WO2015190389A1 - Method for producing electronic device apparatus - Google Patents

Method for producing electronic device apparatus Download PDF

Info

Publication number
WO2015190389A1
WO2015190389A1 PCT/JP2015/066186 JP2015066186W WO2015190389A1 WO 2015190389 A1 WO2015190389 A1 WO 2015190389A1 JP 2015066186 W JP2015066186 W JP 2015066186W WO 2015190389 A1 WO2015190389 A1 WO 2015190389A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin sheet
electronic device
sealing
resin
thermosetting
Prior art date
Application number
PCT/JP2015/066186
Other languages
French (fr)
Japanese (ja)
Inventor
佳宏 古川
豊田 英志
剛志 土生
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to CN201580030681.9A priority Critical patent/CN106463418A/en
Priority to SG11201610343RA priority patent/SG11201610343RA/en
Publication of WO2015190389A1 publication Critical patent/WO2015190389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Definitions

  • the present invention relates to a method for manufacturing an electronic device device.
  • thermosetting resin composition containing a thermally conductive secondary aggregate obtained by aggregating scaly boron nitride has been proposed (see, for example, Patent Document 1).
  • the secondary aggregate of boron nitride has high thermal conductivity and electrical insulation. Therefore, if it is used for an electronic device apparatus, it can be expected to be an electronic device apparatus having high heat dissipation.
  • the general crystal structure of boron nitride is scaly, and the thermal conductivity in the a-axis direction (plane direction) of the crystal is several times to several times the thermal conductivity in the c-axis direction (thickness direction).
  • the thermal anisotropy is 10 times. Therefore, in Patent Document 1, it is used as a secondary aggregate aggregated so as to require isotropy.
  • the objective is to provide the manufacturing method of the electronic device apparatus which can exhibit the thermal conductivity of the resin sheet for sealing more suitably. is there.
  • the present inventors diligently studied a method for manufacturing an electronic device device using a sealing resin sheet containing a secondary aggregate of boron nitride. As a result, when an electronic device is embedded in a sealing resin sheet containing a secondary aggregate of boron nitride and then the sealing resin sheet is thermoset under pressure, surprisingly, no pressure is applied. As a result, it was discovered that the thermal conductivity of the obtained electronic device device was improved, and the present invention was completed.
  • a method for manufacturing an electronic device device includes: Preparing a laminate in which an electronic device is fixed on a support; and Preparing a sealing resin sheet containing a secondary aggregate obtained by aggregating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to be isotropic; and Step C for disposing the sealing resin sheet on the electronic device of the laminate, Step D of embedding the electronic device in the sealing resin sheet; After the step D, while maintaining the state in which the laminate and the encapsulating resin sheet are pressed in a close direction, the encapsulating resin sheet is heated and subjected to a primary thermosetting step E. It is characterized by comprising.
  • the sealing resin sheet contains secondary aggregates obtained by agglomerating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to have isotropic properties. Has been. Therefore, the thermal conductivity of the sealing resin sheet can be increased.
  • the electronic device is embedded in the sealing resin sheet (step D), and then the sealing resin sheet is heated while maintaining a state in which the laminate and the sealing resin sheet are pressed closer to each other. Then, primary heat curing is performed (step E).
  • the present inventors after Step D, that is, after embedding the electronic device in the sealing resin sheet, temporarily heat the sealing resin sheet without applying the pressure to first heat cure.
  • the sealing resin sheet is in a state of being hardly thermoset, the thickness of the sealing resin sheet that has been deformed so as to become thinner due to the pressure at the time of embedding has returned to a slightly thicker direction. It was found that it was cured in a (spring-backed state). And it was guessed that the distance between the secondary aggregates was separated from that at the time of embedding due to this spring back, and this caused the improvement in thermal conductivity.
  • the resin sheet for sealing is heated to be first thermoset.
  • primary thermosetting refers to thermosetting that does not cause springback even if the pressure is released after primary thermosetting, or is less affected by springback, not complete thermosetting. Also good.
  • the condition of the step E is such that the thermal conductivity of the sealing resin sheet after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1 when the thermal conductivity is 1. Preferably there is.
  • the condition of thermosetting for 1 hour at a pressure of 3 MPa and a temperature of 150 ° C. is a condition assuming a case where the sealing resin sheet is completely thermoset under pressure conditions that do not cause springback. If the condition of step E is 0.8 or more when the thermal conductivity of the encapsulating resin sheet is 1 after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour, the spring Even if it is backed, the thermal conductivity can be 0.8 or more compared to the case where no springback occurs. Therefore, it is possible to improve the thermal conductivity more suitably.
  • sealing resin sheet will be described, and then a method for manufacturing an electronic device device using the sealing resin sheet will be described.
  • FIG. 1 is a cross-sectional view schematically showing a sealing resin sheet (hereinafter also simply referred to as “resin sheet”) according to an embodiment of the present invention.
  • the resin sheet 11 is typically provided in a state of being laminated on a separator 11a such as a polyethylene terephthalate (PET) film.
  • the separator 11a may be subjected to a mold release process in order to easily peel the resin sheet 11.
  • the resin sheet 11 has a thermal conductivity after thermosetting of preferably 3 W / m ⁇ K or more, more preferably 4 W / m ⁇ K or more, and even more preferably 5 W / m ⁇ K or more. .
  • the thermal conductivity after thermosetting is 3 W / m ⁇ K or more, the thermal conductivity is excellent.
  • thermal conductivity after thermosetting refers to the thermal conductivity after heating at a pressure of 3 MPa and a temperature of 90 ° C. for 5 minutes and further at 150 ° C. for 30 minutes.
  • the resin sheet 11 is a secondary aggregate obtained by agglomerating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to be isotropic (hereinafter also referred to as “first filler”). ). Moreover, it is preferable that the resin sheet 11 contains the 2nd filler different from a said 1st filler other than a 1st filler.
  • the average particle diameter of the first filler is preferably 1 ⁇ m to 80 ⁇ m, more preferably 3 ⁇ m to 70 ⁇ m. By setting the average particle size of the first filler to 1 ⁇ m or more, thermal conductivity can be suitably imparted. On the other hand, when the average particle size of the first filler is 80 ⁇ m or less, it is easy to make the electronic device device manufactured using the resin sheet 11 thinner.
  • the maximum particle size of the first filler is preferably 200 ⁇ m or less, and more preferably 180 ⁇ m or less. By making the maximum particle size of the first filler 200 ⁇ m or less, it is easier to make the electronic device device thinner.
  • the average particle size and the maximum particle size of the filler are values obtained by measuring with a laser diffraction type particle size distribution measuring device.
  • the shape of the first filler that is, the secondary aggregate is not limited to a spherical shape as long as thermal isotropy is ensured, and may be another shape such as a scale shape.
  • the secondary aggregated particles are spherical in consideration of the fact that the blending amount of the secondary aggregates can be increased while ensuring the fluidity of the thermosetting resin. Is preferred.
  • the average particle size means the length of the long side in the shape.
  • the secondary aggregate can be produced according to a known method using a predetermined boron nitride crystal. Specifically, a predetermined boron nitride crystal is fired and crushed, or the predetermined boron nitride crystal is aggregated by a known method such as spray drying and then fired and sintered (grain growth). .
  • the firing temperature is not particularly limited, but is generally 2,000 ° C.
  • PT PTX60
  • HP series for example, “HP” manufactured by Mizushima Alloy Iron Co., Ltd.
  • SHOBYN UHP ”series for example,“ SHOBYN UHP-EX ”, etc.
  • the second filler is not particularly limited as long as it is different from the first filler.
  • the second filler has a certain degree of thermal conductivity, or can impart other functions other than thermal conductivity to the resin sheet 11.
  • metal nitrides such as aluminum nitride, silicon nitride, gallium nitride; for example, silicon dioxide, aluminum oxide, magnesium oxide, titanium oxide, zinc oxide, tin oxide, copper oxide, nickel oxide
  • Metal oxides such as aluminum hydroxide, boehmite, magnesium hydroxide, calcium hydroxide, zinc hydroxide, silicic acid, iron hydroxide, copper hydroxide, barium hydroxide, etc .; for example, zirconium oxide water Japanese, tin oxide hydrate, basic magnesium carbonate, hydrotalcite, dowsonite, borax, zinc borate What hydrated metal oxides; silicon carbide, calcium carbonate, barium titanate, and the like potassium titanate.
  • At least one of alumina and fused silica is preferable.
  • Alumina aluminum oxide, Al 2 O 3
  • the resin does not enter into the alumina particles because it is not an aggregate, the higher the viscosity and the higher the elastic modulus of the sheet are less likely to occur as the secondary aggregate is used.
  • a secondary aggregate of boron nitride is contained in the resin sheet, there is a problem that the sheet becomes hard and brittle due to reasons such as the resin entering the voids in the secondary aggregate, and the followability is poor.
  • alumina is used as the filler of 2
  • the thermal conductivity can be maintained while reducing the increase in the viscosity and the elastic modulus of the sheet.
  • Fused silica has a low linear expansion integer (0.5 ⁇ 10 ⁇ 6 / K) and is close to a semiconductor material. Therefore, if fused silica is used as the second filler, warping of the electronic device device can be further suppressed. If both alumina and fused silica are used, the effects of both can be achieved.
  • the average particle diameter of the second filler is not particularly limited, but is, for example, 0.005 ⁇ m or more and 80 ⁇ m or less.
  • the maximum particle size of the second filler can be set to 200 ⁇ m or less, for example.
  • the shape of the second filler is not particularly limited, and may be spherical, for example.
  • the content of the first filler is preferably 20% by volume to 80% by volume and more preferably 25% by volume to 75% by volume with respect to the entire resin sheet 11.
  • heat conductivity can be provided suitably.
  • 80 volume% or less the increase in the viscosity of an extreme sheet
  • the content of the second filler varies depending on the material to be selected, but is preferably 5% by volume or more and 65% by volume or less, and preferably 10% by volume or more and 60% by volume or less based on the entire resin sheet 11. More preferably.
  • the total content of the first filler and the second filler is preferably 25% by volume or more and 85% by volume or less, and 30% by volume or more and 80% by volume or less with respect to the entire resin sheet 11. It is more preferable.
  • the resin sheet 11 preferably contains a thermosetting resin and a thermoplastic resin.
  • thermosetting resin is preferably an epoxy resin or a phenol resin. Thereby, favorable thermosetting is obtained.
  • the epoxy resin is not particularly limited.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
  • the epoxy resin is solid at room temperature having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C.
  • triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable from the viewpoint of reliability.
  • bisphenol F type epoxy resin is preferable because flexibility can be imparted to the thermosetting resin sheet 11.
  • the phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin.
  • a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used.
  • These phenolic resins may be used alone or in combination of two or more.
  • the phenol resin it is preferable to use one having a hydroxyl group equivalent of 70 to 250 and a softening point of 50 to 110 ° C. from the viewpoint of reactivity with the epoxy resin. From the viewpoint of high curing reactivity, a phenol novolac resin can be suitably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
  • the blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
  • the content of the thermosetting resin in 100% by weight of all components other than the filler is preferably 70% by weight or more, more preferably 75% by weight or more, and further preferably 80% by weight or more.
  • cured material can be made small as it is 70 weight% or more.
  • the content of the thermosetting resin is preferably 95% by weight or less, more preferably 92% by weight or less, still more preferably 90% by weight or less, and particularly preferably 88% by weight or less.
  • the resin sheet 11 preferably contains a curing accelerator.
  • the curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin.
  • 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11) -Z), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (trade name; 1.2 DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (Trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ) ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-sia Ethyl-2-undecylimidazole (trade name; C11
  • 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferable. Since 2-phenyl-4,5-dihydroxymethylimidazole promotes curing at a high temperature, it can be suppressed from being cured by heat in the embedding process. In addition, 2-phenyl-4-methyl-5-hydroxymethylimidazole promotes curing at a relatively low temperature, but is suitable when it is desired to rapidly heat cure after the embedding process.
  • the content of the curing accelerator is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, further preferably 0.8 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. It is.
  • the content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
  • the resin sheet 11 preferably contains a thermoplastic resin. Thereby, the heat resistance of the sealing resin sheet obtained, flexibility, and intensity
  • the thermoplastic resin is preferably one that can function as an elastomer.
  • thermoplastic resin examples include acrylic elastomers, urethane elastomers, silicone lastmers, and polyester elastomers. Of these, acrylic elastomers are preferred from the viewpoints of obtaining flexibility and good dispersibility with the epoxy resin.
  • the acrylic elastomer is not particularly limited, and one or more esters of acrylic acid or methacrylic acid having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms.
  • the polymer (acrylic copolymer) etc. which use as a component is mentioned.
  • alkyl group examples include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include an ethylhexyl group, an octyl group, an isooctyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a lauryl group, a tridecyl group, a tetradecyl group, a stearyl group, an octadecyl group, and a dodecyl group.
  • the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid.
  • Carboxyl group-containing monomers maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as
  • a carboxyl group-containing monomer preferably, a glycidyl group (epoxy group) -containing monomer, and a hydroxyl group-containing monomer from the viewpoint of increasing the viscosity of the resin sheet 11 by reacting with the epoxy resin.
  • a carboxyl group-containing monomer preferably, a glycidyl group (epoxy group) -containing monomer, and a hydroxyl group-containing monomer from the viewpoint of increasing the viscosity of the resin sheet 11 by reacting with the epoxy resin.
  • the thermoplastic resin may have a functional group.
  • a functional group a carboxyl group, an epoxy group, a hydroxyl group, an amino group, and a mercapto group are preferable, and a carboxyl group is more preferable.
  • the weight average molecular weight of the thermoplastic resin is preferably 500,000 or more, more preferably 800,000 or more.
  • the weight average molecular weight of the thermoplastic resin is preferably 2 million or less, more preferably 1.5 million or less.
  • the weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
  • the content of the thermoplastic resin in 100% by weight of all components other than the filler is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 11% by weight or more, still more preferably 12% by weight or more, Especially preferably, it is 13 weight% or more.
  • flexibility and flexibility of a resin sheet are acquired as it is 5 weight% or more.
  • the content of the thermoplastic resin is preferably 30% by weight or less, more preferably 20% by weight or less. If it is 30% by weight or less, the storage elastic modulus of the resin sheet 11 does not become too high, and both embedding and flow regulation can be achieved.
  • Resin sheet 11 may contain a flame retardant component as necessary. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation.
  • a flame retardant component for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do.
  • Resin sheet 11 may contain a silane coupling agent.
  • the silane coupling agent is not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane.
  • the content of the silane coupling agent in the resin sheet 11 is preferably 0.1 to 3% by weight. When it is 0.1% by weight or more, the hardness of the cured resin sheet can be increased and the water absorption rate can be reduced. On the other hand, generation
  • the resin sheet 11 preferably contains a pigment.
  • the pigment is not particularly limited, and examples thereof include carbon black.
  • the content of the pigment in the resin sheet 11 is preferably 0.1 to 2% by weight. When the content is 0.1% by weight or more, good marking properties can be obtained. The intensity
  • the resin sheet 11 is prepared by dissolving and dispersing a resin or the like for forming the resin sheet 11 in an appropriate solvent to adjust the varnish, and coating the varnish on the separator 11a to a predetermined thickness to form a coating film. Then, the coating film can be formed by drying under predetermined conditions. In addition, it is good also as the resin sheet 11 of desired thickness by laminating
  • the coating film may be dried on the said drying conditions, and the resin sheet 11 may be formed. Then, the resin sheet 11 is bonded together with the separator on the separator 11a.
  • the resin sheet 11 contains a thermoplastic resin (acrylic resin), an epoxy resin, and a phenol resin, all of them are dissolved in a solvent, and then applied and dried.
  • the solvent include methyl ethyl ketone, ethyl acetate, toluene and the like.
  • the thickness of the resin sheet 11 is not particularly limited, but is, for example, 100 to 2000 ⁇ m, and more preferably 110 to 1800 ⁇ m.
  • An electronic device can be favorably sealed as it is in the said range.
  • the resin sheet 11 may have a single layer structure or a multilayer structure in which two or more resin sheets having different compositions are laminated, but there is no risk of delamination, and the sheet thickness is highly uniform, A single-layer structure is preferable because it easily reduces moisture absorption.
  • the resin sheet 11 is a SAW (Surface Acoustic Wave) filter; a MEMS (Micro Electro Mechanical Systems) such as a pressure sensor and a vibration sensor; a semiconductor such as an IC such as an LSI, a transistor, a semiconductor chip; a capacitor; a resistor; an electron such as a CMOS sensor.
  • SAW Surface Acoustic Wave
  • MEMS Micro Electro Mechanical Systems
  • a semiconductor such as an IC such as an LSI, a transistor, a semiconductor chip
  • a capacitor a resistor
  • an electron such as a CMOS sensor.
  • FIGS. 2A to 2E are views schematically showing one step of the method for manufacturing the electronic device device according to one embodiment of the present invention.
  • the electronic device device is a hollow package
  • a case where a SAW chip 13 mounted on the printed wiring board 12 is hollow sealed with a resin sheet 11 to manufacture a hollow package will be described.
  • the present invention is not limited to this example, and a similar method can be adopted for manufacturing an electronic device device having no hollow portion.
  • a laminate 15 in which a plurality of SAW chips 13 are mounted on a printed wiring board 12 is prepared (step A).
  • the SAW chip 13 corresponds to the electronic device of the present invention.
  • the printed wiring board 12 corresponds to the support body of the present invention.
  • the SAW chip 13 can be formed by dicing a piezoelectric crystal on which predetermined comb-shaped electrodes are formed by a known method.
  • a known device such as a flip chip bonder or a die bonder can be used.
  • the SAW chip 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps.
  • a hollow portion 14 is maintained between the SAW chip 13 and the printed wiring board 12 so as not to inhibit the propagation of surface acoustic waves on the surface of the SAW filter.
  • the distance (width of the hollow portion) between the SAW chip 13 and the printed wiring board 12 can be set as appropriate, and is generally about 10 to 100 ⁇ m.
  • the resin sheet 11 is prepared (process B).
  • the resin sheet 11 contains secondary aggregates obtained by agglomerating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to have isotropic properties.
  • the laminate 15 is disposed on the lower heating plate 41 with the surface on which the SAW chip 13 is mounted facing upward, and the resin sheet 11 is disposed on the surface of the SAW chip 13.
  • the laminated body 15 may be first arranged on the lower heating plate 41, and then the resin sheet 11 may be arranged on the laminated body 15, and the resin sheet 11 is laminated on the laminated body 15 first. Thereafter, a laminate in which the laminate 15 and the resin sheet 11 are laminated may be disposed on the lower heating plate 41.
  • the separator 11a is preferably not peeled off at this stage.
  • the SAW chip 13 is embedded in the resin sheet 11 by hot pressing with the lower heating plate 41 and the upper heating plate 42 (step D).
  • the embedding process refers to a process from the start of embedding of the SAW chip 13 until the entire SAW chip 13 is embedded.
  • the hot press conditions for embedding the SAW chip 13 in the resin sheet 11 are preferably such that the SAW chip 13 can be suitably embedded in the resin sheet 11, and the temperature is, for example, 40 to 150 ° C., preferably The pressure is 60 to 120 ° C., and the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa. In addition, in consideration of improvement in adhesion and followability of the resin sheet 11 to the SAW chip 13 and the printed wiring board 12, it is preferable to press under reduced pressure conditions.
  • the decompression condition is, for example, 0.1 to 5 kPa, more preferably 0.1 to 100 Pa.
  • Step E the resin sheet 11 is heated to be first thermally cured while maintaining a state in which the laminate 15 and the resin sheet 11 are pressed in a direction in which they are brought closer. Thereby, the sealing body 16 is obtained.
  • the present inventors after Step D, that is, after embedding the electronic device in the sealing resin sheet, temporarily heat the sealing resin sheet without applying the pressure to first heat cure. In this case, since the resin sheet 11 is almost not thermally cured, the thickness of the resin sheet 11 deformed so as to be thin due to the pressure at the time of embedding is returned to a slightly thicker direction (spring-backed) It was found that it was cured in the state).
  • thermosetting refers to thermosetting that does not cause springback even if the pressure is released after primary thermosetting, or is less affected by springback, not complete thermosetting. Also good.
  • the pressurization in the primary thermosetting step may be performed by releasing the pressurization at the time of the embedding step, and then pressurizing again without changing the pressurization at the time of the embedding step. You may perform the pressurization in a thermosetting process.
  • the conditions of the primary thermosetting step (step E) are those that are 0.8 or more when the thermal conductivity of the resin sheet 11 after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1. It is preferable that the condition is 0.85 or more.
  • the condition of thermosetting for 1 hour at a pressure of 3 MPa and a temperature of 150 ° C. is a condition assuming a case where the sealing resin sheet is completely thermoset under pressure conditions that do not cause springback.
  • condition of the step E is 0.8 or more when the thermal conductivity of the resin sheet 11 after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1, the springback is performed. Even so, the thermal conductivity can be 0.8 or more compared to the case where no springback occurs. Therefore, it is possible to improve the thermal conductivity more suitably.
  • Specific numerical values of each condition in the step E can be set as appropriate according to the constituent material of the resin sheet 11, but the pressure condition is preferably 0.01 to 20 MPa, and more preferably 0.05 to 18 MPa, for example. .
  • the temperature condition of the step E is preferably, for example, 50 to 200 ° C., more preferably 60 to 180 ° C.
  • the heat curing time in the step E is preferably, for example, 10 seconds to 3 hours, and more preferably 20 seconds to 2 hours.
  • the separator 11a is peeled off, and the resin sheet 11 is subjected to secondary thermosetting (see FIG. 2D).
  • the conditions for the secondary thermosetting treatment can be appropriately set according to the conditions for the primary thermosetting treatment and the constituent materials of the resin sheet 11, but for example, the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C. That's it.
  • the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more.
  • the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less.
  • the secondary thermosetting treatment step may not be performed.
  • the timing which peels the separator 11a is not limited after primary thermosetting and before secondary thermosetting.
  • the sealing body 16 may be diced (see FIG. 2E). Thereby, the hollow package 18 in the SAW chip 13 unit can be obtained.
  • a substrate mounting process can be performed in which rewiring and bumps are formed on the hollow package 18 and mounted on a separate substrate (not shown).
  • a known device such as a flip chip bonder or a die bonder can be used.
  • the support of the present invention is the printed wiring board 12 .
  • the support of the present invention is not limited to this example, and may be a ceramic substrate, a silicon substrate, a metal substrate, or the like. May be.
  • Epoxy resin YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, Epokin equivalent: 200 g / eq., Softening point: 80 ° C.)
  • Phenol resin LVR8210DL (Novolak type phenol resin, hydroxyl equivalent: 104 g / eq., Softening point: 60 ° C.) manufactured by Gunei Chemical Co., Ltd.
  • Thermoplastic resin ME-2000M manufactured by Negami Kogyo Co., Ltd.
  • the conditions of the pressure of 3 MPa and the temperature of 150 ° C. in Example 1 for 1 hour are conditions that assume the case where the sealing resin sheet is completely heat-cured under a pressure condition that does not cause springback. Therefore, when the sealing resin sheet having the same composition was used and only the primary thermosetting conditions were changed, the degree of thermal conductivity compared with Example 1 was evaluated. Specifically, the case where the thermal conductivity is 0.8 times or more compared to Example 1, that is, the case where the sealing resin sheet is completely thermoset in the primary thermosetting is 0, 0 The case of less than 8 times was evaluated as x. The results are shown in Table 2.

Abstract

The present invention provides a method for producing an electronic device apparatus with which more suitable thermal conductivity of a resin sheet for sealing can be exhibited. Provided is a method for producing an electronic device apparatus, said method being provided with: a step (A) of preparing a laminate formed by fixing an electronic device to a support body; a step (B) of preparing a resin sheet for sealing, said resin sheet containing a secondary aggregate formed by aggregating thermally anisotropic boron nitride crystals, in which thermal conductivity differs depending on the direction, so as to be isotropic; a step (C) of disposing the resin sheet for sealing on the electronic device of the laminate; a step (D) of embedding the electronic device in the resin sheet for sealing; and a step (E), after step (D), of heating the resin sheet for sealing and subjecting said resin sheet to primary thermosetting while maintaining pressurization in a direction that brings the laminate and the resin sheet for sealing toward each other.

Description

電子デバイス装置の製造方法Manufacturing method of electronic device apparatus
 本発明は、電子デバイス装置の製造方法に関する。 The present invention relates to a method for manufacturing an electronic device device.
 近年、電子デバイス装置(例えば、半導体装置)のデータ処理の高速化が進むにつれて、電子デバイス(例えば、半導体チップ)からの発熱量が多くなり、放熱性を持たせた電子デバイス装置の設計の重要性が増している。熱は、電子デバイス装置そのものに対してはもちろん、それを組み込んだ電子機器本体にもさまざまな悪影響を及ぼす。 In recent years, as the speed of data processing in electronic device devices (for example, semiconductor devices) has increased, the amount of heat generated from electronic devices (for example, semiconductor chips) has increased, and it is important to design electronic device devices that have heat dissipation properties. Sex is increasing. The heat has various adverse effects not only on the electronic device apparatus itself but also on the electronic equipment body in which it is incorporated.
 そこで、従来、鱗片状の窒化ホウ素を凝集させた熱伝導性の二次凝集体を含有する熱硬化性樹脂組成物が提案されている(例えば、特許文献1参照)。窒化ホウ素の二次凝集体は、高い熱伝導性と電気絶縁性とを有している。そのため、電子デバイス装置に使用すれば、高い放熱性を有する電子デバイス装置とすることが期待できる。ここで、窒化ホウ素は、一般的な結晶構造が鱗片状であり、結晶のa軸方向(面方向)における熱伝導率が、c軸方向(厚さ方向)における熱伝導率の数倍から数十倍となる熱的異方性を有している。そこで、特許文献1では、等方性を要するように凝集させた二次凝集体として使用している。 Therefore, conventionally, a thermosetting resin composition containing a thermally conductive secondary aggregate obtained by aggregating scaly boron nitride has been proposed (see, for example, Patent Document 1). The secondary aggregate of boron nitride has high thermal conductivity and electrical insulation. Therefore, if it is used for an electronic device apparatus, it can be expected to be an electronic device apparatus having high heat dissipation. Here, the general crystal structure of boron nitride is scaly, and the thermal conductivity in the a-axis direction (plane direction) of the crystal is several times to several times the thermal conductivity in the c-axis direction (thickness direction). The thermal anisotropy is 10 times. Therefore, in Patent Document 1, it is used as a secondary aggregate aggregated so as to require isotropy.
特開2014-40533号公報JP 2014-40533 A
 しかしながら、樹脂シートに窒化ホウ素の二次凝集体を含有させるだけでは、当該樹脂シートを用いて製造される電子デバイス装置の熱伝導性を、著しく向上させることができない点で改善の余地があった。 However, there is room for improvement in that the thermal conductivity of an electronic device device manufactured using the resin sheet cannot be remarkably improved only by containing the secondary aggregate of boron nitride in the resin sheet. .
 本発明は、前記問題点に鑑みてなされたものであり、その目的は、封止用樹脂シートの熱伝導性をより好適に発揮させることが可能な電子デバイス装置の製造方法を提供することにある。 This invention is made | formed in view of the said problem, The objective is to provide the manufacturing method of the electronic device apparatus which can exhibit the thermal conductivity of the resin sheet for sealing more suitably. is there.
 本発明者らは、窒化ホウ素の二次凝集体を含有した封止用樹脂シートを用いた電子デバイス装置の製造方法について鋭意研究した。その結果、窒化ホウ素の二次凝集体を含有した封止用樹脂シートに電子デバイスを埋め込んだ後、加圧した状態で封止用樹脂シートを熱硬化させると、驚くべきことに、加圧しない場合と比較して得られる電子デバイス装置の熱伝導性が向上することを発見し、本発明を完成するに至った。 The present inventors diligently studied a method for manufacturing an electronic device device using a sealing resin sheet containing a secondary aggregate of boron nitride. As a result, when an electronic device is embedded in a sealing resin sheet containing a secondary aggregate of boron nitride and then the sealing resin sheet is thermoset under pressure, surprisingly, no pressure is applied. As a result, it was discovered that the thermal conductivity of the obtained electronic device device was improved, and the present invention was completed.
 すなわち、本発明に係る電子デバイス装置の製造方法は、
 電子デバイスが支持体上に固定された積層体を準備する工程Aと、
 方向によって熱伝導率が異なる熱的異方性を有する窒化ホウ素の結晶を、等方性を有するように凝集させた二次凝集体を含有する封止用樹脂シートを準備する工程Bと、
 前記封止用樹脂シートを前記積層体の前記電子デバイス上に配置する工程Cと、
前記電子デバイスを前記封止用樹脂シートに埋め込む工程Dと、
 前記工程Dの後、前記積層体と前記封止用樹脂シートとを近づける方向に加圧した状態を維持しながら、前記封止用樹脂シートを加熱して第一次熱硬化させる工程Eと
を具備することを特徴とする。
That is, a method for manufacturing an electronic device device according to the present invention includes:
Preparing a laminate in which an electronic device is fixed on a support; and
Preparing a sealing resin sheet containing a secondary aggregate obtained by aggregating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to be isotropic; and
Step C for disposing the sealing resin sheet on the electronic device of the laminate,
Step D of embedding the electronic device in the sealing resin sheet;
After the step D, while maintaining the state in which the laminate and the encapsulating resin sheet are pressed in a close direction, the encapsulating resin sheet is heated and subjected to a primary thermosetting step E. It is characterized by comprising.
 前記構成によれば、封止用樹脂シートには、方向によって熱伝導率が異なる熱的異方性を有する窒化ホウ素の結晶を、等方性を有するように凝集させた二次凝集体が含有されている。従って、封止用樹脂シートの熱伝導性を高めることができる。
 また、電子デバイスを前記封止用樹脂シートに埋め込み(工程D)、その後、積層体と封止用樹脂シートとを近づける方向に加圧した状態を維持しながら、前記封止用樹脂シートを加熱して第一次熱硬化させる(工程E)。
 本発明者らは、工程Dの後、すなわち、電子デバイスを封止用樹脂シートに埋め込んだ後、仮に、前記圧力を加えないまま前記封止用樹脂シートを加熱して第一次熱硬化させた場合、封止用樹脂シートは、ほとんど熱硬化していない状態であるため、埋め込み時の圧力により薄くなるように変形した封止用樹脂シートの厚さが、少し厚くなる方向に戻った状態(スプリングバックした状態)で硬化していることをつきとめた。そして、このスプリングバックにより二次凝集体同士の距離が埋め込み時より離れてしまい、これに起因して熱伝導性の向上が阻害されていると推察した。
 一方、前記構成によれば、電子デバイスを封止用樹脂シートに埋め込んだ後、スプリングバックを抑制するように、積層体と封止用樹脂シートとを近づける方向に加圧した状態を維持しながら、前記封止用樹脂シートを加熱して第一次熱硬化させる。従って、二次凝集体同士の距離が埋め込み時より離れてしまうことを抑制し、熱伝導性を向上させることができる。
 なお、第一次熱硬化とは、第一次熱硬化後に前記加圧を解放してもスプリングバックしなくなるか、スプリングバックの影響が少ない程度の熱硬化をいい、完全な熱硬化でなくてもよい。
According to the above configuration, the sealing resin sheet contains secondary aggregates obtained by agglomerating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to have isotropic properties. Has been. Therefore, the thermal conductivity of the sealing resin sheet can be increased.
In addition, the electronic device is embedded in the sealing resin sheet (step D), and then the sealing resin sheet is heated while maintaining a state in which the laminate and the sealing resin sheet are pressed closer to each other. Then, primary heat curing is performed (step E).
The present inventors, after Step D, that is, after embedding the electronic device in the sealing resin sheet, temporarily heat the sealing resin sheet without applying the pressure to first heat cure. In this case, since the sealing resin sheet is in a state of being hardly thermoset, the thickness of the sealing resin sheet that has been deformed so as to become thinner due to the pressure at the time of embedding has returned to a slightly thicker direction. It was found that it was cured in a (spring-backed state). And it was guessed that the distance between the secondary aggregates was separated from that at the time of embedding due to this spring back, and this caused the improvement in thermal conductivity.
On the other hand, according to the said structure, after embedding an electronic device in the resin sheet for sealing, maintaining the state which pressurized the laminated body and the resin sheet for sealing so that a spring back might be suppressed, The resin sheet for sealing is heated to be first thermoset. Therefore, it is possible to suppress the distance between the secondary aggregates from being buried and improve the thermal conductivity.
In addition, primary thermosetting refers to thermosetting that does not cause springback even if the pressure is released after primary thermosetting, or is less affected by springback, not complete thermosetting. Also good.
 前記構成において、前記工程Eの条件は、圧力3MPa、温度150℃で1時間熱硬化させた後の封止用樹脂シートの熱伝導率を1としたときに、0.8以上となる条件であることが好ましい。 In the above configuration, the condition of the step E is such that the thermal conductivity of the sealing resin sheet after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1 when the thermal conductivity is 1. Preferably there is.
 圧力3MPa、温度150℃で1時間熱硬化という条件は、スプリングバックが発生しない程度の加圧条件において、封止用樹脂シートを完全に熱硬化させる場合を想定した条件である。
 前記工程Eの条件が、圧力3MPa、温度150℃で1時間熱硬化させた後の封止用樹脂シートの熱伝導率を1としたときに、0.8以上となる条件であれば、スプリングバックしたとしても、熱伝導率は、スプリングバックが発生しない場合と比較して0.8以上とすることができる。従って、より好適に熱伝導性を向上させることができる。
The condition of thermosetting for 1 hour at a pressure of 3 MPa and a temperature of 150 ° C. is a condition assuming a case where the sealing resin sheet is completely thermoset under pressure conditions that do not cause springback.
If the condition of step E is 0.8 or more when the thermal conductivity of the encapsulating resin sheet is 1 after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour, the spring Even if it is backed, the thermal conductivity can be 0.8 or more compared to the case where no springback occurs. Therefore, it is possible to improve the thermal conductivity more suitably.
本発明の一実施形態に係る封止用樹脂シートを模式的に示す断面図である。It is sectional drawing which shows typically the resin sheet for sealing which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイス装置の製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイス装置の製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイス装置の製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイス装置の製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイス装置の製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device apparatus which concerns on one Embodiment of this invention.
 以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to embodiments, but the present invention is not limited only to these embodiments.
 以下ではまず、封止用樹脂シートについて説明し、その後、当該封止用樹脂シートを用いた電子デバイス装置の製造方法について説明することとする。 Hereinafter, first, the sealing resin sheet will be described, and then a method for manufacturing an electronic device device using the sealing resin sheet will be described.
 [封止用樹脂シート] [Resin sheet for sealing]
 図1は、本発明の一実施形態に係る封止用樹脂シート(以下、単に「樹脂シート」ともいう。)を模式的に示す断面図である。樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルムなどのセパレータ11a上に積層された状態で提供される。なお、セパレータ11aには樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。 FIG. 1 is a cross-sectional view schematically showing a sealing resin sheet (hereinafter also simply referred to as “resin sheet”) according to an embodiment of the present invention. The resin sheet 11 is typically provided in a state of being laminated on a separator 11a such as a polyethylene terephthalate (PET) film. The separator 11a may be subjected to a mold release process in order to easily peel the resin sheet 11.
 樹脂シート11は、熱硬化後の熱伝導率が3W/m・K以上であることが好ましく、4W/m・K以上であることがより好ましく、5W/m・K以上であることがさらに好ましい。熱硬化後の熱伝導率が3W/m・K以上であると、熱伝導性に優れる。熱硬化後の熱伝導率を3W/m・K以上とする方法としては、後述するように、第1のフィラーを含有させることより達成できる。
 本発明において、「熱硬化後の熱伝導率」とは、圧力3MPa、温度90℃で5分間加熱し、さらに、150℃で30分間加熱した後の熱伝導率をいう。
The resin sheet 11 has a thermal conductivity after thermosetting of preferably 3 W / m · K or more, more preferably 4 W / m · K or more, and even more preferably 5 W / m · K or more. . When the thermal conductivity after thermosetting is 3 W / m · K or more, the thermal conductivity is excellent. As a method of setting the thermal conductivity after thermosetting to 3 W / m · K or more, as described later, it can be achieved by containing a first filler.
In the present invention, “thermal conductivity after thermosetting” refers to the thermal conductivity after heating at a pressure of 3 MPa and a temperature of 90 ° C. for 5 minutes and further at 150 ° C. for 30 minutes.
 樹脂シート11は、方向によって熱伝導率が異なる熱的異方性を有する窒化ホウ素の結晶を、等方性を有するように凝集させた二次凝集体(以下、「第1のフィラー」ともいう)を含有する。
 また、樹脂シート11は、第1のフィラーの他に、前記第1のフィラーとは異なる第2のフィラーを含むことが好ましい。
The resin sheet 11 is a secondary aggregate obtained by agglomerating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to be isotropic (hereinafter also referred to as “first filler”). ).
Moreover, it is preferable that the resin sheet 11 contains the 2nd filler different from a said 1st filler other than a 1st filler.
 前記第1のフィラーの平均粒径は、好ましくは1μm以上80μm以下、より好ましくは3μm以上70μm以下である。前記第1のフィラーの平均粒径を1μm以上とすることにより、好適に熱伝導性を付与することができる。一方、前記第1のフィラーの平均粒径を80μm以下とすることにより、樹脂シート11を用いて製造される電子デバイス装置の薄型化が容易となる。 The average particle diameter of the first filler is preferably 1 μm to 80 μm, more preferably 3 μm to 70 μm. By setting the average particle size of the first filler to 1 μm or more, thermal conductivity can be suitably imparted. On the other hand, when the average particle size of the first filler is 80 μm or less, it is easy to make the electronic device device manufactured using the resin sheet 11 thinner.
 前記第1のフィラーの最大粒径は、200μm以下であることが好ましく、180μm以下であることがより好ましい。前記第1のフィラーの最大粒径を200μm以下とすることにより、電子デバイス装置の薄型化がより容易となる。
 なお、本明細書において、フィラーの平均粒径及び最大粒径は、レーザー回折型粒度分布測定装置によって測定して得た値をいう。
The maximum particle size of the first filler is preferably 200 μm or less, and more preferably 180 μm or less. By making the maximum particle size of the first filler 200 μm or less, it is easier to make the electronic device device thinner.
In the present specification, the average particle size and the maximum particle size of the filler are values obtained by measuring with a laser diffraction type particle size distribution measuring device.
 前記第1のフィラー、すなわち、二次凝集体の形状は、熱的な等方性を確保する限り、球状に限定されず、鱗片状等の他の形状であってもよい。ただし、樹脂シート11を製造する際に、熱硬化性樹脂の流動性を確保しつつ、二次凝集体の配合量を高めることができること等を考慮すると、二次凝集粒体は球状であることが好ましい。なお、第1のフィラーが球状以外の他の形状の場合、平均粒径は当該形状における長辺の長さを意味する。 The shape of the first filler, that is, the secondary aggregate is not limited to a spherical shape as long as thermal isotropy is ensured, and may be another shape such as a scale shape. However, when the resin sheet 11 is manufactured, the secondary aggregated particles are spherical in consideration of the fact that the blending amount of the secondary aggregates can be increased while ensuring the fluidity of the thermosetting resin. Is preferred. When the first filler has a shape other than the spherical shape, the average particle size means the length of the long side in the shape.
 前記二次凝集体は、所定の窒化ホウ素の結晶を用いて、公知の方法に従って製造することができる。具体的には、所定の窒化ホウ素の結晶を焼成して解砕させたり、所定の窒化ホウ素の結晶をスプレードライ等の公知の方法によって凝集させた後、焼成して焼結(粒成長)させる。ここで、焼成温度は特に限定されないが、一般的に2,000℃である。 The secondary aggregate can be produced according to a known method using a predetermined boron nitride crystal. Specifically, a predetermined boron nitride crystal is fired and crushed, or the predetermined boron nitride crystal is aggregated by a known method such as spray drying and then fired and sintered (grain growth). . Here, the firing temperature is not particularly limited, but is generally 2,000 ° C.
 また、前記二次凝集体としては、公知のものを用いることができる。具体的な製品としては、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同株式会社製の「PT」シリーズ(例えば、「PTX60」など)、水島合金鉄(株)製の「HPシリーズ」(例えば、「HP-40」など)、昭和電工社製の「ショービーエヌUHP」シリーズ(例えば、「ショービーエヌUHP-EX」など)を挙げることができる。 In addition, as the secondary aggregate, a known one can be used. Specific products include “PT” series (for example, “PTX60”, etc.) manufactured by Momentive Performance Materials Japan GK, and “HP series” (for example, “HP” manufactured by Mizushima Alloy Iron Co., Ltd.). -40 ”, etc.), and“ SHOBYN UHP ”series (for example,“ SHOBYN UHP-EX ”, etc.) manufactured by Showa Denko.
 第2のフィラーとしては、第1のフィラーと異なるものであれば特に限定されないが、熱伝導性をある程度有するものであるか、熱伝導性以外の他の機能を樹脂シート11に付与することが可能なものであることが好ましく、例えば、窒化アルミニウム、窒化ケイ素、窒化ガリウムなどの金属窒化物;例えば、二酸化ケイ素、酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化亜鉛、酸化スズ、酸化銅、酸化ニッケルなどの金属酸化物;例えば、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、水酸化カルシウム、水酸化亜鉛、珪酸、水酸化鉄、水酸化銅、水酸化バリウムなどの水酸化物;例えば、酸化ジルコニウム水和物、酸化スズ水和物、塩基性炭酸マグネシウム、ハイドロタルサイト、ドウソナイト、硼砂、ホウ酸亜鉛などの水和金属酸化物;炭化ケイ素、炭酸カルシウム、チタン酸バリウム、チタン酸カリウムなどを挙げることができる。なかでも、アルミナ及び溶融シリカのうちの少なくとも一方であることが好ましい。
 アルミナ(酸化アルミニウム、Al)は、窒化ホウ素よりは低いものの相対的に高い熱伝導性(36W/m・K)を有する。また、凝集体ではないためアルミナの粒子の内部に樹脂が入り込むことがないため、上記二次凝集体使用時ほどシートの高粘度化、高弾性率化が生じにくい。つまり、樹脂シートに窒化ホウ素の二次凝集体を含有させると、二次凝集体内の空隙に樹脂が入り込む等の理由により、シートが硬く脆くなり、追従性等に乏しいという問題があるが、第2のフィラーとしてアルミナを使用すれば、シートの高粘度化、高弾性率化を低減しつつ、熱伝導性を維持できる。
 また、溶融シリカは、線膨張整数が低く(0.5×10-6/K)、半導体材料に近い。従って、第2のフィラーとして、溶融シリカを使用すれば、電子デバイス装置の反りをより抑制することができる。
 なお、アルミナと溶融シリカとの両方を使用すれば、両者の効果を奏することができる。
The second filler is not particularly limited as long as it is different from the first filler. However, the second filler has a certain degree of thermal conductivity, or can impart other functions other than thermal conductivity to the resin sheet 11. Preferably, metal nitrides such as aluminum nitride, silicon nitride, gallium nitride; for example, silicon dioxide, aluminum oxide, magnesium oxide, titanium oxide, zinc oxide, tin oxide, copper oxide, nickel oxide Metal oxides such as aluminum hydroxide, boehmite, magnesium hydroxide, calcium hydroxide, zinc hydroxide, silicic acid, iron hydroxide, copper hydroxide, barium hydroxide, etc .; for example, zirconium oxide water Japanese, tin oxide hydrate, basic magnesium carbonate, hydrotalcite, dowsonite, borax, zinc borate What hydrated metal oxides; silicon carbide, calcium carbonate, barium titanate, and the like potassium titanate. Among these, at least one of alumina and fused silica is preferable.
Alumina (aluminum oxide, Al 2 O 3 ) has a relatively high thermal conductivity (36 W / m · K) although it is lower than boron nitride. Further, since the resin does not enter into the alumina particles because it is not an aggregate, the higher the viscosity and the higher the elastic modulus of the sheet are less likely to occur as the secondary aggregate is used. In other words, when a secondary aggregate of boron nitride is contained in the resin sheet, there is a problem that the sheet becomes hard and brittle due to reasons such as the resin entering the voids in the secondary aggregate, and the followability is poor. If alumina is used as the filler of 2, the thermal conductivity can be maintained while reducing the increase in the viscosity and the elastic modulus of the sheet.
Fused silica has a low linear expansion integer (0.5 × 10 −6 / K) and is close to a semiconductor material. Therefore, if fused silica is used as the second filler, warping of the electronic device device can be further suppressed.
If both alumina and fused silica are used, the effects of both can be achieved.
 前記第2のフィラーの平均粒径は、特に限定されないが、例えば、0.005μm以上80μm以下である。また、前記第2のフィラーの最大粒径は、例えば、200μm以下とすることができる。また、前記第2のフィラーの形状も特に限定されず、例えば、球状とすることができる。 The average particle diameter of the second filler is not particularly limited, but is, for example, 0.005 μm or more and 80 μm or less. The maximum particle size of the second filler can be set to 200 μm or less, for example. Further, the shape of the second filler is not particularly limited, and may be spherical, for example.
 前記第1のフィラーの含有量は、樹脂シート11全体に対して、20体積%以上80体積%以下であることが好ましく、25体積%以上75体積%以下であることがより好ましい。20体積%以上とすることにより、好適に熱伝導性を付与することができる。また、80体積%以下とすることにより、極度のシートの高粘度化、高弾性率化を抑制することができる。 The content of the first filler is preferably 20% by volume to 80% by volume and more preferably 25% by volume to 75% by volume with respect to the entire resin sheet 11. By setting it as 20 volume% or more, heat conductivity can be provided suitably. Moreover, by setting it as 80 volume% or less, the increase in the viscosity of an extreme sheet | seat and a high elastic modulus can be suppressed.
 前記第2のフィラーの含有量は、選択する材料に応じて異なるが、樹脂シート11全体に対して、5体積%以上65体積%以下であることが好ましく、10体積%以上60体積%以下であることがより好ましい。 The content of the second filler varies depending on the material to be selected, but is preferably 5% by volume or more and 65% by volume or less, and preferably 10% by volume or more and 60% by volume or less based on the entire resin sheet 11. More preferably.
 前記第1のフィラーと前記第2のフィラーとの合計含有量は、樹脂シート11全体に対して、25体積%以上85体積%以下であることが好ましく、30体積%以上80体積%以下であることがより好ましい。 The total content of the first filler and the second filler is preferably 25% by volume or more and 85% by volume or less, and 30% by volume or more and 80% by volume or less with respect to the entire resin sheet 11. It is more preferable.
 樹脂シート11は、熱硬化性樹脂及び熱可塑性樹脂を含むことが好ましい。 The resin sheet 11 preferably contains a thermosetting resin and a thermoplastic resin.
 前記熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂が好ましい。これにより、良好な熱硬化性が得られる。 The thermosetting resin is preferably an epoxy resin or a phenol resin. Thereby, favorable thermosetting is obtained.
 エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。 The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.
 エポキシ樹脂の反応性を確保する観点からは、エポキシ当量150~250、軟化点もしくは融点が50~130℃の常温で固形のものが好ましい。なかでも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。また、熱硬化性樹脂シート11に可撓性付与できるという理由から、ビスフェノールF型エポキシ樹脂が好ましい。 From the viewpoint of ensuring the reactivity of the epoxy resin, it is preferable that the epoxy resin is solid at room temperature having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. Of these, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable from the viewpoint of reliability. Further, bisphenol F type epoxy resin is preferable because flexibility can be imparted to the thermosetting resin sheet 11.
 フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。 The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.
 フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70~250、軟化点が50~110℃のものを用いることが好ましい。硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。 As the phenol resin, it is preferable to use one having a hydroxyl group equivalent of 70 to 250 and a softening point of 50 to 110 ° C. from the viewpoint of reactivity with the epoxy resin. From the viewpoint of high curing reactivity, a phenol novolac resin can be suitably used. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.
 エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7~1.5当量となるように配合することが好ましく、より好ましくは0.9~1.2当量である。 The blending ratio of the epoxy resin and the phenol resin is blended so that the total of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin from the viewpoint of curing reactivity. It is preferable to use 0.9 to 1.2 equivalents.
 フィラー以外の全成分100重量%中の熱硬化性樹脂の含有量は、好ましくは70重量%以上、より好ましくは75重量%以上、さらに好ましくは80重量%以上である。70重量%以上であると、硬化物のCTE1を小さくすることができる。一方、熱硬化性樹脂の含有量は、好ましくは95重量%以下、より好ましくは92重量%以下、さらに好ましくは90重量%以下、特に好ましくは88重量%以下である。 The content of the thermosetting resin in 100% by weight of all components other than the filler is preferably 70% by weight or more, more preferably 75% by weight or more, and further preferably 80% by weight or more. CTE1 of hardened | cured material can be made small as it is 70 weight% or more. On the other hand, the content of the thermosetting resin is preferably 95% by weight or less, more preferably 92% by weight or less, still more preferably 90% by weight or less, and particularly preferably 88% by weight or less.
 樹脂シート11は、硬化促進剤を含むことが好ましい。 The resin sheet 11 preferably contains a curing accelerator.
 硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、例えば、2-メチルイミダゾール(商品名;2MZ)、2-ウンデシルイミダゾール(商品名;C11-Z)、2-ヘプタデシルイミダゾール(商品名;C17Z)、1,2-ジメチルイミダゾール(商品名;1.2DMZ)、2-エチル-4-メチルイミダゾール(商品名;2E4MZ)、2-フェニルイミダゾール(商品名;2PZ)、2-フェニル-4-メチルイミダゾール(商品名;2P4MZ)、1-ベンジル-2-メチルイミダゾール(商品名;1B2MZ)、1-ベンジル-2-フェニルイミダゾール(商品名;1B2PZ)、1-シアノエチル-2-メチルイミダゾール(商品名;2MZ-CN)、1-シアノエチル-2-ウンデシルイミダゾール(商品名;C11Z-CN)、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト(商品名;2PZCNS-PW)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2MZ-A)、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;C11Z-A)、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン(商品名;2E4MZ-A)、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物(商品名;2MA-OK)、2-フェニル-4,5-ジヒドロキシメチルイミダゾール(商品名;2PHZ-PW)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール(商品名;2P4MHZ-PW)などのイミダゾール系硬化促進剤が挙げられる(いずれも四国化成工業(株)製)。 The curing accelerator is not particularly limited as long as it can cure the epoxy resin and the phenol resin. For example, 2-methylimidazole (trade name; 2MZ), 2-undecylimidazole (trade name; C11) -Z), 2-heptadecylimidazole (trade name; C17Z), 1,2-dimethylimidazole (trade name; 1.2 DMZ), 2-ethyl-4-methylimidazole (trade name; 2E4MZ), 2-phenylimidazole (Trade name; 2PZ), 2-phenyl-4-methylimidazole (trade name; 2P4MZ), 1-benzyl-2-methylimidazole (trade name; 1B2MZ), 1-benzyl-2-phenylimidazole (trade name; 1B2PZ) ), 1-cyanoethyl-2-methylimidazole (trade name; 2MZ-CN), 1-sia Ethyl-2-undecylimidazole (trade name; C11Z-CN), 1-cyanoethyl-2-phenylimidazolium trimellitate (trade name; 2PZCNS-PW), 2,4-diamino-6- [2'-methyl Imidazolyl- (1 ′)]-ethyl-s-triazine (trade name; 2MZ-A), 2,4-diamino-6- [2′-undecylimidazolyl- (1 ′)]-ethyl-s-triazine ( Trade name; C11Z-A), 2,4-diamino-6- [2′-ethyl-4′-methylimidazolyl- (1 ′)]-ethyl-s-triazine (trade name; 2E4MZ-A), 2, 4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct (trade name; 2MA-OK), 2-phenyl-4,5-dihydroxy Examples include imidazole curing accelerators such as tilimidazole (trade name; 2PHZ-PW) and 2-phenyl-4-methyl-5-hydroxymethylimidazole (trade name; 2P4MHZ-PW) (all of which are Shikoku Chemical Industries, Ltd.) )).
 なかでも、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールが好ましい。2-フェニル-4,5-ジヒドロキシメチルイミダゾールは、高温で硬化を促進するものであるため、埋め込み工程における熱で硬化することを抑制できる。また、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールは、比較的低温で硬化を促進するものであるが、埋め込み工程後に、速やかに熱硬化を進行させたい場合に好適である。 Of these, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole are preferable. Since 2-phenyl-4,5-dihydroxymethylimidazole promotes curing at a high temperature, it can be suppressed from being cured by heat in the embedding process. In addition, 2-phenyl-4-methyl-5-hydroxymethylimidazole promotes curing at a relatively low temperature, but is suitable when it is desired to rapidly heat cure after the embedding process.
 硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して、好ましくは0.2重量部以上、より好ましくは0.5重量部以上、さらに好ましくは0.8重量部以上である。硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して、好ましくは5重量部以下、より好ましくは2重量部以下である。 The content of the curing accelerator is preferably 0.2 parts by weight or more, more preferably 0.5 parts by weight or more, further preferably 0.8 parts by weight or more with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin. It is. The content of the curing accelerator is preferably 5 parts by weight or less, more preferably 2 parts by weight or less with respect to 100 parts by weight of the total of the epoxy resin and the phenol resin.
 樹脂シート11は、熱可塑性樹脂を含むことが好ましい。これにより、得られる封止用樹脂シートの耐熱性、可撓性、強度を向上させることができる。前記熱可塑性樹脂としてはエラストマーとして機能できるものが好ましい。 The resin sheet 11 preferably contains a thermoplastic resin. Thereby, the heat resistance of the sealing resin sheet obtained, flexibility, and intensity | strength can be improved. The thermoplastic resin is preferably one that can function as an elastomer.
 前記熱可塑性樹脂としては、例えば、アクリル系エラストマー、ウレタン系エラストマー、シリコーン系ラストマー、ポリエステル系エラストマーなどが挙げられる。なかでも、可とう性が得やすく、エポキシ樹脂との分散性が良好であるという観点から、アクリル系エラストマーが好ましい。 Examples of the thermoplastic resin include acrylic elastomers, urethane elastomers, silicone lastmers, and polyester elastomers. Of these, acrylic elastomers are preferred from the viewpoints of obtaining flexibility and good dispersibility with the epoxy resin.
 前記アクリル系エラストマーとしては、特に限定されるものではなく、炭素数30以下、特に炭素数4~18の直鎖若しくは分岐のアルキル基を有するアクリル酸又はメタクリル酸のエステルの1種又は2種以上を成分とする重合体(アクリル共重合体)等が挙げられる。前記アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、イソブチル基、アミル基、イソアミル基、ヘキシル基、へプチル基、シクロヘキシル基、2-エチルヘキシル基、オクチル基、イソオクチル基、ノニル基、イソノニル基、デシル基、イソデシル基、ウンデシル基、ラウリル基、トリデシル基、テトラデシル基、ステアリル基、オクタデシル基、又はドデシル基等が挙げられる。 The acrylic elastomer is not particularly limited, and one or more esters of acrylic acid or methacrylic acid having a linear or branched alkyl group having 30 or less carbon atoms, particularly 4 to 18 carbon atoms. The polymer (acrylic copolymer) etc. which use as a component is mentioned. Examples of the alkyl group include a methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, t-butyl group, isobutyl group, amyl group, isoamyl group, hexyl group, heptyl group, cyclohexyl group, 2- Examples include an ethylhexyl group, an octyl group, an isooctyl group, a nonyl group, an isononyl group, a decyl group, an isodecyl group, an undecyl group, a lauryl group, a tridecyl group, a tetradecyl group, a stearyl group, an octadecyl group, and a dodecyl group.
 また、前記重合体を形成する他のモノマーとしては、特に限定されるものではなく、例えばアクリル酸、メタクリル酸、カルボキシエチルアクリレート、カルボキシペンチルアクリレート、イタコン酸、マレイン酸、フマール酸若しくはクロトン酸等の様なカルボキシル基含有モノマー、無水マレイン酸若しくは無水イタコン酸等の様な酸無水物モノマー、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリル若しくは(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレート等の様なヒドロキシル基含有モノマー、スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート若しくは(メタ)アクリロイルオキシナフタレンスルホン酸等の様なスルホン酸基含有モノマー、又は2-ヒドロキシエチルアクリロイルホスフェート等の様な燐酸基含有モノマーが挙げられる。なかでも、エポキシ樹脂と反応して、樹脂シート11の粘度を高くできる観点から、カルボキシル基含有モノマー、グリシジル基(エポキシ基)含有モノマー、ヒドロキシル基含有モノマーうちの少なくとも1つを含むことが好ましい。 In addition, the other monomer forming the polymer is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, carboxyethyl acrylate, carboxypentyl acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid. Carboxyl group-containing monomers, maleic anhydride or acid anhydride monomers such as itaconic anhydride, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-methacrylic acid 4- Hydroxybutyl, 6-hydroxyhexyl (meth) acrylate, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate or (4-hydroxymethylcyclohexyl) -Methyl Hydroxyl group-containing monomers such as acrylate, styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate or (meth) Examples thereof include sulfonic acid group-containing monomers such as acryloyloxynaphthalene sulfonic acid, and phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate. Especially, it is preferable to include at least one of a carboxyl group-containing monomer, a glycidyl group (epoxy group) -containing monomer, and a hydroxyl group-containing monomer from the viewpoint of increasing the viscosity of the resin sheet 11 by reacting with the epoxy resin.
 前記熱可塑性樹脂は、官能基を有していてもよい。官能基としては、カルボキシル基、エポキシ基、水酸基、アミノ基、メルカプト基が好ましく、カルボキシル基がより好ましい。 The thermoplastic resin may have a functional group. As the functional group, a carboxyl group, an epoxy group, a hydroxyl group, an amino group, and a mercapto group are preferable, and a carboxyl group is more preferable.
 前記熱可塑性樹脂の重量平均分子量は、好ましくは50万以上、より好ましくは80万以上である。一方、熱可塑性樹脂の重量平均分子量は、好ましくは200万以下、より好ましくは150万以下である。重量平均分子量が前記数値範囲内であると、粘度が適度であるため、配合時の取り扱いが容易となる。
 なお、重量平均分子量は、GPC(ゲル・パーミエーション・クロマトグラフィー)により測定し、ポリスチレン換算により算出された値である。
The weight average molecular weight of the thermoplastic resin is preferably 500,000 or more, more preferably 800,000 or more. On the other hand, the weight average molecular weight of the thermoplastic resin is preferably 2 million or less, more preferably 1.5 million or less. When the weight average molecular weight is within the above numerical range, the viscosity is appropriate, and handling during blending is easy.
The weight average molecular weight is a value measured by GPC (gel permeation chromatography) and calculated in terms of polystyrene.
 フィラー以外の全成分100重量%中の熱可塑性樹脂の含有量は、好ましくは5重量%以上、より好ましくは10重量%以上、さらに好ましくは11重量%以上、よりさらに好ましくは12重量%以上、特に好ましくは13重量%以上である。5重量%以上であると、樹脂シートの柔軟性、可撓性が得られる。一方、熱可塑性樹脂の含有量は、好ましくは30重量%以下、より好ましくは20重量%以下である。30重量%以下であると、樹脂シート11の貯蔵弾性率が高くなりすぎず、埋め込み性と流動の規制を両立させることができる。 The content of the thermoplastic resin in 100% by weight of all components other than the filler is preferably 5% by weight or more, more preferably 10% by weight or more, still more preferably 11% by weight or more, still more preferably 12% by weight or more, Especially preferably, it is 13 weight% or more. The softness | flexibility and flexibility of a resin sheet are acquired as it is 5 weight% or more. On the other hand, the content of the thermoplastic resin is preferably 30% by weight or less, more preferably 20% by weight or less. If it is 30% by weight or less, the storage elastic modulus of the resin sheet 11 does not become too high, and both embedding and flow regulation can be achieved.
 樹脂シート11は、必要に応じ、難燃剤成分を含んでもよい。これにより、部品ショートや発熱などにより発火した際の、燃焼拡大を低減できる。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン系難燃剤などを用いることができる。 Resin sheet 11 may contain a flame retardant component as necessary. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation. As the flame retardant composition, for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do.
 樹脂シート11は、シランカップリング剤を含んでいてもよい。シランカップリング剤としては特に限定されず、3-グリシドキシプロピルトリメトキシシランなどが挙げられる。 Resin sheet 11 may contain a silane coupling agent. The silane coupling agent is not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane.
 樹脂シート11中のシランカップリング剤の含有量は、0.1~3重量%が好ましい。0.1重量%以上であると、硬化後の樹脂シートの硬度を高めることができるとともに、吸水率を低減させることができる。一方、上記含有量が3重量%以下であると、アウトガスの発生を抑制することができる。 The content of the silane coupling agent in the resin sheet 11 is preferably 0.1 to 3% by weight. When it is 0.1% by weight or more, the hardness of the cured resin sheet can be increased and the water absorption rate can be reduced. On the other hand, generation | occurrence | production of outgas can be suppressed as the said content is 3 weight% or less.
 樹脂シート11は、顔料を含むことが好ましい。顔料としては特に限定されず、カーボンブラックなどが挙げられる。 The resin sheet 11 preferably contains a pigment. The pigment is not particularly limited, and examples thereof include carbon black.
 樹脂シート11中の顔料の含有量は、0.1~2重量%が好ましい。0.1重量%以上であると、良好なマーキング性が得られる。2重量%以下であると、硬化後の樹脂シートの強度を確保することができる。 The content of the pigment in the resin sheet 11 is preferably 0.1 to 2% by weight. When the content is 0.1% by weight or more, good marking properties can be obtained. The intensity | strength of the resin sheet after hardening can be ensured as it is 2 weight% or less.
 なお、樹脂組成物には、上記の各成分以外に必要に応じて、他の添加剤を適宜配合できる。 In addition to the above components, other additives can be appropriately added to the resin composition as necessary.
 [封止用樹脂シートの製造方法]
 樹脂シート11は、適当な溶剤に樹脂シート11を形成するための樹脂等を溶解、分散させてワニスを調整し、このワニスをセパレータ11a上に所定厚みとなる様に塗布して塗布膜を形成した後、該塗布膜を所定条件下で乾燥させて形成することができる。なお、必要に応じて複数の樹脂シートを積層して加熱プレス(例えば、90℃で60秒)し、所望の厚さの樹脂シート11としてもよい。塗布方法としては特に限定されず、例えば、ロール塗工、スクリーン塗工、グラビア塗工等が挙げられる。また、乾燥条件としては、例えば乾燥温度70~160℃、乾燥時間1~30分間の範囲内で行われる。また、セパレータ上にワニスを塗布して塗布膜を形成した後、前記乾燥条件で塗布膜を乾燥させて樹脂シート11を形成してもよい。その後、セパレータ11a上に樹脂シート11をセパレータと共に貼り合わせる。樹脂シート11が、特に、熱可塑性樹脂(アクリル樹脂)、エポキシ樹脂、フェノール樹脂を含む場合、これらすべてを溶剤に溶解させた上で、塗布、乾燥させる。溶剤としては、メチルエチルケトン、酢酸エチル、トルエン等を挙げることができる。
[Method for producing sealing resin sheet]
The resin sheet 11 is prepared by dissolving and dispersing a resin or the like for forming the resin sheet 11 in an appropriate solvent to adjust the varnish, and coating the varnish on the separator 11a to a predetermined thickness to form a coating film. Then, the coating film can be formed by drying under predetermined conditions. In addition, it is good also as the resin sheet 11 of desired thickness by laminating | stacking a some resin sheet as needed, and heat-pressing (for example, 60 second at 90 degreeC). It does not specifically limit as a coating method, For example, roll coating, screen coating, gravure coating, etc. are mentioned. As drying conditions, for example, a drying temperature of 70 to 160 ° C. and a drying time of 1 to 30 minutes are performed. Moreover, after apply | coating a varnish on a separator and forming a coating film, the coating film may be dried on the said drying conditions, and the resin sheet 11 may be formed. Then, the resin sheet 11 is bonded together with the separator on the separator 11a. In particular, when the resin sheet 11 contains a thermoplastic resin (acrylic resin), an epoxy resin, and a phenol resin, all of them are dissolved in a solvent, and then applied and dried. Examples of the solvent include methyl ethyl ketone, ethyl acetate, toluene and the like.
 樹脂シート11の厚さは特に限定されないが、例えば、100~2000μm、より好ましくは、110~1800μmである。上記範囲内であると、良好に電子デバイスを封止することができる。 The thickness of the resin sheet 11 is not particularly limited, but is, for example, 100 to 2000 μm, and more preferably 110 to 1800 μm. An electronic device can be favorably sealed as it is in the said range.
 樹脂シート11は、単層構造であってもよいし、2以上の組成の異なる樹脂シートを積層した多層構造であってもよいが、層間剥離のおそれがなく、シート厚の均一性が高く、低吸湿化し易いという理由から、単層構造が好ましい。 The resin sheet 11 may have a single layer structure or a multilayer structure in which two or more resin sheets having different compositions are laminated, but there is no risk of delamination, and the sheet thickness is highly uniform, A single-layer structure is preferable because it easily reduces moisture absorption.
 樹脂シート11は、SAW(Surface Acoustic Wave)フィルタ;圧力センサ、振動センサなどのMEMS(Micro Electro Mechanical Systems);LSIなどのIC、トランジスタ、半導体チップなどの半導体;コンデンサ;抵抗;CMOSセンサなどの電子デバイスの封止に使用される。なかでも、中空封止が必要な電子デバイス(具体的には、SAWフィルタ、MEMS)の封止に好適に使用でき、特にSAWフィルタの封止に特に好適に使用できる。 The resin sheet 11 is a SAW (Surface Acoustic Wave) filter; a MEMS (Micro Electro Mechanical Systems) such as a pressure sensor and a vibration sensor; a semiconductor such as an IC such as an LSI, a transistor, a semiconductor chip; a capacitor; a resistor; an electron such as a CMOS sensor. Used for device sealing. Especially, it can use suitably for sealing of the electronic device (specifically SAW filter, MEMS) which needs hollow sealing, and can use it especially especially especially for sealing of a SAW filter.
 [中空パッケージの製造方法]
 図2A~図2Eは、本発明の一実施形態に係る電子デバイス装置の製造方法の一工程を模式的に示す図である。
 本実施形態では、電子デバイス装置が中空パッケージである場合について説明する。具体的には、プリント配線基板12上に搭載されたSAWチップ13を樹脂シート11により中空封止して中空パッケージを製造する場合について説明する。ただし、本発明はこの例に限定されず、中空部を有さない電子デバイス装置の製造にも同様の方法を採用することができる。
[Method of manufacturing hollow package]
2A to 2E are views schematically showing one step of the method for manufacturing the electronic device device according to one embodiment of the present invention.
In the present embodiment, a case where the electronic device device is a hollow package will be described. Specifically, a case where a SAW chip 13 mounted on the printed wiring board 12 is hollow sealed with a resin sheet 11 to manufacture a hollow package will be described. However, the present invention is not limited to this example, and a similar method can be adopted for manufacturing an electronic device device having no hollow portion.
 (SAWチップ搭載基板準備工程)
 本実施形態に係る中空パッケージの製造方法では、まず、図2Aに示すように、複数のSAWチップ13がプリント配線基板12上に搭載された積層体15を準備する(工程A)。
 SAWチップ13は、本発明の電子デバイスに相当する。また、プリント配線基板12は、本発明の支持体に相当する。
 SAWチップ13は、所定の櫛形電極が形成された圧電結晶を公知の方法でダイシングして個片化することにより形成できる。SAWチップ13のプリント配線基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。SAWチップ13とプリント配線基板12とはバンプなどの突起電極13aを介して電気的に接続されている。また、SAWチップ13とプリント配線基板12との間は、SAWフィルタ表面での表面弾性波の伝播を阻害しないように中空部14を維持するようになっている。SAWチップ13とプリント配線基板12との間の距離(中空部の幅)は適宜設定でき、一般的には10~100μm程度である。
(SAW chip mounting substrate preparation process)
In the method for manufacturing a hollow package according to the present embodiment, first, as shown in FIG. 2A, a laminate 15 in which a plurality of SAW chips 13 are mounted on a printed wiring board 12 is prepared (step A).
The SAW chip 13 corresponds to the electronic device of the present invention. The printed wiring board 12 corresponds to the support body of the present invention.
The SAW chip 13 can be formed by dicing a piezoelectric crystal on which predetermined comb-shaped electrodes are formed by a known method. For mounting the SAW chip 13 on the printed wiring board 12, a known device such as a flip chip bonder or a die bonder can be used. The SAW chip 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps. In addition, a hollow portion 14 is maintained between the SAW chip 13 and the printed wiring board 12 so as not to inhibit the propagation of surface acoustic waves on the surface of the SAW filter. The distance (width of the hollow portion) between the SAW chip 13 and the printed wiring board 12 can be set as appropriate, and is generally about 10 to 100 μm.
 (樹脂シート準備工程)
 また、本実施形態に係る中空パッケージの製造方法では、樹脂シート11を準備する(工程B)。上述したように樹脂シート11は、方向によって熱伝導率が異なる熱的異方性を有する窒化ホウ素の結晶を、等方性を有するように凝集させた二次凝集体を含有している。
(Resin sheet preparation process)
Moreover, in the manufacturing method of the hollow package which concerns on this embodiment, the resin sheet 11 is prepared (process B). As described above, the resin sheet 11 contains secondary aggregates obtained by agglomerating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to have isotropic properties.
 (樹脂シート配置工程)
 次に、図2Bに示すように、下側加熱板41上に積層体15をSAWチップ13が搭載されている面を上にして配置するとともに、SAWチップ13面上に樹脂シート11を配置する(工程C)。この工程においては、下側加熱板41上にまず積層体15を配置し、その後、積層体15上に樹脂シート11を配置してもよく、積層体15上に樹脂シート11を先に積層し、その後、積層体15と樹脂シート11とが積層された積層物を下側加熱板41上に配置してもよい。なお、セパレータ11aはこの段階では剥がさない方が好ましい。
(Resin sheet placement process)
Next, as shown in FIG. 2B, the laminate 15 is disposed on the lower heating plate 41 with the surface on which the SAW chip 13 is mounted facing upward, and the resin sheet 11 is disposed on the surface of the SAW chip 13. (Process C). In this step, the laminated body 15 may be first arranged on the lower heating plate 41, and then the resin sheet 11 may be arranged on the laminated body 15, and the resin sheet 11 is laminated on the laminated body 15 first. Thereafter, a laminate in which the laminate 15 and the resin sheet 11 are laminated may be disposed on the lower heating plate 41. The separator 11a is preferably not peeled off at this stage.
 (埋め込み工程)
 次に、図2Cに示すように、下側加熱板41と上側加熱板42とにより熱プレスして、SAWチップ13を樹脂シート11に埋め込む(工程D)。なお、埋め込み工程とは、SAWチップ13の埋め込みを開始してからSAWチップ13が全て埋め込まれるまでの工程をいう。
(Embedding process)
Next, as shown in FIG. 2C, the SAW chip 13 is embedded in the resin sheet 11 by hot pressing with the lower heating plate 41 and the upper heating plate 42 (step D). The embedding process refers to a process from the start of embedding of the SAW chip 13 until the entire SAW chip 13 is embedded.
 SAWチップ13を樹脂シート11に埋め込む際の熱プレス条件としては、SAWチップ13を樹脂シート11に好適に埋め込むことができる程度であることが好ましく、温度が、例えば、40~150℃、好ましくは60~120℃であり、圧力が、例えば、0.1~10MPa、好ましくは0.5~8MPaである。
 また、樹脂シート11のSAWチップ13及びプリント配線基板12への密着性および追従性の向上を考慮すると、減圧条件下においてプレスすることが好ましい。前記減圧条件としては、例えば、0.1~5kPa、より好ましくは、0.1~100Paである。
The hot press conditions for embedding the SAW chip 13 in the resin sheet 11 are preferably such that the SAW chip 13 can be suitably embedded in the resin sheet 11, and the temperature is, for example, 40 to 150 ° C., preferably The pressure is 60 to 120 ° C., and the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa.
In addition, in consideration of improvement in adhesion and followability of the resin sheet 11 to the SAW chip 13 and the printed wiring board 12, it is preferable to press under reduced pressure conditions. The decompression condition is, for example, 0.1 to 5 kPa, more preferably 0.1 to 100 Pa.
 (第一次熱硬化工程)
 埋め込み工程の後、積層体15と樹脂シート11とを近づける方向に加圧した状態を維持しながら、樹脂シート11を加熱して第一次熱硬化させる(工程E)。これにより封止体16を得る。
 本発明者らは、工程Dの後、すなわち、電子デバイスを封止用樹脂シートに埋め込んだ後、仮に、前記圧力を加えないまま前記封止用樹脂シートを加熱して第一次熱硬化させた場合、樹脂シート11は、ほとんど熱硬化していない状態であるため、埋め込み時の圧力により薄くなるように変形した樹脂シート11の厚さが、少し厚くなる方向に戻った状態(スプリングバックした状態)で硬化していることをつきとめた。そして、このスプリングバックにより二次凝集体同士の距離が埋め込み時より離れてしまい、これに起因して熱伝導性の向上が阻害されていると推察した。
 一方、本実施形態によればSAWチップ13を樹脂シート11に埋め込んだ後、スプリングバックを抑制するように、積層体15と樹脂シート11とを近づける方向に加圧した状態を維持しながら、樹脂シート11を加熱して第一次熱硬化させる。従って、二次凝集体同士の距離が埋め込み時より離れてしまうことを抑制し、熱伝導性を向上させることができる。
 なお、第一次熱硬化とは、第一次熱硬化後に前記加圧を解放してもスプリングバックしなくなるか、スプリングバックの影響が少ない程度の熱硬化をいい、完全な熱硬化でなくてもよい。
 第一次熱硬化工程における加圧は、前記埋め込み工程時の加圧を一旦開放し、その後、改めて加圧してもよく、前記埋め込み工程時の加圧を開放することなく、そのまま、第一次熱硬化工程における加圧を行なってもよい。
 第一次熱硬化工程(工程E)の条件は、圧力3MPa、温度150℃で1時間熱硬化させた後の樹脂シート11の熱伝導率を1としたときに、0.8以上となる条件であることが好ましく、0.85以上となる条件であることがより好ましい。
 圧力3MPa、温度150℃で1時間熱硬化という条件は、スプリングバックが発生しない程度の加圧条件において、封止用樹脂シートを完全に熱硬化させる場合を想定した条件である。
 前記工程Eの条件が、圧力3MPa、温度150℃で1時間熱硬化させた後の樹脂シート11の熱伝導率を1としたときに、0.8以上となる条件であれば、スプリングバックしたとしても、熱伝導率は、スプリングバックが発生しない場合と比較して0.8以上とすることができる。従って、より好適に熱伝導性を向上させることができる。
 前記工程Eの各条件の具体的数値としては、樹脂シート11の構成材料に応じて適宜設定できるが、圧力条件としては、例えば、0.01~20MPaが好ましく、0.05~18MPaがより好ましい。また、前記工程Eの温度条件としては、例えば、50~200℃が好ましく、60~180℃がより好ましい。また、前記工程Eの熱硬化時間は、例えば、10秒~3時間が好ましく、20秒~2時間がより好ましい。
(Primary thermosetting process)
After the embedding step, the resin sheet 11 is heated to be first thermally cured while maintaining a state in which the laminate 15 and the resin sheet 11 are pressed in a direction in which they are brought closer (step E). Thereby, the sealing body 16 is obtained.
The present inventors, after Step D, that is, after embedding the electronic device in the sealing resin sheet, temporarily heat the sealing resin sheet without applying the pressure to first heat cure. In this case, since the resin sheet 11 is almost not thermally cured, the thickness of the resin sheet 11 deformed so as to be thin due to the pressure at the time of embedding is returned to a slightly thicker direction (spring-backed) It was found that it was cured in the state). And it was guessed that the distance between the secondary aggregates was separated from that at the time of embedding due to this spring back, and this caused the improvement in thermal conductivity.
On the other hand, according to the present embodiment, after the SAW chip 13 is embedded in the resin sheet 11, the resin is maintained while pressing the laminated body 15 and the resin sheet 11 so as to suppress the spring back while maintaining the pressed state. The sheet 11 is heated and subjected to primary thermosetting. Therefore, it is possible to suppress the distance between the secondary aggregates from being buried and improve the thermal conductivity.
In addition, primary thermosetting refers to thermosetting that does not cause springback even if the pressure is released after primary thermosetting, or is less affected by springback, not complete thermosetting. Also good.
The pressurization in the primary thermosetting step may be performed by releasing the pressurization at the time of the embedding step, and then pressurizing again without changing the pressurization at the time of the embedding step. You may perform the pressurization in a thermosetting process.
The conditions of the primary thermosetting step (step E) are those that are 0.8 or more when the thermal conductivity of the resin sheet 11 after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1. It is preferable that the condition is 0.85 or more.
The condition of thermosetting for 1 hour at a pressure of 3 MPa and a temperature of 150 ° C. is a condition assuming a case where the sealing resin sheet is completely thermoset under pressure conditions that do not cause springback.
If the condition of the step E is 0.8 or more when the thermal conductivity of the resin sheet 11 after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1, the springback is performed. Even so, the thermal conductivity can be 0.8 or more compared to the case where no springback occurs. Therefore, it is possible to improve the thermal conductivity more suitably.
Specific numerical values of each condition in the step E can be set as appropriate according to the constituent material of the resin sheet 11, but the pressure condition is preferably 0.01 to 20 MPa, and more preferably 0.05 to 18 MPa, for example. . Further, the temperature condition of the step E is preferably, for example, 50 to 200 ° C., more preferably 60 to 180 ° C. In addition, the heat curing time in the step E is preferably, for example, 10 seconds to 3 hours, and more preferably 20 seconds to 2 hours.
 (第二次熱硬化処理工程)
 次に、セパレータ11aを剥がし、樹脂シート11を第二次熱硬化処理する(図2D参照)。第二次熱硬化処理の条件としては、第一次熱硬化処理の条件や樹脂シート11の構成材料に応じて適宜設定できるが、例えば、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。
 なお、第一次熱硬化工程において、樹脂シート11を完全に熱硬化させた等の場合には、第二次熱硬化処理工程を行わなくてもよい。また、セパレータ11aを剥がすタイミングは第一次熱硬化後、第二次熱硬化前に限定されない。
(Secondary heat curing process)
Next, the separator 11a is peeled off, and the resin sheet 11 is subjected to secondary thermosetting (see FIG. 2D). The conditions for the secondary thermosetting treatment can be appropriately set according to the conditions for the primary thermosetting treatment and the constituent materials of the resin sheet 11, but for example, the heating temperature is preferably 100 ° C or higher, more preferably 120 ° C. That's it. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more. On the other hand, the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.
In the primary thermosetting step, when the resin sheet 11 is completely thermoset, the secondary thermosetting treatment step may not be performed. Moreover, the timing which peels the separator 11a is not limited after primary thermosetting and before secondary thermosetting.
 (ダイシング工程)
 続いて、封止体16のダイシングを行ってもよい(図2E参照)。これにより、SAWチップ13単位での中空パッケージ18を得ることができる。
(Dicing process)
Subsequently, the sealing body 16 may be diced (see FIG. 2E). Thereby, the hollow package 18 in the SAW chip 13 unit can be obtained.
 (基板実装工程)
 必要に応じて、中空パッケージ18に対して再配線及びバンプを形成し、これを別途の基板(図示せず)に実装する基板実装工程を行うことができる。中空パッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a substrate mounting process can be performed in which rewiring and bumps are formed on the hollow package 18 and mounted on a separate substrate (not shown). For mounting the hollow package 18 on the substrate, a known device such as a flip chip bonder or a die bonder can be used.
 上述した実施形態では、本発明の支持体がプリント配線基板12の場合について説明すたが、本発明の支持体はこの例に限定されず、例えば、セラミック基板、シリコン基板、金属基板等であってもよい。 In the embodiment described above, the case where the support of the present invention is the printed wiring board 12 has been described. However, the support of the present invention is not limited to this example, and may be a ceramic substrate, a silicon substrate, a metal substrate, or the like. May be.
 以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。 Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.
 実施例及び比較例で使用した成分について説明する。
 エポキシ樹脂:新日鐵化学社製のYSLV-80XY(ビスフェノールF型エポキシ樹脂、エポキン当量:200g/eq.、軟化点:80℃)
 フェノール樹脂:群栄化学社製のLVR8210DL(ノボラック型フェノール樹脂、水酸基当量:104g/eq.、軟化点:60℃)
 熱可塑性樹脂:根上工業社製のME-2000M(カルボキシル基含有のアクリル酸エステル系ポリマー、重量平均分子量:約60万、Tg:-35℃、酸価:20mgKOH/g)
 カーボンブラック:三菱化学社製の#20
 フィラー1:窒化ホウ素の二次凝集体(水島合金鉄社製、製品名:HP-40(平均粒径:40μm、最大粒径:180μm))
 フィラー2:アルミナ(アドマテックス社製、製品名:AE-9104SME(平均粒径:3μm、最大粒径:10μm))
 硬化促進剤1:四国化成工業社製の2P4MHZ-PW(2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール)
The components used in Examples and Comparative Examples will be described.
Epoxy resin: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, Epokin equivalent: 200 g / eq., Softening point: 80 ° C.)
Phenol resin: LVR8210DL (Novolak type phenol resin, hydroxyl equivalent: 104 g / eq., Softening point: 60 ° C.) manufactured by Gunei Chemical Co., Ltd.
Thermoplastic resin: ME-2000M manufactured by Negami Kogyo Co., Ltd. (carboxyl group-containing acrylate polymer, weight average molecular weight: about 600,000, Tg: −35 ° C., acid value: 20 mgKOH / g)
Carbon black: # 20 manufactured by Mitsubishi Chemical
Filler 1: Secondary aggregate of boron nitride (manufactured by Mizushima Alloy Iron Company, product name: HP-40 (average particle size: 40 μm, maximum particle size: 180 μm))
Filler 2: Alumina (manufactured by Admatechs, product name: AE-9104SME (average particle size: 3 μm, maximum particle size: 10 μm))
Curing accelerator 1: 2P4MHZ-PW (2-phenyl-4-methyl-5-hydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
 [封止用樹脂シートの作製]
 (製造例1)
 表1に記載の配合比に従い、各成分を溶剤としてのメチルエチルケトンに溶解、分散させ、濃度90重量%のワニスを得た。このワニスを、シリコーン離型処理した厚さが38μmのポリエチレンテレフタレートフィルムからなる離型処理フィルム上に塗布した後、110℃で3分間乾燥させた。このシートを積層させて厚さ220μmの熱硬化性樹脂シートを得た。
[Production of sealing resin sheet]
(Production Example 1)
According to the blending ratio shown in Table 1, each component was dissolved and dispersed in methyl ethyl ketone as a solvent to obtain a varnish having a concentration of 90% by weight. The varnish was applied on a release treatment film made of a polyethylene terephthalate film having a thickness of 38 μm after the release treatment of silicone, and then dried at 110 ° C. for 3 minutes. This sheet was laminated to obtain a thermosetting resin sheet having a thickness of 220 μm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(第一次熱硬化条件における熱硬化後の熱伝導率の測定)
 製造例1にて製造した封止用樹脂シートについて、表2に示した第一次熱硬化条件でプレスしながら加熱し、熱硬化させた。なお、実施例、比較例は、第一次熱硬化条件を変更した以外は同じであり、製造例1で製造した封止用樹脂シートを用いた。
 次に、熱硬化後のこれらの封止用樹脂シートの熱伝導率の測定を行なった。熱伝導率は下記の式から求めた。結果を表2に示す。
   (熱伝導率)=(熱拡散係数)×(比熱)×(比重)
(Measurement of thermal conductivity after thermosetting under primary thermosetting conditions)
The sealing resin sheet produced in Production Example 1 was heated and thermoset while being pressed under the primary thermosetting conditions shown in Table 2. In addition, the Example and the comparative example are the same except having changed the primary thermosetting conditions, The resin sheet for sealing manufactured in the manufacture example 1 was used.
Next, the thermal conductivity of these sealing resin sheets after thermosetting was measured. The thermal conductivity was obtained from the following formula. The results are shown in Table 2.
(Thermal conductivity) = (thermal diffusion coefficient) x (specific heat) x (specific gravity)
 <熱拡散係数>
 封止用樹脂シートをそれぞれ、表2に示した第一次熱硬化条件で加熱した。このサンプルを用いて、キセノンフラッシュ法熱測定装置(ネッチジャパン社製、LFA447 nanoflashを用いて熱拡散係数を測定した。
<Thermal diffusion coefficient>
Each sealing resin sheet was heated under the primary thermosetting conditions shown in Table 2. Using this sample, the thermal diffusion coefficient was measured using a xenon flash method calorimeter (manufactured by Netch Japan Co., Ltd., LFA447 nanoflash).
 <比熱>
 DSC(TA instrument製、Q-2000)を用いてJIS-7123の規格に沿った測定方法によって求めた。
<Specific heat>
It was determined by a measuring method according to the standard of JIS-7123 using DSC (manufactured by TA instrument, Q-2000).
 <比重>
 電子天秤(株式会社島津製作所製、AEL-200)を用いてアルキメデス法によって測定した。
<Specific gravity>
It was measured by Archimedes method using an electronic balance (manufactured by Shimadzu Corporation, AEL-200).
 (熱伝導率評価)
 実施例1の圧力3MPa、温度150℃で1時間熱硬化という条件は、スプリングバックが発生しない程度の加圧条件において、封止用樹脂シートを完全に熱硬化させる場合を想定した条件である。
 そこで、同じ組成の封止用樹脂シートを用い、第一次熱硬化条件のみを変更した場合に、熱伝導率が実施例1に比較してどの程度となるかを評価した。具体的に、実施例1、すなわち、第一次熱硬化において封止用樹脂シートを完全に熱硬化させた場合に比較して、熱伝導率が0.8倍以上である場合を〇、0.8倍よりも小さい場合を×として評価した。結果を表2に示す。
(Thermal conductivity evaluation)
The conditions of the pressure of 3 MPa and the temperature of 150 ° C. in Example 1 for 1 hour are conditions that assume the case where the sealing resin sheet is completely heat-cured under a pressure condition that does not cause springback.
Therefore, when the sealing resin sheet having the same composition was used and only the primary thermosetting conditions were changed, the degree of thermal conductivity compared with Example 1 was evaluated. Specifically, the case where the thermal conductivity is 0.8 times or more compared to Example 1, that is, the case where the sealing resin sheet is completely thermoset in the primary thermosetting is 0, 0 The case of less than 8 times was evaluated as x. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
    11  中空封止用樹脂シート
    11a  支持体
    13  SAWチップ
    16  封止体
    18  中空パッケージ
DESCRIPTION OF SYMBOLS 11 Resin sheet | seat for hollow sealing 11a Support body 13 SAW chip 16 Sealing body 18 Hollow package

Claims (2)

  1.  電子デバイスが支持体上に固定された積層体を準備する工程Aと、
     方向によって熱伝導率が異なる熱的異方性を有する窒化ホウ素の結晶を、等方性を有するように凝集させた二次凝集体を含有する封止用樹脂シートを準備する工程Bと、
     前記封止用樹脂シートを前記積層体の前記電子デバイス上に配置する工程Cと、
     前記電子デバイスを前記封止用樹脂シートに埋め込む工程Dと、
     前記工程Dの後、前記積層体と前記封止用樹脂シートとを近づける方向に加圧した状態を維持しながら、前記封止用樹脂シートを加熱して第一次熱硬化させる工程Eと
    を具備することを特徴とする電子デバイス装置の製造方法。
    Preparing a laminate in which an electronic device is fixed on a support; and
    Preparing a sealing resin sheet containing a secondary aggregate obtained by aggregating boron nitride crystals having thermal anisotropy having different thermal conductivities depending on directions so as to be isotropic; and
    Step C for disposing the sealing resin sheet on the electronic device of the laminate,
    Step D of embedding the electronic device in the sealing resin sheet;
    After the step D, while maintaining the state in which the laminate and the encapsulating resin sheet are pressed in a close direction, the encapsulating resin sheet is heated and subjected to a primary thermosetting step E. A method of manufacturing an electronic device apparatus, comprising:
  2.  前記工程Eの条件は、圧力3MPa、温度150℃で1時間熱硬化させた後の封止用樹脂シートの熱伝導率を1としたときに、0.8以上となる条件であることを特徴とする請求項1に記載の電子デバイス装置の製造方法。
     
    The condition of the step E is a condition of 0.8 or more when the thermal conductivity of the sealing resin sheet after thermosetting at a pressure of 3 MPa and a temperature of 150 ° C. for 1 hour is 1. The manufacturing method of the electronic device apparatus of Claim 1.
PCT/JP2015/066186 2014-06-12 2015-06-04 Method for producing electronic device apparatus WO2015190389A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580030681.9A CN106463418A (en) 2014-06-12 2015-06-04 Method for producing electronic device apparatus
SG11201610343RA SG11201610343RA (en) 2014-06-12 2015-06-04 Method for manufacturing electronic device apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-121402 2014-06-12
JP2014121402A JP2016001685A (en) 2014-06-12 2014-06-12 Electronic device equipment manufacturing method

Publications (1)

Publication Number Publication Date
WO2015190389A1 true WO2015190389A1 (en) 2015-12-17

Family

ID=54833482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066186 WO2015190389A1 (en) 2014-06-12 2015-06-04 Method for producing electronic device apparatus

Country Status (5)

Country Link
JP (1) JP2016001685A (en)
CN (1) CN106463418A (en)
SG (1) SG11201610343RA (en)
TW (1) TW201607393A (en)
WO (1) WO2015190389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754103B (en) * 2017-09-29 2022-02-01 日商長瀨化成股份有限公司 Manufacturing method of mounting structure and laminated sheet used therefor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6868370B2 (en) * 2016-10-25 2021-05-12 日東シンコー株式会社 Epoxy resin composition, insulating sheet, and semiconductor module
WO2019088128A1 (en) * 2017-10-31 2019-05-09 ナガセケムテックス株式会社 Method for producing package structure and sheet used in same
JP7119477B2 (en) * 2018-03-23 2022-08-17 三菱ケミカル株式会社 RESIN COMPOSITION, SEMICONDUCTOR DEVICE, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332654A (en) * 2000-03-17 2001-11-30 Matsushita Electric Ind Co Ltd Module provided with built-in electric element and manufacturing method thereof
JP2011208007A (en) * 2010-03-30 2011-10-20 Denki Kagaku Kogyo Kk Resin composite composition and application thereof
WO2013145961A1 (en) * 2012-03-30 2013-10-03 昭和電工株式会社 Curable heat radiation composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW569424B (en) * 2000-03-17 2004-01-01 Matsushita Electric Ind Co Ltd Module with embedded electric elements and the manufacturing method thereof
JP5435685B2 (en) * 2007-02-28 2014-03-05 ナミックス株式会社 Resin film for sealing
JP5171798B2 (en) * 2009-12-07 2013-03-27 三菱電機株式会社 Thermosetting resin composition, thermally conductive resin sheet, method for producing the same, and power module
JP6171280B2 (en) * 2012-07-31 2017-08-02 味の素株式会社 Manufacturing method of semiconductor device
JP6000749B2 (en) * 2012-08-23 2016-10-05 三菱電機株式会社 Thermosetting resin composition, method for producing thermally conductive resin sheet, thermally conductive resin sheet, and power semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001332654A (en) * 2000-03-17 2001-11-30 Matsushita Electric Ind Co Ltd Module provided with built-in electric element and manufacturing method thereof
JP2011208007A (en) * 2010-03-30 2011-10-20 Denki Kagaku Kogyo Kk Resin composite composition and application thereof
WO2013145961A1 (en) * 2012-03-30 2013-10-03 昭和電工株式会社 Curable heat radiation composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754103B (en) * 2017-09-29 2022-02-01 日商長瀨化成股份有限公司 Manufacturing method of mounting structure and laminated sheet used therefor
US11799442B2 (en) 2017-09-29 2023-10-24 Nagase Chemtex Corporation Manufacturing method of mounting structure, and laminate sheet therefor

Also Published As

Publication number Publication date
SG11201610343RA (en) 2017-02-27
TW201607393A (en) 2016-02-16
CN106463418A (en) 2017-02-22
JP2016001685A (en) 2016-01-07

Similar Documents

Publication Publication Date Title
JP6320239B2 (en) Semiconductor chip sealing thermosetting resin sheet and semiconductor package manufacturing method
JP6431340B2 (en) Manufacturing method of sealing thermosetting resin sheet and hollow package
KR102305674B1 (en) Resin composition for film, film, film with substrate, metal/resin laminate, cured resin, semiconductor device, and film manufacturing method
WO2015190389A1 (en) Method for producing electronic device apparatus
JP6282626B2 (en) Hollow type electronic device sealing sheet and method for manufacturing hollow type electronic device package
WO2015190388A1 (en) Resin sheet for sealing
JP6646360B2 (en) Sealing resin sheet and electronic device
JP6497998B2 (en) Manufacturing method of sealing sheet and package
JP6883937B2 (en) Manufacturing method of sealing sheet and hollow package
WO2016080116A1 (en) Semiconductor device production method
JP6533399B2 (en) Method of manufacturing sealing sheet and package
JP5114111B2 (en) Resin composition, heat conductive sheet, high heat conductive adhesive sheet with metal foil, and high heat conductive adhesive sheet with metal plate
WO2021085593A1 (en) Resin composition, cured product, composite molded body and semiconductor device
TWI663203B (en) Resin sheet, semiconductor device, and method for manufacturing semiconductor device
JP6933463B2 (en) Resin sheet
JP2018139326A (en) Manufacturing method of electronic device
JP7383971B2 (en) Resin compositions, cured resin products and composite molded bodies
JP2020076051A (en) Resin sheet for sealing
WO2016080117A1 (en) Separator-equipped sealing sheet and semiconductor device production method
JP2023048546A (en) Thermally conductive adhesive sheet
JP2019083342A (en) Sealing sheet with separator, and manufacturing method of semiconductor device
TW202348717A (en) Thermosetting resin composition, resin cured product and composite molded body
JP2022116587A (en) Thermally conductive composition and electronic apparatus including the same
JP2012111960A (en) Method of manufacturing semiconductor module to which highly heat conductive adhesive sheet with metal foil or highly heat conductive adhesive sheet with metal plate is adhered
WO2015178392A1 (en) Metal-foil-clad substrate, circuit board, and substrate with heat-producing body mounted thereon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806204

Country of ref document: EP

Kind code of ref document: A1