对应的实施例互相配合实施。图2对应的实施例中提到的相关技术细节在本实施例中依然有效,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在图2对应的实施例中。
值得一提的是,本实施例中所涉及到的各模块均为逻辑模块,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请一个实施例涉及一种计算机可读存储介质,存储有计算机程序。计算机程序被处理器执行时实现上述方法实施例。
即,本领域技术人员可以理解,实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种输出控制方法,应用于控制单元,所述控制单元的输出端连接于开关电路的控制端,所述开关电路设置在电池包的供电输出线路上,所述电池包的状态检测端连接于所述控制单元的第一输入端;
    所述方法包括:
    获取所述电池包的当前状态参数;
    将所述当前状态参数输入到预设的虚拟电池的模型中,计算得到用于控制所述开关电路的控制参数,并将所述控制参数发送给所述开关电路;
    其中,所述开关电路在所述控制参数的控制下,输出目标输出电压或目标输出电流。
  2. 根据权利要求1所述的输出控制方法,其中,
    在所述将所述当前状态参数输入到预设的虚拟电池的模型中之前,还包括:
    根据用户输入的目标电池的类型和/或所述目标电池的参数,确定所述虚拟电池的模型。
  3. 根据权利要求2所述的输出控制方法,其中,所述虚拟电池的模型包括理想电池模型和等效电路模型;
    其中,所述理想电池模型用于表征所述虚拟电池的输出静态特性,所述理想电池模型的输出电压等于所述理想电池模型的开路电压,所述等效电路模型用于表征所述虚拟电池的输出动态特性。
  4. 根据权利要求3所述的输出控制方法,其中,所述等效电路模型至少包括以下任意一个模型:零阶的Rint模型、一阶RC的Thevenin模型、PNGV模型、二阶RC模型和GNL模型。
  5. 根据权利要求1至4中任一所述的输出控制方法,其中,所述控制单元的第二输入端连接于与所述电池包并联连接的电池包的状态检测端;
    在所述将所述当前状态参数输入到预设的虚拟电池的模型中之前,还包括:
    根据获取的与所述电池包并联连接的电池包输出的电压或电流,确定所述虚拟电池的模型。
  6. 根据权利要求1至5中任一所述的输出控制方法,其中,所述当前状态参数至少包括以下任意一个或任意组合:所述电池包的输出电压、输出电流、 温度、荷电状态和容量。
  7. 一种控制单元,包括:获取模块和计算模块;所述控制单元连接于开关电路的输出端,所述开关电路设置在电池包的供电输出线路上,所述控制单元还连接于所述电池包的状态检测端;
    所述获取模块用于获取所述电池包的当前状态参数;
    所述计算模块用于将所述当前状态参数输入到预设的虚拟电池的模型中,计算得到用于控制所述开关电路的控制参数,并将所述控制参数发送给所述开关电路;
    其中,所述开关电路在所述控制参数的控制下,输出目标输出电压或目标输出电流。
  8. 根据权利要求7所述的控制单元,其中,所述控制单元还包括确定模块;
    所述确定模块用于根据用户输入的目标电池的类型和所述目标电池的参数,确定所述虚拟电池的模型,所述虚拟电池的模型包括理想电池模型和等效电路模型;
    其中,所述理想电池模型用于表征所述虚拟电池的输出静态特性,所述理想电池模型的输出电压等于所述理想电池模型的开路电压,所述等效电路模型用于表征所述虚拟电池的输出动态特性,所述等效电路模型至少包括以下任意一个模型:零阶的Rint模型、一阶RC的Thevenin模型、PNGV模型、二阶RC模型和GNL模型。
  9. 根据权利要求7所述的控制单元,其中,所述控制单元的第二输入端连接于与所述电池包并联连接的电池包的状态检测端,所述控制单元还包括确定模块;
    所述确定模块用于根据获取的与所述电池包并联连接的电池包输出的电压或电流,确定所述虚拟电池的模型。
  10. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至6中任一所述的输出控制方法。
PCT/CN2022/114846 2021-10-13 2022-08-25 一种输出控制方法、控制单元及计算机可读存储介质 WO2023061062A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111190386.3 2021-10-13
CN202111190386.3A CN113619446B (zh) 2021-10-13 2021-10-13 一种输出控制方法、控制单元及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2023061062A1 true WO2023061062A1 (zh) 2023-04-20

Family

ID=78391245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114846 WO2023061062A1 (zh) 2021-10-13 2022-08-25 一种输出控制方法、控制单元及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113619446B (zh)
WO (1) WO2023061062A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113619446B (zh) * 2021-10-13 2022-03-04 中兴通讯股份有限公司 一种输出控制方法、控制单元及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914745A (zh) * 2012-07-02 2013-02-06 北京工业大学 车用动力电池性能状态的评定方法
CN103926538A (zh) * 2014-05-05 2014-07-16 山东大学 基于aic准则的变阶数rc等效电路模型及实现方法
WO2016002135A1 (ja) * 2014-07-03 2016-01-07 パナソニックIpマネジメント株式会社 鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法
US20170294689A1 (en) * 2014-06-24 2017-10-12 Kabushiki Kaisha Toshiba Battery-system-deterioration control device, and method thereof
JP2020112551A (ja) * 2019-01-11 2020-07-27 マレリ株式会社 システム同定方法及びシステム同定装置
CN112130081A (zh) * 2020-09-24 2020-12-25 闽江学院 一种快速实现铅酸电池soc估计方法
CN112162204A (zh) * 2020-09-29 2021-01-01 深圳市未蓝新能源科技有限公司 一种模拟铅酸电池电气特性的锂电池集成系统与控制方法
CN113619446A (zh) * 2021-10-13 2021-11-09 中兴通讯股份有限公司 一种输出控制方法、控制单元及计算机可读存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0420464D0 (en) * 2004-09-14 2004-10-20 Zentian Ltd A speech recognition circuit and method
JP6787660B2 (ja) * 2015-12-10 2020-11-18 ビークルエナジージャパン株式会社 電池制御装置、動力システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914745A (zh) * 2012-07-02 2013-02-06 北京工业大学 车用动力电池性能状态的评定方法
CN103926538A (zh) * 2014-05-05 2014-07-16 山东大学 基于aic准则的变阶数rc等效电路模型及实现方法
US20170294689A1 (en) * 2014-06-24 2017-10-12 Kabushiki Kaisha Toshiba Battery-system-deterioration control device, and method thereof
WO2016002135A1 (ja) * 2014-07-03 2016-01-07 パナソニックIpマネジメント株式会社 鉛蓄電池の劣化判定装置、鉛蓄電池の劣化判定方法、充電制御装置及び充電制御方法
JP2020112551A (ja) * 2019-01-11 2020-07-27 マレリ株式会社 システム同定方法及びシステム同定装置
CN112130081A (zh) * 2020-09-24 2020-12-25 闽江学院 一种快速实现铅酸电池soc估计方法
CN112162204A (zh) * 2020-09-29 2021-01-01 深圳市未蓝新能源科技有限公司 一种模拟铅酸电池电气特性的锂电池集成系统与控制方法
CN113619446A (zh) * 2021-10-13 2021-11-09 中兴通讯股份有限公司 一种输出控制方法、控制单元及计算机可读存储介质

Also Published As

Publication number Publication date
CN113619446A (zh) 2021-11-09
CN113619446B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
JP5687340B2 (ja) 電池制御装置、電池システム
WO2013094057A1 (ja) 電池制御装置、電池システム
US20210367278A1 (en) Apparatus and method for power supply and electronic device
WO2023061062A1 (zh) 一种输出控制方法、控制单元及计算机可读存储介质
JP2021507669A (ja) バッテリーのセルバランシング
CN115800416B (zh) 储能系统、储能系统的控制方法、计算机设备和存储介质
CN104682490A (zh) 一种控制电池充放电电流的方法和装置
WO2023040642A1 (zh) 一种储能系统及管理方法
CN114598008A (zh) 储能电源装置、储能电源控制方法、装置和单片机
CN111596141A (zh) 一种电动汽车高压系统y电容测试设备及测试方法
CN116545080A (zh) 电池充电控制方法、控制装置和储能系统、存储介质
CN114977423A (zh) 一种基于融合指标的串联锂离子电池组旁路均衡方法
Xu et al. A model based balancing system for battery energy storage systems
Di Fonso et al. Multidimensional machine learning balancing in smart battery packs
CN107947270B (zh) 电压均衡装置和系统
US20210104896A1 (en) Charge/discharge control apparatus and method of energy storage system, and energy charge/discharge control system and method
KR20160077689A (ko) Bms 시뮬레이션 장치
Jiang et al. Centralized recursive optimal scheduling of parallel buck regulated battery modules
TW201815008A (zh) 智慧型快速電池平衡器
Bouchhima et al. Fundamental aspects of reconfigurable batteries: Efficiency enhancement and lifetime extension
CN111969695A (zh) 智能电源系统及其应用方法
CN210468857U (zh) 一种锂电池管理系统
Yeoh et al. Active Cell Balancing with DC/DC Converter for Electric Vehicle
Wang et al. A reinforcement learning‐based energy management strategy for a battery–ultracapacitor electric vehicle considering temperature effects
KR102652410B1 (ko) 재충전 배터리의 상태 측정장치 및 이를 이용한 재충전 배터리의 상태 측정방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880009

Country of ref document: EP

Kind code of ref document: A1