WO2015199543A1 - Système de positionnement avec compensation de mouvement d'extrémité distale - Google Patents

Système de positionnement avec compensation de mouvement d'extrémité distale Download PDF

Info

Publication number
WO2015199543A1
WO2015199543A1 PCT/NO2014/050110 NO2014050110W WO2015199543A1 WO 2015199543 A1 WO2015199543 A1 WO 2015199543A1 NO 2014050110 W NO2014050110 W NO 2014050110W WO 2015199543 A1 WO2015199543 A1 WO 2015199543A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion
positioning
actuator
positioning system
compensation
Prior art date
Application number
PCT/NO2014/050110
Other languages
English (en)
Inventor
Arjan Hendrik BOEZEMAN
Remmert Nicolaas BRANTJES
Original Assignee
Ulstein Idea Equipment Solutions Bv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulstein Idea Equipment Solutions Bv filed Critical Ulstein Idea Equipment Solutions Bv
Priority to PCT/NO2014/050110 priority Critical patent/WO2015199543A1/fr
Publication of WO2015199543A1 publication Critical patent/WO2015199543A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/003Programme-controlled manipulators having parallel kinematics
    • B25J9/0045Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base
    • B25J9/0051Programme-controlled manipulators having parallel kinematics with kinematics chains having a rotary joint at the base with kinematics chains of the type rotary-universal-universal or rotary-spherical-spherical, e.g. Delta type manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J17/00Joints
    • B25J17/02Wrist joints
    • B25J17/0258Two-dimensional joints
    • B25J17/0266Two-dimensional joints comprising more than two actuating or connecting rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/1005Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means
    • B25J9/1015Programme-controlled manipulators characterised by positioning means for manipulator elements comprising adjusting means using additional, e.g. microadjustment of the end effector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/10Arrangement of ship-based loading or unloading equipment for cargo or passengers of cranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/30Arrangement of ship-based loading or unloading equipment for transfer at sea between ships or between ships and off-shore structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/02Devices for facilitating retrieval of floating objects, e.g. for recovering crafts from water

Definitions

  • the invention relates to a positioning system having a positioning arm with a distal end for positioning a target relative to a reference point, wherein the distal end of the po ⁇ sitioning arm and/or the reference point may be subject to undesired motion caused by external factors, such as waves of the sea, such arm being applicable in a wide range of appli ⁇ cation areas.
  • the invention further relates to motion- compensated cranes, particularly to heave-compensated cranes on vessels.
  • the invention also relates to a method for posi ⁇ tioning a target relative to a reference point using a posi ⁇ tioning arm with a distal end, wherein the distal end of the positioning arm and or the reference point may be subject to undesired motion caused by external factors, such as waves of the sea.
  • WO2013/070080A1 discloses a vessel comprising a crane for positioning diver transfer equipment and/or diver equipment overboard the vessel into a body of water.
  • the crane comprising ⁇ es: i) a crane base connected to the vessel; ii) a crane arm with a suspension point that is movably connected to the crane base; iii) control means for controlling the crane arm configuration.
  • the control means are configured for: a) de ⁇ termining a change in position and/or orientation of the crane resulting from vessel motion, b) dynamically adjusting the crane arm configuration to change the position of the suspension point with respect to the crane base so as to at least partially compensate for the change in position and/or orientation of the crane.
  • WO2009/036456A2 discloses a heave or motion compensation system is employed on the crane to compensate for the heave be ⁇ ing experienced by a ship on which the crane is mounted.
  • the heave compensation system includes a motion reference unit mounted on a distal end portion of crane arm to measure the movement (acceleration) thereat. This information is trans ⁇ mitted to a programmable logic control processor to control the operation of a winch carried by the crane thereby to pay out or reel in the load line of the crane.
  • the distal end of the load line is connectable to a load being lowered or lift ⁇ ed by the crane .
  • US4448396A discloses a heave motion compensation apparatus, which is used to move a load from a supply ship in heavy seas to a platform on an oilrig.
  • a main load line extending down from a point of a crane boom mounted on the oilrig is driven by a pair of hydraulic main hoist drum motors.
  • One of the mo ⁇ tors is a variable displacement swash-plate type motor. The motors are driven through a hydrostatic transmission by a pair of variable displacement hydraulic pumps.
  • a signal line running over the boom point is attached to the supply vessel and maintained taut.
  • Sensor and control means reading move ⁇ ment of the signal line with respect to the first platform is used to control the displacement of one of the main hoist pumps to cause an outer end of the main hoist line to move up and down with the supply vessel.
  • the other pump is controlled to raise and lower the outer end of the main load line.
  • the main load line is attached to the load.
  • a signal is generated by the sensor and control means to indicate upward movement of the outer end of the main load line, and this signal is used to generate a signal representative of the rate of change of the speed of the outer load line and the load at ⁇ tached thereto.
  • the control means determines when the supply vessel is moving up with respect to the oilrig and the rate of change of velocity is zero. The control means then moves the variable displacement main hoist drum motor and the two variable displacement main hoist pumps to maximum displacement to cause the main load line to pick the load from the supply vessel.
  • the invention has for its object to remedy or to reduce at least one of the drawbacks of the prior art, or at least pro ⁇ vide a useful alternative to prior art.
  • the invention in a first aspect relates to a positioning sys ⁇ tem having a positioning arm with a distal end for positioning a target relative to a reference point, wherein the dis ⁇ tal end of the positioning arm and/or the reference point may be subject to undesired motion caused by external factors, such as waves of the sea.
  • the distal end of the positioning arm is provided with an end effector and a motion- compensation actuator coupled between the distal end of the positioning arm and the end effector, wherein the motion- compensation actuator is configured for reducing undesired motion of the end effector relative to the reference point.
  • Either the distal end of the positioning arm is subject to undesired motion (for instance a crane on a vessel transferring a load to an on-shore location) , or the reference point (e.g. the target point where a possible load has to be transferred to) is subject to undesired motion (e.g. a crane located on-shore, which is to take a load from a ves ⁇ sel), or a combination of both (e.g. a crane on a vessel transferring a load to another vessel) .
  • undesired motion for instance a crane on a vessel transferring a load to an on-shore location
  • the reference point e.g. the target point where a possible load has to be transferred to
  • undesired motion e.g. a crane located on-shore, which is to take a load from a ves ⁇ sel
  • a combination of both e.g. a crane on a vessel transferring a load to another vessel
  • the positioning system may be able to compensate (rela ⁇ tive) motion in all these circumstances.
  • the motion-compensating actuator comprises a robot actuator which constrains at least three degrees-of-freedom of the end effector.
  • the more degrees- of-freedom are determine by the robot actuator, the more mo ⁇ tion-compensation is rendered possible.
  • the numbers of degrees-of-freedom in which translation or rotation is compensated cannot exceed the number of degrees- of-freedom, which the robot actuator determines.
  • the robot actuator at least determines the position of the end effector in three degrees-of-freedom.
  • it is advanta ⁇ geous to determine the position of the end effector in three degrees-of-freedom.
  • the rotation degrees of freedom are in crane applications less important.
  • the motion-compensating actuator is configured for compensating the position variations of the end effector in three de ⁇ grees-of-freedom.
  • the inventors have realized that when mo ⁇ tion-compensation is only done on a distal end of a
  • the motion-compensating actuator comprises a parallel robot.
  • Parallel robots form a very convenient solution for motion- compensation in three position degrees-of-freedom. Moreover, such robots have the advantage that they can be build such that they are fast and precise.
  • the parallel robot comprises a delta robot comprising a base that is fixedly coupled to the positioning arm, wherein the delta robot further comprises three rotatable actuator arms, wherein each actuator arm is coupled with a first respective end to the base through a revolute joint, wherein each actua ⁇ tor arm is coupled with a second, opposite, end to a pair of link rods through a first universal or spherical joint, wherein each link rod of each pair of link rods is coupled to the end effector via/through a second universal or spherical joint, such that each pair of link rods forms a parallelogram with the end effector and the respective universal or spheri ⁇ cal joints.
  • This embodiment constitutes a specific delta ro ⁇ bot construction, which has been proven to be a very efficient motion-compensation actuator in the application of cranes on vessels.
  • the respective revolute joints of the actuator arms are posi ⁇ tioned around the base and oriented with an offset of 120 de ⁇ grees relative to each other.
  • This embodiment uses a known delta robot configuration as such, that has been used in 3D positioning systems.
  • each actuator arm is driven by a respective drive unit.
  • This embodiment uses a convenient implementation of a motion- compensation system on the distal end of a positioning arm.
  • the drive unit may also comprise multiple drives with a gear ⁇ box .
  • the positioning system further comprises a motion sensor for directly or indirectly determining a position and/or orienta ⁇ tion of the end effector and/or the reference point to obtain a motion sensor output.
  • Motion compensation needs to be done relative to a specific reference point (fixed or variable) . It is convenient to determine any motion by means of motion sensor.
  • the motion sensor may be also put on the vessel it ⁇ self .
  • the positioning system comprises a controller for controlling said motion-compensating actuator based upon the motion sensor output.
  • This embodiment uses a convenient implementation of a motion-compensation system on the distal end of a positioning arm.
  • the invention in a second aspect relates to a crane for use on a vessel, wherein the crane comprises the positioning sys ⁇ tem of the invention, and wherein the end effector is provided with a suspension point for guiding and lifting a cable with a target.
  • the positioning system of the invention has significant advantages in the application area of cranes on vessels. The solution becomes less complex and expensive. Moreover, the invention opens up cargo transfer functionality (off-shore to on-shore, off-shore to off-shore, and on-shore to off-shore) which has not been possible in the prior art.
  • the invention in a third aspect relates to a method for posi ⁇ tioning a target relative to a reference point using a posi ⁇ tioning arm with a distal end, wherein the distal end of the positioning arm and or the reference point may be subject to undesired motion caused by external factors, such as waves of the sea, wherein the method comprises the step of:
  • the method of the invention touches the core of the inventors contri ⁇ bution. It is their inventive contribution to invent motion- compensation on a distal end of a position arm.
  • the motion compensation is carried out at least for the undesired posi ⁇ tion variations of the target.
  • the inventors have realized that when motion-compensation is only done on a distal end of a positioning arm (or boom) of a crane on a ship, it is not needed to compensate for the rotation degrees-of-freedom. Two of the vessels rotation degrees-of-freedom are results in a translation of the distal end, while the other one (rotation in a plane orthogonal to the last section of the boom) does not even imply a translation at all. Next to this effect it can be understood that any rotations of the end effector are not a problem as such, because such rotations are "cancelled" in the final suspension point on the end effector.
  • the motion compensation is carried out using a motion-compensation actuator provided at the distal end of the positing arm, wherein the motion-compensation actuator preferably comprises a parallel robot, and more preferably a delta robot.
  • FIG. 1 shows a vessel with a crane comprising an embodi ⁇ ment of a positioning system in accordance with the invention
  • Fig. 2 shows an enlarged view of the motion-compensation actuator of Fig. 1 ;
  • Fig. 3 shows a front view and a top view of the motion- compensation actuator of Fig. 2
  • Fig. 4 illustrates the dynamics of the motion-compensation actuator of Fig. 2.
  • Fig. 1 shows a vessel 10 with a crane 100 comprising an embodiment of a positioning system 150 in accordance with the invention.
  • the crane 100 is coupled to the vessel 10 via a crane pedestal 110, which also allows for rotation of the crane 100 relative to the vessel 10.
  • the crane 100 comprises a crane boom 120 (also being referred to as a positioning arm in this description) .
  • the crane boom 120 comprises two sub-booms, i.e. a primary boom 122 and a secondary boom 124, which are connected via a pivoting joint 123, as is known in the field of cranes. It must be noted that the invention is applicable to cranes having any number of sub-booms, even a single boom.
  • the distal end of the crane 100 placed on a vessel 10 may be subject to undesired motion caused by the waves of the sea.
  • the gist of the main invention resides in the idea of applying motion- compensation actuator 200 at the distal end 128 of the boom 200, which means that a suspension point at the end of the boom is compensated for at least motion, and therewith also a target or load 300 suspended to the suspension point (see Fig. 2, reference numeral 290) .
  • the motion com ⁇ pensation is done for three position degrees for freedom.
  • the general idea is to compen ⁇ sate motion with regards to a reference point 999 somewhere on earth.
  • this reference point 999 is a point on land (or on a typical platform 400 at sea) , for example, but the most important is that it is fixed in position coordinates (X, Y, and Z) .
  • the reference point 999 may also be variable in terms of po ⁇ sition coordinates (X, Y, and Z) .
  • the reference point 999 may be defined as a fixed point on a target vessel (which may be moving due to waves), i.e. the location where the target or load 300 has to be transferred to.
  • a conse ⁇ quence of this is that it is now possible to compensate for relative motion between two vessels for example, which is very advantageous in vessel-to-vessel cargo transfer.
  • actuators may be used as motion compensation actuator, but the invention, as claimed in its broadest sense, is not limited to any specific type.
  • one specific class of actuators has appeared to be very advanta ⁇ geous, namely the parallel robots, and more specifically the delta robots within the group of parallel robots.
  • Delta ro ⁇ bots are fast and accurate positioning systems, and thus be conveniently used in a motion compensation system.
  • a specific implementation of the delta robot that will be discussed hereinafter may only compensate position variations and not the rotational variations.
  • the inventors have real ⁇ ized that in crane applications such limitation is very often not a problem.
  • Fig. 2 shows an enlarged view of the motion-compensation actuator 200 of Fig. 1.
  • Fig. 3 shows a front view and a top view of the motion-compensation actuator of Fig. 2.
  • the motion-compensation actuator 200 constitutes a delta robot, and comprises an end effector 210, which is provided with the earlier-mentioned suspension point 290.
  • the delta robot 200 further comprises a base 220, which is fixed to the distal end 128 of the boom 120 of the crane 100. Under influence of waves the vessel 10 moves, wherein crane 100 moves with the vessel 10, wherein the boom 120 moves with the crane 100, wherein the base 220 moves with the distal end 128 of the boom 120.
  • the delta robot 200 comprises three actuator arms 230 that are distributed along the circumference of the base 220 and pivotably connected thereto via a respective revolute joint 260 (only allowing one rotation degree of freedom) .
  • Each actuator arm 230 is driven by a respective drive unit 250.
  • Each of the actuator arms 230 is coupled to pair of link rods 240 via a first universal or spherical joint 270 (allowing two or three rotation degrees of freedom respectively) .
  • Each link rod 240 is coupled to the end effec tor 210 via a second universal or spherical joint 280 (allow ing two or three rotation degrees of freedom respectively) .
  • Delta robots as such as known to the person skilled in the art and many implementation aspects are therefore not dis ⁇ cussed in detail here.
  • the distance between the base and the end effector changes during the heave- or motion compensation.
  • the winch for the crane wire is provided on the base 220
  • the system requires measures to properly guide the crane wire from the base 220 to the suspension point 290 on the end effector 210.
  • the winch may need to com pensate for the earlier-mentioned variable distance between the base 220 and the end effector.
  • suspension point 290 may be equipped with sheaves, a hook, a lowering winch or other apparatuses.
  • sheaves are provided such that the crane wire is arranged through a sheave assembly, which is running through actuator arms 230 and link rods 240
  • the length of the crane rope is not or on ly minimally affected by compensation of the parallel robot (200) .
  • Motion compensation as such is also considered known to the person skilled in the art and details are therefore not dis ⁇ cussed.
  • the positioning system 150 In order to function as a motion-compensation system the positioning system 150 must also be provided with a controller (not shown) for controlling the motion-compensation actuator 200, wherein such controller requires a motion sensor (not shown) to provide information about the motion to be compensated.
  • the controller may comprise a feedback loop.
  • the motion sensor determines the motion relative to the reference point.
  • multiple motion sensors (not shown) may be provided each determining a motion of a different part relative to the reference point. Subse ⁇ quently, a relative motion between said different parts may be determined and used as an input to the controller.
  • Fig. 4 illustrates the dynamics of the motion-compensation actuator 200 of Fig. 2.
  • Each actuator arm 230 may pivot around the revolute joint 260 such that the respective first universal or spherical joint 270 follows circular path CI as shown in the figure.
  • Each of the link rods 240 may pivot around the respective first universal or spherical joint 270 such that the respective second universal or spherical joint 280 follows circular path C2 as shown in the figure.
  • the total reach of the motion-compensation actuator 200 is determined by the sum of the respective radiuses Rl, R2 of said circular paths as illustrated in Fig. 4.
  • a fourth arm may be provided instead of a three-armed delta robot.
  • Such additional arm may be pro ⁇ vided to add motion compensation for rotation degrees of freedom, i.e. to determine and compensate the rotation de- gree-of-freedom of the end effector, for example.
  • additional arm may be used to create a larger over-determination of the degrees of freedom of the end ef ⁇ fector, which may be beneficial for the stiffness and loading of the system.
  • such variant may be exploited for a larger reach of the system.
  • Another variant concerns a rotation of the mechanism in that two arms are loaded by compression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

La présente invention concerne un système de positionnement (150) ayant un bras de positionnement (120, 122, 124) avec une extrémité distale (128) destinée à positionner une cible (300) par rapport à un point de référence (999), l'extrémité distale (128) du bras de positionnement (120, 122, 124) et/ou le point de référence (999) pouvant être sujets à un mouvement indésirable provoqué par des facteurs externes, tels que les vagues de la mer. L'extrémité distale (128) du bras de positionnement (120, 122, 124) est pourvue d'un effecteur terminal (210) et d'un actionneur de compensation de mouvement (200) accouplé entre l'extrémité distale du bras de positionnement (120, 122, 124) et l'effecteur terminal (210), l'actionneur de compensation de mouvement (200) étant conçu pour réduire le mouvement indésirable de l'effecteur terminal (210) par rapport au point de référence (999). L'invention concerne en outre une grue destinée à être utilisée sur un navire comprenant ledit système de positionnement (150), ainsi qu'un procédé de positionnement d'une cible (300) à l'aide dudit système de positionnement.
PCT/NO2014/050110 2014-06-23 2014-06-23 Système de positionnement avec compensation de mouvement d'extrémité distale WO2015199543A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/NO2014/050110 WO2015199543A1 (fr) 2014-06-23 2014-06-23 Système de positionnement avec compensation de mouvement d'extrémité distale

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/NO2014/050110 WO2015199543A1 (fr) 2014-06-23 2014-06-23 Système de positionnement avec compensation de mouvement d'extrémité distale

Publications (1)

Publication Number Publication Date
WO2015199543A1 true WO2015199543A1 (fr) 2015-12-30

Family

ID=54938512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2014/050110 WO2015199543A1 (fr) 2014-06-23 2014-06-23 Système de positionnement avec compensation de mouvement d'extrémité distale

Country Status (1)

Country Link
WO (1) WO2015199543A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106240764A (zh) * 2016-08-01 2016-12-21 江苏科技大学 波浪补偿专用机器人及波浪补偿方法
EP3318530A1 (fr) 2016-11-03 2018-05-09 National Oilwell Varco Norway AS Procédé de mise à niveau d'une grue à flèche articulée et d'une grue avec compensation de houle
WO2018106105A1 (fr) 2016-12-06 2018-06-14 Itrec B.V. Grue à compensation du mouvement induit par les vagues destinée à être utilisée sur un navire en mer, navire et procédé de transfert de charge
WO2018199743A3 (fr) * 2017-04-24 2019-09-26 Itrec B.V. Grue à compensation de mouvement destinée à être utilisée sur un navire en mer
NL2020664B1 (en) * 2018-03-26 2019-10-07 Barge Master Ip B V Offshore crane
CN111776959A (zh) * 2020-07-10 2020-10-16 江苏神华船舶工程有限公司 一种具有减摇功能的船用起重机
WO2021239728A1 (fr) * 2020-05-26 2021-12-02 Eagle-Access B.V. Système de transfert en mer avec compensation de mouvement relatif interne

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282064A1 (en) * 2011-05-02 2012-11-08 John Anthony Payne Apparatus and methods of positioning a subsea object
WO2012152559A1 (fr) * 2011-05-06 2012-11-15 Robert Bosch Gmbh Dispositif permettant de déplacer et de positionner un objet dans l'espace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282064A1 (en) * 2011-05-02 2012-11-08 John Anthony Payne Apparatus and methods of positioning a subsea object
WO2012152559A1 (fr) * 2011-05-06 2012-11-15 Robert Bosch Gmbh Dispositif permettant de déplacer et de positionner un objet dans l'espace

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106240764A (zh) * 2016-08-01 2016-12-21 江苏科技大学 波浪补偿专用机器人及波浪补偿方法
AU2017353114B2 (en) * 2016-11-03 2019-10-10 Grant Prideco, Inc. Method of upgrading a knuckle-boom crane and a heave-compensating crane
EP3318530A1 (fr) 2016-11-03 2018-05-09 National Oilwell Varco Norway AS Procédé de mise à niveau d'une grue à flèche articulée et d'une grue avec compensation de houle
WO2018082831A1 (fr) 2016-11-03 2018-05-11 National Oilwell Varco Norway As Procédé de mise à niveau d'une grue à flèche articulée vers une grue à compensation de pilonnement
WO2018106105A1 (fr) 2016-12-06 2018-06-14 Itrec B.V. Grue à compensation du mouvement induit par les vagues destinée à être utilisée sur un navire en mer, navire et procédé de transfert de charge
US10941023B2 (en) 2016-12-06 2021-03-09 Itrec B.V. Wave-induced motion compensating crane for use on an offshore vessel, vessel and load transferring method
US11066279B2 (en) 2017-04-24 2021-07-20 Itrec B.V. Motion compensating crane for use on an offshore vessel
CN110719886B (zh) * 2017-04-24 2022-02-08 伊特里克公司 用于在海上船上使用的运动补偿起重机
EP4365122A3 (fr) * 2017-04-24 2024-08-07 Itrec B.V. Grue à compensation de mouvement destinée à être utilisée sur un navire en mer
JP2020519514A (ja) * 2017-04-24 2020-07-02 イーテーエルエーセー・ベー・フェー 海洋船上で利用するための動き補償クレーン
US11970370B2 (en) 2017-04-24 2024-04-30 Itrec B.V. Motion compensating crane for use on an offshore vessel
CN110719886A (zh) * 2017-04-24 2020-01-21 伊特里克公司 用于在海上船上使用的运动补偿起重机
WO2018199743A3 (fr) * 2017-04-24 2019-09-26 Itrec B.V. Grue à compensation de mouvement destinée à être utilisée sur un navire en mer
US11613448B2 (en) 2017-04-24 2023-03-28 Itrec B.V. Motion compensating crane for use on an offshore vessel
NL2020664B1 (en) * 2018-03-26 2019-10-07 Barge Master Ip B V Offshore crane
WO2019190314A3 (fr) * 2018-03-26 2020-04-02 Barge Master Ip B.V. Grue en haute mer
NL2025683B1 (en) * 2020-05-26 2021-12-14 Eagle Access B V Offshore transfer system with internal relative movement compensation
WO2021239728A1 (fr) * 2020-05-26 2021-12-02 Eagle-Access B.V. Système de transfert en mer avec compensation de mouvement relatif interne
JP2023518128A (ja) * 2020-05-26 2023-04-27 イーグル-アクセス ビー.ヴィ. 内部相対移動補償付きの洋上移送システム
CN116133941A (zh) * 2020-05-26 2023-05-16 鹰通达私人有限公司 具有内部相对移动补偿的海上传送系统
JP7336041B2 (ja) 2020-05-26 2023-08-30 イーグル-アクセス ビー.ヴィ. 内部相対移動補償付きの洋上移送システム
CN116133941B (zh) * 2020-05-26 2024-03-22 鹰通达私人有限公司 具有内部相对移动补偿的海上传送系统
CN111776959B (zh) * 2020-07-10 2022-03-25 江苏神华船舶工程有限公司 一种具有减摇功能的船用起重机
CN111776959A (zh) * 2020-07-10 2020-10-16 江苏神华船舶工程有限公司 一种具有减摇功能的船用起重机

Similar Documents

Publication Publication Date Title
WO2015199543A1 (fr) Système de positionnement avec compensation de mouvement d'extrémité distale
US7367464B1 (en) Pendulation control system with active rider block tagline system for shipboard cranes
US8195368B1 (en) Coordinated control of two shipboard cranes for cargo transfer with ship motion compensation
US9688490B2 (en) Motion compensation device and method for transferring a load
US6496765B1 (en) Control system and method for payload control in mobile platform cranes
WO2017107936A1 (fr) Système et procédé de commande de compensation de tangage de grue en mer utilisant une télémétrie vidéo
US8181799B2 (en) Actuation system configured for moving a payload
ES2952698T3 (es) Manipulador paralelo accionado por cable
RU2488547C2 (ru) Устройство с прямым управлением, в частности с пропорциональным и/или линейным управлением, для системы погрузки и/или разгрузки жидкости
CN103189297B (zh) 起伏补偿起重机
MX2014005663A (es) Buque y grua con compensacion dinamica completa para movimientos de buque y olas y un metodo de control del mismo.
US20150344273A1 (en) Crane with heave compensation
WO2014070015A1 (fr) Dispositif et méthode de transfert de personnel, d'équipement et/ou d'éléments structurels d'un navire de surface à une structure offshore
NL2023415B1 (en) hoisting arrangement for assembly of wind turbines
US12071209B2 (en) Supervisory control arrangement for a vessel
WO2015044898A1 (fr) Système de compensation de mouvement à deux corps pour applications marines
WO2017103139A1 (fr) Ensemble de levage à compensation de mouvement tridimensionnelle pour grues
EP4188787B1 (fr) Passerelle télescopique, passerelle à compensation de mouvement et navire
WO2012141584A1 (fr) Navire comprenant une grue
EP1809564A2 (fr) Macro/micro grue
EP3319873A1 (fr) Procédé de transport de personne d'une première position par rapport à une embarcation à une seconde position par rapport à l'embarcation, dispositif de transport de personne, et système et embarcation comprenant le dispositif
EP3508412B1 (fr) Dispositif de levage de la partie supérieure d'une structure offshore, agencement de levage de la partie supérieure d'une structure offshore, navire comprenant cet agencement et procédé de levage et d'abaissement de la partie supérieure d'une structure offshore
KR20140107033A (ko) 선회식 추진기 이송장치
NL2034539B1 (en) Method and System for Compensating Motion of a Suspended Object
KR101173566B1 (ko) 크레인 자세 안정화 장치와 이를 포함하는 크레인과 크레인을 탑재한 부유체 및 구조물 자세 제어 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14896231

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14896231

Country of ref document: EP

Kind code of ref document: A1