WO2015198656A1 - 熱供給システム - Google Patents

熱供給システム Download PDF

Info

Publication number
WO2015198656A1
WO2015198656A1 PCT/JP2015/058092 JP2015058092W WO2015198656A1 WO 2015198656 A1 WO2015198656 A1 WO 2015198656A1 JP 2015058092 W JP2015058092 W JP 2015058092W WO 2015198656 A1 WO2015198656 A1 WO 2015198656A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
compressor
supply system
compression
heat medium
Prior art date
Application number
PCT/JP2015/058092
Other languages
English (en)
French (fr)
Inventor
知義 瀧口
Original Assignee
株式会社マリタイムイノベーションジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社マリタイムイノベーションジャパン filed Critical 株式会社マリタイムイノベーションジャパン
Priority to JP2016529114A priority Critical patent/JP6591412B2/ja
Publication of WO2015198656A1 publication Critical patent/WO2015198656A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C13/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D13/00Combinations of two or more machines or engines
    • F01D13/02Working-fluid interconnection of machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a technique for using the heat recovered from the exhaust gas of the prime mover of the moving body.
  • Patent Document 1 There is a technology for recovering heat from the exhaust gas from the prime mover and using the heat recovered at the heat utilization facility.
  • the first steam generated by a heat medium heated by the heat obtained from the surrounding environment after preheating with the exhaust gas of the prime mover is heated and pressurized by the compressor, and preheated by the exhaust gas of the prime mover.
  • the second steam is generated by the heat medium heated by the first steam after the pressure is made higher than that of the first steam by the pressurizing pump, and the second steam is compressed by the compressor and then supplied to the heat utilization facility.
  • An energy supply system has been proposed.
  • a moving body such as a ship is equipped with a prime mover that generates a driving force for movement. Since the exhaust gas of the prime mover mounted on a moving body usually has a larger amount of heat energy than the atmosphere, water as a heat medium is heated by a heat exchanger called an exhaust gas economizer (or economizer), There is a mechanism for supplying the generated heat medium to a heat utilization device such as a heating device for heating the fuel or lubricating oil of the prime mover or a heating device for heating the moving body.
  • a heat utilization device such as a heating device for heating the fuel or lubricating oil of the prime mover or a heating device for heating the moving body.
  • the amount of heat energy of the exhaust gas from the motor mounted on the moving body is decreasing year by year as the thermal efficiency of the motor is improved. Therefore, in the above-described mechanism, there may be a case where the necessary steam amount cannot be supplied to the heat utilization device even in the planned normal use state of the prime mover.
  • the amount of heat energy of the exhaust gas of the prime mover mounted on the moving body differs greatly depending on the moving state of the moving body, unlike the prime mover used in a non-moving body such as a plant. For example, if the moving body is moving at a low speed or moving in a cold region, the prime mover is discharged compared to the case where the moving body is moving at a high speed or moving in the tropical region. There exists a problem that the calorie
  • the present invention has been made in view of the above-described background, and an object of the present invention is to provide a mechanism for recovering and effectively utilizing a large amount of thermal energy of exhaust gas from a moving motor as compared with the prior art.
  • the present invention provides a heat exchanger for exchanging heat between the exhaust gas of the prime mover that gives propulsion to the moving body and the heat medium, and the heat heated in the heat exchanger.
  • a heat supply system that supplies a medium to a heat utilization device mounted on the moving body, and a compression that is arranged on a movement path of the heat medium in the heat supply system and compresses the heat medium to a predetermined pressure.
  • a heat supply system with a machine is proposed.
  • the heat supply system is configured such that when the compressor operates, the heat medium is guided to the heat utilization device via the compressor, and the compressor does not operate.
  • a configuration may be employed in which switching means for switching the moving path of the heat medium is provided so that the heat medium is guided to the heat utilization device without passing through the compressor.
  • an electric motor that drives the compressor is provided, the compressor is a positive displacement compressor that is driven by the electric motor, and the compressor is the heat exchanger.
  • the surplus portion of the heat medium that has been heated in step 1 is not fed to the heat utilization device and is pumped in the direction opposite to that during compression, thereby functioning as a turbine, and the electric motor is driven by the compressor functioning as a turbine.
  • the switching means is configured so that the heat medium flows into the compressor from the first opening of the compressor when the compressor performs compression.
  • the medium is guided to the compressor, and when the compressor functions as a turbine, the heat medium is flown from the second opening of the compressor into the compressor.
  • Serial to direct the compressor switching the moving path of the heat medium may be configured that the adopted.
  • the heat medium for supplying heat to the heat utilization device is compressed until a predetermined pressure is reached, and the heat utilization device is obtained.
  • a heat medium having a required temperature is supplied.
  • the heat supply system 1 concerning one Embodiment of this invention is demonstrated.
  • the heat supply system 1 is operated in one of three operation modes: a normal mode, a compression mode, and a power generation mode.
  • 1 shows the configuration of the heat supply system 1 during operation in the normal mode
  • FIG. 2 shows the configuration of the heat supply system 1 during operation in the compression mode
  • FIG. 3 shows the configuration of the heat supply system 1 during operation in the power generation mode. The configuration is shown.
  • the heat supply system 1 is mounted on a moving body such as a ship, a train, an aircraft, or an automobile, and moves as the moving body moves.
  • the heat supply system 1 is heated by a prime mover 11 that gives propulsion to a moving body, an exhaust gas economizer 12 (an example of a heat exchanger) that recovers heat from exhaust gas of the prime mover 11, and heat recovered by the exhaust gas economizer 12
  • a boiler 13 that separates water vapor from water
  • a boiler circulating water pump 14 that circulates water between the exhaust gas economizer 12 and the boiler 13, receives supply of water vapor separated by the boiler 13, and uses the heat of the water vapor
  • One or more heat utilization devices 15-1 to 15-i are provided.
  • the heat utilization devices 15-1 to 15-i are collectively referred to as “heat utilization device 15”.
  • the heat supply system 1 includes an excess steam dump valve 16 that is opened and closed to guide the excess steam to the cooling system when the pressure of the steam separated in the boiler 13 is excessively high, and an excess steam dump valve.
  • the drain cooler 17 that cools the steam supplied from the opening 16 and the drain from the heat utilization device 15, the cascade tank 18 that receives the water that has become liquid by the drain cooler 17, and the water that is received in the cascade tank 18 A water supply pump 19 that leads to the boiler 13 is provided.
  • the heat supply system 1 is arranged on a moving path through which the steam moves from the boiler 13 to the heat utilization device 15, and in the compression mode, compresses the steam whose pressure is insufficient until it reaches a predetermined pressure.
  • the compressor / power generation device 20 functions as a power generator that generates power by receiving supply of excess steam, and the steam is compressed / opened in conjunction with the switching of the operation mode.
  • An on-off valve 21, an on-off valve 22, and an on-off valve 23 that switch a supply path to be supplied to the power generation device 20 are provided.
  • the heat supply system 1 sends the exhaust gas discharged from the prime mover 11 to the exhaust gas economizer 12, and the exhaust gas after heat recovery is performed in the exhaust gas economizer 12, for example, to the outside of the moving body.
  • a guide path 32 is provided.
  • the path 31, the exhaust gas economizer 12, and the path 32 constitute an exhaust system.
  • the heat supply system 1 includes a path 41 that guides water that has been heated in the exhaust gas economizer 12 to a mixed state of liquid and gas from the exhaust gas economizer 12 to the boiler 13, and water after water vapor has been separated in the boiler 13. And a path 42 for guiding the water guided from the cascade tank 18 from the boiler 13 to the exhaust gas economizer 12.
  • the boiler circulating water pump 14 is disposed on the path 42.
  • the exhaust gas economizer 12, the path 41, the boiler 13, the path 42, and the boiler circulating water pump 14 constitute a heat recovery system.
  • the heat supply system 1 branches from the path 51 for receiving the water vapor separated in the boiler 13 from the boiler 13, the path 61 for guiding the water vapor separated in the boiler 13 to the heat utilization device 15, and the path 51.
  • a path 62 connected to the path 61 is provided.
  • the on-off valve 21 is disposed on the path 62.
  • the boiler 13, the path 51, the path 62, the path 61, and the heat utilization apparatus 15 constitute a heat supply system in the normal mode (FIG. 1) and the power generation mode (FIG. 3).
  • the heat supply system 1 has a path 63 that guides the drain after heat is used in each of the heat utilization devices 15 to the drain cooler 17, and a branch from the path 51, and the excess water vapor is supplied to the drain cooler 17.
  • the water supply pump 19 is disposed on the path 54.
  • the heat utilization device 15-1 is disposed on the path 54 (between the feed water pump 19 and the boiler 13). A configuration in which water is guided directly to the boiler 13 without using the device 15-1 may be employed.
  • the path 63, the path 52, the drain cooler 17, the path 53, the cascade tank 18, the path 54, the feed water pump 19, and the boiler 13 constitute a drain recovery and feed water system.
  • the heat supply system 1 branches from the path 51 and leads the water vapor to the first opening 203 (described later) of the compression / power generation apparatus 20 and the second opening 204 (described later) of the compression / power generation apparatus 20.
  • the on-off valve 22 is disposed on the path 64.
  • the boiler 13, the path 51, the path 64, the compression / power generation apparatus 20 (functioning as a compression apparatus), the path 65, the path 61, and the heat utilization apparatus 15 form a heat supply system in the compression mode (FIG. 2).
  • the heat supply system 1 includes a path 66 that branches from the path 64 and guides the water vapor discharged from the first opening 203 of the compression / power generation apparatus 20 to the path 52 in the power generation mode (FIG. 3).
  • the path 64 and the path 65 each guide water vapor in the opposite direction to that in the compression mode (FIG. 2).
  • the path 65, the compression / power generation apparatus 20 (functioning as a power generation apparatus), the path 64, and the path 66 constitute a heat supply (for power generation apparatus) and a discharge system in the power generation mode (FIG. 3).
  • the prime mover 11 is, for example, a diesel engine equipped with a supercharger, but the type of the prime mover is not limited, such as a gasoline engine or a motor not equipped with a supercharger.
  • the heat utilization device 15 is, for example, a heating device that heats fuel or lubricating oil or a heating device that heats the inside of the moving body, but the type of the heat utilization device is not limited thereto.
  • the compression / power generation device 20 is a device having both a function as a compression device and a function as a power generation device.
  • the compression / power generation apparatus 20 includes a compressor / turbine 201 and a motor / generator 202.
  • the compression / power generation device 20 (compression device mode) when functioning as a compression device is a positive displacement compressor driven by an electric motor, and the compressor / turbine 201 (functioning as a compressor) is replaced by a motor / generator 202 ( Driven by a function as a motor), the water vapor flowing from the first opening 203 is compressed to a predetermined pressure, and then discharged from the second opening 204.
  • the compression method of the compression / power generation device 20 is, for example, a screw type, but the compression method is not limited to the screw type as long as it is a volume type.
  • the compression / power generation device 20 when functioning as a power generation device is a power generation device driven by a turbine rotated by steam, and is pumped from the second opening 204 into the compression / power generation device 20.
  • the motor / generator 202 (functioning as a generator) is driven by a compressor / turbine 201 (functioning as a turbine) that is rotated by the water vapor to generate electricity.
  • the water vapor that has passed through the compressor / turbine 201 is discharged from the first opening 203.
  • the compression / power generation device 20 includes a control unit such as an inverter or a converter for frequency control, conversion between AC and DC, or the like as necessary.
  • a power supply device that supplies power to the compression / power generation device 20 that functions as a compression device, and a power utilization device that uses power generated by the compression / power generation device 20 that functions as a power generation device ( For example, a storage battery) is not shown.
  • the water vapor separated by the boiler 13 is supplied to the heat utilization device 15 via the path 51, the path 62, and the path 61.
  • compression mode When the pressure of the water vapor separated by the boiler 13 is insufficient, the heat supply system 1 is operated in the compression mode. In the compression mode, the on-off valve 22 is opened, and the on-off valve 21 and the on-off valve 23 are closed (FIG. 2).
  • the compression / power generation apparatus 20 is electrically connected to the power supply apparatus and functions as a compression apparatus.
  • the water vapor separated by the boiler 13 flows into the compression / power generation device 20 from the first opening 203 via the path 51 and the path 64 and is compressed to a predetermined pressure in the compression / power generation apparatus 20. After that, it is discharged from the second opening 204 and supplied to the heat utilization device 15 via the path 65 and the path 61.
  • the compression mode low-pressure and low-temperature steam is boosted and heated by compression in the compression / power generation device 20, and then supplied to the heat utilization device 15. Therefore, the heat utilization device 15 receives heat supply at a necessary temperature. be able to.
  • the power generation mode a part of the water vapor separated by the boiler 13 is supplied to the heat utilization device 15 via the path 51, the path 62, and the path 61, as in the normal mode.
  • the surplus portion of the water vapor separated by the boiler 13 flows into the compression / power generation device 20 from the second opening 204 via the path 51, the path 62, and the path 65, and is compressed.
  • it is discharged from the first opening 203 and guided to the drain recovery system via the path 64 and path 66.
  • the on-off valve 21, on-off valve 22, and on-off valve 23 compress and generate power from either the first opening 203 or the second opening 204 of the compression / power generation device 20 for the water vapor separated in the boiler 13. It functions as a switching means for switching whether to flow into the apparatus 20.
  • the pressure is reduced by the compression mode.
  • By compressing low-temperature water vapor it is possible to supply water vapor at a temperature required by the heat utilization device 15 without performing combustion by a burner.
  • the energy of the exhaust gas can be recovered up to a low temperature range that could not be recovered.
  • the heat supply system 1 when the heat energy of the exhaust gas of the prime mover is excessive, the heat energy that is not used by the heat radiation in the drain cooler 17 in the normal mode is effectively used for power generation depending on the power generation mode.
  • the compression device that compresses the heat medium in the compression mode and the power generation device that generates power using the heat energy of the heat medium in the power generation mode are also used by the same compression / power generation device 20, so the space inside the restricted moving body is effectively used.
  • the equipment cost is generally low compared with the configuration in which the power generation device and the compression device are individually provided.
  • the heat medium used is water, but heat mediums other than water (including those obtained by adding additives to water) may be employed.
  • the on-off valves 21, 22, 23 and the paths 62, 64, 65, 66 shown as the configuration for switching between the normal mode, the compression mode, and the power generation mode are merely examples, Other configurations may be employed.
  • a configuration in which the path of the heat medium is switched by a three-way valve instead of the on-off valves 21, 22, 23 having the above-described configuration may be employed.
  • the route 66 is connected to the route 61 instead of the route 52, and the water vapor discharged from the compression / power generation device 20 is not directly returned to the drain cooler 17 but is reused as the heating steam of the heat utilization device 15. May be configured.
  • the exhaust gas economizer 12 and the boiler 13 are each provided as an independent separation type, but may be a plurality of units or a combined type.
  • the combined type there is a composite boiler. In that case, the boiler circulating water pump 14 and the paths 41 and 42 are not equipped.
  • the operation mode switching method is not particularly limited.
  • an operator manually performs an operation of opening / closing the on-off valve 21, on-off valve 22, and on-off valve 23 and switching between the compression device and the power generation device of the compression / power generation device 20.
  • a measuring device such as a pressure sensor or a temperature sensor is disposed on the path 51, and the pressure or temperature of water vapor supplied to the heat utilization device 15 based on the measurement result by the measuring device is insufficient, sufficient, or excessive.
  • a control unit that controls opening / closing of the on-off valve 21, on-off valve 22, and on-off valve 23 and switching of the mode of the compression / power generation device 20 based on a determination result by the determination unit
  • a configuration in which the heat supply system 1 does not include the power generation mode may be employed.
  • a compression device that does not function as a power generation device is employed instead of the compression / power generation device 20.
  • adopted in this modification is not limited to a volume type.
  • the path 66 and the on-off valve 23 are not necessary. Therefore, by opening / closing the on-off valve 21 and on-off valve 22 and ON / OFF operation of the compression device, a normal mode (opening the on-off valve 21, closing the on-off valve 22 and turning off the compression device) and a compression mode ( The on-off valve 21 is closed, the on-off valve 22 is opened, and the compression device is turned on.
  • This switching operation may be performed manually by an operator or automatically.
  • a measurement device such as a temperature sensor or a pressure sensor is arranged on the path 51, and whether the pressure or temperature of the water vapor supplied to the heat utilization device 15 is insufficient or sufficient based on the measurement result by the measurement device.

Abstract

 本発明は移動体の原動機の排出ガスから回収される熱エネルギーを有効利用する仕組みを提供する。本発明の一実施形態にかかる熱供給システム1は、原動機11の排出ガスから熱回収を行う排ガスエコノマイザ12と、排ガスエコノマイザ12により回収された熱で加熱された熱媒体から蒸気を分離するボイラ13と、ボイラ13により分離された蒸気を熱利用装置15に供給する熱供給系統を備える。熱供給系統における蒸気の移動経路上には、熱供給システム1の運転モードを切り替える開閉弁21、開閉弁22、開閉弁23と、圧縮・発電装置20が配置されている。原動機11の運転状態によって排ガスエコノマイザ12から熱利用装置15へと供給される熱エネルギーが不足する場合、熱供給システム1は圧縮モードで動作し、ボイラ13から圧縮・発電装置20へと導かれた蒸気が圧縮・発電装置20において昇圧された後、熱利用装置15へと供給される。

Description

熱供給システム
 本発明は、移動体の原動機の排出ガスから回収した熱を利用するための技術に関する。
 原動機の排出ガスから熱回収を行い熱利用施設で回収した熱を利用するための技術がある。例えば、特許文献1には、原動機の排出ガスで予熱した後に周囲環境から得られる熱等で加熱した熱媒体により生成した第1の蒸気を圧縮機で昇温昇圧し、原動機の排出ガスで予熱した後に加圧ポンプで第1の蒸気よりも高圧にした後に第1の蒸気で加熱した熱媒体で第2の蒸気を生成し、第2の蒸気を圧縮機で圧縮した後に熱利用施設に供給するエネルギー供給システムが提案されている。
特開2007-333336号公報
 船舶等の移動体は移動のための推進力を発生する原動機を搭載している。移動体に搭載される原動機の排出ガスは通常、大気よりも熱エネルギー量が多いため、排ガスエコノマイザ(または節炭器)と呼ばれる熱交換器により熱媒体としての水を加熱し、加熱により水蒸気となった熱媒体を原動機の燃料や潤滑油を加熱する加熱装置や移動体内を暖房する暖房装置等の熱利用装置へ供給する仕組みがある。
 移動体に搭載される原動機の排出ガスの熱エネルギー量は、原動機の熱効率の向上に伴って年々減少傾向にある。従って、上述の仕組みにおいて、原動機の計画された常用使用状態においても熱利用装置に必要な蒸気量を供給できない場合がある。また、移動体に搭載される原動機の排出ガスの熱エネルギー量は、プラント等の非移動体において利用される原動機と異なり、移動体の移動状態によって大きく異なる。例えば、移動体が低速で移動をしている場合や、寒冷地帯を移動している場合は、移動体が高速で移動をしている場合や熱帯地域を移動している場合と比べ原動機の排出ガスの熱量が低くなり、熱利用装置に対する蒸気量の不足が助長される、という問題がある。
 上記の問題を回避するための従来技術として、熱利用装置に供給される蒸気量が不足する場合、熱媒体をバーナーで加熱(追い炊き)することにより昇温昇圧させた後、熱利用装置に供給する仕組みが実用化されている。この従来技術による場合、バーナーによる加熱時におけるエネルギー損失が大きく、排出ガスからの熱エネルギー回収効果が損なわれる。
 本発明は上述の背景に鑑みてなされたものであり、従来技術と比べ、移動体の原動機の排出ガスの熱エネルギーを多く回収し、かつ有効利用する仕組みを提供することを目的とする。
 上述した課題を解決するために、本発明は、移動体に推進力を与える原動機の排出ガスと熱媒体との間の熱交換を行う熱交換器と、前記熱交換器において加熱された前記熱媒体を前記移動体に搭載された熱利用装置へと供給する熱供給系統と、前記熱供給系統における前記熱媒体の移動経路上に配置され、前記熱媒体を所定の圧力となるまで圧縮する圧縮機とを備える熱供給システムを提案する。
 上記の熱供給システムの一態様において、前記熱供給系統は、前記圧縮機が動作する場合に前記熱媒体が前記圧縮機を経由して前記熱利用装置へと導かれ、前記圧縮機が動作しない場合に前記熱媒体が前記圧縮機を経由しないで前記熱利用装置へと導かれるように、前記熱媒体の移動経路を切り替える切替手段を備える、という構成が採用されてもよい。
 また、上記の熱供給システムの一態様において、前記圧縮機を駆動する電動モータを備え、前記圧縮機は前記電動モータにより駆動される容積型圧縮機であり、前記圧縮機は、前記熱交換器において加熱された前記熱媒体のうち前記熱利用装置へ供給されない余剰分が圧縮時と逆方向に圧送されることによりタービンとして機能し、前記電動モータは、タービンとして機能する前記圧縮機により駆動されて発電を行う発電機として機能し、前記切替手段は、前記圧縮機が圧縮を行う場合に前記熱媒体が前記圧縮機の第1の開口部から前記圧縮機の内部へ流入するように前記熱媒体を前記圧縮機に導き、前記圧縮機がタービンとして機能する場合に前記熱媒体が前記圧縮機の第2の開口部から前記圧縮機の内部へ流入するように前記熱媒体を前記圧縮機に導くように、前記熱媒体の移動経路を切り替える、という構成が採用されてもよい。
 本発明によれば、移動体の原動機の排出ガスの熱エネルギー量が不足しても、熱利用装置に熱を供給するための熱媒体が所定の圧力となるまで圧縮されて、熱利用装置に対し必要とされる温度の熱媒体が供給される。その結果、排ガスエコノマイザから供給される熱媒体の温度が、従来技術では熱回収ができなかった低温領域まで下がっても、本発明によれば排ガスエネルギー回収が実現される。その際、本発明における熱媒体の圧縮に要する熱エネルギー量は従来技術におけるバーナーによる熱媒体の加熱に要する熱エネルギー量よりも少ないため、効率的な熱エネルギーの回収が実現される。
本発明の一実施形態にかかる熱供給システム(通常モード)の構成を示した図である。 本発明の一実施形態にかかる熱供給システム(圧縮モード)の構成を示した図である。 本発明の一実施形態にかかる熱供給システム(発電モード)の構成を示した図である。
[実施形態]
 以下、本発明の一実施形態にかかる熱供給システム1を説明する。熱供給システム1は、通常モード、圧縮モード、発電モードという3つの運転モードのいずれかで運転される。図1は通常モードで運転時の熱供給システム1の構成を示し、図2は圧縮モードで運転時の熱供給システム1の構成を示し、図3は発電モードで運転時の熱供給システム1の構成を示す。
 熱供給システム1は、例えば船舶、列車、航空機、自動車等の移動体に搭載され、移動体の移動に伴い移動する。熱供給システム1は、移動体に推進力を与える原動機11と、原動機11の排出ガスから熱回収を行う排ガスエコノマイザ12(熱交換器の一例)と、排ガスエコノマイザ12が回収した熱により加熱された水から水蒸気を分離するボイラ13と、排ガスエコノマイザ12とボイラ13との間で水を循環させるボイラ循環水ポンプ14と、ボイラ13により分離された水蒸気の供給を受けて当該水蒸気の熱を利用する1以上の熱利用装置15-1~15-i(iは任意の自然数)を備える。以下、熱利用装置15-1~15-iを総称して「熱利用装置15」という。
 また、熱供給システム1は、ボイラ13において分離される水蒸気の圧力が過剰に高圧である場合に水蒸気の余剰分を冷却系統に導くために開閉される余剰蒸気ダンプ弁16と、余剰蒸気ダンプ弁16の開放により供給される水蒸気および熱利用装置15からのドレンを冷却するドレンクーラー17と、ドレンクーラー17により液体となった水を受容するカスケードタンク18と、カスケードタンク18に受容された水をボイラ13へと導く給水ポンプ19を備える。
 また、熱供給システム1は、水蒸気がボイラ13から熱利用装置15へと移動する移動経路上に配置されて、圧縮モードにおいては、圧力が不足している水蒸気を所定の圧力となるまで圧縮する圧縮機として機能し、発電モードにおいては、余剰の水蒸気の供給を受けて発電を行う発電機として機能する圧縮・発電装置20と、運転モードの切り替えに伴い連係して開閉されて水蒸気を圧縮・発電装置20へと供給する供給経路を切り替える開閉弁21、開閉弁22、および開閉弁23を備える。
 また、熱供給システム1は、原動機11から排出される排出ガスを排ガスエコノマイザ12へと導く経路31と、排ガスエコノマイザ12において熱回収の行われた後の排出ガスを、例えば移動体の外部へと導く経路32を備える。経路31、排ガスエコノマイザ12、および経路32は、排気系統を構成する。
 また、熱供給システム1は、排ガスエコノマイザ12において加熱されて液体と気体の混合状態となった水を排ガスエコノマイザ12からボイラ13へと導く経路41と、ボイラ13において水蒸気が分離された後の水とカスケードタンク18から導かれた水をボイラ13から排ガスエコノマイザ12へと導く経路42を備える。ボイラ循環水ポンプ14は経路42の上に配置される。排ガスエコノマイザ12、経路41、ボイラ13、経路42、およびボイラ循環水ポンプ14は、熱回収系統を構成する。
 また、熱供給システム1は、ボイラ13において分離された水蒸気をボイラ13から受容する経路51と、ボイラ13において分離された水蒸気を熱利用装置15へと導く経路61と、経路51から分岐して経路61に連結される経路62を備える。開閉弁21は経路62の上に配置される。ボイラ13、経路51、経路62、経路61、および熱利用装置15は、通常モード(図1)および発電モード(図3)における熱供給系統を構成する。
 また、熱供給システム1は、熱利用装置15の各々において熱利用が行われた後のドレンをドレンクーラー17へと導く経路63と、経路51から分岐して水蒸気の余剰分をドレンクーラー17へと導く経路52と、ドレンクーラー17からカスケードタンク18へと水を導く経路53と、カスケードタンク18からボイラ13へと水を導く経路54を備える。給水ポンプ19は経路54の上に配置される。また、図1乃至図3に例示の熱供給システム1においては、熱利用装置15-1が経路54の上(給水ポンプ19とボイラ13の間)に配置されているが、経路54が熱利用装置15-1を介さずに直接、ボイラ13へと水を導く構成が採用されてもよい。経路63、経路52、ドレンクーラー17、経路53、カスケードタンク18、経路54、給水ポンプ19、およびボイラ13は、ドレン回収および給水系統を構成する。
 また、熱供給システム1は、経路51から分岐して水蒸気を圧縮・発電装置20の第1開口部203(後述)へと導く経路64と、圧縮・発電装置20の第2開口部204(後述)から排出される水蒸気を経路61へと導く経路65を備える。開閉弁22は経路64の上に配置される。ボイラ13、経路51、経路64、圧縮・発電装置20(圧縮装置として機能)、経路65、経路61、および熱利用装置15は、圧縮モード(図2)における熱供給系統を構成する。
 また、熱供給システム1は、経路64から分岐して、発電モード(図3)において圧縮・発電装置20の第1開口部203から排出される水蒸気を経路52へと導く経路66を備える。発電モード(図3)において、経路64と経路65は各々、圧縮モード(図2)における場合と逆方向に水蒸気を導く。経路65、圧縮・発電装置20(発電装置として機能)、経路64、および経路66は、発電モード(図3)における熱供給(対発電装置)および排出系統を構成する。
 原動機11は、例えば過給器を備えるディーゼルエンジンであるが、過給器を備えないガソリンエンジンやモータなど、原動機の種別は限定されない。また、熱利用装置15は、例えば、燃料や潤滑油を加熱する加熱装置や、移動体の内部を暖房する暖房装置であるが、熱利用装置の種別はこれらに限定されない。
 圧縮・発電装置20は、圧縮装置としての機能と発電装置としての機能を兼ね備える装置である。圧縮・発電装置20は、圧縮機兼タービン201と、モータ兼発電機202を備える。圧縮装置として機能するときの圧縮・発電装置20(圧縮装置モード)は、電動モータにより駆動される容積型圧縮装置であり、圧縮機兼タービン201(圧縮機として機能)をモータ兼発電機202(モータとして機能)により駆動して、第1開口部203から流入する水蒸気を所定の圧力となるまで圧縮した後、第2開口部204から排出する。圧縮・発電装置20(圧縮装置モード)の圧縮の方式は、例えばスクリュウ型であるが、容積型であれば圧縮の方式はスクリュウ型に限定されない。
 発電装置として機能するときの圧縮・発電装置20(発電装置モード)は、水蒸気により回転するタービンにより駆動される発電装置であり、第2開口部204から圧縮・発電装置20の内部へと圧送される水蒸気により回転する圧縮機兼タービン201(タービンとして機能)によりモータ兼発電機202(発電機として機能)を駆動して、発電を行う。なお、圧縮機兼タービン201を通過した水蒸気は第1開口部203から排出される。圧縮・発電装置20は、発電装置として機能するために、必要に応じて周波数制御や交流・直流間の変換等のためのインバータやコンバータ等の制御部を備える。なお、図1乃至図3において、圧縮装置として機能する圧縮・発電装置20に電力を供給する電源装置と、発電装置として機能する圧縮・発電装置20により発電された電力を利用する電力利用装置(例えば蓄電池)は図示を省略している。
(通常モード)
 ボイラ13により分離された水蒸気の圧力が不足せず、かつ、過剰でもない場合、熱供給システム1は通常モードで運転される。通常モードにおいては、開閉弁21が開放され、開閉弁22と開閉弁23が閉鎖される(図1)。また、圧縮・発電装置20は電源装置および電力利用装置のいずれとも電気的に切断され、圧縮装置および発電装置のいずれとしても動作しない。
 通常モードにおいては、ボイラ13により分離された水蒸気は、経路51、経路62、経路61を経由して熱利用装置15に供給される。
(圧縮モード)
 ボイラ13により分離された水蒸気の圧力が不足する場合、熱供給システム1は圧縮モードで運転される。圧縮モードにおいては、開閉弁22が開放され、開閉弁21と開閉弁23が閉鎖される(図2)。また、圧縮・発電装置20は電源装置と電気的に接続され、圧縮装置として機能する。
 圧縮モードにおいては、ボイラ13により分離された水蒸気は、経路51、経路64を経由して第1開口部203から圧縮・発電装置20に流入し、圧縮・発電装置20において所定の圧力まで圧縮された後、第2開口部204から排出されて、経路65、経路61を経由して熱利用装置15に供給される。圧縮モードにおいては、低圧かつ低温な水蒸気が圧縮・発電装置20における圧縮により昇圧され昇温された後、熱利用装置15に供給されるため、熱利用装置15は必要な温度の熱供給を受けることができる。
(発電モード)
 ボイラ13により分離された水蒸気の圧力が過剰である場合、熱供給システム1は発電モードで運転される。発電モードにおいては、開閉弁21と開閉弁23が開放され、開閉弁22が閉鎖される(図3)。また、圧縮・発電装置20は電力利用装置に電気的に接続され、発電装置として機能する。
 発電モードにおいては、ボイラ13により分離された水蒸気は、その一部が通常モードと同様に、経路51、経路62、経路61を経由して熱利用装置15に供給される。同時に、発電モードにおいては、ボイラ13により分離された水蒸気のうち、余剰の部分が、経路51、経路62、経路65を経由して第2開口部204から圧縮・発電装置20に流入し、圧縮・発電装置20において発電を行いつつ降圧された後、第1開口部203から排出されて、経路64、経路66を経由してドレン回収系統へと導かれる。
 上記のように、開閉弁21、開閉弁22、および開閉弁23は、ボイラ13において分離された水蒸気を圧縮・発電装置20の第1開口部203と第2開口部204のいずれから圧縮・発電装置20の内部へと流入させるかを切り替える切替手段として機能する。
 上述のように、熱供給システム1によれば、原動機の排出ガスの熱エネルギーが不足して通常モードでは熱利用装置15に十分な蒸気量を供給できない場合であっても、圧縮モードにより低圧かつ低温な水蒸気を圧縮することで、バーナーによる燃焼を行うことなく、熱利用装置15の必要とする温度の水蒸気を供給することができる。その上、低温、低圧な水蒸気により排ガスエネルギーを回収することにより、これまで回収できなかった低温域に至るまで排ガスのエネルギーを回収することが出来る。
 また、熱供給システム1によれば、原動機の排出ガスの熱エネルギーが過剰である場合、発電モードによって、通常モードではドレンクーラー17における放熱により利用されない熱エネルギーが発電に用いられることで有効利用される。圧縮モードにおいて熱媒体の圧縮を行う圧縮装置と、発電モードにおいて熱媒体の熱エネルギーにより発電を行う発電装置は同じ圧縮・発電装置20がそれらを兼ねるため、制約のある移動体内の空間が有効利用されるとともに、発電装置と圧縮装置を個別に備える構成と比べて、一般的に設備コストが安価で済む。
[変形例]
 上述した実施形態は本発明の技術的思想の範囲内において様々に変形可能である。以下にそれらの変形の例を示す。なお、これらの変形例は適宜組み合わせられてもよい。
(1)上述した熱供給システム1において、用いられる熱媒体は水であるものとしたが、水以外の熱媒体(水に添加物の添加を行ったものを含む)が採用されてもよい。
(2)上述した熱供給システム1において、通常モード、圧縮モードおよび発電モードの切り替えを行う構成として示した開閉弁21、22、23および経路62、64、65、66はあくまで例示であって、他の構成が採用されてもよい。例えば上述の構成の開閉弁21、22、23に代えて3方弁により熱媒体の経路の切り替えが行われる構成が採用されてもよい。また、例えば、経路66を経路52ではなく経路61に接続し、圧縮・発電装置20から排出される水蒸気をドレンクーラー17に直接戻さず、熱利用装置15の加熱蒸気として再利用するように経路を構成してもよい。
(3)上述した熱供給システム1において、排ガスエコノマイザ12とボイラ13は独立分離型で各1台装備したが、其々複数台であっても、また合体型であってもよい。合体型の例として、コンポジットボイラがあり、その場合、ボイラ循環水ポンプ14および経路41、42は装備されない。
(4)上述した熱供給システム1において、運転モードの切り替えの方法は特に限定されない。例えば、開閉弁21、開閉弁22、および開閉弁23の開閉と、圧縮・発電装置20の圧縮装置と発電装置の間の切り替えの操作を作業員が手動で行うことが考えられる。また、例えば経路51の上に圧力センサや温度センサ等の計測装置を配置するとともに、計測装置による計測結果に基づき熱利用装置15へ供給される水蒸気の圧力または温度が不足、十分、過剰のいずれであるかを判定する判定部と、当該判定部による判定結果に基づき、開閉弁21、開閉弁22、および開閉弁23の開閉と、圧縮・発電装置20のモードの切り替えを制御する制御装置を熱供給システム1に設けることで、運転モードが作業員の操作によらずに自動的に切り替わる構成が採用されてもよい。
(5)熱供給システム1が発電モードを備えない構成が採用されてもよい。この変形例においては、圧縮・発電装置20に代えて、発電装置としては機能しない圧縮装置が採用される。また、この変形例において採用される圧縮装置は容積型に限定されない。この変形例においては、経路66および開閉弁23は不要である。従って、開閉弁21と開閉弁22の開閉と、圧縮装置のON/OFFの操作により、通常モード(開閉弁21を開放し、開閉弁22を閉鎖し、圧縮装置をOFFする)と圧縮モード(開閉弁21を閉鎖し、開閉弁22を開放し、圧縮装置をONする)の切り替えが行われる。この切り替えの操作は、作業員により手動で行われてもよいし、自動的に行われてもよい。例えば経路51の上に温度センサや圧力センサ等の計測装置を配置するとともに、計測装置による計測結果に基づき熱利用装置15へ供給される水蒸気の圧力または温度が不足、十分のいずれであるかを判定する判定部と、当該判定部による判定結果に基づき、開閉弁21、および開閉弁22の開閉と、圧縮装置のON/OFFの切り替えを制御する制御装置を熱供給システム1に設けることで、運転モードが作業員の操作によらずに自動的に切り替わる構成が採用されてもよい。
1…熱供給システム、11…原動機、12…排ガスエコノマイザ、13…ボイラ、14…ボイラ循環水ポンプ、15…熱利用装置、16…余剰蒸気ダンプ弁、17…ドレンクーラー、18…カスケードタンク、19…給水ポンプ、20…圧縮・発電装置、21…開閉弁、22…開閉弁、23…開閉弁、31…経路、32…経路、41…経路、42…経路、51…経路、52…経路、53…経路、54…経路、61…経路、62…経路、63…経路、64…経路、65…経路、66…経路、201…圧縮機兼タービン、202…モータ兼発電機、203…第1開口部、204…第2開口部

Claims (3)

  1.  移動体に推進力を与える原動機の排出ガスと熱媒体との間の熱交換を行う熱交換器と、
     前記熱交換器において加熱された前記熱媒体を前記移動体に搭載された熱利用装置へと供給する熱供給系統と、
     前記熱供給系統における前記熱媒体の移動経路上に配置され、前記熱媒体を所定の圧力となるまで圧縮する圧縮機と
     を備える熱供給システム。
  2.  前記熱供給系統は、前記圧縮機が動作する場合に前記熱媒体が前記圧縮機を経由して前記熱利用装置へと導かれ、前記圧縮機が動作しない場合に前記熱媒体が前記圧縮機を経由しないで前記熱利用装置へと導かれるように、前記熱媒体の移動経路を切り替える切替手段を備える
     請求項1に記載の熱供給システム。
  3.  前記圧縮機を駆動する電動モータを備え、
     前記圧縮機は前記電動モータにより駆動される容積型圧縮機であり、
     前記圧縮機は、前記熱交換器において加熱された前記熱媒体のうち前記熱利用装置へ供給されない余剰分が圧縮時と逆方向に圧送されることによりタービンとして機能し、
     前記電動モータは、タービンとして機能する前記圧縮機により駆動されて発電を行う発電機として機能し、
     前記切替手段は、前記圧縮機が圧縮を行う場合に前記熱媒体が前記圧縮機の第1の開口部から前記圧縮機の内部へ流入するように前記熱媒体を前記圧縮機に導き、前記圧縮機がタービンとして機能する場合に前記熱媒体が前記圧縮機の第2の開口部から前記圧縮機の内部へ流入するように前記熱媒体を前記圧縮機に導くように、前記熱媒体の移動経路を切り替える
     請求項2に記載の熱供給システム。
PCT/JP2015/058092 2014-06-25 2015-03-18 熱供給システム WO2015198656A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016529114A JP6591412B2 (ja) 2014-06-25 2015-03-18 熱供給システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-130376 2014-06-25
JP2014130376 2014-06-25

Publications (1)

Publication Number Publication Date
WO2015198656A1 true WO2015198656A1 (ja) 2015-12-30

Family

ID=54937759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058092 WO2015198656A1 (ja) 2014-06-25 2015-03-18 熱供給システム

Country Status (2)

Country Link
JP (1) JP6591412B2 (ja)
WO (1) WO2015198656A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255863A (ja) * 2007-04-04 2008-10-23 Calsonic Kansei Corp ランキンサイクルシステム
JP2009138575A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp エンジンの廃熱回収装置
JP2011202518A (ja) * 2010-03-24 2011-10-13 Sanden Corp 内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03264712A (ja) * 1990-03-15 1991-11-26 Nippon Seimitsu Keisoku Kk 複合発電装置
JP4555784B2 (ja) * 2006-02-02 2010-10-06 株式会社日立製作所 低温廃熱を利用した水蒸気発生装置、その装置を用いた熱電供給装置、及び水蒸気発生方法
JP2007270623A (ja) * 2006-03-30 2007-10-18 Tokyo Electric Power Co Inc:The 蒸気発生装置及び内燃エンジンシステム
JP2008180172A (ja) * 2007-01-25 2008-08-07 Toyota Motor Corp 廃熱回収装置
JP2014034924A (ja) * 2012-08-09 2014-02-24 Hitachi Power Solutions Co Ltd 内燃機関の排熱回収装置及びコジェネレーション・システム
JP2014173742A (ja) * 2013-03-06 2014-09-22 Miura Co Ltd 給水加温システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255863A (ja) * 2007-04-04 2008-10-23 Calsonic Kansei Corp ランキンサイクルシステム
JP2009138575A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp エンジンの廃熱回収装置
JP2011202518A (ja) * 2010-03-24 2011-10-13 Sanden Corp 内燃機関の廃熱利用システム及び該システムに使用するモータジェネレータ装置

Also Published As

Publication number Publication date
JP6591412B2 (ja) 2019-10-16
JPWO2015198656A1 (ja) 2017-07-20

Similar Documents

Publication Publication Date Title
US11448133B2 (en) Moderate pressure liquid hydrogen storage for hybrid-electric propulsion system
KR101896130B1 (ko) 피동 시동 펌프 및 시동 시퀀스
CA2874473C (en) Device and method for utilizing the waste heat of an internal combustion engine, in particular for utilizing the waste heat of a vehicle engine
CN102472121A (zh) 使用有机郎肯循环的能量回收系统
US10871098B2 (en) Thermoelectric generation apparatus, heat generation apparatus for fuel storage tanks, and waste heat recovery system
KR101814878B1 (ko) 선박 추진 시스템 및 선박 및 선박 추진 시스템의 운전 방법
US10156161B2 (en) Compressed fluid storage power generation device
KR101613228B1 (ko) 선박용 엔진의 폐열회수장치 및 방법
KR101674804B1 (ko) 초임계 이산화탄소 발전 시스템
WO2017191676A1 (ja) 熱供給システム
KR101614605B1 (ko) 초임계 이산화탄소 발전시스템 및 이를 포함하는 선박
KR20140072579A (ko) 폐열 회수 가능한 선박용 동력 장치
JP6591412B2 (ja) 熱供給システム
JP2014227990A (ja) クリーンエネルギー発生装置、クリーンエネルギー発生方法及びクリーンエネルギー発生装置を具備した次世代移動体
JP2020143670A (ja) 熱電発電装置と燃料貯蔵タンクの発熱装置および廃熱回収システム
US20180058461A1 (en) System for producing energy or torque
WO2016038727A1 (ja) 舶用熱供給システム
KR20160073349A (ko) 초임계 이산화탄소 발전시스템 및 이를 포함하는 선박
KR20160017740A (ko) 초임계 이산화탄소 발전시스템 및 이를 포함하는 선박
JP2016160868A (ja) 低温熱回収システム
KR101466228B1 (ko) 선박
KR20180134578A (ko) 복합 발전장치
KR102492650B1 (ko) 복합 발전 시스템 및 이를 구비한 선박
KR101928138B1 (ko) 초임계 이산화탄소 발전시스템이 설치된 선박
JP5397719B1 (ja) クリーンエネルギー発生装置及びクリーンエネルギー発生装置した移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811495

Country of ref document: EP

Kind code of ref document: A1