WO2015190498A1 - 光ファイバスキャナ、照明装置および観察装置 - Google Patents

光ファイバスキャナ、照明装置および観察装置 Download PDF

Info

Publication number
WO2015190498A1
WO2015190498A1 PCT/JP2015/066662 JP2015066662W WO2015190498A1 WO 2015190498 A1 WO2015190498 A1 WO 2015190498A1 JP 2015066662 W JP2015066662 W JP 2015066662W WO 2015190498 A1 WO2015190498 A1 WO 2015190498A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
detection line
line member
light
scanner
Prior art date
Application number
PCT/JP2015/066662
Other languages
English (en)
French (fr)
Inventor
和敏 熊谷
靖明 葛西
博士 鶴田
善朗 岡崎
博一 横田
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to DE112015002202.3T priority Critical patent/DE112015002202T5/de
Priority to CN201580027901.2A priority patent/CN106461935B/zh
Publication of WO2015190498A1 publication Critical patent/WO2015190498A1/ja
Priority to US15/360,388 priority patent/US20170075107A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/103Scanning systems having movable or deformable optical fibres, light guides or waveguides as scanning elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00133Drive units for endoscopic tools inserted through or with the endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00172Optical arrangements with means for scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/088Testing mechanical properties of optical fibres; Mechanical features associated with the optical testing of optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres

Definitions

  • the present invention relates to an optical fiber scanner, an illumination device, and an observation device.
  • An optical fiber scanner that drives a piezoelectric element to vibrate the tip of an optical fiber in a spiral shape to scan light two-dimensionally on an observation target (see, for example, Patent Document 1).
  • This optical fiber scanner is an optical fiber in which the tip is supported in a cantilever shape through the inner hole of a cylindrical PZT (lead zirconate titanate) actuator having an electrode divided into four in the circumferential direction on the outer surface. Is moved in a spiral shape by bending vibration of the PZT actuator.
  • PZT lead zirconate titanate
  • the optical fiber breaks due to stress concentration at the base of the optical fiber due to the vibration of the tip of the optical fiber. It may be deformed. If the operation of the optical fiber scanner is continued with the optical fiber broken or deformed, the scanning trajectory of the light emitted from the optical fiber is disturbed.
  • the present invention has been made in view of the above-described circumstances, and an optical fiber scanner that can prevent scanning from being continued with a disturbed scanning locus when the optical fiber is bent or deformed.
  • An illumination device and an observation device are provided.
  • One aspect of the present invention is an optical fiber that guides light emitted from a light source, an actuator that is fixed at an intermediate position in the longitudinal axis direction of the optical fiber, and that displaces the tip of the optical fiber by bending vibration, and at least An optical fiber scanner comprising a conductive detection line member extending in a state of being attached to an outer peripheral surface of the optical fiber between the actuator and the tip of the optical fiber over a predetermined range in the longitudinal axis direction.
  • the light emitted from the tip of the optical fiber can be scanned by causing the actuator to bend and vibrate while the light from the light source is guided by the optical fiber to displace the tip of the optical fiber.
  • the detection line member when the optical fiber is broken or deformed by vibration within a predetermined range between the actuator to which the detection line member is attached and the tip of the optical fiber, the detection line member is cut. Therefore, if a voltage is applied to both ends of the detection line member, it is possible to detect the disconnection of the detection line member based on a current flowing through the detection line member or a change in resistance value. Further, since the detection line member also serves as the ground line of the control unit, the potential becomes indefinite when the detection line member is cut. That is, the scanning by the optical fiber scanner can be stopped or suppressed by cutting the detection line member.
  • the detection line member may extend from the actuator to the vicinity of the tip of the optical fiber. In this way, when the optical fiber is broken or deformed in the range from the actuator to the tip of the optical fiber, scanning by the optical fiber scanner can be stopped or suppressed.
  • the detection line member may be folded back on the distal end side of the optical fiber and arranged so as to reciprocate in the longitudinal axis direction on the outer peripheral surface of the optical fiber.
  • the detection line members in a portion reciprocating on the outer peripheral surface of the optical fiber may be arranged at equal intervals in the circumferential direction of the optical fiber.
  • the said detection wire member may be comprised with the thin film.
  • the detection line member is formed in a laminated state with an insulating thin film made of an electrically insulating material sandwiched in the radial direction of the optical fiber, and the insulating thin film is partially formed on the distal end side of the optical fiber. It may be constituted by a two-layer thin film that is electrically connected to each other by penetrating through.
  • the detection line member formed in a laminated state with the insulating thin film interposed therebetween can be arranged so as to be folded back in the radial direction and reciprocated in the longitudinal axis direction at the conduction portion on the distal end side of the optical fiber. .
  • the piezoelectric device includes a cylindrical vibration transmitting member that has a through-hole that penetrates the optical fiber and that fixes the actuator to an outer surface, and the actuator bends and vibrates when a vibrational voltage is applied.
  • the vibration transmission member may be made of a conductive material and electrically connected in series between the actuator and one end of the detection line member.
  • the piezoelectric actuator is flexibly vibrated, and the vibration is transmitted as vibration.
  • the light is transmitted to the optical fiber passing through the through hole through the member, and the tip of the optical fiber is displaced.
  • the detection line member is cut due to bending or deformation of the optical fiber, the voltage applied to the actuator is cut off, so that the vibration of the actuator is stopped or suppressed, and scanning by the optical fiber scanner is instantaneously performed. Can be stopped or suppressed.
  • a light source that generates light, the above optical fiber scanner, a condensing lens that collects light scanned by the optical fiber scanner, and the detection line member are cut.
  • a blocking means for blocking light incident on the optical fiber from the light source are cut.
  • the light from the light source irradiated from the optical fiber scanner can be condensed by the condenser lens, and the observation target can be irradiated with the spot light.
  • the blocking means prevents the illumination light from being incident on the optical fiber. In this state, it is possible to prevent the observation object from being continuously irradiated with the spot light.
  • the illumination device includes a light source driving unit that drives the light source, and the light source driving unit is grounded via the detection line member.
  • Another aspect of the present invention is an observation device including the above-described illumination device and a light detection unit that receives return light from the observation target when the observation target is irradiated with light.
  • the observation target when the observation target is irradiated with light according to a desired locus by the illumination device, the return light reflected by the surface of the observation target is received by the light detection unit, and the intensity of the return light is detected. Can do.
  • the present invention it is possible to detect the breakage and deformation of the optical fiber and to prevent the scanning from being continued with the disturbed scanning locus.
  • FIG. 2 is a cross-sectional view of the optical fiber scanner of the observation apparatus of FIG. 1 cut along line AA. It is a longitudinal cross-sectional view which shows the 1st modification of the optical fiber scanner of the observation apparatus of FIG.
  • FIG. 4 is a cross-sectional view of the optical fiber scanner of FIG. 3 cut along line BB. It is a longitudinal cross-sectional view which shows the state which stuck the detection wire member on the outer peripheral surface of the optical fiber of the 2nd modification of the optical fiber scanner of the observation apparatus of FIG. 1 on both sides of the insulating thin film.
  • FIG. 1 It is a longitudinal cross-sectional view which shows the state which affixed the detection line member on the outer peripheral surface of the optical fiber of the 3rd modification of the optical fiber scanner of the observation apparatus of FIG.
  • a longitudinal section showing a state in which the vicinity of both ends of the detection line member is covered with a mask on the proximal end side and the distal end side of the optical fiber of the third modification of the optical fiber scanner of the observation apparatus of FIG.
  • FIG. The insulating thin film of the third modification of the optical fiber scanner of the observation apparatus of FIG.
  • FIG. 1 is covered with a detection line member from an intermediate position in the longitudinal direction of the optical fiber to the vicinity of the tip of the optical fiber, and two layers of detection line members on the tip side
  • FIG. 9 is a cross-sectional view of the optical fiber scanner of FIG. 8 cut along line CC.
  • FIG. 12 is a cross-sectional view of the optical fiber scanner of FIG. 11 taken along line DD. It is a longitudinal cross-sectional view which shows the observation apparatus which concerns on the 2nd Embodiment of this invention. It is a longitudinal cross-sectional view which shows the observation apparatus which concerns on the 3rd Embodiment of this invention.
  • the observation device 1 includes a cylindrical device main body 2, an illumination device 3 that irradiates illumination light, and illumination light irradiated to an observation target by the illumination device 3. And a light detection unit 4 that receives return light (for example, reflected light and fluorescence) from the observation target.
  • the illumination device 3 includes a light source (for example, a laser diode) 5 that generates illumination light, and a book that is housed inside the device body 2 and that scans illumination light two-dimensionally.
  • the optical fiber scanner 6 which concerns on embodiment, the condensing lens 7 which condenses the illumination light scanned by this optical fiber scanner 6, and the control part 9 which controls the optical fiber scanner 6 are provided.
  • the optical fiber scanner 6 has a square having an optical fiber 8 that guides illumination light from the light source 5 and a through hole 10 that penetrates the optical fiber 8.
  • a vibration transmission member 11 made of a columnar elastic material, four piezoelectric elements (actuators) 12 fixed to the four outer surfaces 11 a of the vibration transmission member 11, and a base end side of the vibration transmission member 11 with respect to the apparatus main body 2
  • a support portion 13 that supports the optical fiber 8, and a detection line member 14 attached to the outer peripheral surface of the optical fiber 8.
  • the piezoelectric element 12 is flexibly vibrated by an oscillating voltage applied between the electrodes 15a and 15b arranged on both surfaces in the thickness direction. By bending and vibrating the piezoelectric element 12, the vibration is transmitted to the optical fiber 8 via the vibration transmitting member 11, and the tip 8a of the optical fiber 8 that emits illumination light is displaced in a direction intersecting the longitudinal axis. It has become.
  • the pair of piezoelectric elements 12 arranged on the opposite surface across the vibration transmission member 11 are arranged so that the front and back are opposite to the vibration transmission member 11, and the polarization direction is aligned in the same direction and vibrations are generated. It is fixed to the transmission member 11.
  • the same bending vibration can be generated for each pair of piezoelectric elements 12 by applying the same voltage to the electrode 15 located outside. That is, the two-to-four piezoelectric elements 12 can generate bending vibrations in two directions orthogonal to each other.
  • the vibration transmission member 11 is made of an elastic material having conductivity, and is located at a midpoint in the longitudinal axis direction of the optical fiber 8 that is spaced from the distal end 8a of the optical fiber 8 toward the proximal end 8b along the longitudinal axis direction. Has been placed.
  • the detection wire member 14 is a conductive wire (for example, copper, aluminum, etc.). On the outer peripheral surface of the optical fiber 8, the detection line member 14 extends from the support portion 13 to the vicinity of the distal end 8 a from the base end 8 b side, is folded back in the vicinity of the distal end 8 a, and reciprocates in the longitudinal axis direction. The vicinity of 14a is electrically connected.
  • the detection line member 14 is covered with an insulating thin film 16 that electrically insulates the detection line member 14 from the surroundings except for the vicinity of the one end 14a electrically connected to the vibration transmitting member 11.
  • the detection line members 14 are affixed at 180 ° intervals in the circumferential direction of the optical fiber 8.
  • the condensing lens 7 is fixed to the apparatus main body 2 on the tip side of the optical fiber scanner 6 and focuses the illumination light scanned by the optical fiber scanner 6 onto an observation target.
  • the controller 9 applies a voltage based on the predetermined scanning locus to each piezoelectric element 12 so that the illumination light emitted from the tip 8a of the optical fiber 8 becomes the predetermined scanning locus input by the observer. It has become.
  • the control unit 9 is electrically connected to each piezoelectric element 12 and the other end 14b of the detection line member 14, and applies a voltage to a position where the displacement of the optical fiber 8 during vibration is small. .
  • the light detection unit 4 is a detection optical fiber 17 that guides return light from the observation target to the proximal end side of the apparatus main body 2, and light that detects the intensity of the return light guided by the detection optical fiber 17.
  • Sensor 18 The detection fibers 17 are fixed to the outer peripheral surface of the apparatus main body 2 with the distal end 17a facing forward, and a plurality of detection fibers 17 are arranged at equal intervals in the circumferential direction.
  • the optical sensor 18 detects the total intensity of the return light received by each detection fiber 17.
  • the tip 8a of the optical fiber 8 is opposed to the observation object, and the control unit 9 causes the two electrodes 15a and 15b of each piezoelectric element 12 to be observed. A voltage is applied between them. Thereby, the piezoelectric element 12 bends and vibrates in a manner corresponding to the applied voltage, and the tip 8a of the optical fiber 8 is displaced.
  • the illumination light from the light source 5 is incident on the optical fiber 8
  • the illumination light guided through the optical fiber 8 is emitted from the tip 8 a of the optical fiber 8 and condensed by the condenser lens 7.
  • the illumination light that has been converted into spot light can be scanned in the observation target.
  • the return light (reflected light or fluorescence) returning from the observation object is received by each detection optical fiber 17 and detected by the optical sensor 18. Therefore, an image to be observed can be acquired by storing the scanning position and the intensity of the return light in association with each other.
  • the detection line member 14 disposed along the optical fiber 8 is cut. Since the detection line member 14 is electrically connected in series between the piezoelectric element 12 and the control unit 9 via the vibration transmitting member 11, no voltage is applied to the piezoelectric element 12 when the piezoelectric element 12 is disconnected. The operation of 12 is stopped or suppressed, and scanning by the optical fiber scanner 6 is stopped. Thereby, the displacement of the tip 8a of the optical fiber 8 continues in an abnormal state in which the optical fiber 8 is bent or deformed, and heat is generated due to friction between the vibration transmitting member 11 and the support portion 13 and the optical fiber 8. Thus, the optical fiber scanner 6 can be prevented from becoming high temperature.
  • the scanning by the optical fiber scanner 6 is instantaneously stopped or suppressed by cutting the detection line member 14, there is an advantage that it is possible to prevent the scanning from being continued in a state where the scanning locus is disturbed. is there.
  • the detection line member 14 also serves as the ground line of the control unit 9, there is an advantage that the potential can be made indefinite by cutting the detection line member 14.
  • the insulating member 16 covers the detection line member 14 except for the vicinity of the one end 14a of the detection line member 14, the influence of the detection line member 14 from an external electric field is reduced, and the optical fiber 8 There is an advantage that folding and deformation can be detected with high accuracy.
  • the detection line member 14 is folded back in the vicinity of the distal end 8a and reciprocates in the longitudinal axis direction, so that a wiring for electrically connecting to the control unit 9 needs to be connected to the distal end 8a of the optical fiber 8. Therefore, it is possible to accurately control the scanning locus of the tip 8a of the optical fiber 8 by preventing the deviation of the scanning locus due to the wiring.
  • the detection line members 14 that reciprocate on the outer peripheral surface of the optical fiber 8 are arranged at intervals of 180 ° in the circumferential direction of the optical fiber 8. It is possible to control the scanning locus of the tip 8a of the optical fiber 8 with high accuracy by preventing the weight balance in the direction from being biased.
  • the detection line member 14 is exemplified as the detection line member 14 which extends from the base end 8b side than the support portion 13 in the optical fiber 8 and folds back and forth in the vicinity of the tip end 8a. is not.
  • the detection line member 14 may be attached to the outer peripheral surface of the optical fiber 8 in a range from the vibration transmission member 11 to the vicinity of the tip 8a, or near the tip of the vibration transmission member 11 where stress is likely to concentrate. It may be affixed only to the range.
  • the detection line member 14 made of a wire is exemplified as the detection line member.
  • the detection line member 14 is not limited to this, and as shown in FIGS. 3 and 4, the detection line member 14 is detected by a thin film made of a conductive material.
  • the wire member 19 may be configured.
  • an insulating member 20 that is an electrically insulating thin film is coated on the entire outer surface of the portion that reciprocates the outer peripheral surface of the optical fiber 8 on the other end 19b side of 19. That's fine.
  • the part by the side of one end 19a is electrically connected with the vibration transmission member 11, and the part by the side of the other end 19b is insulated with respect to the vibration transmission member 11.
  • the detection line member 19 is easily formed on the outer peripheral surface of the optical fiber 8, and the detection line member 19 is easily affected by the bending and deformation of the optical fiber 8. Sensitivity for detecting breakage and deformation of the fiber 8 can be further improved.
  • the insulating thin film 20 is formed in a laminated state with the insulating thin film 20 sandwiched in the radial direction of the optical fiber 8, and the insulating thin film 20 is partially provided on the tip 8a side of the optical fiber 8.
  • the detection line member 21 constituted by the two layers of the thin films 21a and 21b that are electrically connected to each other by being penetrated may be employed.
  • a thin film 21a made of a conductive material is coated on the entire outer periphery of the optical fiber 8, and the outer periphery of the thin film 21a is coated.
  • the entire periphery is coated with the insulating thin film 20, and the thin film 21 b is further coated on the entire outer periphery of the insulating thin film 20.
  • both ends of the insulating thin film 20 and the thin film 21b are cut in a direction intersecting the longitudinal axis so that the thin film 21a is exposed in the radial direction.
  • a conductive adhesive 22 is filled in the cut portion on the tip 8a side, and the two layers of thin films 21a and 21b are electrically connected to each other.
  • a thin film 21a made of a conductive material is coated on the entire outer circumference of the optical fiber 8, and both ends of the coated thin film 21a are masked 23.
  • the outer peripheral surface of the thin film 21 a exposed between the masks 23 is covered with the insulating thin film 20.
  • the tip 8a is coated with the thin film 21b while coating the intermediate portion in the longitudinal direction of the optical fiber 8 on the outer periphery of the insulating thin film 20 and the mask 23 disposed at a position slightly spaced from the tip of the insulating thin film 20 to the tip side.
  • Two layers of thin films 21a and 21b may be connected on the side.
  • the thin films 21 a and 21 b formed in a laminated state with the insulating thin film 20 interposed therebetween are arranged so as to be folded back in the radial direction and reciprocated in the longitudinal axis direction at the conduction portion on the tip 8 a side of the optical fiber 8. Can do.
  • the optical fiber scanner 6 exists between the inner peripheral surface of the through hole 10 and the outer peripheral surface of the optical fiber 8 in the through hole 10 of the vibration transmitting member 11.
  • the gap 22 may be filled with a conductive adhesive 22. According to this, since the adhesiveness of the optical fiber 8, the detection line member 14, the insulating member 16, and the vibration transmission member 11 is improved by filling the gap, the transmission efficiency of vibration from the piezoelectric element 12 can be further improved. it can.
  • the piezoelectric elements 12 are flexibly vibrated by applying voltages to the four piezoelectric elements 12 in a vibrating manner.
  • the present invention is not limited to this. You may do.
  • the scanning trajectory is not limited to a two-dimensional trajectory, and may be a one-dimensional trajectory as long as it is a direction intersecting the optical axis S.
  • the piezoelectric element 12 is fixed to the vibration transmission member 11 and indirectly fixed to the optical fiber 8.
  • the vibration transmission member 11 is not used and the optical fiber 8 is not fixed.
  • the piezoelectric element 12 may be directly fixed to the outer peripheral surface.
  • the optical fiber scanner 6 is exemplified by the insulating member 16 covering the outer surface of the detection line member 14 affixed to the optical fiber 8, but in place of this, FIG. 8 and FIG.
  • the optical fiber scanner 6 is exemplified by the insulating member 16 covering the outer surface of the detection line member 14 affixed to the optical fiber 8, but in place of this, FIG. 8 and FIG.
  • a scanner 24 may be employed.
  • the detection line member 19 which is a thin film is attached to the outer peripheral surface of the optical fiber 8, the durability against the bending and deformation of the optical fiber 8 is reduced, and the detection line member 19 is used. The detection accuracy can be further improved.
  • the detection line member 14 whose both ends 14a and 14b are arranged on the base end 8b side from the distal end of the vibration transmission member 11 is illustrated, but instead of this, as shown in FIG.
  • the detection line member 26 that is affixed from the vibration transmitting member 11 to the vicinity of the tip 8a and is formed of a thin film made of a conductive material may be employed over the entire outer peripheral surface of the motor 8.
  • the detection line member 26 extending from the vibration transmission member 11 to the vicinity of the tip 8a is formed by coating on the entire outer peripheral surface of the optical fiber 8, and one end 26a side of the detection line member 26 is disposed on the vibration transmission member. 11 is electrically connected. Then, in the vicinity of the tip 8 a of the optical fiber 8, wiring may be performed so that the vicinity of the other end 26 b of the detection line member 26 and the control unit 9 are electrically connected.
  • a detection line composed of four wires having conductivity extending from the vicinity of the distal end 8 a of the optical fiber 8 to the proximal end side of the vibration transmitting member 27.
  • the member 28 may be adopted.
  • each piezoelectric element 12 can be individually driven by setting the piezoelectric element 12 side to the ground potential.
  • the illumination device 30 detects the illumination light from the light source 5 based on the detection unit 31 that detects the disconnection of the detection line member 14 and the detection result of the detection unit 31.
  • the illumination device 3 according to the first embodiment is different from the illumination device 3 according to the first embodiment in that it includes a blocking unit 32 that prevents the light from being incident on the fiber 8.
  • the detection unit 31 is a circuit that detects a voltage value by passing a weak current between both ends 14 a and 14 b of the detection line member 14. When the detection line member 14 is cut, the circuit is disconnected, so that the voltage value detected by the detection unit 31 becomes zero, and it can be determined that the optical fiber 8 is broken or deformed. Yes.
  • the blocking means 32 is a shutter that blocks the illumination light from the light source 5.
  • the blocking means 32 blocks the optical path between the light source 5 and the optical fiber 8 when the detection unit 31 detects the disconnection of the detection line member 14.
  • the control unit 9 applies a voltage to each piezoelectric element 12 to displace the tip 8a of the optical fiber 8. In this state, the illumination light emitted from the tip 8a of the optical fiber 8 can be scanned over the observation target by guiding the illumination light from the light source 5 to the optical fiber 8.
  • the detection unit 31 detects the disconnection of the detection line member 14 by the disconnection of the circuit between the both ends 14 a and 14 b of the detection line member 14.
  • the detection unit 31 transmits a drive signal to the shutter to operate the shutter, and the operated shutter transmits the illumination light from the light source 5 to the optical fiber 8. The light is shielded before entering the base end 8b.
  • the shutter 32 is exemplified as the blocking means 32, but is not limited to this.
  • a power source not shown.
  • a wire that electrically cuts off the wiring that supplies power to the light source 5 may be employed.
  • the detection unit 31 detects the voltage value, but instead of this, an electrical quantity for detecting the disconnection of the detection line member 14, for example, a resistance value, a current value, a capacitance value, etc. Etc. may be detected.
  • the illumination device 33 which concerns on the 3rd Embodiment of this invention is demonstrated below with reference to drawings.
  • the illumination device 33 includes a circuit including a light source 5 and a light source driving unit 34 in series in parallel with a circuit that applies a voltage to each piezoelectric element 12 by the control unit 9. In the point which is, it is different from the illuminating device 3 which concerns on 1st Embodiment.
  • the light source drive unit 34 is wired to the vibration transmission member 11 via the light source 5, and the circuit from the vibration transmission member 11 to the ground via the detection line member 14 is the piezoelectric element 12 by the control unit 9.
  • the drive circuit is common.
  • the detection line member 14 serves as a ground line common to the control unit 9 and the light source driving unit 34.
  • the illumination device 33 according to the present embodiment applies a voltage to each piezoelectric element 12 by the control unit 9 to displace the tip 8a of the optical fiber 8, and drives the light source driving unit 34 to emit light from the light source 5.
  • the illumination light from the light source 5 can be scanned in the observation target.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Endoscopes (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

光ファイバ(8)の折れおよび変形を検出し、乱れた走査軌跡で走査が継続されてしまうことを防止することを目的として、本発明の光ファイバスキャナ(6)は、光源(5)から発せられた光を導光する光ファイバ(8)と、該光ファイバ(8)の長手軸方向の途中位置に固定され、屈曲振動によって光ファイバ(8)の先端(8a)を変位させるアクチュエータ(12)と、少なくとも該アクチュエータ(12)と光ファイバ(8)の先端(8a)との間の光ファイバ(8)の外周面に長手軸方向の所定範囲にわたって貼付された状態に延びる導電性を有する検出線部材(14)とを備える。

Description

光ファイバスキャナ、照明装置および観察装置
 本発明は、光ファイバスキャナ、照明装置および観察装置に関するものである。
 圧電素子を駆動することにより光ファイバの先端を渦巻き状に振動させて観察対象に2次元的に光を走査する光ファイバスキャナが知られている(例えば、特許文献1参照。)。
 この光ファイバスキャナは、外表面に周方向に4分割された電極を備える円筒状のPZT(チタン酸ジルコン酸鉛)アクチュエータの内孔を貫通して先端が片持ち梁状に支持される光ファイバの先端を、PZTアクチュエータの屈曲振動によって渦巻き状に移動させる。
特表2008-504557号公報
 片持ち梁状に支持された光ファイバの先端を根元のPZTアクチュエータの振動によって振動させるものであるため、光ファイバの先端の振動に伴い、光ファイバの根元に応力集中して光ファイバが折れたり変形したりしてしまうことがある。そして、光ファイバが折れたまたは変形した状態で光ファイバスキャナの動作が継続されると、光ファイバから射出される光の走査軌跡が乱れてしまう。
 本発明は、上述した事情に鑑みてなされたものであって、光ファイバが折れたり変形したりしたときに、乱れた走査軌跡で走査が継続されてしまうことを防止することができる光ファイバスキャナ、照明装置および観察装置を提供する。
 本発明の一態様は、光源から発せられた光を導光する光ファイバと、該光ファイバの長手軸方向の途中位置に固定され、屈曲振動によって前記光ファイバの先端を変位させるアクチュエータと、少なくとも該アクチュエータと前記光ファイバの先端との間の前記光ファイバの外周面に長手軸方向の所定範囲にわたって貼付された状態に延びる導電性を有する検出線部材とを備える光ファイバスキャナである。
 本態様によれば、光源からの光を光ファイバによって導光させながらアクチュエータを屈曲振動させて光ファイバの先端を変位させることにより、光ファイバの先端から射出された光を走査させることができる。
 この場合において、検出線部材が貼付されているアクチュエータと光ファイバの先端との間の所定範囲において、光ファイバが振動によって折れたり変形したりすると、検出線部材が切断される。したがって、検出線部材の両端に電圧を加えておけば、検出線部材を流れる電流や抵抗値変化によって検出線部材の切断を検出することができる。また、検出線部材は制御部の接地線も兼ねるため、検出線部材の切断により電位不定状態となる。すなわち、検出線部材の切断により、光ファイバスキャナによる走査を停止または抑制させることができる。
 上記態様においては、前記検出線部材が、前記アクチュエータから前記光ファイバの先端近傍まで延びていてもよい。
 このようにすることで、アクチュエータから光ファイバの先端までの範囲において光ファイバの折れまたは変形が発生した時に、光ファイバスキャナによる走査を停止または抑制させることができる。
 上記態様においては、前記アクチュエータと前記光ファイバの先端との間の前記検出線部材を被覆する電気的絶縁性を有する絶縁部材を備えていてもよい。
 このようにすることで、検出線部材が外部の電界から受ける影響を低減して、光ファイバの折れおよび変形を精度よく検出することができる。
 上記態様においては、前記検出線部材が、前記光ファイバの先端側において折り返されて、該光ファイバの外周面を長手軸方向に往復して配置されていてもよい。
 このようにすることで、光ファイバの先端に配線をする必要がなく、光ファイバの先端の走査軌跡を精度よく制御することができる。
 上記態様においては、前記光ファイバの外周面を往復する部分の前記検出線部材が、前記光ファイバの周方向に等間隔をあけて配置されていてもよい。
 このようにすることで、検出線部材によって光ファイバの周方向の重量バランスが偏ることを防止して光ファイバの先端の走査軌跡を精度よく制御することができる。
 上記態様においては、前記検出線部材が、薄膜により構成されていてもよい。
 このようにすることで、光ファイバの外周面への検出線部材の形成が容易であり、検出線部材が光ファイバの折れおよび変形による影響を受け易くなるため、光ファイバの折れおよび変形を検出する感度をより向上することができる。
 上記態様においては、前記検出線部材が、前記光ファイバの径方向に電気的絶縁材料からなる絶縁薄膜を挟んで積層状態に形成されるとともに、前記光ファイバの先端側において前記絶縁薄膜を部分的に貫通することにより相互に電気的に導通された2層の薄膜により構成されていてもよい。
 このようにすることで、絶縁薄膜を挟んで積層状態に形成された検出線部材を、光ファイバの先端側の導通部分において径方向に折り返して長手軸方向に往復するように配置することができる。
 上記態様においては、前記光ファイバを貫通させる貫通孔を有し、前記アクチュエータを外面に固定する筒状の振動伝達部材を備え、前記アクチュエータが振動的な電圧の印加により屈曲振動する圧電素子からなり、前記振動伝達部材が、導電性材料により構成されるとともに、前記アクチュエータと前記検出線部材の一端との間に電気的に直列に接続されていてもよい。
 このようにすることで、電気的に直列に接続されたアクチュエータ、振動伝達部材および検出線部材の両端に振動的な電圧を加えると、圧電素子からなるアクチュエータが屈曲振動し、その振動が振動伝達部材を介して貫通孔内を貫通している光ファイバに伝達され、光ファイバの先端が変位させられる。そして、光ファイバに折れまたは変形が生じることにより検出線部材が切断されると、アクチュエータに加えていた電圧が遮断されるので、アクチュエータの振動が停止または抑制され、光ファイバスキャナによる走査を瞬時に停止または抑制することができる。
 本発明の他の態様は、光を発生する光源と、上記の光ファイバスキャナと、該光ファイバスキャナにより走査された光を集光する集光レンズと、前記検出線部材が切断されたときに、前記光源から前記光ファイバに入射する光を遮断する遮断手段とを備える照明装置である。
 本態様によれば、光ファイバスキャナから照射された光源からの光を集光レンズによって集光して、観察対象にスポット光を照射することができる。このとき、検出線部材の両端に電圧が印加されていれば、検出部が光ファイバの折れまたは変形を検出すると、遮断手段が光ファイバに照明光を入射させないようにするため、光ファイバが折れた状態で観察対象へのスポット光の照射が継続されてしまうことを防止することができる。
 上記態様においては、前記光源を駆動する光源駆動部を備え、該光源駆動部が前記検出線部材を介して接地されている照明装置である。
 このようにすることで、検出線部材が断線すると、光源駆動部における電位が不定状態になるので、光源の発光が停止または抑制され、過度の発熱を防止することができる。
 本発明の他の態様は、上記の照明装置と、該照明装置により観察対象に光が照射されたときに、該観察対象からの戻り光を受光する光検出部とを備える観察装置である。
 本態様によれば、照明装置によって所望の軌跡に従って観察対象に光が照射されると、観察対象の表面で反射された戻り光が光検出部に受光されて、戻り光の強度を検出することができる。
 本発明によれば光ファイバの折れおよび変形を検出し、乱れた走査軌跡で走査が継続されてしまうことを防止することができるという効果を奏する。
本発明の第1の実施形態に係る観察装置を示す縦断面図である。 図1の観察装置の光ファイバスキャナを線A-Aに沿って切断した横断面図である。 図1の観察装置の光ファイバスキャナの第1の変形例を示す縦断面図である。 図3の光ファイバスキャナを線B-Bに沿って切断した横断面図である。 図1の観察装置の光ファイバスキャナの第2の変形例の光ファイバの外周面に絶縁薄膜を挟んで検出線部材を貼付した状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第2の変形例の光ファイバの基端側および先端側において検出線部材および絶縁薄膜を長手軸に交差する方向に削った状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第2の変形例の光ファイバの先端側における削った部分に接着剤を充填した状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第2の変形例の検出線部材とアクチュエータとを電気的に直列に接続した状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第3の変形例の光ファイバの外周面に検出線部材を貼付した状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第3の変形例の光ファイバの基端側および先端側において検出線部材の両端近傍をマスクで被覆し、マスク間を絶縁薄膜で被覆した状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第3の変形例の絶縁薄膜において光ファイバの長手軸方向途中位置から光ファイバの先端近傍まで検出線部材で被覆し、先端側で2層の検出線部材が電気的に導通する状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第3の変形例の検出線部材とアクチュエータとを電気的に直列に接続した状態を示す縦断面図である。 図1の観察装置の光ファイバスキャナの第4の変形例を示す横断面図である。 図1の観察装置の光ファイバスキャナの第5の変形例を示す縦断面図である。 図8の光ファイバスキャナを線C-Cに沿って切断した横断面図である。 図1の観察装置の装置本体の第6の変形例を示す縦断面図である。 図1の観察装置の装置本体の第7の変形例を示す縦断面図である。 図11の光ファイバスキャナを線D-Dに沿って切断した横断面図である。 本発明の第2の実施形態に係る観察装置を示す縦断面図である。 本発明の第3の実施形態に係る観察装置を示す縦断面図である。
 本発明の第1の実施形態に係る光ファイバスキャナ6、照明装置3および観察装置1について図面を参照して以下に説明する。
 本実施形態に係る観察装置1は、図1に示されるように、円筒状の装置本体2と、照明光を照射する照明装置3と、該照明装置3により観察対象に照射された照明光の観察対象からの戻り光(例えば、反射光、蛍光)を受光する光検出部4とを備えている。
 照明装置3は、図1および図2に示されるように、照明光を発生する光源(例えば、レーザダイオード)5と、装置本体2の内部に収容されて照明光を2次元的に走査する本実施形態に係る光ファイバスキャナ6と、該光ファイバスキャナ6により走査された照明光を集光する集光レンズ7と、光ファイバスキャナ6を制御する制御部9とを備えている。
 本実施形態に係る光ファイバスキャナ6は、図1および図2に示されるように、光源5からの照明光を導光する光ファイバ8と、該光ファイバ8を貫通させる貫通孔10を有する四角柱状の弾性材料からなる振動伝達部材11と、該振動伝達部材11の4つの外面11aに固定された4つの圧電素子(アクチュエータ)12と、振動伝達部材11の基端側において装置本体2に対して光ファイバ8を支持する支持部13と、光ファイバ8の外周面に貼付された検出線部材14とを備えている。
 圧電素子12は、厚さ方向の両面に配置される電極15a,15b間に印加される振動的な電圧によって屈曲振動させられるようになっている。圧電素子12を屈曲振動させることにより、振動が振動伝達部材11を介して光ファイバ8に伝達され、照明光を射出する光ファイバ8の先端8aが、長手軸に交差する方向に変位させられるようになっている。
 振動伝達部材11を挟んで反対側の表面に配置される一対の圧電素子12は、振動伝達部材11に対して表裏が逆となるように配置されており、分極方向を同一方向に揃えて振動伝達部材11に固定されている。これにより、各対の圧電素子12に対しては、外側に位置する電極15に同じ電圧を印加することにより、同一の屈曲振動を発生させることができるようになっている。すなわち、2対4個の圧電素子12は、互いに直交する2方向の屈曲振動を発生させることができるようになっている。
 振動伝達部材11は、導電性を有する弾性材料からなり、光ファイバ8の先端8aから基端8b側に長手軸方向に沿って所定の間隔を空けた光ファイバ8の長手軸方向の途中位置に配置されている。
 検出線部材14は、導電性を有する線材(例えば、銅、アルミニウム等)である。検出線部材14は、光ファイバ8の外周面上において、支持部13より基端8b側から先端8a近傍まで延び、先端8a近傍で折り返されて長手軸方向に往復し、振動伝達部材11に一端14a近傍が電気的に接続されている。
 検出線部材14は、振動伝達部材11に電気的に接続される一端14a近傍を除き、検出線部材14を周囲から電気的に絶縁する絶縁薄膜16によって被覆されている。
 検出線部材14は、光ファイバ8の周方向に180°間隔を空けて貼付されている。
 集光レンズ7は、光ファイバスキャナ6よりも先端側の装置本体2に固定され、光ファイバスキャナ6により走査された照明光を観察対象に集束させるようになっている。
 制御部9は、光ファイバ8の先端8aから射出される照明光が観察者により入力された所定の走査軌跡となるように、所定の走査軌跡に基づいた電圧を各圧電素子12に印加するようになっている。また、制御部9は、各圧電素子12および検出線部材14の他端14bに電気的に接続されており、光ファイバ8の振動時の変位が小さい位置に電圧を印加するようになっている。
 光検出部4は、観察対象からの戻り光を装置本体2の基端側に導光する検出用光ファイバ17と、該検出用光ファイバ17によって導光された戻り光の強度を検出する光センサ18とを備えている。
 検出用ファイバ17は、先端17aを前方に向けて装置本体2の外周面に固定され、周方向に等間隔を空けて複数配列されている。
 光センサ18は、各検出用ファイバ17によって受光された戻り光の合計強度を検出するようになっている。
 このように構成された本実施形態に係る光ファイバスキャナ6、照明装置3および観察装置1の作用について以下に説明する。
 本実施形態に係る観察装置1を用いて観察対象を観察するには、まず、光ファイバ8の先端8aを観察対象に対向させて、制御部9によって各圧電素子12の2つの電極15a,15b間に電圧を印加する。これにより、印加された電圧に対応する態様で圧電素子12が屈曲振動して、光ファイバ8の先端8aが変位させられる。
 この状態で、光源5からの照明光を光ファイバ8に入射させると、光ファイバ8を介して導光されてきた照明光が光ファイバ8の先端8aから射出され、集光レンズ7によって集光されてスポット光となった照明光を観察対象において走査させることができる。そして、照明光が観察対象に照射されると、観察対象から戻る戻り光(反射光または蛍光)が各検出用光ファイバ17によって受光され光センサ18によって検出される。したがって、走査位置と戻り光の強度とを対応づけて記憶することにより、観察対象の画像を取得することができる。
 この場合において、応力集中等の原因によって、振動している光ファイバ8に折れまたは変形が発生すると、光ファイバ8に沿って配置されている検出線部材14が切断される。検出線部材14は圧電素子12から振動伝達部材11を介して制御部9までの間を電気的に直列に接続しているので、切断されると圧電素子12に電圧が印加されなくなり、圧電素子12の動作が停止または抑制して光ファイバスキャナ6による走査が停止する。これにより、光ファイバ8が折れたり変形したりした異常な状態のまま光ファイバ8の先端8aの変位が継続し、振動伝達部材11や支持部13と光ファイバ8との間の摩擦により発熱して光ファイバスキャナ6が高温になることを防止することができる。
 すなわち、検出線部材14の切断によって光ファイバスキャナ6による走査が瞬時に停止または抑制されるため、走査軌跡が乱れたままの状態で走査が継続されてしまうことを防止することができるという利点がある。
 この場合において、検出線部材14は制御部9の接地線も兼ねるため、検出線部材14の切断により電位を不定状態にすることができるという利点がある。
 この場合において、検出線部材14の一端14a近傍を除いて検出線部材14を絶縁部材16が被覆しているため、検出線部材14が外部の電界から受ける影響を低減して、光ファイバ8の折れおよび変形を精度よく検出することができるという利点がある。
 この場合において、検出線部材14が先端8a近傍で折り返されて長手軸方向に往復していることにより、制御部9に電気的に接続するための配線を光ファイバ8の先端8aに接続する必要がないので、配線による走査軌跡のずれを防止して光ファイバ8の先端8aの走査軌跡を精度よく制御することができる。
 この場合において、光ファイバ8の外周面を往復する部分の検出線部材14が、光ファイバ8の周方向に180°間隔をあけて配置されているので、検出線部材14によって光ファイバ8の周方向の重量バランスが偏ることを防止して光ファイバ8の先端8aの走査軌跡を精度よく制御することができる。
 本実施形態においては、検出線部材14として、光ファイバ8において、支持部13よりも基端8b側から延びて先端8a近傍で折り返して往復するようなものを例示したが、これに限られるものではない。例えば、検出線部材14は、光ファイバ8の外周面において、振動伝達部材11から先端8a近傍までの範囲に貼付されてもよいし、比較的応力が集中しやすい振動伝達部材11の先端近傍の範囲にのみ貼付されてもよい。
 本実施形態においては、検出線部材として、線材からなる検出線部材14を例示したが、これに限られるものではなく、図3および図4に示されるように、導電性材料からなる薄膜によって検出線部材19を構成してもよい。
 具体的には、まず、光ファイバ8の外周面において、周方向の一部を基端8b側から先端8a近傍で折り返して途中位置まで延びる検出線部材19をコーティングにより形成し、該検出線部材19の他端19b側の光ファイバ8の外周面を往復する部分の外表面全面に電気的な絶縁性を有する薄膜である絶縁部材(以下、単に絶縁薄膜という。)20をコーティングして被覆すればよい。
 これにより、2つの光ファイバ8の外周面を往復する部分において、一端19a側の部分を振動伝達部材11と電気的に導通させ、他端19b側の部分を振動伝達部材11に対して絶縁することができる
 このようにすることで、光ファイバ8の外周面への検出線部材19の形成が容易であり、検出線部材19が光ファイバ8の折れおよび変形による影響を受け易くなるため、光ファイバ8の折れおよび変形を検出する感度をより向上することができる。
 検出線部材として、図5Aから図6Dに示されるように、光ファイバ8の径方向に絶縁薄膜20を挟んで積層状態に形成されるとともに、光ファイバ8の先端8a側において絶縁薄膜20を部分的に貫通することにより相互に電気的に導通された2層の薄膜21a,21bにより構成される検出線部材21を採用してもよい。
 このような検出線部材21を構成するには、図5Aから図5Dに示されるように、まず、光ファイバ8の外周全周に導電性材料からなる薄膜21aをコーティングし、該薄膜21aの外周全周を絶縁薄膜20でコーティングして、さらに該絶縁薄膜20の外周全周に薄膜21bをコーティングする。次に、薄膜21aが径方向に露出するよう絶縁薄膜20および薄膜21bの両端側を長手軸に交差する方向に削る。そして、先端8a側の削りを入れた部分に導電性を有する接着剤22を充填して、2層の薄膜21a,21bを相互に電気的に導通する。
 上述の方法に代えて、図6Aから図6Dに示されるように、まず、光ファイバ8の外周全周に導電性材料からなる薄膜21aをコーティングし、コーティングされた薄膜21aの両端側をマスク23で被覆し、マスク23間に露出する薄膜21aの外周面を絶縁薄膜20で被覆する。そして、絶縁薄膜20の外周における光ファイバ8の長手方向途中位置、および絶縁薄膜20の先端より若干先端側に間隔を空けた位置に配置されたマスク23間を薄膜21bによりコーティングしつつ、先端8a側で2層の薄膜21a,21bを接続させることにしてもよい。
 これらによれば、絶縁薄膜20を挟んで積層状態に形成された薄膜21a,21bを、光ファイバ8の先端8a側の導通部分において径方向に折り返して長手軸方向に往復するように配置することができる。
 本実施形態においては、光ファイバスキャナ6として、図7に示されるように、振動伝達部材11の貫通孔10において、貫通孔10の内周面と光ファイバ8の外周面との間に存在する隙間に導電性を有する接着剤22を充填してもよい。
 これによれば、隙間を埋めることによって光ファイバ8、検出線部材14、絶縁部材16および振動伝達部材11の密着性が向上するため、圧電素子12からの振動の伝達効率がより向上することができる。
 本実施形態においては、圧電素子12として、4つの圧電素子12に振動的に電圧を印加して屈曲振動させているが、これに限られるものではなく、例えば、圧電素子12が単体で屈曲振動するものであってもよい。また、走査軌跡は、2次元的な軌跡に限られるものではなく、光軸Sに交差する方向であれば、1次元的な軌跡であってもよい。
 本実施形態においては、圧電素子12を振動伝達部材11に固定して光ファイバ8に間接的に固定するものを例示したが、これに代えて、振動伝達部材11を用いず、光ファイバ8の外周面に直接圧電素子12を固定してもよい。
 本実施形態においては、光ファイバスキャナ6として、光ファイバ8に貼付された検出線部材14の外表面を絶縁部材16が被覆するものを例示したが、これに代えて、図8および図9に示されるように、振動伝達部材25の貫通孔10の内周面において、周方向の一部に絶縁薄膜20がコーティングされ、残りの部分に導電性を有する導電薄膜41がコーティングされている光ファイバスキャナ24を採用してもよい。
 これによれば、光ファイバ8の外周面に貼付されるのは、薄膜である検出線部材19のみであるため、光ファイバ8の折れおよび変形に対する耐久性を低下させて、検出線部材19による検出精度をより向上することができる。
 本実施形態においては、両端14a,14bが振動伝達部材11の先端より基端8b側に配置される検出線部材14を例示したが、これに代えて、図10に示されるように、光ファイバ8の外周面全周において、振動伝達部材11から先端8a近傍まで貼付され、導電性材料からなる薄膜によって構成される検出線部材26を採用してもよい。
 具体的には、まず、光ファイバ8の外周面全周において、振動伝達部材11から先端8a近傍まで延びる検出線部材26をコーティングにより形成し、該検出線部材26の一端26a側を振動伝達部材11に電気的に接続させる。そして、光ファイバ8の先端8a近傍において、検出線部材26の他端26b近傍と制御部9とが導通するよう配線すればよい。
 図11および図12に示されるように、光ファイバ8の外周面において、光ファイバ8の先端8a近傍から振動伝達部材27の基端側まで延びる導電性を有する4つの線材で構成された検出線部材28を採用してもよい。
 この場合には、振動伝達部材27の横断面における対角線に沿って、振動伝達部材27を4つに画定する電気的な絶縁層29を備え、各外面27aに固定された圧電素子12が相互に電気的に接続されないようになっており、電気的に絶縁された振動伝達部材27の各部分が、対応する各検出線部材28に個別に電気的に接続されていればよい。
 これによれば、圧電素子12側を接地電位にして、各圧電素子12を個別に駆動することができる。
 次に、本発明の第2の実施形態に係る照明装置30について図面を参照して以下に説明する。
 本実施形態の説明において、上述した第1の実施形態に係る照明装置3と構成を共通とする箇所には同一符号を付して説明を省略する。
 本実施形態に係る照明装置30は、図13に示されるように、検出線部材14の切断を検出する検出部31と、該検出部31の検出結果に基づいて光源5からの照明光を光ファイバ8に入射させないようにする遮断手段32とを備えている点において、第1の実施形態に係る照明装置3と相違している。
 検出部31は、検出線部材14の両端14a,14b間に微弱な電流を流してその電圧値を検出する回路である。検出線部材14が切断されると、回路が断線されるため、検出部31によって検出される電圧値がゼロとなり、光ファイバ8が折れたり変形したりしていることを判断できるようになっている。
 遮断手段32は、光源5からの照明光を遮光するシャッタである。遮断手段32は、検出部31によって検出線部材14の切断が検出されると光源5と光ファイバ8との間の光路を遮断するようになっている。
 このように構成された本実施形態に係る照明装置30の作用について以下に説明する。
 本実施形態に係る照明装置30は、制御部9によって各圧電素子12に電圧を印加して光ファイバ8の先端8aを変位させる。この状態で、光源5からの照明光を光ファイバ8に導光させることにより、光ファイバ8の先端8aから射出された照明光を観察対象において走査させることができる。
 このとき、検出線部材14が切断されると、各圧電素子12から制御部9までの間を電気的に直列に接続している回路が断線するので各圧電素子12の屈曲振動が停止し、検出線部材14の両端14a,14b間の回路の断線によって検出部31が検出線部材14の切断を検出する。検出部31によって検出線部材14の切断が検出されると、検出部31がシャッタに駆動信号を送信してシャッタを作動させ、作動させられたシャッタが光源5からの照明光を光ファイバ8の基端8bに入射する前に遮光する。
 すなわち、光ファイバ8の折れまたは変形によって検出線部材14が切断されると、光ファイバ8の先端8aの変位および先端8aからの照明光の射出を瞬時に停止させることができるという利点がある。
 この場合において、光ファイバ8が折れた異常な状態のまま光ファイバ8の先端8aからの照明光の射出が継続されないので、照射光が長時間1点に照射されることを防止することができる。
 本実施形態においては、遮断手段32として、シャッタを用いるものを例示したが、これに限られるものではなく、例えば、検出部31が検出線部材14の切断を検出すると、電源(図示省略。)から光源5に電力を供給する配線を電気的に遮断するものを採用してもよい。
 本実施形態においては、検出部31が電圧値を検出することとしたが、これに代えて検出線部材14の断線を検出するための電気的な量、例えば、抵抗値、電流値、容量値等を検出してもよい。
 次に、本発明の第3の実施形態に係る照明装置33について図面を参照して以下に説明する。
 本実施形態に係る照明装置33は、図14に示されるように、制御部9により各圧電素子12に電圧を印加する回路に並列して光源5および光源駆動部34を直列に含む回路を備えている点において、第1の実施形態に係る照明装置3と相違している。
 すなわち、光源駆動部34は、光源5を介して振動伝達部材11に配線されており、振動伝達部材11から検出線部材14を介して接地されるまでの回路は、制御部9による圧電素子12の駆動回路と共通している。検出線部材14は、制御部9および光源駆動部34に共通する接地線となる。
 このように構成された本実施形態に係る照明装置33の作用について以下に説明する。
 本実施形態に係る照明装置33は、制御部9によって各圧電素子12に電圧を印加して光ファイバ8の先端8aを変位させるとともに、光源駆動部34を駆動して光源5から発光させることにより、光源5からの照明光を観察対象において走査させることができる。
 この場合において、検出線部材14が断線すると、検出線部材14を含む回路が切断され、制御部9および光源駆動部34における電位が不定状態になるので、各圧電素子12の屈曲振動と光源5の発光とが瞬時に停止または抑制する。したがって、光ファイバ8が折れたり変形したりすると、光ファイバスキャナ6による走査を停止させ、かつ、照明光の発光による光源5の過度の発熱を防止することができる。
 1 観察装置
 3,30,33 照明装置
 4 光検出部
 5 光源
 6,24 光ファイバスキャナ
 7 集光レンズ
 8 光ファイバ
 11,25,27 振動伝達部材
 12 圧電素子(アクチュエータ)
 14,19,21,26,28 検出線部材
 16,20 絶縁部材(絶縁薄膜)
 32 遮断手段
 34 光源駆動部
 

Claims (11)

  1.  光源から発せられた光を導光する光ファイバと、
     該光ファイバの長手軸方向の途中位置に固定され、屈曲振動によって前記光ファイバの先端を変位させるアクチュエータと、
     少なくとも該アクチュエータと前記光ファイバの先端との間の前記光ファイバの外周面に長手軸方向の所定範囲にわたって貼付された状態に延びる導電性を有する検出線部材とを備える光ファイバスキャナ。
  2.  前記検出線部材が、前記アクチュエータから前記光ファイバの先端近傍まで延びている請求項1に記載の光ファイバスキャナ。
  3.  前記アクチュエータと前記光ファイバの先端との間の前記検出線部材を被覆する電気的絶縁性を有する絶縁部材を備える請求項1または請求項2に記載の光ファイバスキャナ。
  4.  前記検出線部材が、前記光ファイバの先端側において折り返されて、該光ファイバの外周面を長手軸方向に往復して配置されている請求項1から請求項3のいずれかに記載の光ファイバスキャナ。
  5.  前記光ファイバの外周面を往復する部分の前記検出線部材が、前記光ファイバの周方向に等間隔をあけて配置されている請求項4に記載の光ファイバスキャナ。
  6.  前記検出線部材が、薄膜により構成されている請求項1から請求項5のいずれかに記載の光ファイバスキャナ。
  7.  前記検出線部材が、前記光ファイバの径方向に電気的絶縁材料からなる絶縁薄膜を挟んで積層状態に形成されるとともに、前記光ファイバの先端側において前記絶縁薄膜を部分的に貫通することにより相互に電気的に導通された2層の薄膜により構成されている請求項6に記載の光ファイバスキャナ。
  8.  前記光ファイバを貫通させる貫通孔を有し、前記アクチュエータを外面に固定する筒状の振動伝達部材を備え、
     前記アクチュエータが振動的な電圧の印加により屈曲振動する圧電素子からなり、
     前記振動伝達部材が、導電性材料により構成されるとともに、前記アクチュエータと前記検出線部材の一端との間に電気的に直列に接続されている請求項1から請求項7のいずれかに記載の光ファイバスキャナ。
  9.  光を発生する光源と、
     請求項1から請求項8のいずれかに記載の光ファイバスキャナと、
     該光ファイバスキャナにより走査された光を集光する集光レンズと、
     前記検出線部材が切断されたときに、前記光源から前記光ファイバに入射する光を遮断する遮断手段とを備える照明装置。
  10.  前記光源を駆動する光源駆動部を備え、
     該光源駆動部が前記検出線部材を介して接地されている請求項9に記載の照明装置。
  11.  請求項9または請求項10に記載の照明装置と、
     該照明装置により観察対象に光が照射されたときに、該観察対象からの戻り光を受光する光検出部とを備える観察装置。
     
PCT/JP2015/066662 2014-06-10 2015-06-10 光ファイバスキャナ、照明装置および観察装置 WO2015190498A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015002202.3T DE112015002202T5 (de) 2014-06-10 2015-06-10 Optischer Faserscanner, Beleuchtungsvorrichtung und Beobachtungsgerät
CN201580027901.2A CN106461935B (zh) 2014-06-10 2015-06-10 光纤扫描器、照明装置以及观察装置
US15/360,388 US20170075107A1 (en) 2014-06-10 2016-11-23 Optical fiber scanner, illumination device, and observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014119397A JP6309356B2 (ja) 2014-06-10 2014-06-10 光ファイバスキャナ、照明装置および観察装置
JP2014-119397 2014-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/360,388 Continuation US20170075107A1 (en) 2014-06-10 2016-11-23 Optical fiber scanner, illumination device, and observation apparatus

Publications (1)

Publication Number Publication Date
WO2015190498A1 true WO2015190498A1 (ja) 2015-12-17

Family

ID=54833588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066662 WO2015190498A1 (ja) 2014-06-10 2015-06-10 光ファイバスキャナ、照明装置および観察装置

Country Status (5)

Country Link
US (1) US20170075107A1 (ja)
JP (1) JP6309356B2 (ja)
CN (1) CN106461935B (ja)
DE (1) DE112015002202T5 (ja)
WO (1) WO2015190498A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109883A1 (ja) * 2016-12-14 2018-06-21 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置
US10928628B2 (en) 2016-12-26 2021-02-23 Olympus Corporation Optical fiber scanning apparatus and endoscope
US11061222B2 (en) 2016-12-26 2021-07-13 Olympus Corporation Optical fiber scanning apparatus and endoscope

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017085855A1 (ja) * 2015-11-20 2017-05-26 オリンパス株式会社 光ファイバスキャナ、走査型照明装置および走査型観察装置
WO2018011857A1 (ja) * 2016-07-11 2018-01-18 オリンパス株式会社 内視鏡装置
JP2018017861A (ja) * 2016-07-27 2018-02-01 富士通コンポーネント株式会社 光モジュール
CN109212746A (zh) * 2017-07-06 2019-01-15 成都理想境界科技有限公司 一种光纤扫描器及光纤扫描成像系统
CN110687679B (zh) * 2018-07-06 2024-02-06 成都理想境界科技有限公司 一种扫描驱动器及光纤扫描驱动器
CN109407308B (zh) * 2018-12-11 2021-01-05 成都理想境界科技有限公司 一种扫描致动器及光纤扫描器
JP7363369B2 (ja) * 2019-10-28 2023-10-18 株式会社リコー 測定装置、吸光度測定装置、生体情報測定装置、及び測定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174744A (ja) * 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
JP2010523198A (ja) * 2007-04-05 2010-07-15 ユニヴァーシティ オブ ワシントン コンパクトな走査型ファイバ・デバイス
JP2014071423A (ja) * 2012-10-01 2014-04-21 Olympus Corp 光ファイバスキャナ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4883054A (en) * 1987-12-09 1989-11-28 Fuller Research Corporation Optical fiber break detector
US6563105B2 (en) * 1999-06-08 2003-05-13 University Of Washington Image acquisition with depth enhancement
US6304784B1 (en) * 1999-06-15 2001-10-16 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Flexible probing device and methods for manufacturing the same
US7616986B2 (en) * 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US8437587B2 (en) * 2007-07-25 2013-05-07 University Of Washington Actuating an optical fiber with a piezoelectric actuator and detecting voltages generated by the piezoelectric actuator
JP2010162090A (ja) * 2009-01-13 2010-07-29 Hoya Corp 光走査型内視鏡
JP2013081680A (ja) * 2011-10-12 2013-05-09 Hoya Corp 光走査型内視鏡システム
KR101942976B1 (ko) * 2012-09-28 2019-01-28 삼성전자주식회사 광학 줌 프로브
CN104620156A (zh) * 2012-10-01 2015-05-13 奥林巴斯株式会社 光纤扫描仪

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001174744A (ja) * 1999-10-06 2001-06-29 Olympus Optical Co Ltd 光走査プローブ装置
JP2010523198A (ja) * 2007-04-05 2010-07-15 ユニヴァーシティ オブ ワシントン コンパクトな走査型ファイバ・デバイス
JP2014071423A (ja) * 2012-10-01 2014-04-21 Olympus Corp 光ファイバスキャナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109883A1 (ja) * 2016-12-14 2018-06-21 オリンパス株式会社 光ファイバスキャナ、照明装置および観察装置
US10928628B2 (en) 2016-12-26 2021-02-23 Olympus Corporation Optical fiber scanning apparatus and endoscope
US11061222B2 (en) 2016-12-26 2021-07-13 Olympus Corporation Optical fiber scanning apparatus and endoscope
US11391942B2 (en) 2016-12-26 2022-07-19 Olympus Corporation Endoscope having optical fiber scanning apparatus

Also Published As

Publication number Publication date
JP2015232493A (ja) 2015-12-24
DE112015002202T5 (de) 2017-01-26
CN106461935B (zh) 2019-01-18
JP6309356B2 (ja) 2018-04-11
CN106461935A (zh) 2017-02-22
US20170075107A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015190498A1 (ja) 光ファイバスキャナ、照明装置および観察装置
JP6274949B2 (ja) 光ファイバスキャナ、照明装置および観察装置
US10036887B2 (en) Optical fiber scanner, illumination system, and observation apparatus
WO2014054524A1 (ja) 光ファイバスキャナ
WO2014147870A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2014119300A1 (ja) 光走査装置
WO2016075758A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2015129391A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2018109883A1 (ja) 光ファイバスキャナ、照明装置および観察装置
US20190104930A1 (en) Optical fiber scanner, illumination apparatus, and observation apparatus
US20190049719A1 (en) Optical fiber scanner, illumination device, and observation device
US20180103835A1 (en) Scanning-endoscope image evaluation system
JP6553207B2 (ja) 光ファイバスキャナ、照明装置および観察装置
JP2014137565A (ja) 光ファイバスキャナ
JP6103871B2 (ja) 光ファイバスキャナ
US20190235231A1 (en) Optical fiber scanner, illumination device, and observation device
WO2017068924A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2018092316A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2017068651A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2018163316A1 (ja) 光ファイバスキャナ、照明装置および観察装置
WO2017168809A1 (ja) 光ファイバスキャナ、照明装置および観察装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807574

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015002202

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807574

Country of ref document: EP

Kind code of ref document: A1