WO2016000334A1 - 一种有机发光二极管、阵列基板及其制备方法、显示装置 - Google Patents

一种有机发光二极管、阵列基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2016000334A1
WO2016000334A1 PCT/CN2014/087636 CN2014087636W WO2016000334A1 WO 2016000334 A1 WO2016000334 A1 WO 2016000334A1 CN 2014087636 W CN2014087636 W CN 2014087636W WO 2016000334 A1 WO2016000334 A1 WO 2016000334A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
sub
organic light
layer
light emitting
Prior art date
Application number
PCT/CN2014/087636
Other languages
English (en)
French (fr)
Inventor
李坤
张智钦
高永益
白峰
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2016000334A1 publication Critical patent/WO2016000334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to an organic light emitting diode, an array substrate, a method for fabricating the same, and a display device.
  • OLED Organic Light Emitting Diode
  • the main structure of the OLED display is that an anode and a cathode are disposed on both sides of the organic light-emitting layer (the detailed structure may further include an electron/hole transport layer, an injection layer or the like), and the organic light-emitting layer is induced by electrical signals applied to the anode and the cathode. Glowing.
  • the present disclosure provides an organic light emitting diode, an array substrate, a method for fabricating the same, and a display device to improve light utilization efficiency of the organic light emitting layer.
  • an organic light emitting diode including: a first electrode, an organic light emitting layer, and a second electrode, the first electrode including light for causing light emitted by the organic light emitting layer to resonate Resonant layer structure.
  • the optical resonant layer structure comprises: a first sub-electrode made of an opaque reflective conductive material, and a second sub-electrode made of a transparent conductive material
  • the first sub-electrode and the second sub-electrode reflect light emitted by the organic light-emitting layer to produce The optical path difference of the raw reflected light satisfies the interference construct condition.
  • the film thickness of the second sub-electrode is adapted to the wavelength of the light emitted by the corresponding organic light-emitting layer.
  • the present disclosure also provides an organic light emitting diode array substrate, including a substrate and a thin film transistor and an organic light emitting diode disposed on the substrate, the organic light emitting diode being the organic light emitting diode, the first electrode of the organic light emitting diode and the The source or drain of the thin film transistor is electrically connected.
  • the array substrate further includes: a passivation layer between the thin film transistor and the organic light emitting diode, the first electrode passing through a via hole disposed in the passivation layer and the thin film transistor The source or drain is electrically connected.
  • the first electrode includes a third sub-electrode, a first sub-electrode and a second sub-electrode in a direction away from the thin film transistor, wherein the third sub-electrode is disposed on the blunt
  • the via of the layer is electrically connected to the source or the drain of the thin film transistor, and the first sub-electrode and the second sub-electrode constitute an optical resonant layer structure, and the first sub-electrode is made of an opaque reflective conductive material.
  • the second sub-electrode is made of a transparent conductive material, and the optical path difference of the reflected light generated by the first sub-electrode and the second sub-electrode reflecting the light emitted by the organic light-emitting layer satisfies the interference construct condition.
  • the array substrate further includes: a planarization layer for filling the via holes.
  • the planarization layer is disposed only at the via location.
  • the planarization layer is made of a conductive material.
  • the present disclosure also provides a method for fabricating an organic light emitting diode array substrate, including:
  • an organic light emitting diode on a substrate on which the thin film transistor is formed, wherein the organic light emitting diode includes a first electrode, an organic light emitting layer, and a second electrode, the first electrode including a surface for causing the organic light emitting layer to emit The light generates a resonant optical resonant layer structure, and the first electrode is electrically connected to a source or a drain of the thin film transistor.
  • the method specifically includes:
  • the organic light emitting diode includes a first electrode, an organic light emission in sequence in a direction away from the thin film transistor a layer and a second electrode, the first electrode including an optical resonant layer structure for causing light emitted by the organic light emitting layer to resonate, the first electrode passing through a via formed in the passivation layer and the The source or drain of the thin film transistor is electrically connected.
  • forming a planarization layer for filling the via hole in the via hole specifically includes:
  • planarization layer for filling the via hole in the via hole, the planarization layer being made of a conductive material
  • first sub-electrode and a second sub-electrode of the first electrode Forming a first sub-electrode and a second sub-electrode of the first electrode on a substrate on which the planarization layer is formed, the first sub-electrode and the second sub-electrode composing the optical resonant layer structure,
  • the first sub-electrode is made of an opaque reflective conductive material
  • the first sub-electrode is electrically connected to a source or a drain of the thin film transistor through the planarization layer
  • the second sub-electrode is transparently conductive
  • the optical path difference of the reflected light generated by the first sub-electrode and the second sub-electrode reflecting the light emitted by the organic light-emitting layer satisfies an interference construct condition.
  • forming a planarization layer for filling the via hole in the via hole specifically includes:
  • first sub-electrode and a second sub-electrode of the first electrode Forming a first sub-electrode and a second sub-electrode of the first electrode on a substrate on which the planarization layer is formed, the first sub-electrode and the second sub-electrode composing the optical resonant layer structure,
  • the first sub-electrode is made of an opaque reflective conductive material
  • the second sub-electrode is made of a transparent conductive material
  • the first sub-electrode and the second sub-electrode reflect light emitted by the organic light-emitting layer.
  • the resulting optical path difference of the reflected light satisfies the interference constructive condition.
  • the first sub-electrode and the second sub-electrode are formed by one patterning process.
  • the present disclosure also provides an organic light emitting diode display device including the above organic light emitting diode Array substrate.
  • the optical resonant layer structure of the organic light emitting diode can enhance the interference enhancement of the light emitted by the organic light emitting layer, increase the intensity of the light observed in the display area, and improve the light utilization efficiency of the organic display.
  • FIG. 1 is a schematic diagram of an optical path in an organic light emitting diode of the present embodiment.
  • FIG. 2 is a schematic structural diagram of an OLED array substrate according to an embodiment of the present disclosure.
  • FIG. 3 is another schematic structural diagram of an OLED array substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic view of an optical path in another organic light emitting diode of the embodiment.
  • FIG. 5 is a schematic flow chart of a method for fabricating an OLED array substrate according to an embodiment of the present disclosure.
  • An embodiment of the present disclosure provides an organic light emitting diode including a first electrode, an organic light emitting layer, and a second electrode, in order to solve the problem of low light utilization rate of the organic light emitting layer in the structure of the existing OLED.
  • An electrode includes an optical resonant layer structure for causing light emitted by the organic light emitting layer to resonate. Through the structure of the optical resonant layer, the light emitted by the organic light-emitting layer can be enhanced by interference, the intensity of light observed in the display area can be increased, and the light utilization efficiency of the organic display can be improved.
  • the first electrode may include: a first sub-electrode and a second sub-electrode, the first sub-electrode and the second sub-electrode composing an optical resonance for causing light emitted by the organic luminescent layer to resonate a layer structure, the first sub-electrode is made of an opaque reflective conductive material, the second sub-electrode is made of a transparent conductive material, and the first sub-electrode and the second sub-electrode are emitted to the organic light-emitting layer The optical path difference of the reflected light generated by the reflection of the light satisfies the interference constructive condition.
  • FIG. 1 is a schematic diagram of an optical path in an organic light emitting diode according to an embodiment of the present invention.
  • the incident light is arranged separately from the optical path of its corresponding reflected light for clarity of display.
  • a portion (A0) of light emitted from the organic light-emitting layer 113 toward the inside of the display panel is reflected at the interface between the second sub-electrode 112 and the organic light-emitting layer 113 (A1), and the other portion (A2) Entering the inside of the second sub-electrode 112 and performing total reflection (A3) at the interface between the first sub-electrode 111 and the second sub-electrode 112, by adjusting the film thickness of the second sub-electrode 112, an effective optical resonant layer structure can be formed.
  • the optical path difference of the two parts of the reflected light (A1 and A3) satisfies the interference constructive condition, and acts to enhance the interference of the light emitted by the organic light-emitting layer, increase the luminous intensity observed in the display area, and improve the light utilization efficiency of the organic display. .
  • the film thickness of the second sub-electrodes required is also different.
  • a second sub-electrode corresponding to different film thicknesses required by different sub-pixels may be prepared by a photolithography process or a multi-layer overlapping manner, that is, the film thickness of the second sub-electrode and the corresponding organic
  • the wavelength of the light emitted by the luminescent layer is adapted.
  • the organic light-emitting layer is not limited to red, green, and blue light, and may also be yellow, pink, blue, or the like.
  • the first sub-electrode should have a light reflection effect, and a metal material with good conductivity and high reflectivity, such as silver, aluminum, or the like.
  • the second sub-electrode is made of a transparent conductive material, such as indium tin oxide or the like.
  • the optical resonant layer structure may be in other forms as long as the optical path difference of the reflected light generated by reflecting the light emitted from the organic light-emitting layer satisfies the interference construct length condition.
  • An embodiment of the present disclosure further provides an OLED array substrate, including a substrate and a thin film transistor and an organic light emitting diode disposed on the substrate, the organic light emitting diode sequentially including: a first electrode and an organic light in a direction away from the thin film transistor a layer and a second electrode, the first electrode including an optical resonant layer structure for causing light emitted by the organic light emitting layer to resonate, the first electrode being electrically connected to a source or a drain of the thin film transistor.
  • the light emitted by the organic light-emitting layer can be enhanced by interference, the intensity of light observed in the display area can be increased, and the light utilization efficiency of the organic display can be improved.
  • the organic light emitting diode in the embodiment of the present disclosure has the same structure and principle as the organic light emitting diode in the above embodiment.
  • the optical resonant layer structure includes, in a direction away from the thin film transistor, a first sub-electrode and a second sub-electrode, and the first sub-electrode and the second sub-electrode are configured to make the organic
  • the light emitted by the luminescent layer generates a resonant optical resonant layer structure
  • the first sub-electrode is made of an opaque reflective conductive material
  • the second sub-electrode is made of a transparent conductive material
  • the first sub-electrode and the The optical path difference of the reflected light generated by the two sub-electrodes reflecting the light emitted from the organic light-emitting layer satisfies the interference constructive condition.
  • a film thickness of the second sub-electrode is matched with a wavelength of light emitted by the corresponding organic light-emitting layer.
  • the array substrate may further include: a passivation layer between the thin film transistor and the organic light emitting diode.
  • a via hole exposing a source or a drain is formed on the passivation layer above the source or the drain, and the pixel electrode (ie, the first electrode) is overlapped in the via region to achieve Connected to the source or drain to pass the display data signal from the source or drain to the pixel electrode, The luminescence of the organic luminescent layer is achieved to achieve a display effect. That is, the first electrode is electrically connected to a source or a drain of the thin film transistor through a via hole provided in the passivation layer.
  • the first electrode is a two-layer conductive pixel layer structure, that is, only includes: the first sub-electrode and the second sub-electrode, and a source or a drain of the thin film transistor is disposed in the passivation A via of the layer is electrically connected to the first sub-electrode.
  • the first electrode may further be a three-layer conductive pixel layer structure, and further includes a third sub-electrode in addition to the first sub-electrode and the second sub-electrode, wherein the third electrode a sub-electrode is located on a side of the first sub-electrode that is away from the second sub-electrode, and a source or a drain of the thin film transistor is electrically connected to the third sub-electrode through a via hole disposed in the passivation layer connection.
  • a via formed on the passivation layer above the source or drain that exposes the source or drain layer has a depressed topography that affects the flatness of the upper film layer.
  • the pixel defining layer above the pixel electrode ie, the first electrode
  • the pixel defining layer above the pixel electrode may be formed in the via region. Since the organic light-emitting layer cannot be formed in the via region, the area of the light-emitting area is reduced and the aperture ratio is reduced in the case where the pixel area is fixed, which is disadvantageous for the preparation of the high-resolution display screen.
  • the array substrate of the embodiment of the present disclosure may further include: a planarization layer for filling the via holes.
  • the via hole formed on the passivation layer exposing the source or drain layer can be filled, so that the via region is in the same planar layer as the peripheral region thereof, so that the organic light emitting layer can be disposed in the via hole
  • the area of the light-emitting area is increased in the case where the pixel area is fixed, and the aperture ratio is improved, which is advantageous for the preparation of a high-resolution display screen.
  • the aperture of the via can be increased to increase the reliability of the process.
  • the planarization layer is disposed only at the via location to ensure that the thickness of the array substrate is not increased as much as possible.
  • the planarization layer may be made of a conductive material or an insulating material.
  • the planarization layer may be made of a conductive material, and the first sub-electrode of the first electrode passes through the planarization layer and the source of the thin film transistor or The drain is electrically connected.
  • the planarization layer can be electrically conductive Made of material, it can also be made of insulating material.
  • the planarization layer is made of an insulating material, the third sub-electrode of the first electrode is located below the planarization layer in the via region, and thus may be electrically connected to the source or drain of the thin film transistor through the via hole.
  • the planarization layer is made of a conductive material to optimize the signal connection effect of the via region.
  • the first sub-electrode is a thick opaque reflective conductive material layer, which provides a subsequent process for the second sub-electrode and the organic light-emitting layer.
  • a good flat interface avoids the occurrence of an open circuit in the stepped portion of the via;
  • the second sub-electrode is a thin layer of transparent conductive material to ensure minimal absorption of light from the organic light-emitting layer.
  • the structure of the OLED array substrate of the present disclosure will be described below by way of example.
  • FIG. 2 is a schematic structural diagram of an OLED array substrate according to an embodiment of the present disclosure.
  • the OLED array substrate includes a substrate 101, a buffer layer 102, a thin film transistor, a passivation layer 108, a planarization layer 110, an organic light emitting diode, and a display pixel defining layer 115.
  • the substrate 101 may be a glass substrate or other types of substrate substrates.
  • the substrate 101 may be a hard material or a flexible material.
  • the buffer layer 102 functions to prevent leakage of metal ions in the glass substrate, cause leakage current of the thin film transistor, and improve the quality of the film formation interface of the subsequent semiconductor layer.
  • the passivation layer 108 acts as an insulator and a flat.
  • the display pixel defining layer 115 functions to define an organic light emitting display region.
  • the planarization layer 110 is filled in a via hole opened in the passivation layer 108 for exposing the source/drain 107 of the thin film transistor.
  • the thin film transistor includes a semiconductor layer 103, a gate insulating layer 104, a gate electrode 105, an insulating layer 106, and source/drain electrodes 107.
  • the organic light emitting diodes sequentially include a first electrode, an organic light emitting layer 113, and a second electrode 114 in a direction away from the thin film transistor.
  • the first electrode of the organic light emitting diode has a two-layer conductive pixel layer structure.
  • the first electrode includes, in a direction away from the thin film transistor, a first sub-electrode 111 and a second sub-electrode 112, and the first sub-electrode 111 and the second sub-electrode 112 are configured to cause the organic light-emitting layer to emit
  • the light generates a resonant optical resonant layer structure, and the first sub-electrode 111 is opaque
  • the second sub-electrode 112 is made of a transparent conductive material, and the first sub-electrode 111 and the second sub-electrode 112 reflect the light emitted by the organic light-emitting layer 113.
  • the optical path difference of the light satisfies the interference constructive condition.
  • the planarization layer 110 is made of a conductive material, and the first sub-electrode 111 is electrically connected to the source/drain 107 through the planarization layer 110.
  • FIG. 3 is another schematic structural diagram of an OLED array substrate according to an embodiment of the present disclosure.
  • the OLED array substrate includes a substrate 101, a buffer layer 102, a thin film transistor, an insulating layer 106, a passivation layer 108, a planarization layer 110, an organic light emitting diode, and a pixel defining layer 115.
  • This embodiment is different from the embodiment in FIG. 2 in that the first electrode of the organic light emitting diode has a three-layer conductive pixel layer structure.
  • the first electrode includes a third sub-electrode 109, a first sub-electrode 111, and a second sub-electrode 112 in a direction away from the thin film transistor, wherein the first sub-electrode 111 and the second sub-electrode 112 are composed of An optical resonant layer structure that causes light emitted by the organic light emitting layer to resonate, the first sub-electrode 111 is made of an opaque reflective conductive material, and the second sub-electrode 112 is made of a transparent conductive material.
  • the optical path difference of the reflected light generated by the first sub-electrode 111 and the second sub-electrode 112 reflecting the light emitted from the organic light-emitting layer 113 satisfies the interference constructive condition.
  • the material of the third sub-electrode 109 is not limited, as long as it is a conductive material; considering the problems such as the slope angle of the via hole, the optional process is easy to prepare, the material has good ductility, and the metal material with good electrical conductivity is good.
  • the planarization layer 110 is filled in a via formed on the passivation layer 108 for exposing the source/drain 107 of the thin film transistor. In the via region, the third sub-electrode 109 is located in the via. Under the planarization layer 110, the source/drain 107 is electrically connected through the via hole.
  • the planarization layer 110 may be made of an insulating material or a conductive material, and may be selected as a conductive material to achieve optimized via. The effect of the zone signal connection.
  • the first electrode may be formed as an anode or a cathode
  • the second electrode may be formed as a cathode or an anode corresponding to the first electrode; if it is an anode, a material having a work function as high as possible may be used to improve the space.
  • the second electrode On the first electrode connected to the source/drain 107, the second electrode also gives a certain common electrical signal, wherein one side of the anode is provided as a hole, and one as a cathode The electrons are provided, and the holes and electrons are relatively moved and combined in the organic light-emitting layer to form excitons. The excitons further emit visible light by means of transitions, and the visible light is emitted from the display surface to achieve a display effect.
  • FIG. 4 is an optical path diagram of an organic light emitting diode having an optical resonant layer structure according to an embodiment of the present disclosure.
  • the incident light is arranged separately from the optical path of its corresponding reflected light for clarity of display.
  • the second sub-electrode 112 is a transparent material, at the interface, a part of the A0 light is reflected back into the organic light-emitting layer 113 to become the reflected light A1, and the other part passes through the interface into the second sub-electrode 112 to become a transmissive
  • the light A2 is incident on the interface between the first sub-electrode 111 and the second sub-electrode 112; since the first sub-electrode 111 is a reflective material, the transmitted light A2 is totally emitted at the interface between the first sub-electrode 111 and the second sub-electrode 112.
  • the second sub-electrode 112 is reflected back to the organic light-emitting layer 113 through the interface between the second sub-electrode 112 and the organic light-emitting layer 113 to become A3 light parallel to the A1 light.
  • the optical path difference between the A1 light and the A3 light is 2d, where d is the film thickness of the second sub-electrode 112; when both of the above two reflective interfaces have no or half-wave loss, and the above d is (n/2)* ⁇
  • A1 light and A3 light interfere with each other; when one of the two reflection interfaces has half-wave loss, when d is (2n-1)* ⁇ /4 (n is 1, 2, 3, .. .., ⁇ is the wavelength of light emitted by the organic light-emitting layer.
  • the A1 light interferes with the A3 light.
  • the light intensity is increased by the interference of the reflected light to increase the light intensity.
  • the thin film transistor is used as the top gate type thin film transistor as an example.
  • the thin film transistor in the embodiment of the present disclosure may also be a bottom gate type thin film transistor.
  • the organic light emitting diode in the above embodiment may further include a layer structure such as an electron transport layer, a hole transport layer, an electron injection layer or a hole injection layer, in addition to the above-mentioned film layer, and will not be described in detail herein.
  • a layer structure such as an electron transport layer, a hole transport layer, an electron injection layer or a hole injection layer, in addition to the above-mentioned film layer, and will not be described in detail herein.
  • An embodiment of the present disclosure further provides an OLED display device, including the OLED array substrate in any of the above embodiments.
  • the embodiment of the present disclosure further provides a method for preparing an OLED array substrate, including:
  • an organic light emitting diode on a substrate on which the thin film transistor is formed, wherein the organic light emitting diode includes a first electrode, an organic light emitting layer, and a second electrode, the first electrode including a surface for causing the organic light emitting layer to emit The light generates a resonant optical resonant layer structure, and the first electrode is electrically connected to a source or a drain of the thin film transistor.
  • the foregoing method may specifically include:
  • the organic light emitting diode includes a first electrode, an organic light emission in sequence in a direction away from the thin film transistor a layer and a second electrode, the first electrode including an optical resonant layer structure for causing light emitted by the organic light emitting layer to resonate, the first electrode passing through a via formed in the passivation layer and the The source or drain of the thin film transistor is electrically connected.
  • forming a planarization layer for filling the via hole in the via hole, and forming the organic light emitting diode may specifically include:
  • first sub-electrode and a second sub-electrode of the first electrode on a substrate on which the planarization layer is formed, the first sub-electrode being made of an opaque reflective conductive material, the first sub-electrode
  • the planarization layer is electrically connected to a source or a drain of the thin film transistor, the second sub-electrode is made of a transparent conductive material, and the first sub-electrode and the second sub-electrode are opposite to the organic light-emitting layer
  • the optical path difference of the reflected light generated by the reflected light of the emitted light satisfies the condition of the interference construct.
  • forming a planarization layer for filling the via hole in the via hole, and forming the organic light emitting diode may also specifically include:
  • first sub-electrode and a second sub-electrode of the first electrode on a substrate on which the planarization layer is formed, the first sub-electrode being made of an opaque reflective conductive material, the first sub-electrode
  • the planarization layer is electrically connected to a source or a drain of the thin film transistor, the second sub-electrode is made of a transparent conductive material, and the first sub-electrode and the second sub-electrode are opposite to the organic light-emitting layer
  • the optical path difference of the reflected light generated by the emitted light reflects the interference constructive condition.
  • the first sub-electrode and the second sub-electrode in the above embodiments may be separately prepared, or may be formed by one patterning process to reduce the production cost.
  • FIG. 5 is a schematic flowchart of a method for fabricating an OLED array substrate according to an embodiment of the present disclosure.
  • the preparation method includes the following steps:
  • Step S501 forming a buffer layer on the substrate
  • Step S502 forming a thin film transistor
  • Step S503 forming a passivation layer, and forming a via hole on the passivation layer;
  • the via holes are formed by a photolithography process.
  • Step S504 forming a third sub-electrode, the third sub-electrode belonging to a part of the first electrode of the organic light-emitting diode;
  • Step S505 forming a planarization layer for filling the via hole in the via hole;
  • Step S506 forming a first sub-electrode, the first sub-electrode being made of an opaque reflective conductive material.
  • the first sub-electrode belongs to a part of the first electrode of the organic light emitting diode;
  • Step S507 forming a second sub-electrode, the second sub-electrode being made of a transparent conductive material.
  • the second sub-electrode belongs to a part of the first electrode of the organic light emitting diode;
  • Step S508 forming an organic light-emitting layer of the organic light-emitting diode, wherein an optical path difference of the reflected light generated by the first sub-electrode and the second sub-electrode reflecting the light emitted by the organic light-emitting layer satisfies an interference construct condition .
  • Step S509 forming a second electrode of the organic light emitting diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管、阵列基板及其制备方法、显示装置,有机发光二极管包括:包括第一电极、有机发光层(113)和第二电极(114),第一电极包括用于使得有机发光层(113)发出的光产生谐振的光谐振层结构。通过光谐振层结构可以提高有机发光层(113)的光利用率。

Description

一种有机发光二极管、阵列基板及其制备方法、显示装置
相关申请的交叉引用
本申请主张在2014年6月30日在中国提交的中国专利申请号No.201410306786.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示技术领域,尤其涉及一种有机发光二极管、阵列基板及其制备方法、显示装置。
背景技术
作为以薄膜晶体管为控制元件,OLED(有机发光二极管)为光发射介质的显示技术具有高清晰度,广视角,易实现弯曲柔性化显示等优势,得到越来越多的重视,相关厂家也投入了大量的研究开发。
OLED显示的主要结构为在有机发光层两侧设置阳极和阴极(详细结构还可包括电子/空穴传输层,注入层等层结构),通过施加在阳极和阴极上的电信号诱发有机发光层发光。
然而,现有的OLED的结构中,存在对有机发光层发出的光利用率低的缺陷。
发明内容
有鉴于此,本公开提供一种有机发光二极管、阵列基板及其制备方法、显示装置,以提高有机发光层的光利用率。
为解决上述技术问题,本公开提供一种有机发光二极管,包括:第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构。
可选地,所述光谐振层结构包括:第一子电极和第二子电极,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产 生的反射光的光程差满足干涉相长条件。
可选地,所述第二子电极的膜厚与对应的所述有机发光层发出的光的波长相适配。
本公开还提供一种有机发光二极管阵列基板,包括基板以及设置于基板上的薄膜晶体管和有机发光二极管,所述有机发光二极管为上述有机发光二极管,所述有机发光二极管的第一电极与所述薄膜晶体管的源极或漏极电连接。
可选地,所述阵列基板还包括:位于所述薄膜晶体管与所述有机发光二极管之间的钝化层,所述第一电极通过设置于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
可选地,所述第一电极在远离所述薄膜晶体管的方向上依次包括:第三子电极、第一子电极和第二子电极,其中,所述第三子电极通过设置于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接,所述第一子电极和第二子电极组成光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
可选地,所述阵列基板还包括:用于填平所述过孔的平坦化层。
可选地,所述平坦化层仅设置于所述过孔位置处。
可选地,所述平坦化层由导电材料制成。
本公开还提供一种有机发光二极管阵列基板的制备方法,包括:
在基板上形成薄膜晶体管;
在形成有所述薄膜晶体管的基板上形成有机发光二极管,其中,所述有机发光二极管包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极与所述薄膜晶体管的源极或漏极电连接。
可选地,所述方法具体包括:
在基板上形成薄膜晶体管;
在形成有所述薄膜晶体管的基板上形成钝化层,并在所述钝化层上形成 过孔,其中,所述过孔对应所述薄膜晶体管的源极或漏极的位置;
在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管,其中,所述有机发光二极管在远离所述薄膜晶体管的方向上依次包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极通过形成于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
可选地,在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管具体包括:
在所述过孔中形成用于填平所述过孔的平坦化层,所述平坦化层采用导电材料制成;
在形成有所述平坦化层的基板上形成所述第一电极的第一子电极和第二子电极,所述第一子电极和所述第二子电极组成所述光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第一子电极通过所述平坦化层与所述薄膜晶体管的源极或漏极电连接,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发射的光反射产生的反射光的光程差满足干涉相长条件。
可选地,在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管具体包括:
在形成有所述钝化层的基板上形成所述第一电极的第三子电极,所述第三子电极部分搭接于所述过孔中,所述第三子电极通过所述过孔与所述薄膜晶体管的源极或漏极电连接;
在所述过孔中形成用于填平所述过孔的平坦化层;
在形成有所述平坦化层的基板上形成所述第一电极的第一子电极和第二子电极,所述第一子电极和所述第二子电极组成所述光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
可选地,所述第一子电极和所述第二子电极采用一次构图工艺形成。
本公开还提供一种有机发光二极管显示装置,包括上述有机发光二极管 阵列基板。
本公开的上述技术方案的有益效果如下:
通过有机发光二极管的光谐振层结构,可以对有机发光层发出的光起到干涉增强作用,增加显示区所观察到的发光强度,提高有机显示的光利用率。
附图说明
图1为本实施例的有机发光二极管中的光路示意图。
图2为本公开实施例的OLED阵列基板的一结构示意图。
图3为本公开实施例的OLED阵列基板的另一结构示意图。
图4为本实施例的另一有机发光二极管中的光路示意图。
图5为本公开实施例的OLED阵列基板的制备方法的流程示意图。
附图标记说明:
101   基板
111   第一子电极
112   第二子电极
109   第三子电极
102   缓冲层
103   半导体层
104   栅绝缘层
105   栅极
106   绝缘层
107   源/漏极
108   钝化层
115   像素限定层
110   平坦层
113   有机发光层
A0    原始入射光
A1    有机发光层与第二子电极界面处的反射光
A2    有机发光层与第二子电极界面处的透射光
A3    经过第一子电极与第二子电极界面反射回有机发光层的反射光
具体实施方式
为使本公开要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。
为解决现有的OLED的结构中,对有机发光层发出的光利用率低的问题,本公开实施例提供一种有机发光二极管,包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构。通过所述光谐振层结构,可以对有机发光层发出的光起到干涉增强作用,增加显示区所观察到的发光强度,提高有机显示的光利用率。
下面对所述光谐振层结构的具体组成进行说明。
可选的,所述第一电极可以包括:第一子电极和第二子电极,所述第一子电极和第二子电极组成用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
请参考图1,图1为本实施例的有机发光二极管中的光路示意图。附图中,为显示清楚,将入射光与其对应反射光的光路分开布置。
从附图中可以看出,从有机发光层113发射出的朝向显示面板内部的光一部分(A0)在第二子电极112与有机发光层113的界面发生反射(A1),另一部分(A2)进入第二子电极112内部并在第一子电极111与第二子电极112的界面发生全反射(A3),通过调节第二子电极112的膜厚,可以形成有效的光谐振层结构,使上述两部分反射光(A1和A3)的光程差满足干涉相长条件,对有机发光层发出的光起到干涉增强作用,增加显示区所观察到的发光强度,提高有机显示的光利用率。
由于不同子像素(如红、绿、蓝子像素)的有机发光层发出的光的波长不同,因而所需的第二子电极的膜厚也不同。为此,可以通过光刻工艺,或是多层重叠的方式制备出对应于不同子像素需要的不同膜厚的第二子电极,即所述第二子电极的膜厚与对应的所述有机发光层发出的光的波长相适配。 当然,本公开实施例中,有机发光层亦不仅限于发红、绿、蓝色光,也可以发黄、粉、青等色光。
本公开实施例中,所述第一子电极应具备光反射效果,可选导电性能良好,反射率高的金属类材料,如银,铝等。所述第二子电极为透明导电材料制成,如氧化铟锡等。
当然,所述光谐振层结构也可以为其他形式,只要满足其对有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件即可。
本公开实施例还提供一种OLED阵列基板,包括基板以及设置于基板上的薄膜晶体管和有机发光二极管,所述有机发光二极管在远离所述薄膜晶体管的方向上依次包括:第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极与所述薄膜晶体管的源极或漏极电连接。
通过所述光谐振层结构,可以对有机发光层发出的光起到干涉增强作用,增加显示区所观察到的发光强度,提高有机显示的光利用率。
本公开实施例中的有机发光二极管与上述实施例中的有机发光二极管的结构和原理相同。
可选的,所述光谐振层结构在远离所述薄膜晶体管的方向上依次包括:第一子电极和第二子电极,所述第一子电极和第二子电极组成用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
可选的,所述第二子电极的膜厚与对应的所述有机发光层发出的光的波长相适配。
具体的,所述阵列基板还可以包括:位于所述薄膜晶体管与所述有机发光二极管之间的钝化层。
在OLED显示制备工艺中,需要在源极或漏极上方的钝化层上形成暴露出源极或漏极的过孔,像素电极(即上述第一电极)通过搭接在过孔区以实现与源极或漏极的相连,从而将显示数据信号由源极或漏极传入像素电极, 实现有机发光层的发光,达到显示效果。即,所述第一电极通过设置于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
一实施例中,所述第一电极为两层导电像素层结构,即仅包括:上述第一子电极和第二子电极,所述薄膜晶体管的源极或漏极通过设置于所述钝化层的过孔与所述第一子电极电连接。
另一种实施例中,所述第一电极还可以为三层导电像素层结构,除了包括上述第一子电极和第二子电极之外,还包括第三子电极,其中,所述第三子电极位于所述第一子电极的远离所述第二子电极的一侧,所述薄膜晶体管的源极或漏极通过设置于所述钝化层的过孔与所述第三子电极电连接。
然而,在源极或漏极上方的钝化层上形成的暴露出源极或漏极层的过孔具有凹陷的形貌,会影响上方膜层的平整度。
为避免有机发光层在过孔处因凹陷造成发光显示不良,可以通过将像素电极(即上述第一电极)上方的像素限定层设制在过孔区。由于有机发光层不能形成在过孔区,在像素面积大小固定的情况下降低了发光区面积,减小开口率,不利于高分辨率显示屏的制备。
为提高开口率,本公开实施例的阵列基板还可以包括:用于填平所述过孔的平坦化层。
通过所述平坦化层,可以填平钝化层上形成的暴露出源极或漏极层的过孔,使过孔区与其周边区域位于同一平面层,从而可以将有机发光层设置在过孔区上方,在像素面积大小固定的情况下提高了发光区面积,提高了开口率,有利于高分辨率显示屏的制备。另一方面,由于过孔的位置与大小不会影响像素的开口率,可以增加过孔的孔径以增加工艺的可靠性。
可选的,所述平坦化层仅设置于所述过孔位置处,以保证尽量不增加阵列基板的厚度。
所述平坦化层可以由导电材料制成,也可由绝缘材料制成。
当所述第一电极为两层导电像素层结构时,所述平坦化层可以采用导电材料制成,所述第一电极的第一子电极通过所述平坦化层与薄膜晶体管的源极或漏极电连接。
当所述第一电极为三层导电像素层结构时,所述平坦化层既可以由导电 材料制成,也可由绝缘材料制成。当平坦化层由绝缘材料制成时,所述第一电极的第三子电极在过孔区位于所述平坦层的下方,因而可以通过过孔与薄膜晶体管的源极或漏极电连接。可选的,所述平坦化层由导电材料制成,以优化过孔区信号连接效果。
由于第一子电极下方过孔处的平坦性难以控制,可选的,所述第一子电极为较厚的不透明的反光式导电材料层,为后续第二子电极与有机发光层工艺提供更佳的平坦界面,并避免在过孔的台阶部分产生断路情况;第二子电极为较薄的透明导电材料层,以保证尽量少的对有机发光层的发出的光线的吸收。
下面举例对本公开的OLED阵列基板的结构进行说明。
请参考图2,图2为本公开实施例的OLED阵列基板的一结构示意图。
所述OLED阵列基板包括基板101、缓冲层102、薄膜晶体管、钝化层108、平坦化层110、有机发光二极管及显示像素限定层115。
其中,基板101可以为玻璃基板,或者其他类型的衬底基板。基板101可以为硬性材料也可以为柔性材料。
缓冲层102起防止玻璃基板中的金属离子扩散引起薄膜晶体管漏电流,改善后续半导体层成膜界面的质量等作用。
钝化层108作绝缘与平坦作用。
显示像素限定层115起限定有机发光显示区作用。
所述平坦化层110填充于开设于所述钝化层108的用于暴露所述薄膜晶体管的源/漏极107的过孔中。
所述薄膜晶体管包括:半导体层103、栅绝缘层104、栅极105、绝缘层106及源/漏极107。
所述有机发光二极管在远离所述薄膜晶体管的方向上依次包括:第一电极、有机发光层113和第二电极114。
本实施例中,有机发光二极管的第一电极为两层导电像素层结构。
所述第一电极在远离所述薄膜晶体管的方向上依次包括:第一子电极111和第二子电极112,第一子电极111和第二子电极112组成用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一子电极111由不透明的 反光式导电材料制成,所述第二子电极112由透明导电材料制成,所述第一子电极111和第二子电极112对所述有机发光层113发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
所述平坦化层110采用导电材料制成,所述第一子电极111通过所述平坦化层110与所述源/漏极107电连接。
请参考图3,图3为本公开实施例的OLED阵列基板的另一结构示意图。
所述OLED阵列基板包括基板101、缓冲层102、薄膜晶体管、绝缘层106、钝化层108、平坦化层110、有机发光二极管及像素限定层115。
本实施例与图2中的实施例的不同之处在于,有机发光二极管的第一电极为三层导电像素层结构。
所述第一电极在远离所述薄膜晶体管的方向上依次包括:第三子电极109、第一子电极111和第二子电极112,其中,第一子电极111和第二子电极112组成用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一子电极111由不透明的反光式导电材料制成,所述第二子电极112由透明导电材料制成,所述第一子电极111和第二子电极112对所述有机发光层113发出的光进行反射而产生的反射光的光程差满足干涉相长条件。第三子电极109材料不限,只要为导电材料则可;考虑到过孔坡度角等问题,可选工艺制备容易,材料延展性好,导电性能好的金属类材料。
所述平坦化层110填充于所述钝化层108上形成的用于暴露所述薄膜晶体管的源/漏极107的过孔中,在过孔区,所述第三子电极109位于所述平坦化层110之下,通过所述过孔与所述源/漏极107电连接,所述平坦化层110可以采用绝缘材料或导电材料制成,可选为导电材料,以达到优化过孔区信号连接的效果。
上述两实施例中,该第一电极可以制作成阳极或阴极,第二电极则对应于该第一电极制作成阴极或阳极;若为阳极,则采用功函数尽可能高的材料,以提高空穴的注入效率;若为阴极,则采用功函数尽可能低的材料,以提高电子的注入效率;在显示时,通过栅极105信号的开启,外围显示信号由数据线经过半导体层103施加到与源/漏极107相连的第一电极上,同时第二电极也给以一定的公共电信号,其中作为阳极的一方提供空穴,作为阴极的一 方提供电子,空穴与电子在有机发光层中相对移动并结合,形成激子,激子进一步通过跃迁等方式发射出可见光,可见光射出显示面,实现显示效果。
请参考图4,图4为本公开实施例的具有光谐振层结构的有机发光二极管中的光路图。附图中,为显示清楚,将入射光与其对应反射光的光路分开布置。
从附图中可以看出,由有机发光层113发出的光一部分射出显示面板,另一部分光A0射向显示面板内部,光A0穿过有机发光层113射入第二子电极112与有机发光层113的界面,由于第二子电极112为透明材料,在界面处,一部分A0光被反射回有机发光层113中,成为反射光A1,另一部分穿过界面进入第二子电极112内部,成为透射光A2并射向第一子电极111与第二电子电极112的界面;由于第一子电极111为反光式材料,透射光A2在第一子电极111与第二子电极112的界面发生全发射,反射回第二子电极112并经过第二子电极112与有机发光层113的界面进入有机发光层113,成为与A1光平行的A3光。A1光与A3光的光程差为2d,其中d为第二子电极112的膜厚;当上述两个反射界面都无或都有半波损耗,且上述d为(n/2)*λ时,A1光与A3光发生干涉相长;当上述两个反射界面之一有半波损耗时,上述d为(2n-1)*λ/4时(n为1,2,3,....,λ为有机发光层发出的光波长),A1光与A3光发生干涉相长;通过将反射光进行干涉相长增加光强的处理,提高有机发光层发出的光的利用率。
上述实施例中,均以薄膜晶体管为顶栅型薄膜晶体管为例进行说明,本公开实施例中的薄膜晶体管也可以为底栅型的薄膜晶体管。
上述实施例中的有机发光二极管除了具有上述膜层之外,还可以包括:电子传输层、空穴传输层、电子注入层或空穴注入层等层结构,在此不再详细说明。
本公开实施例还提供一种OLED显示装置,包括上述任一实施例中的OLED阵列基板。
对应于上述结构,本公开实施例还提供一种OLED阵列基板的制备方法,包括:
在基板上形成薄膜晶体管;
在形成有所述薄膜晶体管的基板上形成有机发光二极管,其中,所述有机发光二极管包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极与所述薄膜晶体管的源极或漏极电连接。
可选的,上述方法可以具体包括:
在基板上形成薄膜晶体管;
在形成有所述薄膜晶体管的基板上形成钝化层,并在所述钝化层上形成过孔,其中,所述过孔对应所述薄膜晶体管的源极或漏极的位置;
在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管,其中,所述有机发光二极管在远离所述薄膜晶体管的方向上依次包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极通过形成于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
在一实施例中,在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管可以具体包括:
在所述过孔中形成用于填平所述过孔的平坦化层;
在形成有所述平坦化层的基板上形成所述第一电极的第一子电极和第二子电极,所述第一子电极由不透明的反光式导电材料制成,所述第一子电极通过所述平坦化层与所述薄膜晶体管的源极或漏极电连接,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发射的光反射产生的反射光的光程差满足干涉相长条件。
在另一实施例中,在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管也可以具体包括:
在形成有所述钝化层的基板上形成所述第一电极的第三子电极,所述第三子电极部分搭接于所述过孔中,所述第三子电极通过所述过孔与所述薄膜晶体管的源极或漏极电连接;
在所述过孔中形成用于填平所述过孔的平坦化层;
在形成有所述平坦化层的基板上形成所述第一电极的第一子电极和第二子电极,所述第一子电极由不透明的反光式导电材料制成,所述第一子电极 通过所述平坦化层与所述薄膜晶体管的源极或漏极电连接,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
上述实施例中的所述第一子电极和所述第二子电极可以分别制备,也可以采用一次构图工艺形成,以降低生产成本。
请参考图5,图5为本公开实施例的OLED阵列基板的制备方法的一流程示意图,所述制备方法包括以下步骤:
步骤S501:在基板上形成缓冲层;
步骤S502:形成薄膜晶体管;
步骤S503:形成钝化层,并在所述钝化层上形成过孔;
具体的,通过光刻工艺形成所述过孔。
步骤S504:形成第三子电极,第三子电极属于有机发光二极管的第一电极中的一部分;
步骤S505:在所述过孔中形成用于填平所述过孔的平坦化层;
步骤S506:形成第一子电极,所述第一子电极采用不透明的反光式导电材料制成。第一子电极属于有机发光二极管的第一电极中的一部分;
步骤S507:形成第二子电极,所述第二子电极采用透明导电材料制成。第二子电极属于有机发光二极管的第一电极中的一部分;
步骤S508:形成有机发光二极管的有机发光层,其中,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
步骤S509:形成有机发光二极管的第二电极。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (19)

  1. 一种有机发光二极管,包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构。
  2. 根据权利要求1所述的有机发光二极管,其中,所述光谐振层结构包括:第一子电极和第二子电极,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
  3. 根据权利要求2所述的有机发光二极管,其中,所述第二子电极的膜厚与对应的所述有机发光层发出的光的波长相适配。
  4. 一种有机发光二极管阵列基板,包括基板以及设置于基板上的薄膜晶体管和有机发光二极管,所述有机发光二极管为权利要求1-3任一项所述的有机发光二极管,所述有机发光二极管的第一电极与所述薄膜晶体管的源极或漏极电连接。
  5. 根据权利要求4所述的阵列基板,其中,还包括:位于所述薄膜晶体管与所述有机发光二极管之间的钝化层,所述第一电极通过设置于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
  6. 根据权利要求5所述的阵列基板,其中,所述第一电极的所述第一子电极通过设置于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
  7. 根据权利要求5所述的阵列基板,其中,所述第一电极在远离所述薄膜晶体管的方向上依次包括:第三子电极、第一子电极和第二子电极,其中,所述第三子电极通过设置于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接,所述第一子电极和第二子电极组成光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
  8. 根据权利要求5所述的阵列基板,其中,还包括:用于填平所述过孔的平坦化层。
  9. 根据权利要求6所述的阵列基板,其中,还包括:用于填平所述过孔的平坦化层。
  10. 根据权利要求8所述的阵列基板,其中,所述第一电极的第一子电极通过所述平坦化层与薄膜晶体管的源极或漏极电连接。
  11. 根据权利要求9所述的阵列基板,其中,所述第一电极的第三子电极在所述过孔的区域位于所述平坦层的下方,通过所述过孔与薄膜晶体管的源极或漏极电连接。
  12. 根据权利要求8所述的阵列基板,其中,所述平坦化层仅设置于所述过孔位置处。
  13. 根据权利要求8所述的阵列基板,其中,所述平坦化层由导电材料制成。
  14. 一种有机发光二极管阵列基板的制备方法,包括:
    在基板上形成薄膜晶体管;
    在形成有所述薄膜晶体管的基板上形成有机发光二极管,其中,所述有机发光二极管包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极与所述薄膜晶体管的源极或漏极电连接。
  15. 根据权利要求14所述的方法,其中,具体包括:
    在基板上形成薄膜晶体管;
    在形成有所述薄膜晶体管的基板上形成钝化层,并在所述钝化层上形成过孔,其中,所述过孔对应所述薄膜晶体管的源极或漏极的位置;
    在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管,其中,所述有机发光二极管在远离所述薄膜晶体管的方向上依次包括第一电极、有机发光层和第二电极,所述第一电极包括用于使得所述有机发光层发出的光产生谐振的光谐振层结构,所述第一电极通过形成于所述钝化层的过孔与所述薄膜晶体管的源极或漏极电连接。
  16. 根据权利要求15所述的方法,其中,所述在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管具体包括:
    在所述过孔中形成用于填平所述过孔的平坦化层,所述平坦化层采用导 电材料制成;
    在形成有所述平坦化层的基板上形成所述第一电极的第一子电极和第二子电极,所述第一子电极和所述第二子电极组成所述光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第一子电极通过所述平坦化层与所述薄膜晶体管的源极或漏极电连接,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发射的光反射产生的反射光的光程差满足干涉相长条件。
  17. 根据权利要求15所述的方法,其中,所述在所述过孔中形成用于填平所述过孔的平坦化层,以及形成有机发光二极管具体包括:
    在形成有所述钝化层的基板上形成所述第一电极的第三子电极,所述第三子电极部分搭接于所述过孔中,所述第三子电极通过所述过孔与所述薄膜晶体管的源极或漏极电连接;
    在所述过孔中形成用于填平所述过孔的平坦化层;
    在形成有所述平坦化层的基板上形成所述第一电极的第一子电极和第二子电极,所述第一子电极和所述第二子电极组成所述光谐振层结构,所述第一子电极由不透明的反光式导电材料制成,所述第二子电极由透明导电材料制成,所述第一子电极和第二子电极对所述有机发光层发出的光进行反射而产生的反射光的光程差满足干涉相长条件。
  18. 根据权利要求16或17所述的方法,其中,所述第一子电极和所述第二子电极采用一次构图工艺形成。
  19. 一种有机发光二极管显示装置,包括权利要求4-13中任一项所述的有机发光二极管阵列基板。
PCT/CN2014/087636 2014-06-30 2014-09-28 一种有机发光二极管、阵列基板及其制备方法、显示装置 WO2016000334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410306786.XA CN104091894A (zh) 2014-06-30 2014-06-30 一种有机发光二极管、阵列基板及其制备方法、显示装置
CN201410306786.X 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016000334A1 true WO2016000334A1 (zh) 2016-01-07

Family

ID=51639592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087636 WO2016000334A1 (zh) 2014-06-30 2014-09-28 一种有机发光二极管、阵列基板及其制备方法、显示装置

Country Status (2)

Country Link
CN (1) CN104091894A (zh)
WO (1) WO2016000334A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274555A (zh) * 2022-09-27 2022-11-01 南昌虚拟现实研究院股份有限公司 制作阵列基板方法、阵列基板及显示面板

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118836B (zh) * 2015-07-29 2019-04-05 京东方科技集团股份有限公司 具有导电平坦层的阵列基板及其制备方法
CN108336107A (zh) * 2017-01-19 2018-07-27 京东方科技集团股份有限公司 有机发光二极管(oled)阵列基板及其制备方法、显示装置
CN107393828A (zh) * 2017-07-12 2017-11-24 武汉华星光电技术有限公司 薄膜晶体管的制作方法及薄膜晶体管
CN108470844B (zh) * 2018-03-30 2019-12-03 京东方科技集团股份有限公司 有机发光二极管及其制备方法、显示面板
CN109378333B (zh) * 2018-10-19 2021-03-05 京东方科技集团股份有限公司 显示面板及显示装置
CN109659349B (zh) * 2019-01-11 2021-02-19 京东方科技集团股份有限公司 一种阵列基板及其制备方法、显示装置
CN210467891U (zh) * 2019-11-29 2020-05-05 京东方科技集团股份有限公司 阵列基板及显示装置
CN114975828A (zh) * 2022-05-25 2022-08-30 武汉华星光电半导体显示技术有限公司 显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610461A (zh) * 2003-10-16 2005-04-27 三星Sdi株式会社 有机发光显示装置及其制造方法
CN1685772A (zh) * 2003-06-13 2005-10-19 富士电机控股株式会社 有机el元件及有机el面板
CN101997086A (zh) * 2009-08-10 2011-03-30 索尼公司 发光器件
US20130240851A1 (en) * 2012-03-14 2013-09-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7851989B2 (en) * 2005-03-25 2010-12-14 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
CN102629621B (zh) * 2012-01-09 2015-08-12 京东方科技集团股份有限公司 一种电路、阵列基板及制作方法、显示器
CN103762245B (zh) * 2013-12-13 2019-08-16 京东方科技集团股份有限公司 薄膜晶体管、阵列基板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1685772A (zh) * 2003-06-13 2005-10-19 富士电机控股株式会社 有机el元件及有机el面板
CN1610461A (zh) * 2003-10-16 2005-04-27 三星Sdi株式会社 有机发光显示装置及其制造方法
CN101997086A (zh) * 2009-08-10 2011-03-30 索尼公司 发光器件
US20130240851A1 (en) * 2012-03-14 2013-09-19 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115274555A (zh) * 2022-09-27 2022-11-01 南昌虚拟现实研究院股份有限公司 制作阵列基板方法、阵列基板及显示面板

Also Published As

Publication number Publication date
CN104091894A (zh) 2014-10-08

Similar Documents

Publication Publication Date Title
WO2016000334A1 (zh) 一种有机发光二极管、阵列基板及其制备方法、显示装置
KR102415808B1 (ko) 표시장치 및 전자기기
USRE48793E1 (en) Organic light emitting display device and manufacturing method thereof
US10368418B2 (en) Display unit, method of manufacturing the same, and electronic apparatus
US9478742B2 (en) Electroluminescence device and manufacturing method thereof
KR102146070B1 (ko) 유기 발광 표시 장치
WO2018133385A1 (zh) 有机发光二极管(oled)阵列基板及其制备方法、显示装置
KR101990312B1 (ko) 유기전계발광표시장치 및 그 제조방법
US9666829B2 (en) Organic electroluminescent display device
US9530989B2 (en) Organic light emitting diode display and manufacturing method thereof
US9105875B2 (en) Organic light-emitting display apparatus
US9000665B2 (en) Organic light emitting diode display device and method of manufacturing the same
US8890317B1 (en) Organic light emitting display device and manufacturing method thereof
US9502593B2 (en) Organic light-emitting diode (OLED) display
JP2005063838A (ja) 光学デバイス及び有機el表示装置
KR101972169B1 (ko) 유기 발광 표시 장치 및 그 제조방법
US11539032B2 (en) Organic light emitting diode including electrode structure formed of transparent electrode and light emitting layer and manufacturing method thereof
JP2016062874A (ja) 画像表示装置及びその製造方法、並びに画像表示装置の検査方法
JP2008513931A (ja) 有機el表示装置及びその製造方法
JP2013165014A (ja) 有機el装置、及び電子機器
US9985078B2 (en) Display panel
WO2021249312A1 (zh) 显示面板、透明显示面板及其制作方法
JP2006085985A (ja) 有機el表示装置
KR102075787B1 (ko) 유기 발광 표시 장치 및 그 제조방법
JP2015222658A (ja) 有機エレクトロルミネッセンス素子、及び表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/05/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14896411

Country of ref document: EP

Kind code of ref document: A1