WO2015189900A1 - 暖房給湯システム - Google Patents

暖房給湯システム Download PDF

Info

Publication number
WO2015189900A1
WO2015189900A1 PCT/JP2014/065261 JP2014065261W WO2015189900A1 WO 2015189900 A1 WO2015189900 A1 WO 2015189900A1 JP 2014065261 W JP2014065261 W JP 2014065261W WO 2015189900 A1 WO2015189900 A1 WO 2015189900A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
hot water
water supply
supply system
source unit
Prior art date
Application number
PCT/JP2014/065261
Other languages
English (en)
French (fr)
Inventor
章吾 玉木
博和 南迫
一隆 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/065261 priority Critical patent/WO2015189900A1/ja
Priority to GB1619991.1A priority patent/GB2540518B/en
Priority to JP2016527518A priority patent/JP6067189B2/ja
Publication of WO2015189900A1 publication Critical patent/WO2015189900A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0026Domestic hot-water supply systems with conventional heating means
    • F24D17/0031Domestic hot-water supply systems with conventional heating means with accumulation of the heated water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1066Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
    • F24D19/1072Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/08Storage tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • F24H15/225Temperature of the water in the water storage tank at different heights of the tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/355Control of heat-generating means in heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/40Control of fluid heaters characterised by the type of controllers
    • F24H15/414Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based
    • F24H15/45Control of fluid heaters characterised by the type of controllers using electronic processing, e.g. computer-based remotely accessible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a heating and hot water supply system capable of performing heating and hot water supply.
  • a hot water supply system for example, a floor heating panel and a hot water tank are connected to a heat pump via a water circuit, and the hot water heating by the floor heating panel is performed by switching the flow direction of the hot water in the water circuit during heating operation by the heat pump.
  • a heat storage operation hot water supply operation
  • Patent Document 1 there is a system that selectively performs a heat storage operation (hot water supply operation) to a hot water storage tank.
  • both heating and hot water supply are possible in one unit, and the installation space is reduced compared to the heating and hot water supply system that performs heating and hot water supply separately.
  • This invention was made in order to solve said problem, and it aims at obtaining the heating hot-water supply system which can perform hot-water supply operation at an appropriate timing by using the information of the past heating operation time. To do.
  • a heating and hot water supply system is a heating and hot water supply system that includes a heat source unit that heats a heat medium, and that can switch the heat medium heated by the heat source unit to a hot water supply circuit or a heating-side circuit. Based on the operation time of the unit, set the heating stop time including heating thermo OFF of the day in which the heat medium heated by the heat source unit does not flow to the heating side circuit, and in the set heating stop time, A heat medium heated by the heat source unit is supplied to the hot water supply circuit, and a control device for executing a hot water supply operation is provided.
  • the hot water supply operation can be executed during the heating stop time including the heating thermo OFF, it is possible to further reduce the power consumption per day as compared with the conventional heating hot water supply system. become.
  • movement flowchart which shows the flow of the process at the time of performing the hot water supply operation of the heating hot-water supply system which concerns on Embodiment 1 of this invention. It is the schematic which shows roughly the transition of the operating state of the heating hot-water supply system which concerns on Embodiment 1 of this invention. It is a flowchart which shows the flow of operation
  • FIG. 1 is a schematic circuit diagram showing a circuit configuration of a heating and hot water supply system 100 according to Embodiment 1 of the present invention. Based on FIG. 1, the apparatus structure of the heating hot-water supply system 100 is demonstrated.
  • This heating and hot water supply system 100 is installed in, for example, a general house, can heat a living space, and can generate hot water.
  • the heating hot water supply system 10 can process a heating command (heating ON / OFF) from a heating remote control 103 installed indoors and a hot water supply request from the hot water remote control 102.
  • a heat source unit 301 that is a heat source unit and a switching unit 302 are connected by a water pipe 1 and a water pipe 5, and the switching unit 302 and the heating unit 303 are connected by a water pipe 30 and a water pipe 31.
  • the switching unit 302 is connected to the water inlet pipe 12 connected to the water inlet end and the hot water outlet pipe 15.
  • the hot water outlet 15 is connected to a mixing valve 16 at the installation site.
  • the mixing valve 16 is connected to a water inlet pipe 17 following the water inlet end and a water inlet pipe 18 following the water inlet end.
  • the heat source unit 301 has a function of heating water entering from the water pipe 5 and discharging the water to the water pipe 1.
  • the heat source unit 301 may be anything that heats water by a combustion method with gas, heats water with a heat pump, or any other device that can heat water.
  • FIG. 2 is a schematic circuit configuration diagram showing an example of the configuration of the heat source unit 301 of the heating and hot water supply system 100.
  • FIG. 2 shows an example in which the heat source unit 301 heats water with a heat pump.
  • the heat source unit 301 includes a heat pump in which a compressor 301a, a condenser 301b, an expansion device 301c, and an evaporator 301d are connected by piping, and a refrigerant is circulated through them to pass through the condenser 301b. Water can be heated.
  • coolant used for this heat pump is not specifically limited, For example, natural refrigerant
  • the heating unit 303 includes, for example, a radiator, a fan coil, and the like, and is installed in a heating target space such as a room whose temperature is adjusted. Specifically, the heating unit 303 heats the space to be heated with hot water generated by the heat source unit 301.
  • the mixing valve 16 controls the temperature of the water flowing through the water supply pipe 18 by mixing the hot water that has passed through the hot water pipe 15 and the city water that has passed through the water inlet pipe 17 by controlling the opening degree. is there.
  • the switching unit 302 has a heat source side circuit A in which the heating water pump 3, the three-way valve 29, the water-water heat exchanger 4, and the heat source unit 301 are connected in a ring shape.
  • the switching unit 302 has a tank side circuit B in which the hot water storage tank 6, the hot water supply water pump 8, and the water-water heat exchanger 4 are connected in a ring shape.
  • the switching unit 302 includes a three-way valve 29, a water pipe 30 (water pipe 30a, water pipe 30b), a heating unit 303 (heating unit 303a, heating unit 303b), and a water pipe 31 (water pipe 31a, water pipe). 31b) is connected to the heating side circuit C.
  • the hot water storage tank 6 is provided with a heater 70.
  • a heat medium flows through the heat source side circuit A and the heating side circuit C.
  • the heat medium is not limited to water.
  • an antifreeze liquid (brine) may be selected as the heat medium in order to avoid freezing of the heat medium.
  • the water from the hot water storage tank 6 flows through the tank side circuit B.
  • the heat source side circuit A the water circuit passing through the three-way valve 29, the heating unit 303, and the connection point 56 functions as a hot water heating circuit (heating side circuit C).
  • a water circuit passing through the three-way valve 29, the water-water heat exchanger 4, the connection point 52, and the connection point 56 functions as a hot water supply circuit.
  • the heating water pump 3 is for circulating the water supply to the heat source side circuit A, and may be constituted by an inverter pump or a constant speed pump whose rotation speed can be varied.
  • the hot water supply pump 8 is for circulating the water supply to the tank side circuit B, and may be constituted by an inverter pump or a constant speed pump whose rotation speed can be varied.
  • the three-way valve 29 is an example of a flow path switching device, and switches the flowing water direction to the hot water supply circuit or the heating side circuit C.
  • the three-way valve 29 communicates the heated water pump 3 and the water-water heat exchanger 4 during normal hot water supply operation and high temperature hot water supply operation, and communicates the heated water pump 3 and water pipe 33 during heating operation.
  • the water pipe 33 is a pipe that connects the three-way valve 29 and the water pipe 30 (water pipe 30a, water pipe 30b).
  • the flow path switching device is not limited to the three-way valve 29 as long as the flow direction can be switched.
  • the flow path switching device may be configured by combining two two-way valves.
  • the water-water heat exchanger 4 is constituted by, for example, a plate heat exchanger, and heats the hot water by cooling the heat medium by exchanging heat between the heat medium (in this embodiment, water) and hot water. It is.
  • the heater 70 is installed inside the hot water storage tank 6 and heats the water in the hot water storage tank 6.
  • the installation position of the heater 70 is not limited to the illustrated position. The heater 70 may be installed anywhere as long as the water in the hot water storage tank 6 can be heated.
  • the hot water storage tank 6 is for storing hot water boiled up by the heat medium (water in this embodiment) flowing through the heat source side circuit A in the water-water heat exchanger 4.
  • the hot water storage tank 6 is connected to the water pipe 32 at a connection port 57 in the middle part of the tank and a connection port 53 at the lower part of the tank. When boiling, water flows out from the connection port 53 and heated water is connected to the connection port. It comes back from 57. Further, the hot water storage tank 6 is connected to the hot water discharge pipe 15 at the connection port 60 at the upper part of the tank, and water (hot water) is discharged from the connection port 60 at the time of water supply. Further, the hot water storage tank 6 is of a full water type, and when the hot water is discharged from the connection port 60, the same amount of city water enters from the connection port 58 at the bottom of the tank.
  • the switching unit 302 is provided with a temperature sensor 201, temperature sensors 203a to 203e, a temperature sensor 211, and a temperature sensor 212.
  • the temperature sensor 201 is installed between the water pipe 1 and the heating water pump 3 and measures the water temperature at the installation location.
  • the temperature sensors 203a to 203e are respectively installed in the height direction on the tank wall surface of the hot water storage tank 6, and measure the water temperature at the installation location.
  • the temperature sensor 211 is installed in the hot water discharge pipe 15 connected to the upper part of the hot water storage tank 6 and measures the water temperature at the installation location.
  • the temperature sensor 212 is installed between the water-water heat exchanger 4 and the water pipe 5 and measures the water temperature at the installation location.
  • the operations of the heating water pump 3, the three-way valve 29, the hot water pump 8, the heater 70, and the heat source unit 301 are controlled by the control device 101 provided in the switching unit 302 (see FIG. 3).
  • a hot water remote controller 102 and a heating remote controller 103 (a heating remote controller 103a and a heating remote controller 103b) are connected to the control device 101.
  • the control apparatus 101 controls operation
  • the control device 101 is not necessarily provided in the switching unit 302.
  • FIG. 3 is a block diagram showing the configuration of the control device 101, the hot water supply remote controller 102, and the heating remote controller 103 of the heating hot water supply system 100. Based on FIG. 3, the electrical configuration of the heating and hot water supply system 100 will be described.
  • a control device 101 constituted by a microcomputer is provided.
  • the control device 101 includes a measurement unit 104, a calculation unit 105, a control unit 106, a communication unit 107, a storage unit 108, a load pattern determination unit 109, a heating stop time determination unit 110, and a clock unit 111.
  • the measuring unit 104 has a function of inputting various amounts detected by each temperature sensor and pressure sensor (not shown).
  • the calculation unit 105 has a function of executing calculations for determining various control operations based on information input to the measurement unit 104.
  • the control unit 106 has a function of receiving control results of the calculation unit 105 and executing control of each device such as the heating water pump 3.
  • the communication unit 107 has a function of inputting communication data information from a communication unit such as a communication line or wireless and outputting information to the outside.
  • storage part 108 is comprised by the semiconductor memory etc., for example, and has a function which memorize
  • the load pattern determination unit 109 has a function of creating and inputting a hot water load pattern for that day (the same day) from past hot water load patterns stored in the storage unit 108.
  • the heating stop time determination unit 110 has a function of creating and inputting the heating stop time (time) of the day from the past heating stop time stored in the storage unit 108.
  • the clock unit 111 has a function of recognizing the current time and day of the week.
  • Hot water supply remote controller 102 and heating remote controller 103 are both remote controllers implemented by S / W (software) installed indoors.
  • the hot water supply remote controller 102 includes an input unit 112 that inputs a heating command (ON / OFF) from a user, and a display unit 113 that displays an operation state of the heating hot water supply system 100.
  • the heating remote controller 103 includes an input unit 114 that inputs a water supply temperature and a display unit 115 that displays an operating state of the heating hot water supply system 100.
  • control device 101 switches the three-way valve 29 so that the heating water pump 3 and the water pipe 33 communicate with each other. Then, the control device 101 activates the heating water pump 3. When the heating water pump 3 is activated, running water is started. Thereafter, the control device 101 starts the operation of the heat source unit 301. In the heating operation mode, control device 101 keeps hot water supply water pump 8 stopped.
  • the heat medium (water in this embodiment) heated by the heat source unit 301 passes through the water pipe 1, passes through the heating water pump 3 and the three-way valve 29, and is connected to the water pipe 33 and the water pipe 30 (water pipe). 30a, the water pipe 30b) and the heating unit 303 (the heating unit 303a and the heating unit 303b) to heat the room air.
  • the heat medium heated in the room air by the heating unit 303 then flows through the water pipe 31 (water pipe 31a, water pipe 31b) and the water pipe 5, flows into the heat source unit 301, and is heated again.
  • the rotation speed of the heating water pump 3 is fixed by the control unit 106 at a predetermined rotation speed (for example, the maximum rotation speed). By doing so, the temperature difference of the heat medium flowing through the water pipe 30 and the water pipe 31 is reduced, and as a result, the inflow water temperature of the heat source unit 301 can be kept low. For this reason, power consumption is also suppressed.
  • a predetermined rotation speed for example, the maximum rotation speed
  • the hot water supply operation mode of the heating hot water supply system 100 is implemented as follows.
  • the control device 101 switches the three-way valve 29 so that the heating water pump 3 and the water-water heat exchanger 4 communicate with each other. Then, the control device 101 activates the heating water pump 3 and the hot water supply pump 8. When the heating water pump 3 and the hot water supply pump 8 are started, flowing water is started respectively. Thereafter, the control device 101 starts the operation of the heat source unit 301.
  • the heat medium heated by the heat source unit 301 passes through the water pipe 1, passes through the heating water pump 3 and the three-way valve 29, and then passes through the connection port 51 in the water-water heat exchanger 4. Water flowing through the tank side circuit B is heated. Then, it flows through the water pipe 5 via the connection point 52, flows into the heat source unit 301, and is heated again.
  • the rotation speed of the heating water pump 3 is fixed by the control unit 106 at a predetermined rotation speed (for example, the maximum rotation speed).
  • a predetermined rotation speed for example, the maximum rotation speed.
  • connection port 53 water flows out from the connection port 53 in the hot water storage tank 6.
  • This water passes through the hot water supply pump 8 and absorbs heat from the heat medium (water) flowing through the heat source side circuit A in the water-water heat exchanger 4 via the connection port 54. Thereafter, the water flows into the hot water storage tank 6 from the connection port 57 via the connection port 55, and flows out from the connection port 53 again.
  • the rotation speed of the hot water supply pump 8 is fixed by the control unit 106 at a predetermined rotation speed (for example, the maximum rotation speed).
  • a predetermined rotation speed for example, the maximum rotation speed.
  • hot water is boiling in the hot water storage tank 6.
  • the hot water supply operation mode is ended when the boiling temperature of the hot water stored in the hot water storage tank 6 becomes equal to or higher than a predetermined value.
  • the boiling temperature is, for example, the temperature of the temperature sensor 203c on the tank middle wall surface.
  • any temperature of the temperature sensor 203a to the temperature sensor 203e on the tank wall surface may be used.
  • the hot water supply operation mode may be stopped when the amount of heat stored in the hot water storage tank 6 exceeds a predetermined value.
  • the amount of heat stored in the hot water storage tank 6 can be calculated as follows.
  • the hot water storage tank 6 is divided in the height direction for each installation position of the temperature sensors 203a to 203e provided in the height direction of the hot water storage tank 6. And based on the measurement data of the temperature sensor 203 of the upper end and lower end in each division area measured in the measurement part 104, an average temperature is calculated for every division area. In the lowermost section, the temperature sensor 203a is the average temperature, and in the uppermost section, the temperature of the temperature sensor 203e is the average temperature.
  • each divided section the divided section volume and the specific heat of water are multiplied by the value obtained by subtracting the city water temperature from the average temperature, and the amount of stored hot water in each divided section is estimated.
  • the estimated amount of hot water stored in each divided section is integrated, and the integrated amount of heat is used as the amount of stored hot water in the hot water storage tank 6.
  • FIG. 4 is a graph showing an example of a daily hot water supply load pattern of a general household where the heating and hot water supply system 100 is installed. Based on FIG. 4, a daily hot water supply load pattern of a general home where the heating and hot water supply system 100 is installed will be described.
  • FIG. 4 shows that in a general home where the heating and hot water supply system 100 is installed, the hot water supply load is high mainly in the morning time zone and the night time zone. Therefore, the heating and hot water supply system 100 makes it possible to execute the hot water supply operation according to the load situation of the hot water supply load of the day. Specifically, the hot water supply load in the morning is covered by the amount of heat stored in the nighttime hot water supply operation (there is no need to execute the hot water supply operation if there is a predetermined amount of heat storage even without hot water supply). We aim to cover the hot water supply load with the amount of heat stored by hot water operation during the daytime.
  • control apparatus 101 sets the hot water supply load pattern of the day from the past hot water supply load pattern, and determines that the heat storage amount is insufficient with respect to the set hot water supply load pattern, before the hot water supply load occurs (daytime). Perform hot water operation.
  • FIG. 5 is an operation flowchart showing a flow of processing when the hot water supply operation of the heating and hot water supply system 100 is executed. Based on FIG. 5, the flow of a process at the time of performing the hot water supply operation of the heating hot water supply system 100 will be described.
  • Step S1 the control device 101 stores a past heating stop period. Specifically, it is stored how many hours from what time to what time the heating operation has been stopped. In addition, since there is no past operation data immediately after the equipment installation work, the heating stop time is set so that the night boiling temperature and the day boiling temperature become maximum set values, that is, higher loads in step S3 described later. It is good to set.
  • the past operation data to be referred to is preferably at least one week in consideration of the day of the week. The more information that is stored, the better the accuracy of creating the heating stop time for the day. In other words, the more information that is stored, the more it can be determined whether or not the heating operation was sudden. If the heating operation is sudden, it is possible to take measures such as not entering the stop time.
  • Step S2 The control device 101 sets a heating stop time for one day.
  • the heating stop time to be set is similar to the past operation data stored.
  • the heating stop time may be either a specific time or a simple time (assuming that it is stopped in the daytime).
  • Step S3 The control device 101 determines the night boiling temperature and the day boiling temperature.
  • the maximum value (upper limit value) of the night boiling temperature and daytime boiling temperature is set to the upper limit value (usually 65 ° C.) of the switching unit 302. Further, the minimum value (lower limit value) of the night-time boiling temperature and the daytime boiling temperature is set to the set lower limit value (usually about 45 ° C.) of the switching unit 302.
  • Step S4 The control device 101 determines whether or not the current boiling temperature (boiling temperature determined from the water temperature of the hot water storage tank 6) is equal to or higher than the night boiling temperature.
  • the control apparatus 101 inputs the tank capacity (for example, 200L) of the hot water storage tank 6, calculates the heat storage amount per boiling temperature, and calculates the boiling temperature using the information.
  • the control device 101 sets the temperature of the temperature sensor 203c or any of the temperature sensors 203a to 203e on the tank wall surface as the boiling temperature.
  • Step S5 When controller 101 determines that the current boiling temperature is not equal to or higher than the night boiling temperature, it executes the hot water supply operation mode.
  • Step S13 The control device 101 determines whether or not the current boiling temperature is equal to or higher than the night boiling temperature.
  • Step S6 When control device 101 determines that the current boiling temperature is equal to or higher than the night boiling temperature, it terminates the hot water supply operation mode.
  • Step S7 The control device 101 determines whether or not the current time (or time) is the heating stop time.
  • Step S8 The control device 101 determines whether the heating operation is OFF. Note that the heating operation is OFF is not only the mere stop of the heating operation mode, but also the heating thermo OFF (the heating operation mode is ON, but the heating target space is at the set temperature and the compressor 301a is It is assumed that the state of being OFF) is also included.
  • Step S9 The control device 101 determines whether or not the current boiling temperature is equal to or lower than the daytime boiling temperature.
  • the control apparatus 101 inputs the tank capacity (for example, 200L) of the hot water storage tank 6, calculates the heat storage amount per boiling temperature, and calculates the boiling temperature using the information.
  • the control device 101 sets the temperature of the temperature sensor 203c or any of the temperature sensors 203a to 203e on the tank wall surface as the boiling temperature.
  • Step S10 When the control device 101 determines that the current time (or time) is not the heating stop time, the heating operation is not OFF, or the current boiling temperature is not lower than the daytime boiling temperature, Exit the operation mode.
  • Step S11 On the other hand, after the completion of boiling at night, the control device 101 has the current time (or time) the heating stop time, the heating operation is OFF, and the current boiling temperature is lower than the day boiling temperature. If it is determined that there is, the hot water supply operation mode is started. In addition, by including heating thermo-OFF in the heating operation OFF, there is a characteristic that heat is difficult to escape outside the house in a highly insulated house, so that the hot water supply operation mode can be implemented when the heating thermo-OFF that occurs frequently is turned off become.
  • Step S12 The control device 101 determines whether 24 hours have elapsed.
  • the starting point for 24 hours may be 12:00 am.
  • the distinction between daytime and nighttime may be determined by time. For example, it is good to distinguish from 6:00 in the evening to 6:00 in the morning at night and the rest as daytime.
  • control device 101 determines that 24 hours have elapsed, the control device 101 moves from step S12 to step S1.
  • FIG. 6 is a schematic diagram schematically showing the transition of the operation state of the heating and hot water supply system 100. Based on FIG. 6, the transition of the operation state of the heating and hot water supply system 100 will be described. In FIG. 6, the horizontal axis indicates time, and the vertical axis indicates mode. 6A shows the transition of the operation state of the conventional heating and hot water supply system, FIG. 6B shows the transition of the operation state at the normal load of the heating and hot water supply system 100, and FIG. 6C shows the heating. The transition of the driving
  • the conventional heating hot-water supply system implemented many hot-water supply operation modes at night.
  • the heating and hot water supply system 100 can perform the hot water supply operation mode in the daytime when the outside air temperature is high as shown in FIG. Further, the heating and hot water supply system 100 can perform the hot water supply operation mode in the daytime when the outside air temperature is high as shown in FIG. 6C even when the heating load is large.
  • the heating / hot water supply system 100 learns the heating stop period in advance from the past operation data. Therefore, the heating and hot water supply system 100 can execute the hot water supply operation mode even in the daytime, as shown in FIGS. 6 (b) and 6 (c).
  • the heating hot water supply system 100 determines the heating stop time in the daytime of the day by using the information of the past heating operation time, and when there is no heating stop time in the daytime, the hot water supply operation is performed at night. If there is a heating stop time in the daytime, the hot water supply operation can be performed in the daytime. In addition, the heating and hot water supply system 100 can boil the shortage of hot water supply at night on the previous day.
  • the heating and hot water supply system 100 it is automatically determined whether or not to perform the hot water supply operation in the daytime when the outside air temperature is high and the heating operation is stopped, and the hot water supply operation is executed based on the determination result. Can do. Therefore, even when the temperature is controlled for 24 hours and the heating is turned on as in a house that is air-conditioned throughout the building, the power consumption of the heat source unit 301 can be reduced. Moreover, since the hot water supply operation can be performed even when the heating thermo is OFF, the comfort of heating in the space to be heated is not impaired.
  • the mode switching from the heating operation to the hot water supply operation will be described.
  • description will be made assuming that the heating and hot water supply system 100 is installed in a residential building with air conditioning throughout the building. Assuming that the heating and hot water supply system 100 is installed in a house with air conditioning throughout the building, it is expected that there will be more patterns for switching the operation mode from the heating operation to the hot water operation and switching the operation mode from the hot water operation to the heating operation. Is done. Therefore, each switching will be described.
  • FIG. 7 is a flowchart showing a flow of operation when switching the operation mode from the heating operation to the hot water supply operation of the heating and hot water supply system 100. First, switching of the operation mode from the heating operation to the hot water supply operation of the heating hot water supply system 100 will be described with reference to FIG.
  • Step S21 The control device 101 determines whether the start condition for the hot water supply operation is satisfied by turning off the heating.
  • Step S22 When the control device 101 determines that the condition for starting the hot water supply operation is satisfied by turning off the heating, the control device 101 switches the hot water supply to the hot water supply circuit via the three-way valve 20 while continuing the operation of the heat source unit 301.
  • FIG. 8 is a flowchart showing an operation flow when switching the operation mode from the hot water supply operation to the heating operation of the heating hot water supply system 100. Next, switching of the operation mode from the hot water supply operation to the heating operation of the heating hot water supply system 100 will be described with reference to FIG.
  • the control device 101 When the operation mode is switched from the hot water supply operation to the heating operation, the control device 101 reduces the heating amount of the heat source unit 301 below the current heating amount before switching the operation mode. For example, the control device 101 reduces the heating amount of the heat source unit 301 by reducing the heating amount of the condenser 301b by 20% or lowering the frequency of the compressor 301a by 10 Hz. In the case where the heat source unit 301 heats water with gas, the heating amount of the heat source unit 301 may be reduced by reducing the heating amount of the gas by 20%.
  • the hot water supply operation aims at boiling water up to a predetermined hot water supply temperature in a short time, the operation is performed with a high heating amount (the frequency of the compressor 301a is operated at the maximum value).
  • the heating load is often small particularly when returning from the heating thermo OFF. For this reason, switching with a high heating amount may cause the room temperature to fluctuate abruptly and impair the stability of the equipment, as well as hunting between the high and low indoor temperatures to impair comfort. Therefore, in the heating and hot water supply system 100, such a state is avoided.
  • Step S41 The control device 101 determines whether or not the hot water supply operation is turned off.
  • Step S42 The control device 101 determines whether the heating operation is ON.
  • Step S43 When determining that the heating operation is not turned ON, the control device 101 stops the operation of the heat source unit 301.
  • Step S44 When the control device 101 determines that the heating operation is ON, the heating amount of the heat source unit 301 is decreased.
  • Step S45 The control device 101 switches the hot water supply to the heating circuit via the three-way valve 20.
  • the heating amount is small (the frequency of the compressor 301a is low), and therefore the heating amount operation is not necessary.
  • FIG. 9 is a schematic circuit diagram showing a circuit configuration of a heating and hot water supply system 200 according to Embodiment 2 of the present invention. Based on FIG. 9, it demonstrates centering on the apparatus structure of the heating hot-water supply system 200.
  • This heating and hot water supply system 200 is installed in, for example, a general house, like the heating and hot water supply system 100 according to the first embodiment, and can heat the living space and can generate hot water. It is.
  • the difference from the first embodiment described above will be mainly described, and parts having the same functions as those in the first embodiment will be denoted by the same reference numerals and description thereof will be omitted.
  • the same reference numerals and description thereof will be omitted.
  • Heating hot water supply system 200 is different from heating hot water supply system 100 according to the first embodiment in that it does not include water-water heat exchanger 4 and hot water supply water pump 8. That is, in the heating and hot water supply system 100 according to the first embodiment, a configuration in which two water circuits (the heat source side circuit A and the tank side circuit B) are connected via the water-water heat exchanger 4 is employed.
  • the heating hot water supply system 200 employs a configuration in which the heat source side circuit A and the tank side circuit B are connected via the three-way valve 29 and the connection point 56.
  • a water circuit passing through the three-way valve 29, the coil heat exchanger 71, and the connection point 56 functions as a hot water supply circuit.
  • the coil heat exchanger 71 is configured by winding a pipe through which a heat medium flows in a coil shape, and is accommodated in the hot water storage tank 6. In this way, the coil heat exchanger 71 can exchange heat between the heat medium (water in the present embodiment) and the hot water in the hot water storage tank 6, and heats the hot water in the hot water storage tank 6. .
  • FIG. 9 shows a state where one temperature sensor 203 is installed at an intermediate position on the tank wall surface of the hot water storage tank 6. However, as described in the first embodiment, a plurality of temperature sensors 203 are connected to the hot water storage tank 6. You may make it install in the tank wall surface of the tank 6 in a height direction, respectively.
  • the heating operation mode of the heating hot water supply system 200 is performed as follows.
  • the control device 101 switches the three-way valve 29 so that the heating water pump 3 and the water pipe 33 communicate with each other. Then, the control device 101 activates the heating water pump 3. When the heating water pump 3 is activated, running water is started. Thereafter, the control device 101 starts the operation of the heat source unit 301.
  • the heat medium (water in this embodiment) heated by the heat source unit 301 passes through the water pipe 1, passes through the heating water pump 3 and the three-way valve 29, and is connected to the water pipe 33 and the water pipe 30 (water pipe). 30a, the water pipe 30b) and the heating unit 303 (the heating unit 303a and the heating unit 303b) to heat the room air.
  • the heat medium heated in the room air by the heating unit 303 then flows through the water pipe 31 (water pipe 31a, water pipe 31b) and the water pipe 5, flows into the heat source unit 301, and is heated again.
  • the rotation speed of the heating water pump 3 is fixed by the control unit 106 at a predetermined rotation speed (for example, the maximum rotation speed). By doing so, the temperature difference of the heat medium flowing through the water pipe 30 and the water pipe 31 is reduced, and as a result, the inflow water temperature of the heat source unit 301 can be kept low. For this reason, power consumption is also suppressed.
  • a predetermined rotation speed for example, the maximum rotation speed
  • the hot water supply operation mode of the heating hot water supply system 200 is performed as follows.
  • the control device 101 switches the three-way valve 29 so that the heating water pump 3 communicates with the coil heat exchanger 71. Then, the control device 101 activates the heating water pump 3. When the heating water pump 3 is started, running water is started. Thereafter, the control device 101 starts the operation of the heat source unit 301.
  • the heat medium heated by the heat source unit 301 passes through the water pipe 1, passes through the heated water pump 3 and the three-way valve 29, and then heats the water in the hot water storage tank 6 with the coil heat exchanger 71. Then, it flows through the water pipe 5 via the connection point 56, flows into the heat source unit 301, and is heated again.
  • the rotation speed of the heating water pump 3 is fixed by the control unit 106 at a predetermined rotation speed (for example, the maximum rotation speed).
  • a predetermined rotation speed for example, the maximum rotation speed.
  • hot water is boiling in the hot water storage tank 6.
  • the hot water supply operation mode is ended when the boiling temperature of the hot water stored in the hot water storage tank 6 becomes equal to or higher than a predetermined value.
  • the heating and hot water supply system 200 performs a hot water supply operation with the same processing flow as the heating and hot water supply system 100 according to the first embodiment. Therefore, the heating and hot water supply system 200 can automatically determine whether to perform the hot water supply operation during the daytime when the outside air temperature is high and the heating operation is stopped, and can execute the hot water supply operation based on the determination result. . Therefore, even when the temperature is controlled for 24 hours and the heating is turned on as in a house that is air-conditioned throughout the building, the power consumption of the heat source unit 301 can be reduced. Moreover, since the hot water supply operation can be performed even when the heating thermo is OFF, the comfort of heating in the space to be heated is not impaired.
  • FIG. 10 is a schematic diagram schematically showing an example of an installation state of the heating and hot water supply system 300 according to Embodiment 3 of the present invention. Based on FIG. 10, it demonstrates centering on the apparatus structure of the heating hot-water supply system 300.
  • This heating and hot water supply system 300 is installed in, for example, a general house, as in the heating and hot water supply system 100 according to the first embodiment, and can heat the living space and can generate hot water. It is.
  • the difference from the first and second embodiments will be mainly described, and the same reference numerals are given to the portions having the same functions as the first and second embodiments. Shall be omitted.
  • the circuit configuration of the heating and hot water supply system 300 is the same as the circuit configuration of the heating and hot water supply system 100 according to Embodiment 1 or the circuit configuration of the heating and hot water supply system 200 according to Embodiment 2.
  • the heating and hot water supply system 300 the presence or absence of the user is detected, and execution of the hot water supply operation is determined based on the information.
  • the heating and hot water supply system 300 is installed in a general house 500.
  • the heat source unit 301 is installed outside the house 500, and the switching unit 302 and the heating unit 303 are installed inside the house 500, respectively.
  • the heating unit 303 a is installed in the second floor room 502 of the house 500, and the heating unit 303 b is installed in the first floor room 501 of the house 500.
  • FIG. 10 illustrates a state where the user U1 and the user U2 are present in the room 501 of the house 500, and the user U3 is present outside the house 500.
  • the heating / hot water supply system 300 can communicate with the external terminal 120 and the mobile terminal 130.
  • the external terminal 120 is installed in the living room 501 and is communicably connected to the heating and hot water supply system 300 by wire or wireless.
  • the external terminal 120 may be shared with the hot water remote controller 102 or the heating remote controller 103, or may be separate from them.
  • the mobile terminal 130 is inside or outside the house 500 and is connected to the heating and hot water supply system 300 in a communicable manner.
  • FIG. 10 illustrates a state where the user U3 owns the mobile terminal 130.
  • the mobile terminal 130 is a kind of external terminal.
  • the external terminal 120 and the mobile terminal 130 are configured such that the occupancy times of users (for example, users U1 to U2) in the room where the heating unit 303a and the heating unit 303b are installed can be input in advance. For example, during the daytime, the user is absent from the entire house 500 to go to the office. Also, at night, the user is often in the living room, so the room 501 is present and the room 502 is absent. Further, in the morning, the user stays in the entire house 500 for work preparation and breakfast. Such information can be input in advance by the user via the external terminal 120 or the mobile terminal 130.
  • the heating and hot water supply system 300 determines the execution of the hot water supply operation based on the user's occupancy information input in advance via the external terminal 120 or the mobile terminal 130. Specifically, when it is determined that the user may be absent from the entire house 500, the heating and hot water supply system 300 turns off the heating during that time period and performs the hot water supply operation during that time.
  • the heating / hot water supply system 300 determines that there is a room where the user is absent (for example, the room 501) but there is a room where the user is absent (for example, the room 502)
  • the temperature of the absent room is set. The temperature is set lower than the set temperature (for example, 2 ° C. lower) so that the heating thermo-OFF is easily generated. Note that the room where the user is absent may be turned off.
  • heating stop time can be lengthened and many time which can implement hot water supply operation can be set.
  • the external terminal 120 and the mobile terminal 130 may be of a type that is input in advance as described above, but a human sensor may be mounted in each room, and the user's presence information may be acquired by the human sensor. Further, the user's location information (user's behavior pattern) may be acquired from the mobile terminal 130 owned by the user U3, and the presence / absence of a room may be acquired. By doing in this way, the effort which a user input requires can be saved.
  • FIG. 11 is a schematic diagram schematically showing the transition of the operation state in consideration of the occupancy information of the user of the heating and hot water supply system 300. Based on FIG. 11, the transition of the driving
  • the horizontal axis represents time
  • the vertical axis represents user occupancy information and mode.
  • Fig.11 (a) shows a user's occupancy information
  • FIG.11 (b) has shown the transition of the operation state at the time of normal load of the heating hot-water supply system 300.
  • the heating and hot water supply system 300 can increase the possibility of heating OFF and perform a hot water supply operation mode in consideration of a room where a user is absent during the daytime on weekdays or a user is absent during the daytime on holidays. .
  • the heating and hot water supply system 300 automatically determines whether or not to perform the hot water supply operation in the daytime when the outside air temperature is high and the heating operation is stopped in consideration of the user's occupancy information, The hot water supply operation can be executed based on the determination result. Therefore, according to the heating hot water supply system 300, in addition to the effect which the heating hot water supply system which concerns on Embodiment 1 or Embodiment 2 show
  • the water heating operation may be performed by the heater 70. That is, while the heating operation by the heat source unit 301 is being performed, the water temperature of the hot water storage tank 6 is raised to the night boiling temperature or the day boiling temperature by the heater 70. Or when it turns out that the heating stop time scheduled on that day cannot be obtained from the past heating stop time, the water temperature of the hot water storage tank 6 is raised to the night boiling temperature or the day boiling temperature by the heater 70.
  • the point in time when it was found that the heating stop time scheduled for the day could not be obtained from the past heating stop time was, for example, that there was a heating stop time of 2 hours in the daytime. It is assumed that the heating stop time (that is, the hot water supply operation time) is only 1 hour at the time, and that it is found that there is a heating load after 5 o'clock.
  • the heating and hot water supply system 300 can generate hot water without impairing the comfort of heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

 暖房給湯システム100は、過去の前記熱源ユニットの運転時間に基づいて、前記熱源ユニットで加熱された熱媒体を前記暖房側回路に流さない1日のうちの暖房サーモOFFを含む暖房停止時間を設定する制御装置を備え、前記制御装置は、前記暖房停止時間に、前記熱源ユニットで加熱された熱媒体を前記給湯回路に流し、給湯運転を実行するものである。

Description

暖房給湯システム
 本発明は、暖房及び給湯を実施することができる暖房給湯システムに関するものである。
 暖房給湯システムには、例えば、ヒートポンプに、水回路を介して床暖房パネルと貯湯槽を接続し、ヒートポンプによる加熱運転時に水回路にて温水の流れ方向を切りかえることによって、床暖房パネルによる温水暖房又は貯湯槽への蓄熱運転(給湯運転)を選択的に行うシステムがある(例えば、特許文献1参照)。
 この暖房給湯システムでは、1ユニットにて暖房と給湯の双方が可能であり、暖房と給湯を個別に行う暖房給湯システムに対して設置スペースが削減される。
特開2002―257365号公報(図1等参照)
 特許文献1に記載の暖房給湯システムにおいては、床暖房パネルがONの時は、ヒートポンプを駆動しながら熱媒循環系により熱媒をヒートポンプと床暖房パネルとの間で循環させる。一方、床暖房パネルがOFFの時は、ヒートポンプを駆動するとともに、熱媒循環系により熱媒をヒートポンプと熱交換器との間で循環させ、水循環系により水を貯湯槽と熱交換器との間で循環させることで貯湯がなされる。
 しかしながら、特許文献1に記載の暖房給湯システムでは、全館空調のように24時間温度管理をしている住宅では、暖房運転が継続して実施されているため、給湯運転を実施するタイミングがなく、湯を沸かせなくなってしまうという問題点がある。
 また、高断熱住宅では、床暖房パネルがONの時であっても、熱量が住宅外に逃げにくいため、サーモOFFになっている時間が長く、その時を狙って給湯を実施することができない。
 本発明は、上記の問題を解決するためになされたもので、過去の暖房運転時間の情報を用いることによって、給湯運転を適切なタイミングで実行することができる暖房給湯システムを得ることを目的とする。
 本発明に係る暖房給湯システムは、熱媒体を加熱する熱源ユニットを備え、前記熱源ユニットで加熱された熱媒体を給湯回路または暖房側回路に切り替え可能な暖房給湯システムであって、過去の前記熱源ユニットの運転時間に基づいて、前記熱源ユニットで加熱された熱媒体を前記暖房側回路に流さない1日のうちの暖房サーモOFFを含む暖房停止時間を設定し、設定した前記暖房停止時間に、前記熱源ユニットで加熱された熱媒体を前記給湯回路に流し、給湯運転を実行する制御装置を備えたものである。
 本発明に係る暖房給湯システムによれば、暖房サーモOFFを含む暖房停止時間に給湯運転を実行することができるので、従来の暖房給湯システムよりも1日の消費電力量をより低減することが可能になる。
本発明の実施の形態1に係る暖房給湯システムの回路構成を示す概略回路図である。 本発明の実施の形態1に係る暖房給湯システムの熱源ユニットの構成の一例を示す概略回路構成図である。 本発明の実施の形態1に係る暖房給湯システムの制御装置、暖房リモコン及び給湯リモコンの構成を示すブロック図である。 本発明の実施の形態1に係る暖房給湯システムが設置される一般的な家庭の1日の給湯負荷パターンの一例を示すグラフである。 本発明の実施の形態1に係る暖房給湯システムの給湯運転を実行する際の処理の流れを示す動作フローチャートである。 本発明の実施の形態1に係る暖房給湯システムの運転状態の遷移を概略的に示す概略図である。 本発明の実施の形態1に係る暖房給湯システムの暖房運転から給湯運転への運転モードの切換え時の動作の流れを示すフローチャートである。 本発明の実施の形態1に係る暖房給湯システムの給湯運転から暖房運転への運転モードの切換え時の動作の流れを示すフローチャートである。 本発明の実施の形態2に係る暖房給湯システムの回路構成を示す概略回路図である。 本発明の実施の形態3に係る暖房給湯システムの設置状態の一例を概略的に示す概略図である。 本発明の実施の形態3に係る暖房給湯システムのユーザーの在室情報を加味した運転状態の遷移を概略的に示す概略図である。
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1に係る暖房給湯システム100の回路構成を示す概略回路図である。図1に基づいて、暖房給湯システム100の機器構成について説明する。この暖房給湯システム100は、例えば一般的な住宅に設置され、居住空間の暖房が実行可能であるともに、お湯の生成を行うことができるものである。具体的には、暖房給湯システム10は、屋内に設置される暖房リモコン103からの暖房指令(暖房ON/OFF)と、給湯リモコン102からの給湯要求とを処理することができるものである。
<機器構成>
 暖房給湯システム100は、熱源機である熱源ユニット301と切替ユニット302とが、水配管1と水配管5とで接続され、切替ユニット302と暖房ユニット303とが、水配管30と水配管31とで接続されている。また、切替ユニット302には、入水端に繋がる入水管12と、出湯管15と、が接続されている。出湯管15は、設置現地のミキシングバルブ16に接続されている。ミキシングバルブ16には、入水端に続く入水管17と、給水端に続く給水管18と、が接続されている。
 熱源ユニット301は、水配管5より入水する水を加熱して水配管1に出水する機能を有している。熱源ユニット301は、例えば、ガスにより燃焼式で水を加熱するもの、ヒートポンプで水を加熱するもの、その他、水を加熱できるものであれば何でもよい。図2は、暖房給湯システム100の熱源ユニット301の構成の一例を示す概略回路構成図である。
 図2では、熱源ユニット301が、ヒートポンプで水を加熱する構成を例に示している。図2に示すように、熱源ユニット301は、圧縮機301a、凝縮器301b、絞り装置301c、蒸発器301dを配管接続したヒートポンプを備え、それらに冷媒を循環させることで、凝縮器301bを介して水を加熱することができる。なお、このヒートポンプに用いられる冷媒は、特に限定せず、例えば、R410A、R32などのHFC冷媒、炭化水素などの自然冷媒が用いられる。
 図1に示すように、暖房ユニット303は、例えばラジエータやファンコイルなどで構成され、温調する室内等の暖房対象空間に設置されている。具体的には、暖房ユニット303は、熱源ユニット301で生成されたお湯により、暖房対象空間を暖房するものである。
 ミキシングバルブ16は、開度が制御されることで、出湯管15を通過したお湯と入水管17を通過した市水とを混合し、給水管18に流れる水の温度を調整するためのものである。
 切替ユニット302は、加熱水ポンプ3と、三方弁29と、水-水熱交換器4と、熱源ユニット301と、を環状につないだ熱源側回路Aを有している。また、切替ユニット302は、貯湯タンク6と、給湯水ポンプ8と、水-水熱交換器4と、を環状に接続したタンク側回路Bを有している。また、切替ユニット302は、三方弁29と、水配管30(水配管30a、水配管30b)と、暖房ユニット303(暖房ユニット303a、暖房ユニット303b)と、水配管31(水配管31a、水配管31b)と、をつないだ暖房側回路Cを有している。なお、貯湯タンク6には、ヒーター70が付設されている。
 熱源側回路A及び暖房側回路Cには、熱媒体(本実施の形態では水)が流れている。ただし、熱媒体を水に限定するものではなく、暖房給湯システム100を寒冷地域に設置する場合は、熱媒体の凍結を回避するため、熱媒体に不凍液(ブライン)を選定してもよい。
 また、タンク側回路Bには、貯湯タンク6からの水が流れる。
 また、熱源側回路Aのうち、三方弁29と、暖房ユニット303、接続点56を通る水回路が温水暖房回路(暖房側回路C)として機能する。
 また、熱源側回路Aのうち、三方弁29と、水-水熱交換器4と、接続点52と、接続点56と、を通る水回路が給湯回路として機能する。
 加熱水ポンプ3は、熱源側回路Aに送水を循環させるためのものであり、回転数が可変できるインバータポンプもしくは一定速ポンプで構成するとよい。
 給湯水ポンプ8は、タンク側回路Bに送水を循環させるためのものであり、回転数が可変できるインバータポンプもしくは一定速ポンプで構成するとよい。
 三方弁29は、流路切替装置の一例であり、流水方向を給湯回路又は暖房側回路Cに切り換えるものである。三方弁29は、通常給湯運転時及び高温給湯運転時においては加熱水ポンプ3と水-水熱交換器4とを連通し、暖房運転時においては加熱水ポンプ3と水配管33とを連通する。なお、水配管33は、三方弁29と、水配管30(水配管30a、水配管30b)と、を接続する配管である。また、流路切替装置は、流水方向を切り替えられるものであればよく、三方弁29に限定するものではない。例えば、2つの二方弁を組み合わせて流路切替装置を構成してもよい。
 水-水熱交換器4は、例えばプレート型熱交換器により構成され、熱媒体(本実施の形態では水)と湯水とを熱交換させることで、湯水を加熱して熱媒体を冷却するものである。
 ヒーター70は、貯湯タンク6の内部に設置され、貯湯タンク6内の水を加熱するものである。なお、ヒーター70を貯湯タンク6の内部に設置した状態を例に示しているが、ヒーター70の設置位置を図示した位置に限定するものではない。ヒーター70は、貯湯タンク6内の水を加熱できる位置であれば、どこに設置してもよい。
 貯湯タンク6は、水-水熱交換器4で熱源側回路Aを流れる熱媒体(本実施の形態では水)によって沸きあげられた湯を貯留するためのものである。貯湯タンク6は、タンク中間部の接続口57、タンク下部の接続口53にて水配管32と接続され、お沸き上げ時においては接続口53より水が出水し、加熱された水が接続口57から戻ってくるようになっている。
 また、貯湯タンク6は、タンク上部の接続口60にて出湯管15と接続され、給水時において接続口60より水(お湯)が出水(出湯)する。
 さらに、貯湯タンク6は、満水式であり、接続口60からの出湯時に、同じ量だけの市水がタンク下部の接続口58より入水する。
 また、切替ユニット302には、温度センサ201、温度センサ203a~温度センサ203e、温度センサ211、温度センサ212が設けられている。
 温度センサ201は、水配管1と加熱水ポンプ3の間に設置され、設置場所の水温を計測する。
 温度センサ203a~203eは、貯湯タンク6のタンク壁面に高さ方向にそれぞれ設置され、設置場所の水温を計測する。
 温度センサ211は、貯湯タンク6のタンク上部に接続されている出湯管15に設置され、設置場所の水温を計測する。
 温度センサ212は、水-水熱交換器4と水配管5の間に設置され、設置場所の水温を計測する。
 なお、加熱水ポンプ3、三方弁29、給湯水ポンプ8、ヒーター70、熱源ユニット301の動作は、切替ユニット302に設けられている制御装置101によって制御される(図3参照)。
 制御装置101には、給湯リモコン102、暖房リモコン103(暖房リモコン103a、暖房リモコン103b)が接続されている。そして、制御装置101は、これらリモコンを介しての指示及び各温度センサでの計測情報に基づいて、加熱水ポンプ3、三方弁29、給湯水ポンプ8、ヒーター70、熱源ユニット301の動作を制御する。
 なお、制御装置101を必ずしも切替ユニット302に設ける必要はない。
 図3は、暖房給湯システム100の制御装置101、給湯リモコン102及び暖房リモコン103の構成を示すブロック図である。図3に基づいて、暖房給湯システム100の電気的な構成について説明する。
 切替ユニット302には、例えば、マイクロコンピュータにより構成された制御装置101が設けられている。制御装置101には、測定部104、演算部105、制御部106、通信部107、記憶部108、負荷パターン判定部109、暖房停止時間判定部110、時計部111、が設けられている。
 測定部104は、各温度センサ、圧力センサ(図示省略)によって検知された各諸量が入力される機能を有している。
 演算部105は、測定部104に入力された情報に基づき各種制御動作を決定するための演算を実行する機能を有している。
 制御部106は、演算部105の演算結果を受けて、加熱水ポンプ3などの各機器の制御を実行する機能を有している。
 通信部107は、通信線、無線などの通信手段からの通信データ情報の入力、及び外部に情報を出力することができる機能を有している。
 記憶部108は、例えば半導体メモリなどによって構成され、設定値、過去の出湯負荷パターン、暖房停止時間(時刻)などを記憶する機能を有している。
 負荷パターン判定部109は、記憶部108に記憶されている過去の出湯負荷パターンから、その日(当日)の出湯負荷パターンを作成し、入力する機能を有している。
 暖房停止時間判定部110は、記憶部108に記憶されている過去の暖房停止時間からその日の暖房停止時間(時刻)を作成し、入力する機能を有している。
 時計部111は、現在の時刻と曜日を認知する機能を有している。
 給湯リモコン102及び暖房リモコン103は、ともに屋内に設置されているS/W(ソフトウェア)にて実装されたリモコンである。
 給湯リモコン102は、使用者からの暖房指令(ON/OFF)を入力する入力部112と、暖房給湯システム100の動作状態を表示する表示部113と、を備えている。
 暖房リモコン103は、給水温度を入力する入力部114と、暖房給湯システム100の動作状態を表示する表示部115と、を備えている。
 <運転モード>
 次に、暖房給湯システム100の運転モードについて図1及び図3を参照して説明する。まず、暖房運転モードについて説明する。暖房給湯システム100の暖房運転モードは以下のようにして実施する。
 暖房運転モードでは、制御装置101が、三方弁29を、加熱水ポンプ3と水配管33とを連通するように切り替える。そして、制御装置101は、加熱水ポンプ3を起動する。加熱水ポンプ3が起動すると、流水が開始される。その後、制御装置101は、熱源ユニット301の運転を開始する。なお、暖房運転モードでは、制御装置101は、給湯水ポンプ8を停止したままとする。
 熱源ユニット301にて加熱された熱媒体(本実施の形態では水)は、水配管1を通過して、加熱水ポンプ3及び三方弁29を通過し、水配管33及び水配管30(水配管30a、水配管30b)を流れ、暖房ユニット303(暖房ユニット303a、暖房ユニット303b)に流れ、室内空気を加熱する。暖房ユニット303で室内空気を加熱した熱媒体は、その後、水配管31(水配管31a、水配管31b)及び水配管5を流れ、熱源ユニット301に流入して、再び加熱される。
 この時、加熱水ポンプ3の回転数は、予め定められている所定の回転数(例えば、最大回転数)に制御部106で固定されている。こうすることで、水配管30及び水配管31を流れる熱媒体の温度差が小さくなり、結果、熱源ユニット301の流入水温を低く抑えることができる。そのため、消費電力を抑えることにもなる。
 次に、給湯運転モードについて説明する。暖房給湯システム100の給湯運転モードは以下のようにして実施する。
 給湯運転モードでは、制御装置101が、三方弁29を、加熱水ポンプ3と水-水熱交換器4とを連通するように切り替える。そして、制御装置101は、加熱水ポンプ3と給湯水ポンプ8とを起動する。加熱水ポンプ3及び給湯水ポンプ8を起動すると、それぞれで流水が開始される。その後、制御装置101は、熱源ユニット301の運転を開始する。
 熱源ユニット301にて加熱された熱媒体は、水配管1を通過して、加熱水ポンプ3及び三方弁29を通過し、その後、接続口51を経由して水-水熱交換器4にてタンク側回路Bを流れる水を加熱する。その後、接続点52を経由して水配管5を流れ、熱源ユニット301に流入して再び加熱される。
 この時、加熱水ポンプ3の回転数は、予め定められている所定の回転数(例えば、最大回転数)に制御部106で固定されている。こうすることで、水-水熱交換器4を通過する水の接続口51と接続点52との温度差が小さくなり、結果、熱源ユニット301の流入水温を低く抑えることができる。そのため、消費電力を抑えることにもなる。
 一方、貯湯タンク6において接続口53から水が出水する。この水は、給湯水ポンプ8を通過して、接続口54を経由して、水-水熱交換器4にて熱源側回路Aを流れる熱媒体(水)から吸熱する。その後、接続口55を経由して、接続口57より貯湯タンク6に流入し、再び接続口53より出水する。
 この時、給湯水ポンプ8の回転数は、予め定められている所定の回転数(例えば、最大回転数)に制御部106で固定されている。こうすることで、水-水熱交換器4を通過する水の接続口55と接続口54との温度差が小さくなり、結果、熱源ユニット301の流入水温を低く抑えることができる。そのため、消費電力を抑えることにもなる。
 以上の運転動作により、貯湯タンク6内に、お湯が沸き上がっていく。給湯運転モードは、貯湯タンク6内に貯えられたお湯の沸き上げ温度が所定値以上となったら終了となる。なお、沸き上げ温度とは、例えば、タンク中間部壁面の温度センサ203cの温度である。または、タンク壁面の温度センサ203a~温度センサ203eのいずれの温度としてもよい。
 あるいは、貯湯タンク6の蓄熱量が所定値以上となったら給湯運転モードを停止してもよい。貯湯タンク6の蓄熱量は、以下のようにして計算することができる。貯湯タンク6の高さ方向に設けられている温度センサ203a~温度センサ203eの設置位置毎に貯湯タンク6を高さ方向に分割する。そして、測定部104にて計測した各分割区間における上端および下端の温度センサ203の計測データに基づいて、分割区間毎に平均温度を算出する。なお、最下部区間は温度センサ203aを、最上部区間は温度センサ203eの温度を平均温度とする。そして、各分割区間にて分割区間容積と水の比熱を平均温度から市水温度を引いた値に掛け合わせ、各分割区間の貯湯熱量を推算する。推算した各分割区間の貯湯熱量を積算し、積算した熱量を貯湯タンク6の貯湯熱量とする。
 図4は、暖房給湯システム100が設置される一般的な家庭の1日の給湯負荷パターンの一例を示すグラフである。図4に基づいて、暖房給湯システム100が設置される一般的な家庭の1日の給湯負荷パターンについて説明する。
 図4から、暖房給湯システム100が設置される一般的な家庭において、給湯負荷が高負荷になるのは主には朝の時間帯と夜の時間帯であることがわかる。そこで、暖房給湯システム100では、一日の給湯負荷の負荷状況に応じて給湯運転を実行することを可能にする。具体的には、朝の給湯負荷は、夜間の給湯運転による蓄熱量(給湯しなくても所定の蓄熱量を有している場合は給湯運転を実行しなくてもよい)で賄い、夜の給湯負荷は、昼間の給湯運転による蓄熱量で賄うことを狙う。つまり、制御装置101は、過去の給湯負荷パターンから当日の給湯負荷パターンを設定し、蓄熱量が設定した給湯負荷パターンに対して不足していると判断した場合、給湯負荷発生前(昼間)に給湯運転を行う。
 図5は、暖房給湯システム100の給湯運転を実行する際の処理の流れを示す動作フローチャートである。図5に基づいて、暖房給湯システム100の給湯運転を実行する際の処理の流れについて説明する。
(ステップS1)
 制御装置101は、まず初めに、過去の暖房停止期間を記憶する。具体的には、何時から何時までの何時間、暖房運転が停止していたかを記憶する。
 なお、機器設置工事の直後は、過去の運転データがないため、後述するステップS3にて夜間沸き上げ温度と昼間沸き上げ温度とが最大設定値、つまり高めの負荷となるように暖房停止時間を設定するとよい。
 また、参照する過去の運転データは、曜日を考慮して少なくとも1週間分とするとよい。記憶する情報が多ければ多いほど、当日の暖房停止時間の作成精度が向上する。つまり、記憶する情報が多ければ多いほど、暖房運転が突発的であったかどうかということが判断できる。そして、暖房運転が突発的である場合は、停止時間にいれないなどの対応が可能になる。
(ステップS2)
 制御装置101は、一日の暖房停止時間を設定する。設定する暖房停止時間は、記憶してある過去の運転データと似たものになる。なお、暖房停止時間は、具体的な時刻でも、単なる時間(昼間に停止している場合を想定)でも、どちらでもよい。
(ステップS3)
 制御装置101は、夜間沸き上げ温度と、昼間沸き上げ温度と、を判定する。
 夜間沸き上げ温度及び昼間沸き上げ温度の最大値(上限値)は、切替ユニット302の設定上限値(通常は65℃)とする。また、夜間沸き上げ温度及び昼間沸き上げ温度の最小値(下限値)は、切替ユニット302の設定下限値(通常は45℃程度)とする。
(ステップS4)
 制御装置101は、現在の沸き上げ温度(貯湯タンク6の水温から決定される沸き上げ温度)が夜間沸き上げ温度以上であるかどうかを判断する。
 制御装置101は、貯湯タンク6のタンク容量(例えば200L)を入力して沸き上げ温度あたりの蓄熱量を計算し、その情報を用いて沸き上げ温度を計算する。あるいは、制御装置101は、温度センサ203cの温度、またはタンク壁面の温度センサ203a~温度センサ203eのいずれの温度を沸き上げ温度とする。
(ステップS5)
 制御装置101は、現在の沸き上げ温度が夜間沸き上げ温度以上でないと判断すると、給湯運転モードを実行する。
(ステップS13)
 制御装置101は、現在の沸き上げ温度が夜間沸き上げ温度以上であるかどうかを判断する。
(ステップS6)
 制御装置101は、現在の沸き上げ温度が夜間沸き上げ温度以上であると判断すると、給湯運転モードを終了する。
(ステップS7)
 制御装置101は、現在の時間(または時刻)が、暖房停止時間であるかどうかを判断する。
(ステップS8)
 制御装置101は、暖房運転がOFFであるかどうかを判断する。なお、暖房運転がOFFであるとは、暖房運転モードの単なる停止だけではなく、暖房サーモOFF(暖房運転モードはONとなっているが、暖房対象空間が設定温度になっていて圧縮機301aがOFFとなっている状態)も含んでいるものとする。
(ステップS9)
 制御装置101は、現在の沸き上げ温度が昼間沸き上げ温度以下であるかどうかを判断する。
 制御装置101は、貯湯タンク6のタンク容量(例えば200L)を入力して沸き上げ温度あたりの蓄熱量を計算し、その情報を用いて沸き上げ温度を計算する。あるいは、制御装置101は、温度センサ203cの温度、またはタンク壁面の温度センサ203a~温度センサ203eのいずれの温度を沸き上げ温度とする。
(ステップS10)
 制御装置101は、現在の時間(または時刻)が暖房停止時間でない場合、暖房運転がOFFでない場合、現在の沸き上げ温度が昼間沸き上げ温度以下でない場合、のいずれかであると判断すると、給湯運転モードを終了する。
(ステップS11)
 一方、制御装置101は、夜間沸き上げ終了後、現在の時間(または時刻)が暖房停止時間であり、かつ、暖房運転がOFFであり、かつ、現在の沸き上げ温度が昼間沸き上げ温度以下であると判断すると、給湯運転モードを開始する。
 なお、暖房運転OFFに、暖房サーモOFFを含めることで、高断熱住宅では住宅外に熱が逃げにくいという特性があるため、発生頻度の多い暖房サーモOFF時に給湯運転モードを実施させることができるようになる。
(ステップS12)
 制御装置101は、24時間経過したかどうかを判断する。ここで、24時間の起点は午前12時とするとよい。また、昼間と夜間の区別は、時刻で判断すればよい。例えば、夕方6時から朝6時を夜間、それ以外を昼間として区別するとよい。
 そして、制御装置101は、24時間経過していると判断したら、ステップS12からステップS1に移動する。
 図6は、暖房給湯システム100の運転状態の遷移を概略的に示す概略図である。図6に基づいて、暖房給湯システム100の運転状態の遷移について説明する。なお、図6では、横軸が時刻を、縦軸がモードを、それぞれ示している。また、図6(a)が従来の暖房給湯システムの運転状態の遷移を示し、図6(b)が暖房給湯システム100の通常負荷時の運転状態の遷移を示し、図6(c)が暖房給湯システム100の暖房負荷が大きい時の運転状態の遷移を示している。
 図6(a)に示すように、従来の暖房給湯システムは、夜間に給湯運転モードを多く実施していた。
 それに対し、暖房給湯システム100は、通常負荷時においては、図6(b)に示すように、外気温度の高い昼間に給湯運転モードを行うことができるようになる。
 また、暖房給湯システム100は、暖房負荷が大きい時においても、図6(c)に示すように、外気温度の高い昼間に給湯運転モードを行うことができるようになる。
 暖房給湯システム100は、図5のフローチャートで説明したように、過去の運転データから、暖房停止期間を予め学習するようになっている。そのため、暖房給湯システム100は、図6(b)及び図6(c)に示すように、昼間であっても、給湯運転モードを実行できる。
 このようにすることで、暖房給湯システム100は、過去の暖房運転時間の情報を用いることによって、その日の昼間の暖房停止時間を判定し、昼間に暖房停止時間がない場合は夜間に給湯運転を行い、昼間に暖房停止時間がある場合は昼間に給湯運転を行うことができる。また、暖房給湯システム100は、給湯不足分を前日の夜間に沸き上げることもできる。
 したがって、暖房給湯システム100によれば、外気温度が高く、暖房運転が停止している昼間に給湯運転を行うことかどうかを自動的に判断し、その判断結果に基づいて給湯運転を実行することができる。そのため、全館空調をしている住宅のように24時間温度管理をして暖房ONとなっている場合でも、熱源ユニット301の消費電力を低減することができる。また、暖房サーモOFFのときにも給湯運転を行うことできるので、暖房対象空間における暖房の快適性も損なうことがない。
 次に、暖房運転からの給湯運転へのモード切り換えについて説明する。ここでは、暖房給湯システム100を全館空調の住宅に設置した場合を想定したものとして説明する。暖房給湯システム100を全館空調の住宅に設置した場合を想定すると、暖房運転から給湯運転への運転モードの切換えと、給湯運転から暖房運転への運転モードの切換えとなるパターンが多くなることが予想される。そのため、それぞれの切換えについて説明する。
 図7は、暖房給湯システム100の暖房運転から給湯運転への運転モードの切換え時の動作の流れを示すフローチャートである。まず、図7に基づいて、暖房給湯システム100の暖房運転から給湯運転への運転モードの切換えについて説明する。
(ステップS21)
 制御装置101は、暖房OFFとなることで、給湯運転の開始条件が成立したかどうかを判定する。
(ステップS22)
 制御装置101は、暖房OFFとなることで、給湯運転の開始条件が成立したと判定すると、熱源ユニット301の運転を継続したまま、三方弁20を介して温水の送水を給湯回路に切り替える。
 図8は、暖房給湯システム100の給湯運転から暖房運転への運転モードの切換え時の動作の流れを示すフローチャートである。次に、図8に基づいて、暖房給湯システム100の給湯運転から暖房運転への運転モードの切換えについて説明する。
 給湯運転から暖房運転へ運転モードを切換える場合は、制御装置101は、運転モードを切換える前に熱源ユニット301の加熱量を現時点の加熱量よりも低下させる。例えば、制御装置101は、凝縮器301bの加熱量を20%低下させたり、圧縮機301aの周波数を10Hz低下させたりするなどして、熱源ユニット301の加熱量を低下させる。なお、熱源ユニット301がガスにより水を加熱するものである場合には、ガスの加熱量を20%低下させて、熱源ユニット301の加熱量を低下させればよい。
 給湯運転では短時間で所定の給湯温度まで水を沸き上げることを狙っているため、高加熱量による運転(圧縮機301aの周波数が最大値で運転)となっている。それに対し、暖房運転では、特に暖房サーモOFFからの復帰では暖房負荷が小さいことが多い。そのため、高加熱量のまま切換えると、室内温度が急変動し、機器の安定性を損なうばかりでなく、室内温度が高い状態と低い状態とがハンチングして快適性を損なう可能性がある。そこで、暖房給湯システム100では、このような状態を回避するようにしている。
(ステップS41)
 制御装置101は、給湯運転OFFになっているかどうかを判定する。
(ステップS42)
 制御装置101は、暖房運転ONになっているかどうかを判定する。
(ステップS43)
 制御装置101は、暖房運転ONになっていないと判定すると、熱源ユニット301の運転を停止する。
(ステップS44)
 制御装置101は、暖房運転ONになっていると判定すると、熱源ユニット301の加熱量を低下する。
(ステップS45)
 制御装置101は、三方弁20を介して温水の送水を暖房回路に切り替える。
 なお、暖房運転から給湯運転へ切り替える場合は、特に暖房サーモOFF時においては、加熱量が小さくなっている(圧縮機301aの周波数が低くなっている)ため、加熱量の操作は必要ない。
実施の形態2.
 図9は、本発明の実施の形態2に係る暖房給湯システム200の回路構成を示す概略回路図である。図9に基づいて、暖房給湯システム200の機器構成を中心に説明する。この暖房給湯システム200は、実施の形態1に係る暖房給湯システム100と同様に、例えば一般的な住宅に設置され、居住空間の暖房が実行可能であるともに、お湯の生成を行うことができるものである。なお、この実施の形態2では上述した実施の形態1との相違点を中心に説明するものとし、実施の形態1と同一作用である部分には、同一符号を付して説明を省略するものとする。
<機器構成>
 暖房給湯システム200は、水-水熱交換器4及び給湯水ポンプ8を備えていない点で、実施の形態1に係る暖房給湯システム100と相違している。つまり、実施の形態1に係る暖房給湯システム100では、2つの水回路(熱源側回路A、タンク側回路B)が水-水熱交換器4を介して接続する構成を採用していたが、暖房給湯システム200では、熱源側回路Aとタンク側回路Bとが、三方弁29及び接続点56を介して接続する構成を採用している。
 熱源側回路A及びタンク側回路Bのうち、三方弁29と、コイル熱交71と、接続点56と、を通る水回路が給湯回路として機能する。
 コイル熱交71は、熱媒体が流れる配管をコイル状に巻いて構成され、貯湯タンク6の内部に収容されている。こうすることで、コイル熱交71は、熱媒体(本実施の形態では水)と貯湯タンク6内の湯水とを熱交換させることができ、貯湯タンク6の内部の湯水を加熱するものである。
 また、図9では、貯湯タンク6のタンク壁面の中間位置に、1つの温度センサ203を設置した状態を示しているが、実施の形態1で説明したように、複数の温度センサ203を、貯湯タンク6のタンク壁面に高さ方向にそれぞれ設置するようにしてもよい。
 次に、暖房給湯システム200の運転モードについて図9を参照して説明する。まず、暖房運転モードについて説明する。暖房給湯システム200の暖房運転モードは以下のようにして実施する。
 暖房運転モードでは、制御装置101が、三方弁29を、加熱水ポンプ3と水配管33とを連通するように切り替える。そして、制御装置101は、加熱水ポンプ3を起動する。加熱水ポンプ3が起動すると、流水が開始される。その後、制御装置101は、熱源ユニット301の運転を開始する。
 熱源ユニット301にて加熱された熱媒体(本実施の形態では水)は、水配管1を通過して、加熱水ポンプ3及び三方弁29を通過し、水配管33及び水配管30(水配管30a、水配管30b)を流れ、暖房ユニット303(暖房ユニット303a、暖房ユニット303b)に流れ、室内空気を加熱する。暖房ユニット303で室内空気を加熱した熱媒体は、その後、水配管31(水配管31a、水配管31b)及び水配管5を流れ、熱源ユニット301に流入して、再び加熱される。
 この時、加熱水ポンプ3の回転数は、予め定められている所定の回転数(例えば、最大回転数)に制御部106で固定されている。こうすることで、水配管30及び水配管31を流れる熱媒体の温度差が小さくなり、結果、熱源ユニット301の流入水温を低く抑えることができる。そのため、消費電力を抑えることにもなる。
 次に、給湯運転モードについて説明する。暖房給湯システム200の給湯運転モードは以下のようにして実施する。
 給湯運転モードでは、制御装置101が、三方弁29を、加熱水ポンプ3とコイル熱交71とを連通するように切り替える。そして、制御装置101は、加熱水ポンプ3を起動する。加熱水ポンプ3を起動すると、流水が開始される。その後、制御装置101は、熱源ユニット301の運転を開始する。
 熱源ユニット301にて加熱された熱媒体は、水配管1を通過して、加熱水ポンプ3及び三方弁29を通過し、その後、コイル熱交71にて貯湯タンク6内の水を加熱する。その後、接続点56を経由して水配管5を流れ、熱源ユニット301に流入して再び加熱される。
 この時、加熱水ポンプ3の回転数は、予め定められている所定の回転数(例えば、最大回転数)に制御部106で固定されている。こうすることで、コイル熱交71を通過する水の出入口温度の温度差が小さくなり、結果、熱源ユニット301の流入水温を低く抑えることができる。そのため、消費電力を抑えることにもなる。
 以上の運転動作により、貯湯タンク6内に、お湯が沸き上がっていく。給湯運転モードは、貯湯タンク6内に貯えられたお湯の沸き上げ温度が所定値以上となったら終了となる。
 暖房給湯システム200は、実施の形態1に係る暖房給湯システム100と同様の処理の流れで、給湯運転を実行する。
 そのため、暖房給湯システム200は、外気温度が高く、暖房運転が停止している昼間に給湯運転を行うことかどうかを自動的に判断し、その判断結果に基づいて給湯運転を実行することができる。そのため、全館空調をしている住宅のように24時間温度管理をして暖房ONとなっている場合でも、熱源ユニット301の消費電力を低減することができる。また、暖房サーモOFFのときにも給湯運転を行うことできるので、暖房対象空間における暖房の快適性も損なうことがない。
実施の形態3.
 図10は、本発明の実施の形態3に係る暖房給湯システム300の設置状態の一例を概略的に示す概略図である。図10に基づいて、暖房給湯システム300の機器構成を中心に説明する。この暖房給湯システム300は、実施の形態1に係る暖房給湯システム100と同様に、例えば一般的な住宅に設置され、居住空間の暖房が実行可能であるともに、お湯の生成を行うことができるものである。なお、この実施の形態3では上述した実施の形態1、2との相違点を中心に説明するものとし、実施の形態1、2と同一作用である部分には、同一符号を付して説明を省略するものとする。
<機器構成>
 暖房給湯システム300の回路構成は、実施の形態1に係る暖房給湯システム100の回路構成、または、実施の形態2に係る暖房給湯システム200の回路構成のいずれかと同様である。それに加え、暖房給湯システム300では、ユーザーの在室、不在を検知し、それの情報に基づいて給湯運転の実行を判断するようになっている。
 図10に示すように、暖房給湯システム300は、一般的な住宅500に設置される。そして、熱源ユニット301が住宅500の外部に、切替ユニット302及び暖房ユニット303が住宅500の内部に、それぞれ設置されている。なお、暖房ユニット303aが住宅500の2階の居室502に、暖房ユニット303bが住宅500の1階の居室501に、それぞれ設置されている。図10では、住宅500の居室501にユーザーU1、ユーザーU2が在室しており、住宅500の外部にユーザーU3が存在している状態を図示している。
 また、暖房給湯システム300は、外部端末120及びモバイル端末130と通信可能になっている。
 外部端末120は、居室501に設置され、有線又は無線で暖房給湯システム300と通信可能に接続されている。外部端末120は、給湯リモコン102又は暖房リモコン103との兼用でもよいし、それらと別個のものであってもよい。
 モバイル端末130は、住宅500の内部又は外部にあり、無線で暖房給湯システム300と通信可能に接続されている。図10では、ユーザーU3がモバイル端末130を所有している状態を図示している。なお、モバイル端末130は、外部端末の一種である。
 外部端末120及びモバイル端末130は、暖房ユニット303a、暖房ユニット303bの設置されている部屋におけるユーザー(例えば、ユーザーU1~ユーザーU2)の在室時刻を予め入力可能に構成されている。例えば、昼間は、ユーザーは、会社に行くため住宅500の全体で不在となる。また、夜は、ユーザーは、リビングにいることが多いため居室501が在室、居室502が不在となる。さらに、朝は、ユーザーは、出勤準備及び朝食のため住宅500の全体で在室となる。これらの情報を、ユーザーは、外部端末120又はモバイル端末130を介して予め入力することができる。
 暖房給湯システム300は、外部端末120又はモバイル端末130を介して予め入力されたユーザーの在室情報に基づいて、給湯運転の実行を判断する。具体的には、暖房給湯システム300は、住宅500の全体でユーザーが不在となる場合があると判断すると、その時間帯、暖房OFFして、その間に給湯運転を行う。また、暖房給湯システム300は、ユーザーが在室している居室(例えば、居室501)があるものの、ユーザーが不在となる居室(例えば、居室502)があると判断すると、不在の居室の温度を設定温度よりも低く(例えば2℃低く)して、暖房サーモOFFを発生しやすくする。なお、ユーザーが不在となる居室を暖房OFFとしてもよい。
 このようにすることで、暖房給湯システム300によれば、暖房停止時間を長くすることができ、給湯運転を実施可能な時間を多く設定することができる。
 なお、外部端末120及びモバイル端末130は、上述したように予め入力するタイプでもよいが、各居室に人感センサを搭載し、この人感センサによってユーザーの在室情報を取得してもよい。また、ユーザーU3が所有しているモバイル端末130からユーザーの位置情報(ユーザーの行動パターン)を取得し、在室の有無を取得するようにしてもよい。このようにすることで、ユーザー入力に要する手間を省くことができる。
 図11は、暖房給湯システム300のユーザーの在室情報を加味した運転状態の遷移を概略的に示す概略図である。図11に基づいて、暖房給湯システム300のユーザーの在室情報を加味した運転状態の遷移について説明する。なお、図11では、横軸が時刻を、縦軸がユーザーの在室情報及びモードを、それぞれ示している。また、図11(a)がユーザーの在室情報を示し、図11(b)が暖房給湯システム300の通常負荷時の運転状態の遷移を示している。
 暖房給湯システム300は、平日昼間のユーザー不在時、又は、休日昼間のユーザーが不在となる居室を考慮して、暖房OFFの可能性を高め、給湯運転モードを行うことができるようになっている。
 このようにすることで、暖房給湯システム300は、ユーザーの在室情報を考慮し、外気温度が高く、暖房運転が停止している昼間に給湯運転を行うことかどうかを自動的に判断し、その判断結果に基づいて給湯運転を実行することができる。そのため、暖房給湯システム300によれば、実施の形態1又は実施の形態2に係る暖房給湯システムの奏する効果に加え、更なる消費電力の削減が実現できる。
 なお、暖房停止時間が短く、熱源ユニット301による給湯運転を実施するタイミングがない場合は、ヒーター70により水の加熱運転を行うとよい。つまり、熱源ユニット301による暖房運転を行っている間にヒーター70により貯湯タンク6の水温を夜間沸き上げ温度又は昼間沸き上げ温度まで昇温させる。あるいは、過去の暖房停止時間からその日予定した暖房停止時間を得られないと分かった時点において、ヒーター70により貯湯タンク6の水温を夜間沸き上げ温度又は昼間沸き上げ温度まで昇温させる。
 なお、過去の暖房停止時間からその日予定した暖房停止時間を得られないと分かった時点とは、例えば、昼間に2時間暖房停止時間があると思っていたが、夜間開始6時に対して午後5時の時点で暖房停止時間(つまり給湯運転時間)が1時間しか取れておらず、5時以降に暖房負荷があると分かった時点等を想定している。
 こうすることで、暖房給湯システム300では、暖房の快適性を損なうことなく、湯の生成を行うことが可能となる。
 1 水配管、3 加熱水ポンプ、4 水-水熱交換器、5 水配管、6 貯湯タンク、8 給湯水ポンプ、10 暖房給湯システム、11 入力部、12 入水管、15 出湯管、16 ミキシングバルブ、17 入水管、18 給水管、20 三方弁、29 三方弁、30 水配管、30a 水配管、30b 水配管、31 水配管、31a 水配管、31b 水配管、32 水配管、33 水配管、51 接続口、52 接続点、53 接続口、54 接続口、55 接続口、56 接続点、57 接続口、58 接続口、60 接続口、70 ヒーター、71 コイル熱交、100 暖房給湯システム、101 制御装置、102 給湯リモコン、103 暖房リモコン、103a 暖房リモコン、103b 暖房リモコン、104 測定部、105 演算部、106 制御部、107 通信部、108 記憶部、109 負荷パターン判定部、110 暖房停止時間判定部、111 時計部、112 入力部、113 表示部、114 入力部、115 表示部、120 外部端末、130 モバイル端末、200 暖房給湯システム、201 温度センサ、203 温度センサ、203a 温度センサ、203b 温度センサ、203c 温度センサ、203e 温度センサ、211 温度センサ、212 温度センサ、300 暖房給湯システム、301 熱源ユニット、301a 圧縮機、301b 凝縮器、301c 絞り装置、301d 蒸発器、302 切替ユニット、303 暖房ユニット、303a 暖房ユニット、303b 暖房ユニット、500 住宅、501 居室、502 居室、A 熱源側回路、B タンク側回路、C 暖房側回路、U1 ユーザー、U2 ユーザー、U3 ユーザー。

Claims (12)

  1.  熱媒体を加熱する熱源ユニットを備え、前記熱源ユニットで加熱された熱媒体を給湯回路または暖房側回路に切り替え可能な暖房給湯システムであって、
     過去の前記熱源ユニットの運転時間に基づいて、前記熱源ユニットで加熱された熱媒体を前記暖房側回路に流さない1日のうちの暖房サーモOFFを含む暖房停止時間を設定し、設定した前記暖房停止時間に、前記熱源ユニットで加熱された熱媒体を前記給湯回路に流し、給湯運転を実行する制御装置を備えた
     暖房給湯システム。
  2.  前記制御装置は、
     前記暖房停止時間を、予め定めた昼間の時間に設定し、前記昼間のうちに、前記給湯運転を実行する
     請求項1に記載の暖房給湯システム。
  3.  前記熱源ユニットは圧縮機を備えており、
     前記制御装置は、
     前記圧縮機のOFF時間によって前記暖房停止時間を設定する
     請求項1または2に記載の暖房給湯システム。
  4.  前記給湯運転で沸き上げた湯を貯留する貯湯タンクを備え、
     前記制御装置は、
     過去の給湯負荷パターンから当日の給湯負荷パターンを設定し、設定した前記給湯負荷パターンに対して前記貯湯タンクに貯留した湯の蓄熱量が不足していると判断した場合、前記給湯運転を実行する
     請求項1~3のいずれか一項に記載の暖房給湯システム。
  5.  前記制御装置は、
     設定した前記給湯負荷パターンから、予め定めた夜間の時間の夜間沸き上げ温度を決定し、前記貯湯タンクの水温から決定される沸き上げ温度が前記夜間沸き上げ温度以上でない場合に前記給湯運転を実行する
     請求項4に記載の暖房給湯システム。
  6.  前記制御装置は、
     前記熱源ユニットで加熱された熱媒体を前記暖房側回路に流しているときに前記給湯運転を実行する場合、
     前記熱源ユニットの運転を継続したまま、前記熱源ユニットで加熱された熱媒体を前記給湯回路に流し、前記給湯運転を実行する
     請求項1~5のいずれか一項に記載の暖房給湯システム。
  7.  前記制御装置は、
     前記熱源ユニットで加熱された熱媒体を前記給湯回路に流しているときに前記暖房側回路に前記熱源ユニットで加熱された熱媒体を流す場合、
     前記熱源ユニットの加熱量を現時点の加熱量よりも低くしてから、前記暖房側回路に前記熱源ユニットで加熱された熱媒体を流す
     請求項1~6のいずれか一項に記載の暖房給湯システム。
  8.  前記熱源ユニットに前記圧縮機を備えたものにおいて、
     前記制御装置は、
     前記圧縮機の運転周波数を低くすることで前記加熱量を低くする
     請求項3に従属する請求項7に記載の暖房給湯システム。
  9.  前記暖房側回路に暖房ユニットと、
     前記暖房ユニットが設置されている暖房対象空間におけるユーザーの在室情報を入力可能な外部端末と、を備え、
     前記制御装置は、
     前記外部端末から入力されたユーザーの在室情報から、前記暖房停止時間を長くする
     請求項1~8のいずれか一項に記載の暖房給湯システム。
  10.  前記制御装置は、
     前記外部端末から入力されたユーザーの在室情報から前記暖房ユニットの設定温度をユーザーにより入力された値よりも低く自動設定し、前記暖房停止時間を長くする
     請求項9に記載の暖房給湯システム。
  11.  前記外部端末は、
     ユーザーの行動パターンが入力可能になっており、
     前記制御装置は、
     ユーザーの前記行動パターンから、ユーザーの在室の有無を取得する
     請求項9または10に記載の暖房給湯システム。
  12.  前記貯湯タンクに貯留される湯を加熱するヒーターを備え、
     前記制御装置は、
     前記熱源ユニットによる前記給湯運転を実施するタイミングがないと判断した場合は
     前記ヒーターによって前記貯湯タンクに貯留される湯を加熱するとともに、前記熱源ユニットで加熱された熱媒体を前記暖房側回路に流す
     請求項4、請求項4に従属する請求項5~11のいずれか一項に記載の暖房給湯システム。
PCT/JP2014/065261 2014-06-09 2014-06-09 暖房給湯システム WO2015189900A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/065261 WO2015189900A1 (ja) 2014-06-09 2014-06-09 暖房給湯システム
GB1619991.1A GB2540518B (en) 2014-06-09 2014-06-09 Heating and hot water supply system
JP2016527518A JP6067189B2 (ja) 2014-06-09 2014-06-09 暖房給湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/065261 WO2015189900A1 (ja) 2014-06-09 2014-06-09 暖房給湯システム

Publications (1)

Publication Number Publication Date
WO2015189900A1 true WO2015189900A1 (ja) 2015-12-17

Family

ID=54833032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065261 WO2015189900A1 (ja) 2014-06-09 2014-06-09 暖房給湯システム

Country Status (3)

Country Link
JP (1) JP6067189B2 (ja)
GB (1) GB2540518B (ja)
WO (1) WO2015189900A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021002003A1 (ja) * 2019-07-04 2021-01-07 三菱電機株式会社 給湯システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061781A (ja) * 2003-08-19 2005-03-10 Noritz Corp システムの運転予約制御方法
JP2006090703A (ja) * 2005-12-02 2006-04-06 Hitachi Home & Life Solutions Inc ヒートポンプ式給湯暖房機
JP2006153385A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 温水暖房装置
JP2006275343A (ja) * 2005-03-28 2006-10-12 Toshiba Kyaria Kk 給湯暖房機
JP2010203633A (ja) * 2009-02-27 2010-09-16 Daikin Ind Ltd 貯湯式給湯装置
JP2013224791A (ja) * 2012-04-20 2013-10-31 Rinnai Corp ヒートポンプ熱源システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5058289B2 (ja) * 2010-04-14 2012-10-24 三菱電機株式会社 沸上制御システム、沸上制御方法及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061781A (ja) * 2003-08-19 2005-03-10 Noritz Corp システムの運転予約制御方法
JP2006153385A (ja) * 2004-11-30 2006-06-15 Sanyo Electric Co Ltd 温水暖房装置
JP2006275343A (ja) * 2005-03-28 2006-10-12 Toshiba Kyaria Kk 給湯暖房機
JP2006090703A (ja) * 2005-12-02 2006-04-06 Hitachi Home & Life Solutions Inc ヒートポンプ式給湯暖房機
JP2010203633A (ja) * 2009-02-27 2010-09-16 Daikin Ind Ltd 貯湯式給湯装置
JP2013224791A (ja) * 2012-04-20 2013-10-31 Rinnai Corp ヒートポンプ熱源システム

Also Published As

Publication number Publication date
JPWO2015189900A1 (ja) 2017-04-20
GB2540518B (en) 2019-10-30
JP6067189B2 (ja) 2017-01-25
GB2540518A (en) 2017-01-18
GB201619991D0 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
US10697648B2 (en) Heating and hot water supply system
JP5858062B2 (ja) 空気調和システム
JP6636048B2 (ja) 空気調和装置
JP6097933B2 (ja) 貯湯式給湯装置
WO2014002133A1 (ja) ヒートポンプ式給湯暖房システム
JP2009250481A (ja) 給湯暖房システム
US11525599B2 (en) Controller of air conditioning apparatus, outdoor unit, relay unit, heat source unit, and air conditioning apparatus
JP2015145758A (ja) 空気調和システム
EP3032179A1 (en) Hot water-type heating device
JP7151442B2 (ja) ヒートポンプ給湯機
JP6067189B2 (ja) 暖房給湯システム
KR101583022B1 (ko) 각방 난방 시스템에서 효율적인 각방 난방온도 제어방법
EP3995753B1 (en) Hot water supply system
JP7279350B2 (ja) ヒートポンプ給湯機
JP2015190631A (ja) ヒートポンプ式給湯機、およびヒートポンプ式給湯機の制御方法
US11143429B2 (en) Control device for HVAC fan coil units
WO2017046853A1 (ja) 空気調和装置および空気調和制御方法
JP7251499B2 (ja) ヒートポンプ給湯機
JP7226062B2 (ja) ヒートポンプ給湯機
JP7135811B2 (ja) ヒートポンプ給湯機
JP2009287872A (ja) 暖房システム及び暖房給湯システム
JP7514423B2 (ja) ヒートポンプ式給湯装置
EP3091293B1 (en) Heating device
JP2021162287A (ja) ヒートポンプ給湯機
JPWO2017081764A1 (ja) 熱媒体循環システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016527518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201619991

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20140609

WWE Wipo information: entry into national phase

Ref document number: 1619991.1

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14894236

Country of ref document: EP

Kind code of ref document: A1