WO2016000419A1 - 半固化片及纤维增强复合泡沫材料 - Google Patents

半固化片及纤维增强复合泡沫材料 Download PDF

Info

Publication number
WO2016000419A1
WO2016000419A1 PCT/CN2014/093671 CN2014093671W WO2016000419A1 WO 2016000419 A1 WO2016000419 A1 WO 2016000419A1 CN 2014093671 W CN2014093671 W CN 2014093671W WO 2016000419 A1 WO2016000419 A1 WO 2016000419A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin
reinforced composite
composite foam
prepreg
Prior art date
Application number
PCT/CN2014/093671
Other languages
English (en)
French (fr)
Inventor
李枝芳
Original Assignee
唐地源
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410309774.2A external-priority patent/CN104045972A/zh
Application filed by 唐地源 filed Critical 唐地源
Priority to ES14896670T priority Critical patent/ES2829505T3/es
Priority to EP14896670.8A priority patent/EP3165569B1/en
Publication of WO2016000419A1 publication Critical patent/WO2016000419A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • C08J2361/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2463/10Epoxy resins modified by unsaturated compounds

Definitions

  • the invention relates to the field of materials, in particular to a polymer composite material, in particular to a fiber reinforced composite foam material and a preparation method thereof.
  • Fiber reinforced composites are also excellent in mechanical properties such as strength and rigidity at the same time, so they are widely used as aircraft components, spacecraft components, automotive components, railway vehicle components, marine components, sports equipment components, and notebook computer casings. Components, and their demand is increasing year by year.
  • the fiber reinforced composite material is obtained by impregnating a reinforcing fiber with a thermosetting matrix resin, drying to obtain a prepreg, and then hot press molding.
  • the choice of matrix resin is critical to the performance of the composite.
  • thermosetting resins epoxy resins, urethane resins, polyester resins and the like which have excellent heat resistance, elastic modulus and chemical resistance, and extremely small curing shrinkage are once the main choices of matrix resins, but these resins are easy to use. Burning, affecting the safety of materials.
  • One of the current main choices is to use formaldehyde-based resins as the main material in order to reduce flammability. Since the formaldehyde-based resin is brittle, it is often modified with an epoxy or the like.
  • a diluting solvent such as an organic solvent and water needs to be added in the preparation of the impregnating resin, and these solvents need to be volatilized as a gas during the hot pressing process, and the hot pressing process itself is not favorable for these. Excession of volatile substances.
  • One method is to immerse the impregnating resin into a part of the reinforcing fibers, so that the unimpregnated portion of the reinforcing fibers inside the prepreg becomes an air passage, so that the trapped air during the lamination and the volatile components from the prepreg are The prepreg is released and can even be processed using only vacuum pumps and ovens without the use of high pressure equipment.
  • the composite obtained by this method exhibits a low impact strength.
  • the prior art is still trying to solve the contradiction: if a high solid content impregnating resin is used, the viscosity of the resin is too high, the impregnation process is difficult to complete smoothly, and due to the excessive application of the resin, although some machinery of the product Strength (such as impact strength, compressive strength) is high, but it is not easy to achieve light weight of the product; if the impregnation process is optimized by introducing a large amount of solvent, it will not only cause environmental pollution and solvent waste, but also with hot pressing The escape of volatile components during the process reduces the mechanical strength of the material (perhaps because of the formation of airways during processing or too little resin).
  • the product Strength such as impact strength, compressive strength
  • An object of the present invention is to solve the problem that the impact strength and the flexural strength of the fiber-reinforced composite material are not ideal due to the selection of the matrix resin in the prior art.
  • Another object of the present invention is to solve the problem of generating a large amount of volatile components in the hot pressing process caused by the selection of the matrix resin in the prior art.
  • Another object of the invention is to introduce renewable resources in the production of fiber reinforced composites to reduce the consumption of petroleum source materials.
  • a fiber-reinforced composite foam prepreg which is impregnated with a reinforcing fiber comprising a formaldehyde-based resin and a foaming agent, which is further dried, and the impregnated material further comprises Acid epoxy resin.
  • the mass ratio of the formaldehyde-based resin to the itaconic acid epoxy resin is from 100:1 to 30, preferably from 100:10 to 30.
  • a raw material for preparing a fiber-reinforced polymer composite foam material comprises a reinforcing fiber and a formaldehyde-based curable resin.
  • the present invention employs a blowing agent having a foaming temperature of between 110 and 250 ° C, preferably greater than 130 ° C, such as 132-180 ° C, preferably in the range of 135-160 ° C.
  • the selected blowing agent does not require an acidic catalyst and foams during the thermoforming process, which shortens the curing time of the resin and also avoids the corrosive nature of the catalyst for downstream applications.
  • the blowing agent is selected from the group consisting of azo compounds, carbonates or bicarbonates, sulfonyl nitriles.
  • the blowing agent is azodicarbonamide, preferably urea.
  • the formaldehyde-based resin is selected from the group consisting of a urea resin, a phenol resin, a furan resin, a resorcinol formaldehyde resin, and a melamine formaldehyde resin, preferably a phenol resin.
  • the dipping material further comprises plastic unexpanded microspheres, the microspheres having an outer
  • the shell is covered with a swelling agent, and the thermoplastic resin is preferably a polystyrene microsphere.
  • a second aspect of the invention also relates to a fiber reinforced composite foam made of the above prepreg.
  • the surface of the fiber reinforced composite foam material may be compounded with other materials as a protective layer or a decorative layer selected from the group consisting of FRP, plastic plates, metal plates, calcium silicate plates, and marble plates.
  • an additional layer of porous material may be composited during the thermoforming process, the layer of porous material being located between at least one side of the final product, or between two layers of semi-finished sheet material.
  • the invention introduces the itaconic acid epoxy resin into the preparation raw material, reduces the viscosity of the dip material, thereby facilitating impregnation of the reinforcing fiber, without introducing a large amount of organic solvent, and reducing the adverse effect of the generation of volatile matter on the material property.
  • itaconic acid epoxy resin enhances the linear structure, the flexibility of the product is improved and the impact strength of the product is improved.
  • the impregnating resin used in the present invention also increases the bending strength of the product due to the superior adhesion.
  • the present invention uses a combination of a formaldehyde-based resin and an itaconic acid epoxy resin to form an impregnating material for impregnating reinforcing fibers to prepare an advanced composite material.
  • Itaconic acid a chemical name called methylene succinic acid
  • methylene succinic acid is a renewable resource that can be obtained inexpensively by industrial fermentation of agricultural and sideline products such as starch, sucrose, molasses, wood chips, and straw.
  • the use thereof for the products of the present invention can reduce the consumption of petroleum resources.
  • Another important advantage of using itaconic acid epoxy resin is its low viscosity and high bonding performance, compared to the case of using bisphenol A phenolic epoxy resin as a reinforcing resin, in the case of a small amount of addition
  • itaconic acid epoxy resin is synthesized from itaconic acid and epichlorohydrin, and the epoxy resin may be selected from the group consisting of glycidyl ether epoxy resin, glycidyl ester epoxy resin, glycidylamine. Epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin. In an exemplary embodiment of the invention, a glycidyl ether epoxy resin, such as a bisphenol A epoxy resin, is used.
  • the amount of itaconic acid is preferably in the range of 20 to 80 parts based on 100 parts by mass of the epoxy resin, and may be, for example, 30, 40, 50, or 60 parts by mass. In an exemplary embodiment of the invention, an amount of 40-50 parts is used.
  • An appropriate amount of a polymerization inhibitor such as hydroquinone is added to the synthesis reaction.
  • itaconic acid, a small amount of a co-solvent and hydroquinone are heated to 85 ° C under a nitrogen atmosphere, benzyl triethyl ammonium chloride is added, and epoxy is added dropwise. Mixture of resin and a small amount of cosolvent Liquid, keeping the temperature between 85-95 °C. After the completion of the dropwise addition, the temperature was raised to 100-105 ° C, and the reaction was further carried out for 2-4.5 h. When the acid value reached the prescribed value, the reaction was immediately stopped. The material is cooled to below 50 ° C, added with ammonia to a pH of 7 to 7.5, and diluted with a certain amount of deionized water to prepare a water-soluble itaconic acid epoxy ester resin solution.
  • 3 to 40 parts of itaconic acid epoxy resin may be used based on 100 parts by mass of the formaldehyde-based resin, typically 10 to 30 parts.
  • the impregnating resin further comprises a foaming agent which is a chemical foaming agent, and the foaming agent is preferably thermally decomposed to generate a gas at a temperature of 110 to 250 ° C, more preferably 135 to 160 ° C.
  • Direct foaming avoids the use of acidic catalysts.
  • Blowing agents suitable for use in the present invention include: azo compounds such as azodicarbonamide which may be treated to lower the foaming temperature to reduce the foaming temperature, such as the addition of urea; carbonate or bicarbonate, Such as sodium bicarbonate; sulfonyl nitriles such as benzenesulfonyl nitrile.
  • the invention adopts a high-temperature foaming agent, on the one hand, avoids the use of an acidic catalyst, and on the other hand, the treatment at a high temperature can shorten the curing time of the resin.
  • the formaldehyde-based curable resin which can be used in the present invention is selected from the group consisting of urea resin, phenol resin, furan resin, resorcinol formaldehyde resin or melamine formaldehyde resin, preferably phenol resin, which has lower flammability.
  • These curable resins may be solvent-based resins or solvent-free resins.
  • the phenolic resin may be a thermoplastic phenolic resin or a thermosetting phenolic resin. When a thermoplastic phenolic resin is used, it is necessary to add a phenolic resin curing agent such as hexamethylenetetramine.
  • the reticulated or sheet-like fibrous material used as the reinforcing fiber is a woven or non-woven structure composed of organic or inorganic fibers (for example, glass fibers, mineral fibers, cellulose fibers, carbon fibers), wherein the mesh or sheet material has pores.
  • the structure is loose so that the impregnation solution can be easily absorbed.
  • the thickness of the fibrous material may be between 0.1 and 30 mm, preferably between 0.3 and 15 mm, which may cause difficulty in dipping.
  • the plurality of single-layered semi-finished sheets and other desired sheets are composited.
  • the weight of the web or sheet of fibrous material is between 20 and 6000 g/m2, preferably between 30 and 3000 g/m2.
  • the fibrous material comprises from 10 to 80%, preferably from 15 to 60% by weight of the semi-finished material.
  • thermoplastic expandable and/or expanded microspheres can be added to the impregnant.
  • the microspheres have an outer shell enclosing a swelling agent or a foaming agent, and the expanding agent or the foaming agent provides expansion power at a certain temperature.
  • the amount of introduction can be flexibly controlled according to the requirements for material flexibility.
  • Suitable microspheres for use in the present invention are expandable and/or expanded thermoplastic microspheres, or mixtures thereof.
  • the microspheres expand by heating above the boiling point of the expanding agent and above the softening point of the polymer shell.
  • Specific examples which can be used to form the outer casing include various thermoplastic resin monomers such as polystyrene.
  • a dipping material which comprises at least the above-mentioned formaldehyde-based curable resin, itaconic acid epoxy resin and a preferred foaming agent.
  • a preferred embodiment further comprises the expanded unexpanded microspheres described above.
  • the ratio of the resin, the foaming agent, and the like in the dipping material can be freely selected.
  • auxiliary ingredients such as stabilizers, fillers, fillers, flame retardants or pigments may also be added if desired. It is also possible to add organic or inorganic particles (for example, floating beads).
  • a dip comprising a formaldehyde-based resin, an itaconic acid epoxy resin, a high temperature foaming agent, and thermoplastic microspheres is applied to the web or sheet material reinforcing fibers, such as a mesh or sheet.
  • the fibrous material is immersed in a container containing the impregnated material, or the impregnated material is sprayed onto the mesh or sheet material to obtain a prepreg, which is then dried to obtain a prepreg, and the prepreg is thermoformed to obtain a finished material.
  • the drying method of semi-finished products can be selected from tunnel kiln, oven, etc., using microwave or infrared, steam or electric, heat-conducting oil heating, etc., and the drying temperature is preferably 90-160 °C.
  • thermoforming may be various.
  • the multilayered semi-finished material is placed in a hot press apparatus for lamination and recombination, and the composite material is subjected to hot pressing treatment.
  • thermoforming may be, for example, compression molding, pultrusion, vacuum forming, or the like.
  • a plate of other materials such as other plastic plates, metal plates, calcium silicate plates, marble plates, etc., is composited on the surface of the sheet material as a protective layer or a decorative layer. Bonding of the layers is achieved during the hot pressing process.
  • Other molding methods can also be used, such as thermoforming in a mold.
  • the thermoforming temperature may be between 130 and 250 ° C, preferably 132 to 180 ° C.
  • the blowing agent is foamed and the thermoplastic particles are expanded to achieve the purpose of weight reduction.
  • additional organic or inorganic composite layers can be laminated to the semi-finished product during the thermoforming process, either on one or both sides of the semi-finished sheet or between two layers of semi-finished sheets. It can also be combined with a foam layer, such as melamine foam, polyurethane foam, phenolic foam, etc., to achieve further weight reduction.
  • a foam layer such as melamine foam, polyurethane foam, phenolic foam, etc.
  • the semi-finished and finished forms of the fiber-reinforced composite foam and the method for producing the same are described above.
  • the product according to the present invention may be a flat or molded profiled product, and the surface form of the sheet may be various and suitable for 3D molding.
  • the acid value is sampled and analyzed at any time, and when the acid value reaches the specified value, the reaction is immediately stopped.
  • the material is cooled to below 50 ° C, added with ammonia to a pH of 7 to 7.5, and diluted with a certain amount of deionized water to prepare a water-soluble itaconic acid epoxy ester resin solution.
  • a glass mat having a weight of 100 g/m 2 is impregnated into a mixed solution containing a phenol resin, expandable thermoplastic particles, itaconic acid epoxy resin, or azodicarbonamide (phenolic resin, expandable polystyrene beads, Itaconic acid epoxy resin, azo weight ratio is 100:5:10:8, the solvent is acetone and water, formulated as a 40% solid solution), after heating in an oven at 100 ° C for 30 minutes, cut to The required dimensions were placed in a hot press and cured at 180 for 5 minutes to obtain the desired sheet.
  • a mixed solution containing a phenol resin, expandable thermoplastic particles, itaconic acid epoxy resin, or azodicarbonamide (phenolic resin, expandable polystyrene beads, Itaconic acid epoxy resin, azo weight ratio is 100:5:10:8, the solvent is acetone and water, formulated as a 40% solid solution
  • a glass mat having a weight of 100 g/m 2 is impregnated into a mixed solution containing a phenol resin, expandable thermoplastic particles, and azodicarbonamide (phenolic resin, expandable polystyrene beads, bisphenol A epoxy resin, The weight ratio of azo is 100:5:10:8, the solvent is ethyl acetate, and the solution is 35% solid solution. After heating in an oven at 100 ° C for 30 minutes, it is cut to the required size and placed in heat. The press was cured at 180 for 5 minutes to obtain the desired sheet.
  • a glass mat having a weight of 100 g/m 2 is impregnated into a mixed solution containing a phenol resin, expandable thermoplastic particles, and azodicarbonamide (the weight ratio of the phenol resin, the expandable polystyrene beads, and the azo is 100) : 5:8, the solvent is acetone and water, formulated into a 40% solid solution), heated in an oven at 100 ° C for 30 minutes, cut to the required size, placed in a hot press, cured at 180 for 5 minutes Get the board you need.
  • the impact strength detection method is based on ISO179; the bending strength detection method is based on GBT1409-2005; the expansion coefficient detection method is based on DIN53752; and the oxygen index detection method is based on GB8924-2005.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明涉及一种纤维增强复合泡沫材料半固化片,其由增强纤维浸渍包含甲醛基树脂和发泡剂的浸渍料,再经干燥而成,所述浸渍料中还包含衣康酸环氧树脂。本发明的产品具有提高的柔韧性、抗弯强度、和抗冲击性。

Description

半固化片及纤维增强复合泡沫材料 技术领域
本发明涉及材料领域,具体涉及高分子复合材料,特别涉及纤维增强复合泡沫材料及其制备方法。
背景技术
纤维增强复合材料在轻质的同时强度和刚性等机械性能也优异,因此其广泛用作飞行器构件、航天器构件、汽车构件、铁路车辆构件、船舶构件、运动器材构件及笔记本电脑用外壳等计算机构件,并且对其需求逐年递增。
纤维增强复合材料是通过将增强纤维浸渍热固性基体树脂,经干燥得到预浸料坯,然后热压成型得到。基体树脂的选择对复合材料的性能至关重要。在热固性树脂中,具有优良的耐热性、弹性模量和耐化学性以及极小化的固化收缩的环氧树脂、聚氨酯树脂、聚酯树脂等一度是基体树脂的主要选择,但是这些树脂易燃,影响材料的安全性。目前的一种主要选择是用甲醛基树脂作为主要材料,目的在于降低可燃性。因为甲醛基树脂脆性大,往往用环氧等对其进行改性。
由于普通环氧树脂粘度大,在配制浸渍树脂时需要添加大量的稀释溶剂,例如有机溶剂和水,在热压过程中,这些溶剂需以气体形式挥发出去,而热压过程本身又不利于这些挥发性物质的溢出。一种做法是将浸渍树脂浸入部分增强纤维,这样,预浸料坯内部的增强纤维未浸渍的部分变为气道,使得层叠过程中截留的空气和来自预浸料坯的挥发性组分从所述预浸料坯中释放出,甚至可以仅使用真空泵和烘箱而无需使用高压设备进行加工。然而,此方法获得的复合材料呈现出较低的抗冲击强度。
因此,现有技术中还在试图解决这样的矛盾:若使用高固含量的浸渍树脂,则树脂粘度过高,浸渍工艺较难顺利完成,而且由于施加的树脂过多,虽然产品的某些机械强度(例如抗冲击强度,抗压强度)较高,但是,不易实现产品的轻质化;若通过引入大量溶剂来优化浸渍工艺,则不仅会造成环境污染和溶剂浪费,而且伴随着热压 过程中挥发性成分的逸出而降低了材料的机械强度(或许是因为加工过程中形成气道或者附着的树脂过少)。
因此,现有技术还需要找到这样的用于纤维增强复合材料的基体树脂,其具有足够低的粘度和足够强的粘接力,使得浸渍树脂易于浸渍到增强纤维上而无需引入大量溶剂,并且所获得的复合材料具有理想的机械强度。
发明内容
本发明的一个目的是解决现有技术中因基体树脂的选择而引起的纤维增强复合材料冲击强度和抗弯强度不理想的问题。
本发明的另一目的是解决现有技术中因基体树脂的选择而引起的热压过程中产生大量挥发性成分的问题。
本发明的另一目的是在纤维增强复合材料的生产中引入可再生资源而减少对石油源材料的消耗。
根据本发明的第一方面,提供一种纤维增强复合泡沫材料半固化片,其由增强纤维浸渍包含甲醛基树脂和发泡剂的浸渍料,再经干燥而成,所述浸渍料中还包含衣康酸环氧树脂。
在典型的实施方式中,所述甲醛基树脂与衣康酸环氧树脂的质量比为100:1-30,优选为100:10-30。
根据本发明,制备纤维增强高分子复合泡沫材料的原料包含增强纤维和甲醛基可固化树脂。本发明采用发泡温度在110-250℃之间的发泡剂,其中优选大于130℃,例如132-180℃,其中优选135-160℃的范围。这样,所选的发泡剂不需要酸性催化剂,在热成型过程中发泡,既缩短了树脂的固化时间,也避免催化剂对下游应用的腐蚀性。
在本发明的具体实施方式中,所述发泡剂选自偶氮化合物、碳酸盐或碳酸氢盐、磺酰腈类。
在本发明的优选实施方式中,所述发泡剂为偶氮二甲酰胺,优选加入尿素。
在本发明的具体实施方式中,所述甲醛基树脂选自由脲醛树脂、酚醛树脂、呋喃树脂、间苯二酚甲醛树脂和三聚氰胺甲醛树脂构成的组,优选酚醛树脂。
在本发明的具体实施方式中,所述浸渍料还包含塑性未膨胀微球,该微球具有外 壳,壳内包着膨胀剂,热塑树脂优选聚苯乙烯微球。
本发明的第二方面还涉及由上述半固化片制成的纤维增强复合泡沫材料。
进一步地,该纤维增强复合泡沫材料的表面还可复合有其他材料作为保护层或者装饰层,其选自玻璃钢、塑料板、金属板、硅钙板、和大理石板等。
进一步地,在热成型过程中还可以复合另外的多孔材料层,该多孔材料层位于所述终产品的至少一面,或者两层半成品板材之间。
本发明由于在制备原料中引入了衣康酸环氧树脂,降低了浸渍料的粘度,从而有利于浸渍增强纤维,无需引入大量有机溶剂,减少了挥发分的产生对材料性能的不利影响。另外,由于衣康酸环氧树脂加强了线性结构,提高了产品的柔韧性,提高了产品的冲击强度。同时本发明使用的浸渍树脂由于超强的粘结力也提高了产品的弯曲强度。
具体实施方式
本发明首次使用甲醛基树脂和衣康酸环氧树脂的组合形成浸渍料,用于浸渍增强纤维来制备先进复合材料。衣康酸化学名为亚甲基丁二酸,是一种可再生资源,可以通过工业发酵淀粉、蔗糖、糖蜜、木屑、稻草等农副产品而廉价地获得。将其用于本发明的产品可以降低对石油资源的消耗。使用衣康酸环氧树脂的其他重要优势是其具有很低的粘度和较高粘结性能,相对于使用双酚A酚醛环氧树脂作为增强树脂的情况,在添加量少的情况下却获得了较高的机械强度,例如抗弯强度和抗冲击强度,同时降低了溶剂的加入量,对成本和环境保护都产生了积极的作用。
本发明中,衣康酸环氧树脂是由衣康酸与环氧氯丙烷合成得到,其中的环氧树脂可以选自缩水甘油醚类环氧树脂、缩水甘油酯类环氧树脂、缩水甘油胺类环氧树脂、线型脂肪族类环氧树脂、脂环族类环氧树脂。在本发明的一种典型实施方式中,使用缩水甘油醚类环氧树脂,例如双酚A环氧树脂。衣康酸的用量基于100质量份环氧树脂优选在20-80份的范围,例如可以为30、40、50、60质量份的量。在本发明的典型实施例中,使用40-50份的量。合成反应中加入适量阻聚剂,例如对苯二酚。
在本发明的一种典型实施方式中,在氮气氛下,将衣康酸、少量助溶剂和对苯二酚加热升温至85℃,加入苄基三乙基氯化铵,同时滴加环氧树脂和少量助溶剂的混合 液,保持温度在85-95℃之间。滴加完毕后,升温至100-105℃,再反应2-4.5h,当酸值达到规定值时,立即停止反应。冷却物料至50℃以下,加入氨水中和至PH值为7~7.5,并用一定量的去离子水稀释,即制得水溶性衣康酸环氧酯树脂溶液。
在配制用于本发明的浸渍料时,基于100质量份甲醛基树脂,可以使用3-40份的衣康酸环氧树脂,典型地使用10-30份。
本发明的一种实施方式中,浸渍树脂中还包含发泡剂,其为化学发泡剂,该发泡剂优选在110-250℃、更优选135-160℃的的温度热分解产生气体从而直接发泡,避免了酸性催化剂的使用。适用于本发明的发泡剂包括:偶氮化合物,如偶氮二甲酰胺,为了降低发泡温度,可以对其进行处理以降低发泡温度,如加入尿素;碳酸盐或碳酸氢盐,如碳酸氢钠;磺酰腈类,如苯磺酰腈。本发明采用高温发泡剂,一方面避免了酸性催化剂的使用,另一方面,高温下处理可以缩短树脂的固化时间。
可用于本发明的甲醛基可固化树脂选自由脲醛树脂、酚醛树脂、呋喃树脂、间苯二酚甲醛树脂或三聚氰胺甲醛树脂构成的组,优选酚醛树脂,其具有更低的可燃性。这些可固化树脂可以是溶剂型树脂或无溶剂树脂。其中酚醛树脂可以是热塑性酚醛树脂树脂,也可以是热固性酚醛树脂。如使用热塑性酚醛树脂时,需要加入酚醛树脂固化剂,如六次甲基四胺。
用作增强纤维的网状或片状纤维材料是织物或非织物结构,由有机或无机纤维(例玻璃纤维、矿物纤维、纤维素纤维、碳纤维)组成,其中网状或片状材料具有孔隙,结构疏松,这样可容易吸收浸渍溶液。为了便于干燥和处理增强纤维浸渍树脂后的单层半成品,纤维材料的厚度可以在0.1-30mm之间,优选0.3-15mm之间,过厚会造成浸胶困难。在利用热成型工艺生产板材的过程中,将上述多个单层半成品片材以及其他所需板材进行复合。网状或片状纤维材料的重量在20-6000g/㎡之间,优选区间在30-3000g/㎡之间。纤维材料占半成品材料重量的10-80%,优选15-60%。
如果需要提高本发明的复合泡沫材料的柔韧性,可以在浸渍料中加入热塑性可膨胀和/或膨胀微球。该微球具有外壳,壳内包着膨胀剂或者发泡剂,膨胀剂或者发泡剂在一定的温度下提供膨胀动力。引入量可以根据对材料柔韧性的要求灵活掌握。用于本发明的合适的微球是可膨胀的和/或膨胀的热塑性微球,或其混合物。该微球通过加热到膨胀剂的沸点以上和聚合物壳的软化点以上而膨胀。可用于形成外壳的具体实例包括聚苯乙烯等各种热塑树脂单体。
为了制备本发明的产品,首先制备浸渍料,该浸渍料至少包括上述甲醛基可固化树脂、衣康酸环氧树脂和优选的发泡剂。优选的方案还包含上述膨胀未膨胀微球。针对最终产品的需求,可以自由选择浸渍料中树脂、发泡剂等的比率。
如果需要的话,还可以加入其它辅助成分,例如稳定剂、填充剂、填料、阻燃剂或颜料。也可以加入有机或无机颗粒(例如漂珠)。
在优选的实施方式中,将包含甲醛基树脂、衣康酸环氧树脂、高温发泡剂和热塑微球的浸渍料施加到网状或片状材料增强纤维上,例如将网状或片状纤维材料浸没到装有浸渍料的容器中,或将浸渍料喷到网状或片状材料上,得到预浸料坯,再经过干燥得到半固化片,半固化片经过热成型得到成品材料。
半成品干燥方式可以选用隧道窑、烘箱等,使用微波或红外、蒸汽或电、导热油加热等方式,干燥温度优选为90-160℃。
在本发明中,热成型的方法可以是多种,典型的方式是将多层半成品材料放入到热压设备当中进行层压复合,并对复合材料进行热压处理。可替代地,热成型可以例如是模压成型、拉挤成型、真空成型等。可选地,在板材的表面复合其他材质的板材,例如其他塑料板、金属板、硅钙板、大理石板等,以作为保护层或者装饰层。在热压过程中实现各层的粘接。其他的成型方式也可以使用,例如模具中加热成型。热成型温度可以在130-250℃之间,优选地是132-180℃,例如,在此过程中,发泡剂发泡、热塑颗粒膨胀,从而实现减重的目的。
如果需要,热成型过程中可以将另外的有机或无机复合层复合到半成品上,可以复合在半成品板材的单面或双面,也可以夹到两层半成品板材之间。还可以与泡沫层复合,例如三聚氰胺泡沫、聚氨酯泡沫、酚醛泡沫等,达到进一步减重的目的。以上介绍了纤维增强复合泡沫材料的半成品和成品形态以及它们的生产方法,根据本发明的产品可以是平面的或模压异形产品,板材表面形式可以多种多样,适合3D成型。
如果需要,可以实现不同密度层的搭配等.
实施例1
在装有搅拌器、回流冷凝管、温度计和氮气通入口的四口烧瓶中,加入衣康酸、助溶剂和对苯二酚,加热升温至85℃,通入氮气,加入苄基三乙基氯化铵,同时滴加环氧树脂和少量助溶剂的混合液,保持温度在85-95℃之间,1-1.5h内滴完。滴加完毕 后,升温至100-105℃,再反应2-4.5h,反应过程中,随时取样分析酸值,当酸值达到规定值时,立即停止反应。冷却物料至50℃以下,加入氨水中和至PH值为7~7.5,并用一定量的去离子水稀释,制得水溶性衣康酸环氧酯树脂溶液。
实施例2
将重量为100g/㎡的玻璃毡浸渍到含酚醛树脂、可膨胀热塑颗粒、衣康酸环氧树脂、偶氮二甲酰胺的混合溶液中(酚醛树脂、可发性聚苯乙烯珠粒、衣康酸环氧树脂、偶氮的重量比是100:5:10:8,溶剂为丙酮和水,配成固含为40%的溶液),在100℃烘箱中加热30分钟后,裁剪到要求的尺寸,放入热压机,在180下固化5分钟得到所需的板材。
比较例1
将重量为100g/㎡的玻璃毡浸渍到含酚醛树脂、可膨胀热塑颗粒、偶氮二甲酰胺的混合溶液中(酚醛树脂、可发性聚苯乙烯珠粒、双酚A环氧树脂、偶氮的重量比是100:5:10:8,溶剂为乙酸乙酯,配成固含为35%的溶液),在100℃烘箱中加热30分钟后,裁剪到要求的尺寸,放入热压机,在180下固化5分钟得到所需的板材。
比较例2
将重量为100g/㎡的玻璃毡浸渍到含酚醛树脂、可膨胀热塑颗粒、偶氮二甲酰胺的混合溶液中(酚醛树脂、可发性聚苯乙烯珠粒、偶氮的重量比是100:5:8,溶剂为丙酮和水,配成固含为40%的溶液),在100℃烘箱中加热30分钟后,裁剪到要求的尺寸,放入热压机,在180下固化5分钟得到所需的板材。
表1.各试验例所得样品的性能参数
Figure PCTCN2014093671-appb-000001
表1中,冲击强度检测方法依据ISO179;弯曲强度检测方法依据GBT1409-2005;膨胀系数检测方法依据DIN53752;氧指数检测方法依据GB8924-2005。

Claims (9)

  1. 一种纤维增强复合泡沫材料半固化片,其由增强纤维浸渍包含甲醛基树脂和发泡剂的浸渍料,再经干燥而成,所述浸渍料中还包含衣康酸环氧树脂。
  2. 权利要求1所述的纤维增强复合泡沫材料半固化片,其中,所述甲醛基树脂与衣康酸环氧树脂的质量比为100:1-30。
  3. 权利要求1所述的纤维增强复合泡沫材料半固化片,其中,所述甲醛基树脂为酚醛树脂或三聚氰胺树脂。
  4. 权利要求1所述的纤维增强复合泡沫材料半固化片,其中的发泡剂选自偶氮化合物、碳酸盐或碳酸氢盐、和磺酰腈类构成的组。
  5. 权利要求1所述的纤维增强复合泡沫材料半固化片,其中,所述浸渍料还包含塑性可膨胀微球,该微球具有外壳,壳内包着膨胀剂,外壳由热塑材料形成。
  6. 权利要求1所述的纤维增强复合泡沫材料半固化片,其中,所述浸渍料以喷淋或浸渍或辊涂的方式进入纤维增强层。
  7. 权利要求1所述的纤维增强复合泡沫材料半固化片,其中,所述发泡剂的发泡温度为120-160℃。
  8. 一种纤维增强复合泡沫材料,其由权利要求1至7任一项所述的半固化片经过热成型制成。
  9. 权利要求8所述的纤维增强复合泡沫材料,其表面还复合有其他材质的板材作为保护层或者装饰层,包括橡胶片、塑料板、金属板、硅钙板、大理石板、浸渍过树脂的玻纤布或棉布及发泡材料。
PCT/CN2014/093671 2014-07-01 2014-12-12 半固化片及纤维增强复合泡沫材料 WO2016000419A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ES14896670T ES2829505T3 (es) 2014-07-01 2014-12-12 Un preimpregnado de un material de espuma compuesto reforzado con fibras
EP14896670.8A EP3165569B1 (en) 2014-07-01 2014-12-12 Prepreg and fibre-reinforced composite foam material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410309774.2A CN104045972A (zh) 2013-10-01 2014-07-01 半固化片及纤维增强复合泡沫材料
CN201410309774.2 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016000419A1 true WO2016000419A1 (zh) 2016-01-07

Family

ID=52876098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093671 WO2016000419A1 (zh) 2014-07-01 2014-12-12 半固化片及纤维增强复合泡沫材料

Country Status (4)

Country Link
EP (1) EP3165569B1 (zh)
CN (1) CN104530637B (zh)
ES (1) ES2829505T3 (zh)
WO (1) WO2016000419A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746738A (zh) * 2019-10-28 2020-02-04 株洲时代新材料科技股份有限公司 一种酚醛树脂发泡预浸料、其制备方法及应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106317770A (zh) * 2015-07-08 2017-01-11 深圳光启创新技术有限公司 预浸料、其制备方法及复合材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606757A (ja) * 1983-06-24 1985-01-14 Sumitomo Electric Ind Ltd 塗膜の形成方法
CN102382079A (zh) * 2011-08-25 2012-03-21 中国科学院宁波材料技术与工程研究所 一种衣康酸缩水甘油酯及其制备方法和应用
CN102718945A (zh) * 2012-06-12 2012-10-10 中国科学院宁波材料技术与工程研究所 衣康酸基环氧树脂组合物及制备固化物的方法
CN103160067A (zh) * 2011-12-16 2013-06-19 常熟市发东塑业有限公司 一种环氧树脂改性的酚醛模塑料
CN103304949A (zh) * 2013-06-08 2013-09-18 苏州生益科技有限公司 一种热固性树脂组合物及使用其制作的半固化片及层压板
CN104045972A (zh) * 2013-10-01 2014-09-17 唐地源 半固化片及纤维增强复合泡沫材料

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE0403056D0 (sv) * 2004-12-16 2004-12-16 Recore Technologies Ab Polymert skumkompositmaterial samt förfarande för framställning därav
CN102838844B (zh) * 2012-09-21 2014-07-02 中国航空工业集团公司北京航空材料研究院 一种植物纤维增强生物质树脂基泡沫板材及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606757A (ja) * 1983-06-24 1985-01-14 Sumitomo Electric Ind Ltd 塗膜の形成方法
CN102382079A (zh) * 2011-08-25 2012-03-21 中国科学院宁波材料技术与工程研究所 一种衣康酸缩水甘油酯及其制备方法和应用
CN103160067A (zh) * 2011-12-16 2013-06-19 常熟市发东塑业有限公司 一种环氧树脂改性的酚醛模塑料
CN102718945A (zh) * 2012-06-12 2012-10-10 中国科学院宁波材料技术与工程研究所 衣康酸基环氧树脂组合物及制备固化物的方法
CN103304949A (zh) * 2013-06-08 2013-09-18 苏州生益科技有限公司 一种热固性树脂组合物及使用其制作的半固化片及层压板
CN104045972A (zh) * 2013-10-01 2014-09-17 唐地源 半固化片及纤维增强复合泡沫材料

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110746738A (zh) * 2019-10-28 2020-02-04 株洲时代新材料科技股份有限公司 一种酚醛树脂发泡预浸料、其制备方法及应用
CN110746738B (zh) * 2019-10-28 2023-10-20 株洲时代新材料科技股份有限公司 一种酚醛树脂发泡预浸料、其制备方法及应用

Also Published As

Publication number Publication date
ES2829505T3 (es) 2021-06-01
CN104530637A (zh) 2015-04-22
EP3165569B1 (en) 2020-09-16
EP3165569A1 (en) 2017-05-10
EP3165569A4 (en) 2018-03-28
CN104530637B (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
JP5587202B2 (ja) 発泡可能な反応性樹脂を含む支持材の成形体
JP7187312B2 (ja) 補強されたエーロゲル複合物を含む改善された積層体
CN102731960B (zh) 一种高韧性阻燃酚醛预浸料复合材料的制备方法
JP2011093175A (ja) 繊維強化成形体及びその製造方法
CN108705829A (zh) 一种轻质环氧泡沫基夹芯板及其制备方法
CN104761897B (zh) 一种改性pbo纤维/氰酸酯树脂透波复合材料及其制备方法
RU2011133035A (ru) Усовершенствованные композитные материалы
CN106433016B (zh) 一种改性增强型保温隔声酚醛泡沫板的制备方法
CN106995582A (zh) 一种含苯并噁嗪和环氧树脂共混物的可固化树脂组合物及其应用
CN103694625A (zh) 一种改性酚醛泡沫体
US20190241713A1 (en) Method of recycling phenol resin-containing materials, especially phenol resin-based fibre composite materials
WO2016000419A1 (zh) 半固化片及纤维增强复合泡沫材料
CN106564263B (zh) 一种超声融合薄膜及其制备方法
US20110237145A1 (en) Foams and moldings of support materials comprising foamable reactive resins
JP2020513351A (ja) プラスチック複合材製のコア部材およびその製造方法
JPH0659729B2 (ja) 複合材料およびその製造法
WO2016026217A1 (zh) 一种阻燃轻质结构芯及其制备方法
KR101459717B1 (ko) 불연성 및 단열성이 우수한 섬유강화플라스틱의 제조방법
CN104045972A (zh) 半固化片及纤维增强复合泡沫材料
KR101698178B1 (ko) 난연성 섬유강화 플라스틱의 제조방법 및 이에 의해 제조된 난연성 섬유강화 플라스틱
CN102250428A (zh) 环氧树脂改性废弃聚苯乙烯-丙烯腈塑料及再生板材的制备方法
KR20100104985A (ko) 방화문 및 그 제조방법
Meekum et al. Designing the wood foam core for manufacturing of lightweight sandwich structure engineered wood
JP2000096737A (ja) 耐火部材及びその製造方法
KR20150056918A (ko) 폐단열재를 이용한 단열재 제조방법 및 이에 따른 단열재

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014896670

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014896670

Country of ref document: EP