WO2015197019A1 - 一种测量透镜畸变的方法及系统 - Google Patents

一种测量透镜畸变的方法及系统 Download PDF

Info

Publication number
WO2015197019A1
WO2015197019A1 PCT/CN2015/082496 CN2015082496W WO2015197019A1 WO 2015197019 A1 WO2015197019 A1 WO 2015197019A1 CN 2015082496 W CN2015082496 W CN 2015082496W WO 2015197019 A1 WO2015197019 A1 WO 2015197019A1
Authority
WO
WIPO (PCT)
Prior art keywords
center
point
points
distortion
image
Prior art date
Application number
PCT/CN2015/082496
Other languages
English (en)
French (fr)
Inventor
陈兴仪
徐建军
牛锡亮
Original Assignee
青岛歌尔声学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛歌尔声学科技有限公司 filed Critical 青岛歌尔声学科技有限公司
Priority to US15/314,926 priority Critical patent/US9810602B2/en
Priority to JP2016575034A priority patent/JP6166852B1/ja
Publication of WO2015197019A1 publication Critical patent/WO2015197019A1/zh
Priority to US15/728,214 priority patent/US10151664B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0257Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested
    • G01M11/0264Testing optical properties by measuring geometrical properties or aberrations by analyzing the image formed by the object to be tested by using targets or reference patterns

Definitions

  • the present invention relates to the field of image processing, and in particular to a method and system for measuring lens distortion.
  • Head-mounted display products will be the perfect application and product of visual technology. It uses high-resolution LCD screen to display images, which is enlarged by lens so that users can see clear images. 3D technology is used to process images and let users feel 3D tape. The visual impact of coming. However, when the lens enlarges the image, it also causes the image to be distorted. The distortion belongs to the geometric distortion of the image. It is due to the distortion of the image caused by the different magnifications of different regions on the focal plane.
  • the degree of this distortion is from The center of the screen increases to the edge of the screen, which is mainly reflected at the edge of the screen. Therefore, it is necessary to measure the distortion variable, and then the image of the distortion is reduced to a normal image by image processing technology.
  • the method for measuring lens distortion in the prior art is slow in calculation and the measurement accuracy is not high, and the reduction to a normal image has a large The error does not meet the needs of image processing.
  • the invention provides a method and a system for measuring lens distortion to solve the problem that the existing lens distortion measuring method has a slow calculation speed and a low measurement precision.
  • the present invention provides a method for measuring lens distortion, the method comprising: setting a test card having a dot pattern of K x N dots, K and N are both natural numbers, K is equal to or not equal to N;
  • the origin is the positive direction of the X-axis
  • the plane coordinate system of the distorted image is constructed from the origin to the positive direction of the Y-axis
  • the distortion of the distorted image is calculated, and the distortion of the lens is obtained.
  • the radius of the center point on the test card is larger than the radius of all non-center points.
  • center point of the location distortion image and all non-center points are retrieved by scanning:
  • the center of the scan area is moved in order until the search area is scanned, and the average of the pixel points obtained by the scan area is compared, and the minimum average value or the maximum average value of all the pixel average values is located.
  • the center of the scanning area is determined as the center of the center point, and then the coordinate value of the center point center is determined, and the coordinate value of the center point center is positioned as the coordinate value of the center point.
  • moving the center of the scanning area in order includes:
  • the method further includes: defining a two-dimensional array having a length at least all points in the cache, and storing coordinate information of the center point in a central value of the two-dimensional array;
  • All the points that are located are sequentially stored in a two-dimensional array according to the relative physical position on the distorted image, and the index relationship between the center point and all non-center points and the two-dimensional array is established.
  • the distortion variables of the distortion image are calculated:
  • the three points B1, center, and B3 are on the same baseline
  • the three points B2, center, and B4 are on the same baseline
  • index differences of points A1 and A2 with respect to point B1 are equal and are denoted as m
  • index differences of points A3 and A4 with respect to point B3 are equal and denoted as n
  • m n
  • Points A1 and A4 are equal to each other with respect to point B4 and are denoted as u.
  • using the coordinate values of the center point and the part of the non-center point to calculate the distortion of the distortion image further includes:
  • the distortion of the vertical direction of the distorted image is calculated according to the following formula:
  • DisA1A4 represents the distance between points A1 and A4, and DisA2A3 represents points A2 and A3.
  • DisA1A2 represents the distance between points A1 and A2
  • DisA3A4 represents the distance between points A3 and A4
  • DisB2B represents the distance between points B2 and B4
  • Horizontal represents the distortion of the horizontal direction of the distorted image.
  • obtaining the distortion image after the test card is distorted by the lens comprises:
  • the camera center, the lens center, and the test card center are coincident, and the industrial camera is used to take a test card through a lens to obtain a distorted image.
  • the center of the scan area where the smallest average value of all the pixel points is located is determined as the center of the center black point, and the coordinate value of the center of the center black point is determined.
  • the present invention also provides a system for measuring lens distortion, which is used to measure lens distortion using the above method, the system comprising:
  • test card having a dot pattern of K x N dots
  • An imaging device for acquiring a distortion image of the test card after being distorted by the lens
  • the image processing device is configured to use the point in the upper left corner of the distorted image as the coordinate origin, the X-axis positive direction from the origin to the right, and the plane coordinate system of the distorted image from the origin to the Y-axis positive direction; The center point and all non-central points, and determine the coordinate values of the center point and all non-central points in the plane coordinate system; and calculate the distortion of the distorted image by using the coordinate values of the center point and the non-center point, thereby obtaining the lens Distortion variable.
  • the method and system for measuring lens distortion of the invention can quickly and accurately locate all points on the test card, and the actual error range reaches the sub-pixel level, so as to quickly calculate the distortion of the distortion image and truly reflect the distortion of the lens. the goal of.
  • FIG. 1 is a flow chart of a method for measuring lens distortion according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a test card according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of acquiring a distorted image according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a distortion image of a test card after being deformed by a lens according to an embodiment of the present invention
  • FIG. 5 is a model diagram of positioning a black point of a distorted image according to an embodiment of the present invention.
  • FIG. 6 is a physical diagram of all black points that are located according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a black point coordinate cache provided by an embodiment of the present invention.
  • FIG. 8 is a reference diagram of distortion image distortion calculation provided by an embodiment of the present invention.
  • the core idea of the present invention is to utilize a new distorted image test card, which is provided with black dots to form a dot pattern, and coordinate positioning based on the test card to quickly identify all black spots of the distorted image.
  • the coordinates of the distorted image are calculated based on the coordinates of all black points.
  • the measuring method of the invention can quickly find black spots on the test card, speed up the processing speed of the distortion measurement, and improve the measurement precision.
  • FIG. 1 is a flow chart of a method for measuring lens distortion according to an embodiment of the present invention. referring to FIG. 1, the method includes:
  • Step S110 setting a test card having a dot pattern of K ⁇ N dots, wherein K and N are both natural numbers, and K is equal to or not equal to N;
  • Step S120 acquiring a distortion image after the test card is distorted by the lens
  • Step S130 taking the point in the upper left corner of the distortion image as the coordinate origin, and starting from the origin to the right in the positive direction of the X axis, and constructing the plane coordinate system of the distorted image in the positive direction from the origin to the Y axis;
  • Step S140 searching for a center point of the localized distortion image and all non-center points by scanning, and determining coordinate values of the center point and all non-center points in the plane coordinate system;
  • step S150 the distortion values of the distortion image are calculated by using the coordinate values of the center point and the non-center point, thereby obtaining the distortion of the lens.
  • FIG. 2 is a schematic diagram of a test card according to an embodiment of the present invention; referring to FIG. 2, a part of the test card used in the embodiment is shown: a square matrix of 21 rows and 21 columns of black dots, and 1 indicates The center black point of the square matrix; the radius of the center black dot is larger than the radius of all other non-center black dots, so that it can be aligned with the center of the camera when shooting the distorted image. In addition, the radius of the central black dot is large and the image is easy to use.
  • the processing technique recognizes it as a central point when performing calculation processing. It can be understood that FIG. 2 is only the middle portion of the distortion image of the test card captured by the lens taken in the embodiment. Since the lens causes the distortion of the test card, the edge portion of the distortion image will have an approximately circular shape, and the middle portion is approximately matrix-arranged.
  • the method of the present invention is a measurement of a distorted image distortion, and it is necessary to acquire a distorted image before performing the measurement.
  • 3 is a schematic diagram of acquiring a distorted image according to an embodiment of the present invention. Referring to FIG. 3, a high-pixel (for example, 10 megapixel) industrial camera 31 is photographed by a lens 32 on a head-mounted display type LCD panel 33. The card, the center of the test card picture is coincident with the center of the camera 31 and the center of the lens 32, and the distorted image captured at this time can accurately represent the distortion of the image caused by the lens.
  • a high-pixel (for example, 10 megapixel) industrial camera 31 is photographed by a lens 32 on a head-mounted display type LCD panel 33.
  • the card, the center of the test card picture is coincident with the center of the camera 31 and the center of the lens 32, and the distorted image captured at this time can accurately represent the distortion of the image caused by the lens.
  • FIG. 4 is a schematic diagram of a distortion image of a test card after being distorted by a lens according to an embodiment of the present invention.
  • FIG. 4 can best reflect a suitable area for calculating lens distortion, and the four corner points on the edge are as close as possible to the edge of the image, and two The two outermost and most complete identical baselines on the edge, typically F ⁇ F In the array area, F is an odd number; see Figure 4, the pinch distortion occurs at the same time as the test card is magnified by the lens.
  • the distortion causes the black point position on the test card to shift, and the position of each black point offset is different.
  • the black spots at the peripheral edges on the distorted image are most severely distorted.
  • the invention adopts the coordinate positioning method to locate the coordinate values of all the black points on the distortion image.
  • the physical relative position of the center point and other non-center points is constant, and the specific The coordinate values may have changed.
  • the coordinate positioning technique is used to locate the coordinates of all black points. Since the relative physical position of the black points is unchanged, the actual coordinate values are changed, and the coordinate values and distortion variables of all the black points changed are utilized.
  • the calculation formula obtains the distortion value of the distortion image, and further obtains the distortion of the lens, thereby adjusting the distortion image to reduce the error when returning to the normal image.
  • FIG. 5 is a model diagram for locating black points of the distorted image according to an embodiment of the present invention
  • FIG. 6 is provided by an embodiment of the present invention. The physical map of all black points that are located;
  • the method for scanning and retrieving the center point of the distorted image and all the non-center points is specifically: setting a square search area centered on the coordinate value of the center of the distorted image; the radius of the square search area is greater than or equal to twice the radius of the center point; Centering on the upper left corner of the square search area, set a square scan area with a radius of the center point.
  • the center of the scan area is the scan start point, scan the image in the scan area and calculate all the pixels of the image in the area.
  • Average value; in the search area move the center of the scan area in order until the search area is scanned, compare the average of the pixel points acquired in the scan area, and minimize or maximize the average of all pixel points.
  • the center of the scan area where the average value is located is determined as the center of the center point, and the coordinate value of the center of the center point is determined, and the coordinate value of the center of the center point is positioned as the coordinate value of the center point.
  • the center point on the test card and the point on the non-center are black, in the black area where the center black point shown in FIG. 5 is located, twice the radius 52 of the black dot or black
  • a radius 51 having a point radius greater than 2 times defines a square search area, and a square scan area having a radius of the black point radius 53 is defined centering on a point in the upper left corner of the search area, in the search area having a larger radius , scanning the center of the scanning area in order from top to bottom and left to right for scanning; each scanning Once, the average value of all the pixels in the scanning area is recorded; until the search area is scanned, the scanning area in which the smallest average value among the average pixel values acquired in each scanning area is compared is determined by the center of the scanning area.
  • the color of the dots on the test card is not limited to black, so when positioning the points on the test card, the average value of the pixel values of the specific point color should be selected to be the minimum or The largest scanning area is the center of the center point.
  • the color of the point on the test card is black, and the more black parts the scanning area contains, the smaller the pixel value, and the pure black pixel value is 0.
  • the background color of the test card may be other colors, the center point and the color of the non-center point, such as white, in the case of positioning using the scanning area, the average value of the scanning area pixel points
  • the center of the scan area where the maximum average value (white pixel value is 255) is positioned as the center of the center point.
  • all non-center black points are located as follows: the center search area is used as a reference, and the square search area is moved to the left in a specific step size to locate the same as the center black point. All non-center black points on the left side of the line, and determine the coordinate value of the non-center black point; then move the square search area to the right, locate all non-center black points on the right side of the same line of the center black point, and determine the coordinates of the non-center black point Value; based on the center of the center black point, move the square search area downwards in a specific step size, locate all non-center black points in the next line of the line where the center black point is located, and determine the coordinate value of the non-center black point; Based on the center of the center black point, move the square search area upwards in a specific step size, locate all non-center black points on the upper line of the line where the center black point is located, and determine the coordinate value of the non-center black point.
  • the radius of the search area of the selected square is a value that is 2 times or more the radius of the non-center black point.
  • the specific step size when moving the search area refers to the distance between the centers of every two black points on the distorted image. It is a preset experience value. Each time this distance is moved, unnecessary scanning can be avoided, and the scanning area is improved. The speed and efficiency of the scan.
  • FIG. 6 is a physical map of all the black points that are located according to an embodiment of the present invention. referring to FIG. 6, the central black point and all non-center black points are located and marked with a circle. Through the above steps, the coordinate values of the central black point and other non-central black points are determined and saved.
  • FIG. 7 is a schematic diagram of a blackpoint coordinate buffer provided by an embodiment of the present invention.
  • an exemplary distortion image is selected.
  • the coordinate values of the selected points are saved according to the relative physical position on the distorted image, and a two-dimensional array having a length capable of including at least all points is first defined in the cache.
  • the number of black dots on the distorted image is different, and a two-dimensional array of different lengths is set.
  • a two-dimensional array of length 41 [41][41] is defined, and two are defined.
  • the dimension array After the dimension array, first store the coordinates of the center black point, find the innermost position of the two-dimensional array array[21][21], and put the coordinates of the center black point into the array array[21][21]. Put the coordinates of the black dot on the left side of the same line of the black point of the distorted image into array[20][21], and so on, and put the coordinate values of other black points on the distorted image into a two-dimensional array to create a distorted image.
  • FIG. 8 is a reference diagram of distortion image distortion calculation provided by an embodiment of the present invention.
  • the distortion image is observed, and the distortion of the distortion image is selected to exhibit the degree of distortion.
  • the key points see Figure 8, to quickly find the two-dimensional array in the cache, first find the four points A1, A2, A3, A4 that can best reflect the calculated lens distortion, these four points should be as close as possible to the edge of the distortion image, ie The areas defined by the four points A1, A2, A3, and A4 can best reflect the appropriate area for calculating the lens distortion.
  • the four points A1, A2, A3, and A4 are the outermost and most complete the same reference on the edge. Line and define the end of the selected baseline, and meet the following conditions:
  • the four points A1, A2, A3, and A4 are in the same reference line; the point where the line connecting point A1 and point A2 intersects the vertical reference line where the center point is located is recorded as B1; the point A2 is connected with point A3 and The point at which the horizontal reference line where the center point intersects is denoted as B2; for the same reason, points B3 and B4 are determined.
  • the index difference between point A1 and A2 with respect to point B1 is equal to m
  • the index difference of point A3 and A4 with respect to point B3 is equal to n
  • the three points of B3 are located on the same baseline; for the same reason, the difference between A1 and A4 relative to the B4 point index is equal to u
  • the index difference of A2 and A3 with respect to point B2 is equal to v
  • the index difference of 9 means that the center black point O is separated from the B1 point by 9 black points.
  • B1, B2, B3, and B4 can be regarded as the intermediate point (or midpoint) on the same reference line where the four points A1, A2, A3, and A4 are located, that is, the point A1 and the point A2.
  • the center point of the baseline is B1, the point where the point A2 and the point A3 are located
  • the intermediate point is B2, the middle point of the reference line where the point A3 and the point A4 are located is B3, and the intermediate point of the reference line where the point A1 and the point A4 are located is B4.
  • DisA1A2 represents the distance between points A1 and A2
  • DisA3A4 represents the distance between points A3 and A4
  • DisB2B represents the distance between points B2 and B4
  • Horizontal represents the distortion of the horizontal direction of the distorted image.
  • the distortion of the vertical direction of the distorted image is calculated according to the following formula:
  • DisA1A4 represents the distance between points A1 and A4
  • DisA2A3 represents the distance between points A2 and A3
  • DisB1B3 represents the distance between points B1 and B3
  • Vertical represents the distortion of the vertical direction of the distorted image.
  • the distortion of the distortion image After calculating the distortion of the horizontal direction of the distortion image and the distortion of the vertical direction, the distortion of the distortion image can be obtained, and then the distortion of the lens is obtained, and the distortion image is adjusted to better restore the image. Small error.
  • An embodiment of the present invention also provides a system for measuring lens distortion, which is used to measure lens distortion using the method shown in FIG. 1.
  • the system includes:
  • test card having a dot pattern of K x N dots
  • An imaging device for acquiring a distortion image of the test card after being distorted by the lens
  • the image processing device is configured to use the point in the upper left corner of the distorted image as the coordinate origin, the X-axis positive direction from the origin to the right, and the plane coordinate system of the distorted image from the origin to the Y-axis positive direction; The center point and all non-central points, and determine the coordinate values of the center point and all non-central points in the plane coordinate system; and calculate the distortion of the distorted image by using the coordinate values of the center point and the non-center point, thereby obtaining the lens Distortion variable.
  • the method and system for measuring lens distortion of the present invention define a new plane coordinate system based on a distorted image, and use coordinate positioning to quickly and accurately find a point on the test card to speed up the image. Speed and efficiency; and the error range reaches the sub-pixel level, which improves the measurement accuracy.
  • the cache array is used to store the coordinate information of the points on the image, which is convenient for quickly finding the coordinates of the image points and calculating the distortion of the distortion image. The degree of distortion of the lens.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种测量透镜畸变的方法,包括:设置具有KXN个点构成的点阵图案的测试卡,K与N均为自然数(110);获取测试卡通过透镜产生畸变后的畸变图像(120);以畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建畸变图像的平面坐标系(130);通过扫描检索定位畸变图像的中心点的坐标以及所有非中心点,并确定中心点以及所有非中心点在平面坐标系中的坐标值(140);利用中心点以及所有非中心点的坐标值,根据畸变图像畸变量计算公式,计算畸变图像的畸变量,进而得到透镜的畸变量(150)。还公开了一种测量透镜畸变的系统。本测量方法和系统能够加快图像处理速度并提高透镜畸变测量的精度。

Description

一种测量透镜畸变的方法及系统 技术领域
本发明涉及图像处理领域,具体涉及一种测量透镜畸变的方法及系统。
发明背景
随着科技水平的提高,消费类电子产品以飞快的步伐迈入人类生活,头戴显示类产品凭借绚丽的外形及先进的功能吸引着大众的眼球。头戴显示类产品将视觉技术完美的应用与产品,其使用高分辨率的LCD屏显示图像,经过透镜放大,以便用户能观看到清晰的图像;并采用3D技术处理图像,让用户感受3D带来的视觉冲击感。然而透镜将图像放大的同时,也使得图像产生了畸变,畸变属于成像的几何失真,它是由于焦平面上不同区域对影像的放大率不同而形成的画面扭曲变形现象,这种变形的程度从画面中心至画面边缘依次递增,主要在画面边缘反映得较明显。因此需要测量到这个畸变量,再通过图像处理技术将畸变的图像还原成正常的图像,现有技术中的测量透镜畸变的方法计算速度慢并且测量精度不高,还原为正常图像具有较大的误差,不能满足图像处理的需求。
发明内容
本发明提供了一种测量透镜畸变的方法及系统,以解决现有的透镜畸变测量方法计算速度慢且测量精度不高的问题。
为达到上述目的,本发明的技术方案是这样实现的:
本发明提供了一种测量透镜畸变的方法,该方法包括:设置具有K×N个点构成的点阵图案的测试卡,K与N均为自然数,K等于或不等于N;
获取测试卡通过透镜产生畸变后的畸变图像;
以畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建畸变图像的平面坐标系;
通过扫描检索定位畸变图像的中心点以及所有非中心点,并确定中心点以 及所有非中心点在平面坐标系中的坐标值;
利用中心点以及所有非中心点的坐标值,计算畸变图像的畸变量,进而得到透镜的畸变量。
其中,测试卡上中心点的半径比所有非中心点的半径大。
其中,通过扫描检索定位畸变图像的中心点以及所有非中心点包括:
设定一个以畸变图像中心的坐标值为中心的正方形检索区域;正方形检索区域的半径大于等于中心点半径的2倍;
以正方形检索区域的左上角的一点为中心,设定一个半径为中心点半径的正方形扫描区域,以扫描区域的中心为扫描起始点,扫描该扫描区域并计算该区域内所有像素点的平均值;
在检索区域内,按照顺序移动扫描区域的中心,直至扫描完检索区域,比较扫描区域每次获取到的像素点平均值,并将所有像素点平均值中的最小平均值或者最大平均值所在的扫描区域的中心确定为中心点的中心,进而确定中心点中心的坐标值,将中心点中心的坐标值定位为中心点的坐标值。
以此类似的方法,定位出所有非中心点的坐标值。
其中,按照顺序移动扫描区域的中心包括:
在检索区域内,按照从上到下、从左到右的顺序移动扫描区域的中心,直至扫描完检索区域;
以此类似的方法,定位出所有非中心点的坐标值包括:
以中心点的中心为基准,以特定的步长,向左移动正方形检索区域,定位出与中心点同一行的左边所有的非中心点,并确定非中心点的坐标值;
以中心点的中心为基准,以特定的步长,向右移动正方形检索区域,定位出中心点同一行的右边所有非中心点,并确定非中心点的坐标值;
以中心点的中心为基准,以特定的步长,向下移动正方形检索区域,定位出中心点所在行的下一行所有非中心点,并确定非中心点的坐标值;
以中心点的中心为基准,以特定的步长,向上移动正方形检索区域,定位出中心点所在行的上一行所有非中心点,并确定非中心点的坐标值。
其中,该方法还包括:在缓存中定义一个长度能够至少包含所有点的二维数组,将中心点的坐标信息存储于二维数组的中心数值中;
依次将定位到的所有点按照畸变图像上的相对物理位置,存储于二维数组中,建立中心点以及所有非中心点与二维数组的索引关系。
其中,利用中心点以及所有非中心点的坐标值,计算畸变图像的畸变量包括:
根据二维数组与中心点以及所有非中心点的索引关系,找出分别位于在畸变图像上的四个点A1、A2、A3、A4,所述点A1、A2、A3、A4应尽可同时满足以下条件:
四个点A1、A2、A3、A4两、两处于同一基准线;
根据四个点A1、A2、A3、A4及其两两所在的同一基准线上所有非中心点与中心点的索引关系,找出所述四个点A1、A2、A3、A4两两所在的同一基准线上的中间点,其中,点A1与点A2所在的基准线的中间点记为B1,点A2与点A3所在的基准线的中间点记为B2,点A3与点A4所在的基准线的中间点记为B3,点A1与点A4所在的基准线的中间点记为B4,中间点B1、B2、B3、B4同时满足以下条件:
B1点、中心点、B3点这三个点位于同一基准线;
B2点、中心点、B4点这三个点位于同一基准线;
点A1、A2相对于点B1的索引差值相等并记为m,点A3、A4相对于点B3的索引差值相等并记为n,且m=n;
点A1、A4相对于点B4索引差值相等并记为u,点A2、A3相对于点B2的索引差值相等并记为v,且v=u。
其中,利用中心点以及部分非中心点的坐标值,计算畸变图像的畸变量还包括:
根据如下公式计算出畸变图像垂直方向的畸变量:
Vertical=100%*(DisA1A4+DisA2A3)/(2*DisB1B3)
其中,DisA1A4表示点A1和A4的之间距离,DisA2A3表示点A2和A3 之间的距离,DisB1B3表示点B1和B3之间的距离,Vertical表示畸变图像垂直方向的畸变量;
根据如下公式计算出畸变图像水平方向的畸变量:
Horizontal=100%*(DisA1A2+DisA3A4)/(2*DisB2B4)
其中,DisA1A2表示点A1和A2的距离,DisA3A4表示点A3和A4的距离,DisB2B表示点B2和B4的距离,Horizontal表示畸变图像水平方向的畸变量。
其中,获取测试卡通过透镜产生畸变后的畸变图像包括:
采用高像素的工业相机,相机中心、透镜中心以及测试卡中心重合,使用所述工业相机通过透镜拍摄测试卡,得到畸变图像。
其中,当中心点以及非中心点为黑色的点时,将所有像素点平均值中的最小平均值所在的扫描区域的中心确定为中心黑点的中心,并确定中心黑点中心的坐标值。
本发明还提供一种测量透镜畸变的系统,应用上述的方法测量透镜畸变,该系统包括:
测试卡,具有K×N个点构成的点阵图案;
成像装置,用于获取测试卡通过透镜产生畸变后的畸变图像;
图像处理装置,用于以畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建畸变图像的平面坐标系;通过扫描检索定位畸变图像的中心点以及所有非中心点,并确定中心点以及所有非中心点在平面坐标系中的坐标值;以及利用中心点以及非中心点的坐标值,计算畸变图像的畸变量,进而得到透镜的畸变量。
本发明的这种测量透镜畸变的方法及系统,能够快速、准确的定位测试卡上的所有点,实际误差范围达到亚像素级别,达到快速的计算畸变图像的畸变量,真实反应出透镜的畸变的目的。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可 通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图简要说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1是本发明一个实施例提供的一种测量透镜畸变的方法的流程图;
图2是本发明一个实施例提供的测试卡的示意图;
图3是本发明一个实施例提供的获取畸变图像的示意图;
图4是本发明一个实施例提供的测试卡经过透镜畸变后的畸变图像示意图;
图5是本发明一个实施例提供的对畸变图像的黑点进行定位的模型图;
图6是本发明一个实施例提供的定位出的所有黑点实物图;
图7是本发明一个实施例提供的黑点坐标缓存的示意图;
图8是本发明一个实施例提供的畸变图像畸变量计算的参照图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明的核心思想是利用一种新的畸变图像测试卡,该测试卡上设置有黑点这些黑点组成点阵图案,并基于该测试卡进行坐标定位,快速识别出畸变图像的所有黑点的坐标,并根据所有黑点的坐标计算出畸变图像的畸变量。本发明的这种测量方法能够快速的找到测试卡上的黑点,加快畸变量测量的处理速度,提高测量精度。
图1是本发明一个实施例提供的一种测量透镜畸变的方法的流程图;参见图1,该方法包括:
步骤S110,设置具有K×N个点构成的点阵图案的测试卡,K与N均为自然数,K等于或不等于N;
步骤S120,获取测试卡通过透镜产生畸变后的畸变图像;
步骤S130,以畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建畸变图像的平面坐标系;
步骤S140,通过扫描检索定位畸变图像的中心点以及所有非中心点,并确定中心点以及所有非中心点在平面坐标系中的坐标值;
步骤S150,利用中心点以及非中心点的坐标值,计算畸变图像的畸变量,进而得到透镜的畸变量。
通过构建畸变图像平面坐标系,快速识别畸变图像中所有的点,并计算畸变图像上所有点的坐标值,该测量方法计算量少,进而提高了畸变图像测量时的速度,同时,采用K×N个点构成的点阵图案的测试卡保证了测量精度的提高。
图2是本发明一个实施例提供的测试卡的示意图;参见图2,显示了本实施例中所使用的测试卡的局部:一个21行和21列的黑色的点构成的方阵,1表示方阵的中心黑点;中心黑点的半径比其他所有非中心黑点的半径大,以便于在拍摄畸变图像时将其与相机中心对齐,另外,中心黑点半径较大也便于在利用图像处理技术进行计算处理时识别其为中心点。可以理解,图2只是本实施例截取的透镜拍摄到的测试卡的畸变图像中间的部分,由于透镜导致测试卡的畸变,畸变图像边缘部分会呈现近似圆形的形状,中间部分近似矩阵排列。
在头戴显示类产品等其他类似智能显示产品使用高分辨率的LCD屏显示图像时,需要经过透镜放大,以便用户能观看到清晰的图像,但透镜将图像放大的同时,会使图像产生畸变。本发明的方法是对畸变图像畸变量的测量,在进行测量前需要获取畸变图像。图3是本发明一个实施例提供的获取畸变图像的示意图,参见图3,高像素(例如1千万像素)的工业相机31通过透镜32拍摄置于头戴显示类产品LCD屏33上的测试卡,将测试卡图片的中心与所述相机31的中心以及透镜32的中心重合,则此时拍摄到的畸变图像就能准确表示透镜造成图像的畸变量。
图4是本发明一个实施例提供的测试卡经过透镜畸变后的畸变图像示意图,图4能最大反映出计算透镜畸变的合适区域,边缘上四个角的点尽可能的靠近图像边缘,且两两处于边缘上最外围且最完整的同一基准线,一般为F×F的点 阵区域,F为奇数;参见图4,测试卡经过透镜放大的同时也发生了枕形畸变,畸变使得测试卡上的黑点位置发生偏移,并且每个黑点偏移的位置不一样,畸变图像上四周边缘位置的黑点的畸变程度最严重。本发明采用坐标定位方式定位该畸变图像上所有黑点的坐标值,在测试卡经过透镜发生了畸变后的畸变图像上,中心点以及其他非中心点的物理相对位置是不变的,具体的坐标值可能发生了变化,利用坐标定位技术定位出所有黑点的坐标,由于黑点的相对物理位置不变,而实际的坐标值发生了改变,利用改变的所有黑点的坐标值以及畸变量计算公式得到该畸变图像的畸变量值,并进而得到透镜的畸变量,从而调整畸变图像以减小还原为正常图像时的误差。
下面结合图5和图6具体说明对畸变图像的所有黑点进行定位:图5是本发明一个实施例提供的对畸变图像的黑点进行定位的模型图;图6是本发明一个实施例提供的定位出的所有黑点实物图;
扫描检索定位畸变图像的中心点以及所有非中心点的方法具体为:设定一个以畸变图像中心的坐标值为中心的正方形检索区域;正方形检索区域的半径大于等于中心点半径的2倍;以正方形检索区域的左上角的一点为中心,设定一个半径为中心点半径的正方形扫描区域,以扫描区域的中心为扫描起始点,扫描该扫描区域内的图像并计算该区域内图像所有像素点的平均值;在检索区域内,按照顺序移动扫描区域的中心,直至扫描完检索区域,比较扫描区域每次获取到的像素点平均值,并将所有像素点平均值中的最小平均值或者最大平均值所在的扫描区域的中心确定为中心点的中心,并确定中心点中心的坐标值,将中心点中心的坐标值定位为中心点的坐标值。
以此类似的方法,定位出所有非中心点的坐标值。
参见图5,在本实施例中,测试卡上中心点和非中心为黑色的点,在图5所示的中心黑点所在的黑色区域中,以黑点的半径52的2倍或者比黑点半径2倍更大的半径51定义一个正方形的检索区域,以该检索区域左上角的一点为中心,定义一个以黑点半径为半径53的方形扫描区域,在该半径较大的检索区域内,按照从上到下、从左到右的顺序依次移动该扫描区域的中心进行扫描;每扫描 一次,记录一个该扫描区域内所有像素点的平均值;直至将该检索区域扫描完毕,比较每次扫描区域获取到的平均像素值中最小平均值所在的扫描区域,以该扫描区域的中心确定为中心黑点的中心,完成中心黑点的定位,计算该中心黑点坐标值并保存。可以理解,在应用本发明的方法时,测试卡上的点的颜色不限于黑色这一种,因而在对测试卡上的点进行定位时,应该根据具体点颜色的像素值选取平均值最小或者最大的扫描区域作为中心点的中心,在本实施例中,测试卡上点的颜色为黑色,那么扫描区域包含的黑色部分越多,像素值较小,纯黑的像素值为0。在本发明的其他实施例中,测试卡的底色可能为其他色,中心点以及非中心点的颜色例如白色这种情况下,在利用扫描区域进行定位时,将扫描区域像素点平均值中最大平均值(白色的像素值为255)所在的扫描区域的中心定位为中心点的中心。
与定位中心黑点的方法类似,定位出所有非中心黑点,具体如下:以中心黑点的中心为基准,以特定的步长,向左移动正方形检索区域,定位出与中心黑点的同一行的左边所有非中心黑点,并确定非中心黑点的坐标值;然后向右移动正方形检索区域,定位出中心黑点同一行的右边所有非中心黑点,并确定非中心黑点的坐标值;以中心黑点的中心为基准,以特定的步长,向下移动正方形检索区域,定位出中心黑点所在行的下一行所有非中心黑点,并确定非中心黑点的坐标值;以中心黑点的中心为基准,以特定的步长,向上移动正方形检索区域,定位出中心黑点所在行的上一行所有非中心黑点,并确定非中心黑点的坐标值。
在定位非中心黑点时,选取的正方形的检索区域的半径为非中心黑点的半径2倍或者更大的值。在移动检索区域时的特定步长是指畸变图像上每两个黑点中心之间的距离,它是一个预先设定的经验值,每次移动这个距离可以避免不必要的扫描,提高扫描区域扫描的速度和效率。
图6是本发明一个实施例提供的定位出的所有黑点实物图;参见图6,定位出中心黑点和所有非中心黑点后用圆圈进行标注。通过上述步骤确定中心黑点以及非中心其他黑点的坐标值并保存。
在对坐标值进行保存时,本发明一个实施例采用二维数组的方式进行存储,图7是本发明一个实施例提供的黑点坐标缓存的示意图;参见图7,示例性的选取了畸变图像上的几个点,将选取的这些点的坐标值按照在畸变图像上的相对物理位置进行保存,先在缓存中定义一个长度能够至少包含所有点的二维数组。根据应用场景的不同,畸变图像上黑点的数量不同,设置不同长度的二维数组,例如本实施例中,定义了一个长度为41的二维数组array[41][41],定义了二维数组后,先将中心黑点的坐标进行存储,在存储时找到二维数组的最中间位置array[21][21],将中心黑点的坐标放入数组array[21][21],将畸变图像中心黑点同一行的左边那个黑点的坐标放入array[20][21]中,以此类推,将畸变图像上其他黑点的坐标值放入二维数组中,建立畸变图像黑点与二维数组的索引关系。
图8是本发明一个实施例提供的畸变图像畸变量计算的参照图,参见图8,在得到所有黑点的坐标值后,观察畸变图像,选取畸变图像上畸变最能表现畸变程度的几个关键点,参见图8,快速查找缓存中二维数组,先找到能最大程度反映计算透镜畸变的四个点A1、A2、A3、A4,这四个点应尽可能的靠近畸变图像边缘,即A1、A2、A3、A4这四个点所限定的区域能最大反映出计算透镜畸变的合适区域,A1、A2、A3、A4这四个点两两处于边缘上最外围且最完整的同一基准线上并定义出选取的该基准线的末端,并同时满足以下条件:
A1、A2、A3、A4这四个点两、两处于同一基准线;点A1与点A2连线与中心点所在的竖直基准线相交的点记为B1;点A2与点A3连线与中心点所在的水平基准线相交的点记为B2;同理,确定出B3和B4点。点A1、A2相对于B1点的索引差值相等记为m,点A3、A4相对于B3点的索引差值相等记为n,并且m=n=9,B1、O(中心黑点)、B3这三点位于同一基准线;同理,A1、A4相对B4点索引差值相等记为u,A2、A3相对于B2点的索引差值相等记为v,并且v=u=9,且B2、O(中心黑点)、B4这三点位于同一基准线,索引差值为9表示中心黑点O距离B1点相隔9个黑点。实际中,B1、B2、B3、B4可以看成是四个点A1、A2、A3、A4两、两所在的同一基准线上的中间点(或称中点),即点A1与点A2所在的基准线的中心点为B1,点A2与点A3所在的基准线的 中间点为B2,点A3与点A4所在的基准线的中间点为B3,点A1与点A4所在的基准线的中间点为B4。
得到上面关键点A1-A4和B1-B4的坐标值后,根据畸变量计算公式进行计算:
根据如下公式计算出畸变图像水平方向的畸变量:
Horizontal=100%*(DisA 1A2+DisA3A4)/(2*DisB2B4)
其中,DisA1A2表示点A1和A2的距离,DisA3A4表示点A3和A4的距离,DisB2B表示点B2和B4的距离,Horizontal表示畸变图像水平方向的畸变量。
同理,根据如下公式计算出畸变图像垂直方向的畸变量:
Vertical=100%*(DisA1A4+DisA2A3)/(2*DisB1B3)
其中,DisA1A4表示点A1和A4的距离,DisA2A3表示点A2和A3的距离,DisB1B3表示点B1和B3的距离,Vertical表示畸变图像垂直方向的畸变量。
计算得到畸变图像的水平方向的畸变量和垂直方向的畸变量后,即可得到该畸变图像的畸变量,进而得到透镜的畸变量,对该畸变图像进行调整,以更好的还原图像,减小误差。
本发明一个实施例还提供了一种测量透镜畸变的系统,应用图1所示的方法测量透镜畸变,该系统包括:
测试卡,具有K×N个点构成的点阵图案;
成像装置,用于获取测试卡通过透镜产生畸变后的畸变图像;
图像处理装置,用于以畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建畸变图像的平面坐标系;通过扫描检索定位畸变图像的中心点以及所有非中心点,并确定中心点以及所有非中心点在平面坐标系中的坐标值;以及利用中心点以及非中心点的坐标值,计算畸变图像的畸变量,进而得到透镜的畸变量。
综上,本发明的这种测量透镜畸变的方法及系统,基于畸变图像定义了新的平面坐标系,利用坐标定位,快速、准确的找到测试卡上的点,加快图像处 理的速度和效率;而且误差范围达到亚像素级别,提高了测量精度;另外利用缓存数组存储图像上点的坐标信息,方便快速查找图像点的坐标并计算畸变图像的畸变量,较真实的反映出透镜的畸变程度。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本发明的保护范围内。

Claims (10)

  1. 一种测量透镜畸变的方法,其特征在于,该方法包括:
    设置具有K×N个点构成的点阵图案的测试卡,K与N均为自然数,K等于或不等于N;
    获取所述测试卡通过所述透镜产生畸变后的畸变图像;
    以所述畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建所述畸变图像的平面坐标系;
    通过扫描检索定位所述畸变图像的中心点以及所有非中心点,并确定中心点以及所有非中心点在所述平面坐标系中的坐标值;
    利用所述中心点以及所有非中心点的坐标值,计算所述畸变图像的畸变量,进而得到所述透镜的畸变量。
  2. 如权利要求1所述的方法,其特征在于,
    所述测试卡上中心点的半径比所有非中心点的半径大。
  3. 如权利要求1所述的方法,其特征在于,所述通过扫描检索定位所述畸变图像的中心点以及所有非中心点包括:
    设定一个以所述畸变图像中心的坐标值为中心的正方形检索区域;所述正方形检索区域的半径大于等于所述中心点半径的2倍;
    以所述正方形检索区域的左上角的一点为中心,设定一个半径为中心点半径的正方形扫描区域,以所述扫描区域的中心为扫描起始点,扫描所述扫描区域并计算该区域内所有像素点的平均值;
    在所述检索区域内,按照顺序移动所述扫描区域的中心,直至扫描完所述检索区域,比较所述扫描区域每次获取到的像素点平均值,并将所有像素点平均值中的最小平均值或者最大平均值所在的扫描区域的中心确定为所述中心点的中心,进而确定所述中心点中心的坐标值,将所述中心点中心的坐标值定位为所述中心点的坐标值;
    以此类似的方法,定位出所有非中心点的坐标值。
  4. 如权利要求3所述的方法,其特征在于,所述按照顺序移动所述扫描区域的中心包括:
    在所述检索区域内,按照从上到下、从左到右的顺序移动所述扫描区域的中心,直至扫描完所述检索区域;
    所述以此类似的方法,定位出所有非中心点的坐标值包括:
    以所述中心点的中心为基准,以特定的步长,向左移动所述正方形检索区域,定位出与所述中心点同一行的左边所有的非中心点,并确定所述非中心点的坐标值;
    以所述中心点的中心为基准,以特定的步长,向右移动所述正方形检索区域,定位出与所述中心点同一行的右边所有非中心点,并确定所述非中心点的坐标值;
    以所述中心点的中心为基准,以特定的步长,向下移动所述正方形检索区域,定位出所述中心点所在行的下一行所有非中心点,并确定所述非中心点的坐标值;
    以所述中心点的中心为基准,以特定的步长,向上移动所述正方形检索区域,定位出所述中心点所在行的上一行所有非中心点,并确定所述非中心点的坐标值。
  5. 如权利要求4所述的方法,其特征在于,所述方法还包括:
    在缓存中定义一个长度能够至少包含所有点的二维数组,将所述中心点的坐标信息存储于所述二维数组的中心数组中;
    依次将定位到的所有点按照所述畸变图像上的相对物理位置,存储于所述二维数组中,建立所述中心点以及所有非中心点与所述二维数组的索引关系。
  6. 如权利要求5所述的方法,其特征在于,所述利用所述中心点以及所有非中心点的坐标值,计算所述畸变图像的畸变量包括:
    根据所述二维数组与所述中心点以及所有非中心点的索引关系,找出分别位于所述畸变图像边缘上的四个点A1、A2、A3、A4,所述四个点A1、A2、A3、A4,同时满足以下条件:四个点A1、A2、A3、A4两、两处于所述畸变 图像边缘上的同一基准线;
    根据所述四个点A1、A2、A3、A4及其两两所在的同一基准线上所有非中心点与所述中心点的索引关系,找出所述四个点A1、A2、A3、A4两两所在的同一基准线上的中间点,其中,点A1与点A2所在的基准线的中间点记为B1,点A2与点A3所在的基准线的中间点记为B2,点A3与点A4所在的基准线的中间点记为B3,点A1与点A4所在的基准线的中间点记为B4,中间点B1、B2、B3、B4同时满足以下条件:
    B1点、中心点、B3点这三个点位于同一基准线;
    B2点、中心点、B4点这三个点位于同一基准线;
    点A1、A2相对于点B1的索引差值相等并记为m,点A3、A4相对于点B3的索引差值相等并记为n,且m=n;
    点A1、A4相对于点B4索引差值相等并记为u,点A2、A3相对于点B2的索引差值相等并记为v,且v=u。
  7. 如权利要求6所述的方法,其特征在于,所述利用所述中心点以及所有非中心点的坐标值,计算所述畸变图像的畸变量还包括:
    根据如下公式计算所述畸变图像垂直方向的畸变量:
    Vertical=100%*(DisA1A4+DisA2A3)/(2*DisB1B3)
    其中,DisA1A4表示点A1和A4之间的距离,DisA2A3表示点A2和A3之间的距离,DisB1B3表示点B1和B3之间的距离,Vertical表示畸变图像垂直方向的畸变量;
    根据如下公式计算所述畸变图像水平方向的畸变量:
    Horizontal=100%*(DisA1A2+DisA3A4)/(2*DisB2B4)
    其中,DisA1A2表示点A1和A2的距离,DisA3A4表示点A3和A4的距离,DisB2B表示点B2和B4的距离,Horizontal表示畸变图像水平方向的畸变量。
  8. 如权利要求1所述的方法,其特征在于,所述获取所述测试卡通过所述透镜产生畸变后的畸变图像包括:
    选取工业相机,在所述工业相机中心、透镜中心以及所述测试卡中心重合时,使用所述工业相机通过透镜拍摄所述测试卡,得到所述畸变图像。
  9. 如权利3所述的方法,其特征在于,
    当所述中心点以及所述非中心点为黑色的点时,将所述所有像素点平均值中的最小平均值所在的扫描区域的中心确定为所述中心黑点的中心,并确定所述中心黑点中心的坐标值。
  10. 一种测量透镜畸变的系统,其特征在于,应用权利要求1至9中任一项所述的方法测量透镜畸变,所述系统包括:
    测试卡,具有K×N个点构成的点阵图案;
    成像装置,用于获取所述测试卡通过所述透镜产生畸变后的畸变图像;
    图像处理装置,用于以所述畸变图像左上角的点为坐标原点,以原点向右为X轴正方向,以原点向下为Y轴正方向构建所述畸变图像的平面坐标系;通过扫描检索定位所述畸变图像的中心点以及所有非中心点,并确定中心点以及所有非中心点在所述平面坐标系中的坐标值;以及利用所述中心点以及非中心点的坐标值,计算所述畸变图像的畸变量,进而得到所述透镜的畸变量。
PCT/CN2015/082496 2014-06-27 2015-06-26 一种测量透镜畸变的方法及系统 WO2015197019A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/314,926 US9810602B2 (en) 2014-06-27 2015-06-26 Method and system for measuring lens distortion
JP2016575034A JP6166852B1 (ja) 2014-06-27 2015-06-26 レンズ歪みを測定する方法及びシステム
US15/728,214 US10151664B2 (en) 2014-06-27 2017-10-09 Method and system for measuring lens distortion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410302056.2 2014-06-27
CN201410302056.2A CN104048815B (zh) 2014-06-27 2014-06-27 一种测量透镜畸变的方法及系统

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/314,926 A-371-Of-International US9810602B2 (en) 2014-06-27 2015-06-26 Method and system for measuring lens distortion
US15/728,214 Continuation US10151664B2 (en) 2014-06-27 2017-10-09 Method and system for measuring lens distortion

Publications (1)

Publication Number Publication Date
WO2015197019A1 true WO2015197019A1 (zh) 2015-12-30

Family

ID=51501942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082496 WO2015197019A1 (zh) 2014-06-27 2015-06-26 一种测量透镜畸变的方法及系统

Country Status (4)

Country Link
US (2) US9810602B2 (zh)
JP (1) JP6166852B1 (zh)
CN (2) CN104048815B (zh)
WO (1) WO2015197019A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104048815B (zh) 2014-06-27 2017-03-22 歌尔科技有限公司 一种测量透镜畸变的方法及系统
CN106153302B (zh) * 2015-03-24 2019-03-12 北京威斯顿亚太光电仪器有限公司 一种用于硬管内窥镜成像畸变的测量方法
CN106815869B (zh) * 2016-10-28 2020-06-19 北京鑫洋泉电子科技有限公司 鱼眼相机的光心确定方法及装置
CN106815823B (zh) * 2017-02-22 2020-02-07 广东工业大学 一种透镜畸变标定校正方法及其装置
CN108009981B (zh) * 2017-09-26 2021-06-01 深圳市易成自动驾驶技术有限公司 畸变参数的寻优方法、装置及计算机可读存储介质
US10572982B2 (en) * 2017-10-04 2020-02-25 Intel Corporation Method and system of image distortion correction for images captured by using a wide-angle lens
CN110555879B (zh) * 2018-05-31 2023-09-08 京东方科技集团股份有限公司 一种空间定位方法、其装置、其系统及计算机可读介质
CN109040724B (zh) * 2018-08-03 2021-07-09 信利光电股份有限公司 一种结构光投影器的光斑畸变检测方法、装置及可读存储介质
CN109191374B (zh) * 2018-10-10 2020-05-08 京东方科技集团股份有限公司 一种畸变参数测量方法、装置及系统
CN111579220B (zh) * 2020-05-29 2023-02-10 江苏迪盛智能科技有限公司 一种分辨率板
US11734789B2 (en) * 2020-06-02 2023-08-22 Immersive Tech, Inc. Systems and methods for image distortion correction
CN112304573B (zh) * 2020-09-21 2023-06-06 武汉高德智感科技有限公司 一种同时测量镜头畸变和mtf指标的方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201021A (ja) * 1995-01-23 1996-08-09 Mazda Motor Corp キャリブレーション方法
US6002525A (en) * 1998-07-06 1999-12-14 Intel Corporation Correcting lens distortion
WO2004092826A1 (en) * 2003-04-18 2004-10-28 Appro Technology Inc. Method and system for obtaining optical parameters of camera
KR20090130603A (ko) * 2008-06-16 2009-12-24 삼성전기주식회사 광각 렌즈 모듈의 평가 방법 및 이에 사용되는 평가 차트
CN102119326A (zh) * 2008-08-13 2011-07-06 皇家飞利浦电子股份有限公司 测量和校正多斑扫描设备中的透镜畸变
CN102845053A (zh) * 2009-07-08 2012-12-26 奈米光子有限公司 利用旋转对称式广角透镜获得复合图像的方法及其成像系统以及以硬件方式进行图像处理的互补金属氧化物半导体图像传感器
CN104048815A (zh) * 2014-06-27 2014-09-17 青岛歌尔声学科技有限公司 一种测量透镜畸变的方法及系统

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69526635T2 (de) * 1994-12-29 2002-12-05 Koninkl Philips Electronics Nv Bilderzeugungsgerät und Verfahren zur Verbesserung geometrischer optischer Bildverzerrungen
JP2806307B2 (ja) * 1995-06-29 1998-09-30 日本電気株式会社 レンズディストーションの測定用レチクル及びその測定方法
US5978085A (en) * 1997-03-07 1999-11-02 Litel Instruments Apparatus method of measurement and method of data analysis for correction of optical system
JP4535412B2 (ja) * 2000-09-28 2010-09-01 東海光学株式会社 レンズの性能評価方法
JP3732794B2 (ja) * 2002-03-20 2006-01-11 株式会社東芝 寸法検査方法及びその装置並びにマスクの製造方法
CN1220866C (zh) * 2002-12-17 2005-09-28 北京航空航天大学 一种透镜畸变参数的标定方法
JP2004340753A (ja) * 2003-05-15 2004-12-02 Topcon Corp キャリブレーションチャート画像表示装置
JP4179142B2 (ja) * 2003-11-20 2008-11-12 株式会社デンソー 車両用画像処理装置
JP2006071395A (ja) * 2004-09-01 2006-03-16 Nikon Corp 較正方法及び位置合わせ方法
EP1662440A1 (en) * 2004-11-30 2006-05-31 IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. Method for determining the position of an object from a digital image
EP1863071B1 (en) * 2005-03-25 2016-09-21 Nikon Corporation Shot shape measuring method, mask
JP4795017B2 (ja) * 2005-12-28 2011-10-19 株式会社ニデック 眼鏡レンズ評価装置
ATE456033T1 (de) * 2006-08-09 2010-02-15 Research In Motion Ltd System und verfahren zur bewertung einer linse für ein elektronisches gerät
JP5247702B2 (ja) * 2006-09-15 2013-07-24 デジタルオプティクス・コーポレイション・ヨーロッパ・リミテッド 改良された画像品質を伴う画像システム及び関連する方法
JP3998701B1 (ja) * 2006-12-28 2007-10-31 健治 吉田 ドットパターンが設けられたカード
CN1996389A (zh) * 2007-01-09 2007-07-11 北京航空航天大学 基于共线特征点的摄像机畸变快速校正方法
WO2009000906A1 (en) * 2007-06-26 2008-12-31 Dublin City University A method for high precision lens distortion calibration and removal
JP2011033570A (ja) * 2009-08-05 2011-02-17 Micronics Japan Co Ltd 光学レンズの歪曲収差の評価方法
CN201476957U (zh) * 2009-08-19 2010-05-19 茂莱(南京)仪器有限公司 有限共轭变焦镜头畸变测试装置
CN101673397B (zh) * 2009-09-30 2012-04-25 青岛大学 一种基于lcd的数码相机非线性标定方法
CN102564731A (zh) * 2010-12-16 2012-07-11 中国科学院西安光学精密机械研究所 一种透镜焦距及波前畸变测量装置
CN103292981A (zh) * 2013-05-22 2013-09-11 中国科学院上海光学精密机械研究所 光学镜头畸变的测量装置和校正方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08201021A (ja) * 1995-01-23 1996-08-09 Mazda Motor Corp キャリブレーション方法
US6002525A (en) * 1998-07-06 1999-12-14 Intel Corporation Correcting lens distortion
WO2004092826A1 (en) * 2003-04-18 2004-10-28 Appro Technology Inc. Method and system for obtaining optical parameters of camera
KR20090130603A (ko) * 2008-06-16 2009-12-24 삼성전기주식회사 광각 렌즈 모듈의 평가 방법 및 이에 사용되는 평가 차트
CN102119326A (zh) * 2008-08-13 2011-07-06 皇家飞利浦电子股份有限公司 测量和校正多斑扫描设备中的透镜畸变
CN102845053A (zh) * 2009-07-08 2012-12-26 奈米光子有限公司 利用旋转对称式广角透镜获得复合图像的方法及其成像系统以及以硬件方式进行图像处理的互补金属氧化物半导体图像传感器
CN104048815A (zh) * 2014-06-27 2014-09-17 青岛歌尔声学科技有限公司 一种测量透镜畸变的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DING, YING ET AL.: "A Digital Calibration Algorithm for Wide-angle Lens Distortion", JOURNAL OF CHANGCHUN UNIVERSITY OF SCIENCE AND TECHNOLOGY, vol. 32, no. 02, 15 June 2009 (2009-06-15), pages 184 - 188, ISSN: 1009-1068 *

Also Published As

Publication number Publication date
JP6166852B1 (ja) 2017-07-19
US20180031442A1 (en) 2018-02-01
US20170199099A1 (en) 2017-07-13
CN104048815B (zh) 2017-03-22
US9810602B2 (en) 2017-11-07
CN106596063A (zh) 2017-04-26
CN104048815A (zh) 2014-09-17
CN106596063B (zh) 2019-05-24
JP2017524920A (ja) 2017-08-31
US10151664B2 (en) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2015197019A1 (zh) 一种测量透镜畸变的方法及系统
CN106091984B (zh) 一种基于线激光的三维点云数据获取方法
CN110458898A (zh) 相机标定板、标定数据采集方法、畸变校正方法及装置
CN110660107A (zh) 平面标定板、标定数据采集方法及系统
CN104008542B (zh) 一种针对特定平面图形的快速角点匹配方法
CN110809786A (zh) 校准装置、校准图表、图表图案生成装置和校准方法
CN109559349A (zh) 一种用于标定的方法和装置
CN112132907B (zh) 一种相机标定方法、装置、电子设备及存储介质
US11403745B2 (en) Method, apparatus and measurement device for measuring distortion parameters of a display device, and computer-readable medium
WO2024011764A1 (zh) 标定参数确定方法、混合标定板、装置、设备和介质
CN108305233A (zh) 一种针对微透镜阵列误差的光场图像校正方法
CN110443856A (zh) 一种3d结构光模组标定方法、存储介质、电子设备
CN111325828B (zh) 一种基于三目相机的三维人脸采集方法及装置
CN114615480A (zh) 投影画面调整方法、装置、设备、存储介质和程序产品
KR101597915B1 (ko) 화상 처리 장치 및 화상 처리 방법
CN114792345A (zh) 一种基于单目结构光系统的标定方法
CN109978956A (zh) 采集设备的标定方法、装置及标定系统
CN107644442B (zh) 双摄模组的空间位置标定方法
CN107527323B (zh) 镜头畸变的标定方法及装置
WO2017215018A1 (zh) 一种教育玩具套件及其凸面镜成像校正方法
CN107424194A (zh) 键盘轮廓度的检测方法
CN116524041A (zh) 一种相机标定方法、装置、设备及介质
US11699303B2 (en) System and method of acquiring coordinates of pupil center point
CN108629786A (zh) 图像边缘检测方法及装置
WO2022171003A1 (zh) 相机标定方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812683

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15314926

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016575034

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15812683

Country of ref document: EP

Kind code of ref document: A1