WO2015188752A1 - 新型的热保护压敏电阻及浪涌保护器 - Google Patents

新型的热保护压敏电阻及浪涌保护器 Download PDF

Info

Publication number
WO2015188752A1
WO2015188752A1 PCT/CN2015/081185 CN2015081185W WO2015188752A1 WO 2015188752 A1 WO2015188752 A1 WO 2015188752A1 CN 2015081185 W CN2015081185 W CN 2015081185W WO 2015188752 A1 WO2015188752 A1 WO 2015188752A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
varistor
tco
thermal protection
low melting
Prior art date
Application number
PCT/CN2015/081185
Other languages
English (en)
French (fr)
Inventor
徐忠厚
Original Assignee
厦门赛尔特电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201420306127.1U external-priority patent/CN203950625U/zh
Priority claimed from CN201520376567.9U external-priority patent/CN204695887U/zh
Application filed by 厦门赛尔特电子有限公司 filed Critical 厦门赛尔特电子有限公司
Publication of WO2015188752A1 publication Critical patent/WO2015188752A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the present application relates to a surge protector, and more particularly to a novel thermal protection varistor, a surge protector, a thermal protection varistor and a thermal protection varistor combination component.
  • Varistors are widely used as the most cost-effective surge protection devices in low-voltage power distribution systems.
  • the varistor belongs to a semiconductor device, in use, with the consumption of its own resources, there must be deterioration failure, and the leakage current flowing through the varistor increases, and the current flowing through the varistor causes the varistor
  • the heat accumulation on the varistor will increase the temperature of the varistor body.
  • the leakage current will further increase, forming a vicious cycle, eventually causing the varistor to melt and break down, forming an electrical short circuit.
  • thermal protection varistor with thermal protection device utilizes the heat generated by the varistor during the deterioration to cause the thermal protection device to operate, and the varistor is detached from the circuit, which can effectively reduce the probability of electrical short circuit caused by the varistor failure. .
  • a common method is to protect the overheating phenomenon of the varistor during the slow deterioration process by soldering the temperature fuse (TCO) pin to the varistor (MOV) electrode and sealing it in the cavity.
  • the varistor and the thermal fuse are connected in series and connected to different lines in the power distribution system.
  • the varistor has obvious nonlinear characteristics, which can bleed the surge current and limit the amplitude of the overvoltage to protect the electrical equipment.
  • the thermal fuse has the characteristic of breaking at a certain temperature, and the ambient temperature does not reach its temperature. At the operating temperature, the temperature fuse is a good conductor. When the ambient temperature reaches or exceeds its operating temperature, the temperature fuse is in an open state, and the varistor is detached from the line.
  • the method is slightly insufficient when the varistor is subjected to temporary overvoltage.
  • the rated operating temperature of the thermal fuse is usually selected at 125-135 ° C, and the upper limit operating temperature of the thermal protection varistor is only 85 ° C.
  • the present application provides a novel thermal protection varistor that overcomes the deficiencies described in the background.
  • a new type of thermal protection varistor that includes:
  • the varistor comprises a varistor substrate and a first MOV metal electrode capable of conducting heat conduction and a second MOV metal electrode, wherein both surfaces of the varistor substrate are provided with a conductive electrode, the first MOV metal The electrode and the second MOV metal electrode are respectively soldered and electrically connected to the two conductive electrodes;
  • An alloy type temperature fuse comprising a housing, a first TCO electrode, a second TCO electrode, and a low melting point alloy wire soldered and electrically connected between the first TCO electrode and the second TCO electrode, the The two MOV metal electrodes and the first TCO electrode are the same electrode, and the first TCO electrode, the second TCO electrode, and the low melting point alloy wire are respectively attached together through the casing.
  • the body of the second MOV metal electrode has a raised portion, and the raised portion becomes the first TCO electrode.
  • the body edge of the second MOV metal electrode has an outwardly extending portion, the outwardly extending portion becoming the first TCO electrode.
  • the second MOV metal electrode and the first TCO electrode are connected by soldering or crimping, and are formed integrally.
  • the housing is provided with a through hole, and the portion of the second MOV metal electrode is lifted from The through hole is externally passed through, and one end of the low melting point alloy wire is welded to the raised portion.
  • the housing is a single-sided opening, and an outwardly extending portion of the second MOV metal electrode extends into the housing through the opening and is fastened to the housing, the low One end of the melting point alloy wire is welded to the outwardly extending portion.
  • the alloy type thermal fuse further includes a fluxing aid and a sealing resin, the fluxing agent wrapping the low melting point alloy wire, and the sealing resin and the casing form a closed cavity and are fixed The first TCO electrode and the second TCO electrode, the sealed cavity accommodates the low melting point alloy wire wrapped by the fluxing agent.
  • a portion of the first TCO electrode, the second TCO electrode, and the low melting point alloy wire inside the housing is between the first TCO electrode and the second TCO electrode
  • the center plane is rotationally symmetrical.
  • the housing is internally provided with at least one rib configured to isolate the low melting point alloy wires.
  • a surge protector based on the novel thermal protection varistor described in one of the schemes, comprising three thermal protection varistor units, a mounting housing, a gas discharge tube, a first lead, and a second lead a foot and a connecting member, the thermal protection varistor unit comprising a novel thermal protection varistor or at least two novel thermal protection varistor connected in parallel, the three thermal protection varistor
  • the unit is respectively connected by the first MOV metal electrode and the second TCO electrode, and forms a closed annular structure, wherein the three two-two junctions are respectively connected to the first pin,
  • the second pin is electrically connected to the connecting member, the gas discharge tube is connected to the connecting member at one end, the other end of the gas discharge tube is electrically connected to a third pin, and the thermal protection varistor unit and the
  • the gas discharge tubes are all mounted in the mounting housing, and the first pin and the second pin extend beyond the mounting housing and are respectively connected to the neutral line and the live line of the single-phase system.
  • the third pin extends beyond the attachment housing and is connected
  • the three thermal protection varistor units are spatially arranged in a “ ⁇ ” shape, or in an “H” layout, or in a stacked configuration.
  • the novel thermal protection varistor comprises a varistor (MOV) and an alloy type temperature fuse (TCO), the varistor comprises a varistor substrate and a first MOV metal electrode capable of conducting heat conduction, a second MOV
  • the metal electrode, the alloy type thermal fuse includes a casing, a first TCO electrode, a second TCO electrode, and a low melting alloy wire welded to the first and second TCO electrodes, and the second MOV metal electrode and the first TCO electrode are The same body electrode, the first TCO electrode, the second TCO electrode and the low melting point alloy wire are respectively attached together through the casing.
  • the above method shortens the heat conduction path of the varistor and the temperature fuse, more fully utilizes the heat of the varistor, realizes the rapid melting of the temperature fuse at a lower temperature, makes the varistor out of the loop, and is shorter in a shorter time.
  • the breaking of the current improves the reliability of the thermal protection of the thermal fuse, thereby improving the safety of the varistor.
  • the body of the second MOV metal electrode has a raised portion, and the raised portion becomes the first TCO electrode.
  • the second MOV metal electrode body edge has an outwardly extending portion, and the outwardly extending portion becomes the first TCO electrode.
  • the second MOV metal electrode and the first TCO electrode are connected by welding or crimping to form a whole.
  • the electrical conduction distance between the low melting point alloy wire and the varistor is shortened, and the thermal impedance between the low melting point alloy wire and the varistor is reduced, and the heat generated when the varistor fails is conducted to the shortest possible time.
  • the low melting point alloy wire is blown in the shortest time, and the varistor is detached from the circuit.
  • the portion of the second MOV metal electrode body that is lifted in the middle becomes the first TCO electrode; the housing is provided with a through hole, the raised portion passes through the through hole from the outside to the inside, and the low melting point alloy wire is attached in the housing, and It is electrically connected to the raised portion in the housing, and has a compact structure and a reduced volume.
  • the first TCO electrode, the second TCO electrode, and the low melting point alloy wire in the interior of the housing are first The center plane between the TCO electrode and the second TCO electrode is rotationally symmetric.
  • the first TCO electrode and the second TCO electrode are designed as a rotationally symmetric structure such that the distribution parameters of the plurality of parallel connected low melting point alloy wires in each of the electrical branches are close to each other, so that the waves flowing through each of the low melting point alloy wires The magnitude of the inrush current is close.
  • the low-melting alloy wire requires the smallest cross-sectional area, which makes the TCO have a larger flow capacity.
  • the distribution parameters for each branch in parallel are determined by the shape, length, and cross-sectional area of the low melting point alloy wire and the electrode. Therefore, to ensure that the various materials of each branch are consistent, the shape and the like are relatively consistent, the distribution parameters of each branch can be ensured to be close.
  • the housing is provided with at least one rib configured to isolate the low melting point alloy wire.
  • the ribs separate two adjacent low-melting alloy wires on both sides of the rib to prevent a certain low-melting alloy wire from being connected to other low-melting alloy wires during melting, resulting in insufficient safety distance, which causes the temperature protection action to fail.
  • the surge protector comprises three thermal protection varistor units, a mounting housing, a gas discharge tube, a first pin, a second pin and a connecting piece
  • the thermal protection varistor unit comprises a novel type Thermal protection varistor or at least two novel thermal protection varistor connected in parallel
  • three thermal protection varistor units are respectively connected by the first MOV metal electrode and the second TCO electrode, and form a closed a ring structure
  • three two-two junctions are respectively electrically connected to the first pin, the second pin and the connecting member
  • one end of the gas discharge tube is connected to the connecting member
  • the other end of the gas discharge tube is electrically connected to a third pin
  • the thermal protection varistor unit and the gas discharge tube are all mounted in the mounting housing, and the first pin and the second pin extend beyond the mounting housing and are respectively connected to the neutral line and the live line of the single-phase system, and the third The pins extend beyond the mounting housing and are connected to the ground via a gas discharge tube.
  • the structure's surge protector has a small volume and a higher fault
  • the time required for the thermal fuse to open the circuit when the varistor is abnormally heated is shortened, the effectiveness of the thermal protection function of the thermal fuse is improved, and the safety of the varistor is improved.
  • the rated operating temperature of the high-temperature fuse is used for the purpose of increasing the upper limit temperature.
  • a thermal protection varistor includes: a varistor, an alloy type thermal fuse, an auxiliary heat conduction path, and an external lead electrode.
  • the varistor comprises a varistor substrate and a first MOV metal electrode capable of thermally conducting, a second MOV metal, a first conductive electrode and a second conductive electrode, the first conductive electrode and the second The conductive electrodes are respectively located on two surfaces of the varistor substrate, and the first MOV metal electrode and the second MOV metal electrode are respectively soldered and electrically connected to the first conductive electrode and the second conductive An electrode, the varistor is encapsulated by an insulating material;
  • An alloy type thermal fuse comprising a casing, a first TCO electrode, a second TCO electrode, and a low melting point alloy wire welded and electrically connected between the first TCO electrode and the second TCO electrode, the second The MOV metal electrode and the first TCO electrode are the same electrode, and the first TCO electrode, the second TCO electrode, and the low melting point alloy wire are both located in the housing and are attached by the housing
  • the alloy type temperature fuse further includes a fluxing aid and a sealing resin, the fluxing agent wrapping the low melting point alloy wire, the sealing resin and the casing forming a closed cavity and fixing a TCO electrode, The sealed cavity houses the low melting point alloy wire wrapped by the fluxing agent;
  • the auxiliary heat conduction path includes an insulating heat conductive member and the auxiliary heat conduction electrode, the auxiliary heat conduction electrode is in close contact with the first MOV metal electrode through the insulating heat conduction member, and the auxiliary heat conduction electrode and the second TCO electrode are
  • the integral electrode is connected by welding or crimping, and is formed into a whole;
  • the outer lead electrode includes a first outer lead electrode and a second outer lead electrode, the first outer lead electrode is connected to the second TCO electrode, and the second outer lead electrode is connected to the first MOV metal electrode.
  • the insulating and thermally conductive member is made of an insulating material having a high thermal conductivity, and may be an aluminum nitride ceramic, or an alumina ceramic, or a silicon nitride, or a thermally conductive silicone rubber.
  • first outer lead electrode and the second outer lead electrode are integrated electrodes or welded Connected or crimped, and formed integrally, wherein the first outer lead electrode and the second TCO electrode are preferentially connected by crimping to reduce heat dissipation to the outer lead electrode and its connecting object.
  • the second outer lead electrode and the first MOV electrode are integrated electrodes or are connected by soldering or crimping, and are integrally formed, wherein the second outer lead electrode and the first electrode
  • the MOV electrodes are preferably connected by crimping to reduce heat dissipation to the outer lead electrodes and their connected objects.
  • the thermal protection varistor may further comprise a protective housing system, the housing protection system comprising a housing and a lower cover.
  • a composite component of a thermally protected varistor comprising at least two of the above described thermally protected varistor, the at least two thermally protected varistor being connected in parallel.
  • the at least two thermally protected varistor are separated by an insulating member.
  • the thermally protected varistor assembly further includes a protective casing system including a casing and a lower cover.
  • the technical solution has the following advantages:
  • the present invention effectively improves the utilization of heat generated by current-induced varistor in the process of varistor degradation.
  • the rated operating temperature of the thermal fuse can be raised to between 145 ° C and 200 ° C, thereby allowing heat
  • the upper limit of the operating temperature of the protection varistor is increased above 85 ° C, and even reaches 125 ° C, in order to better protect communication equipment in the communication industry with internal temperatures up to 90 ° C.
  • the present application can make the temperature The operating time of the fuse is further shortened, and the time during which the varistor is in a degraded state is reduced, the probability of breakdown of the varistor short circuit is further reduced, and the risk of ignition is reduced.
  • This application changes the design of TCO for thermal protection of varistor, including: designing heat conduction optimization, shortening the heat conduction path, and reducing thermal impedance; designing the TCO electrode as a rotationally symmetric structure, resulting in low melting point of multiple parallel structures
  • the distribution parameters of the alloy wire in each electrical branch are close, thus making the flow
  • the surge current amplitude of each low-melting alloy wire is close, and the cross-sectional area required for the low-melting alloy wire is minimum when the same surge current tolerance is satisfied; the isolated rib is designed in the middle of the TCO shell.
  • Each low melting point alloy wire is isolated to form a relatively independent space, so as to avoid mutual interference of a plurality of low melting point alloy wires in the fusing process.
  • thermal protection device formed by these designs can achieve faster detachment at lower temperatures (usually not exceeding 160 ° C) and achieve higher current breaking in a shorter time, further improving
  • the safety of thermal protection varistor and the reliability of thermal protection the surge protector designed with such thermal protection varistor has a safer fault current withstand capability.
  • the present application also adds a heat transfer path between the second electrode of the thermal fuse and the varistor, so that the heat generated when the varistor is deteriorated can be fully utilized.
  • Figure 1a shows a schematic diagram of a novel thermal protection varistor
  • FIG. 1b shows one of the schematic diagrams of the surge protector
  • Figure 1c shows a schematic diagram of the surge protector
  • FIG. 2 is an exploded view of an embodiment of a novel thermal protection varistor according to the first embodiment
  • FIG. 3 is a schematic view showing an assembly of an embodiment of a novel thermal protection varistor according to the first embodiment
  • FIG. 4 is a second assembly diagram of an embodiment of a novel thermal protection varistor according to the first embodiment
  • FIG. 5 is a third assembly diagram of an embodiment of a novel thermal protection varistor according to the first embodiment
  • FIG. 6 is a diagram showing an explosion diagram of an embodiment of the surge protector of the second embodiment
  • FIG. 7 is an assembled view of an embodiment of a surge protector according to Embodiment 2;
  • FIG. 8 is a second exploded view of a surge protector according to the second embodiment
  • Figure 9 shows a schematic diagram of a first embodiment of a thermally protected varistor
  • Figure 10 is a schematic view showing a second embodiment and a third embodiment of the thermal protection varistor
  • Figure 11 shows a front perspective view of a first embodiment of a thermally protected varistor
  • Figure 12 is a rear perspective view showing the thermal protection varistor shown in Figure 9;
  • Figure 13 is a schematic view showing the assembly of a second embodiment of a thermally protected varistor assembly
  • Figure 14 is a partial exploded view showing the thermally protected varistor assembly of Figure 11;
  • Figure 15 is a schematic view showing the assembly of a third embodiment of a thermally protected varistor assembly
  • Figure 16 shows a partial exploded view of the thermally protected varistor combination element shown in Figure 13.
  • Embodiment 1 Please refer to FIG. 1a and FIG. 2 to FIG. 5, a novel thermal protection varistor, which may include:
  • the varistor 1 may include a varistor substrate 11 and a first MOV metal electrode 12 and a second MOV metal electrode 13 capable of conducting heat conduction.
  • the surface of the varistor substrate is provided with a conductive electrode 14, first The MOV metal electrode 12 and the second MOV metal electrode 13 are respectively soldered and electrically connected to the two conductive electrodes 14;
  • the alloy type thermal fuse 2 may include a casing 21, a first TCO electrode 24, a second TCO electrode 22, and a low melting point alloy wire 23 welded and electrically connected between the first TCO electrode 24 and the second TCO electrode 22.
  • the second MOV metal electrode 13 and the first TCO electrode 24 are the same body electrode, and the low melting point alloy wire 23 is directly electrically connected to the second MOV metal electrode 13 of the varistor 1, the first TCO electrode 24, the second TCO electrode 22, and The low melting point alloy wires 23 are respectively attached together by the casing 21.
  • the first TCO electrode 24 may be a raised portion 131 formed by press bending in the middle of the second MOV metal electrode 13.
  • the housing 21 may be provided with a through hole 211.
  • the raised portion 131 passes through the through hole 211 from the outside to the inside.
  • the low melting point alloy wire 23 is attached to the housing 21, and one end of the low melting point alloy wire 23 is welded and electrically connected. Part 131.
  • the first TCO electrode 24 may be an outwardly extending portion 132 formed by an outward extension of the body edge of the second MOV metal electrode 13.
  • the housing 21 is a single-sided opening.
  • the outwardly extending portion 132 extends into the housing 21 through the opening and is fastened to the housing 21, and the low melting point alloy wire 23 is attached to the housing 21, and one end of the low melting point alloy wire 23 is welded and electrically connected to the outwardly extending portion 132.
  • the second MOV metal electrode 13 may be connected to the first TCO electrode 24 by soldering or crimping, and formed integrally.
  • the manner of forming the first TCO electrode 24 and the manner of connecting the first TCO electrode 24 and the second MOV metal electrode 13 in the first, second, and third preferred embodiments shorten the low melting point alloy wire 23 and the varistor 1
  • the electrical conduction distance between the low melting point alloy wire 23 and the varistor 1 is reduced, so that the heat generated by the varistor 1 in the event of failure is conducted to the low melting point alloy wire 23 in the shortest possible time.
  • the low melting point alloy wire 23 is blown in the shortest time to detach the varistor 1 from the circuit.
  • the thermal impedance between the varistor 1 and the low melting point alloy wire 23 is large, there is a large temperature difference between the varistor 1 and the low melting point alloy wire 23, so that the temperature actually felt by the low melting point alloy wire 23 is reached.
  • the melting temperature of the low melting point alloy wire 23 becomes longer, for example, when the thermal impedance is particularly large, the varistor 1 fails to ignite and burn before the melting action of the low melting point alloy wire 23 due to excessive temperature difference. This causes the thermal fuse 2 to lose its function of protecting the varistor 1.
  • a portion of the first TCO electrode 24, the second TCO electrode 22, and the low melting point alloy wire 23 inside the casing 21 may be rotationally symmetric with respect to a center plane between the first TCO electrode 24 and the second TCO electrode 22.
  • the first TCO electrode 24 and the second TCO electrode 22 are designed to have a rotationally symmetrical structure, so that a plurality of parallel connected low melting
  • the distribution parameters of the spot alloy wire 23 in each of the electrical branches are close to each other, so that the magnitude of the surge current flowing through each of the low melting point alloy wires 23 is close, and the low melting point alloy is satisfied when the same surge current withstand request is satisfied.
  • the wire 23 requires a minimum cross-sectional area to allow the TCO to have a greater flow capacity.
  • the distribution parameters of each branch in parallel are determined by the shape, length and cross-sectional area of the low melting point alloy wire 23 and the electrode. Therefore, to ensure that the various materials of each branch are consistent, the shape and the like are relatively consistent, the distribution parameters of each branch can be ensured to be close.
  • the housing 21 may be internally provided with at least one rib 212 configured to space the low melting point alloy wire 23 apart.
  • the rib 212 separates two adjacent low melting point alloy wires 23 on both sides of the rib 212 to prevent a certain low melting point alloy wire 23 from being joined to other low melting point alloy wires 23 during melting, resulting in insufficient safety distance. The temperature protection action failed.
  • the alloy type thermal fuse 2 may further include a fluxing aid and a sealing resin, the fluxing agent encloses the low melting point gold wire 23, the sealing resin and the casing 21 form a closed cavity and fix the first TCO electrode 24 and the second TCO electrode 22 The closed cavity accommodates the low melting point alloy wire 23 wrapped by the fluxing agent.
  • the sealing resin may be a commercially available high temperature resin.
  • the novel thermal protection varistor may further include an insulative housing 3, and the thermal fuse 2 and the varistor 1 fixedly mounted together by the housing 21 are respectively mounted in the insulative housing 3, and the first MOV metal electrode 12 And the second TCO electrode 22 extends beyond the insulative housing 3.
  • the novel thermal protection varistor structure is small in size, securely attached, and easy to install.
  • the second TCO electrode 22 may be provided with a plurality of small holes 221 near the end of the low melting point alloy wire 23.
  • the varistor 1 rapidly generates heat during the deterioration process from the second MOV metal electrode 13 to the low melting point alloy wire.
  • 23 is conducted and conducted by the second TCO electrode 22 to an object such as a circuit board connected thereto; if the second TCO electrode 22 is provided with a plurality of small holes 221, the second TCO electrode 22 is connected to a circuit board connected thereto, etc.
  • the heat conducted by the object is hindered, and the heat of the low melting point alloy wire 23 is rapidly accumulated, resulting in a low melting point.
  • the alloy wire 23 reaches the melting point temperature and acts early.
  • the number of the low melting point alloy wires 23 can be arranged within 1-10. Similarly, the length can also be selected within 2-20 mm, and the melting point can be 60-250 ° C.
  • the nominal varistor voltage produced in the manner of this embodiment is 470V; the new type of thermal protection varistor with a nominal discharge current of 10kA includes two columnar low melting point alloys having a diameter of 1.2 mm and a length of 5 mm. Wire 23. It compares with the same specification products produced in the current way under the test conditions of open circuit voltage 800V and short circuit current 20A, and the test data of the two products are shown in Table 1.
  • the novel thermal protection varistor produced in the manner of the present embodiment is under the same test conditions as the current specification of the product of the same specification, and the new thermal protection varistor is broken.
  • the opening time is shortened by more than half, the performance is obviously improved, and the temperature fuse 2 is quickly blown at a lower temperature, the varistor 1 is disconnected from the circuit, and the breaking of the large current in a shorter time improves the reliability of the thermal protection of the thermal fuse 2 Sex, thereby improving the safety of the varistor 1.
  • Embodiment 2 Please refer to FIG. 1b, FIG. 1c, FIG. 6, FIG. 7 and FIG. 8, a surge protector, which may include three thermal protection varistor units 10, a mounting housing 20, and a gas discharge tube 30. a first pin 40, a second pin 50 and a connector 60, the thermal protection varistor unit 10 may comprise a novel thermal protection varistor or at least two novel thermal protection pressure sensitive connections connected in parallel Resistance, three thermal protection varistor The units 10 are each connected by their respective first MOV metal electrodes 12 and second TCO electrodes 22 and form a closed annular structure. The three two-two junctions are respectively electrically connected to the first pin 40, the second pin 50 and the connecting member 60.
  • One end of the gas discharge tube 30 is connected to the connecting member 60, and the other end of the gas discharging tube 30 is electrically connected to a third lead.
  • the foot 70, the thermal protection varistor unit 10, and the gas discharge tube 30 are all mounted in the mounting housing 20, and the first pin 40 and the second pin 50 extend beyond the mounting housing 20 and are respectively connected to each other.
  • the neutral and the live line of the phase system, the third pin 70 extends out of the housing 20 through the gas discharge tube 30 and connects to the ground of the single phase system.
  • the three two-two junctions are electrically connected through the first pin 40, the second pin 50 and the connecting member 60, thereby avoiding an electrical short circuit caused by the molten material during the failure of the varistor 1, thereby improving safety performance.
  • the structure of the surge protector has a smaller volume and has higher fault current withstand capability because multiple TCOs in a surge protector cannot be fully operated at the same time.
  • the TCO limits the voltage to When it is low, the first action TCO will easily break the current, and when the last TCO will be disconnected, the low melting point alloy wire 23 itself will heat up due to the accumulation of heat over a period of time. easily.
  • a surge protector that needs to meet the 60kA lightning surge test can be implemented by the following schemes.
  • the first scheme uses three new thermal protection varistor units 10 in parallel design (ie, the above scheme), a single new type of thermal protection.
  • the varistor unit 10 has a surge withstand capability of 25kA and three TCOs with a rated operating current of 15A.
  • Option 2 uses a new thermal protection varistor unit 10 with a surge withstand capability of 60kA and TCO rated operation.
  • the current is 40A.
  • the technical solution of the surge protector only enumerates the full-mode protection scheme of the single-phase system.
  • the same varistor protection unit forms a full-mode, common-mode and differential-mode protection scheme for three-phase systems, which are not listed here.
  • thermal protection varistor units 10 may be spatially arranged in a " ⁇ " shape or in an "H" layout;
  • the three novel thermal protection varistor units 10 can be stacked in a space, thereby effectively improving product performance and reducing the board area when the product is installed.
  • the thermal protection varistor may comprise a varistor 1' and an alloy type thermal fuse 2', the varistor 1' and the alloy type thermal fuse 2' are connected in series Between different lines in the distribution system.
  • the varistor 1' has obvious nonlinear characteristics, which can bleed the surge current and limit the amplitude of the overvoltage to protect the electrical equipment.
  • the alloy type thermal fuse 2' has the characteristic of breaking at a certain temperature. When the ambient temperature does not reach the operating temperature of the alloy type thermal fuse 2', the alloy type thermal fuse 2' is a good conductor.
  • the alloy type temperature When the ambient temperature reaches or exceeds the operating temperature of the alloy type thermal fuse 2', the alloy type temperature The fuse 2' is in an open state, and the varistor 1' is detached from the line.
  • the leakage current flowing through the varistor 1' increases as its own resources are consumed, and the current flowing through the varistor 1' causes it to heat up when the varistor 1
  • the accumulation of heat on the 'thermistor 1' body temperature rises, as the temperature rises, the leakage current will further increase, forming a vicious circle.
  • the temperature on the varistor 1' is transmitted to the alloy type thermal fuse 2', the temperature of the alloy type is maintained when the temperature reaches or exceeds the operating temperature of the alloy type thermal fuse 2'.
  • the dangerous wire 2' is in an open state, and the varistor 1' is detached from the line.
  • the thermal protection varistor may include:
  • the varistor 1 ′ may include a varistor substrate 11 ′ and a first MOV metal electrode 12 ′ having a thermally conductive material, a second MOV metal electrode 13 ′, a first MOV metal electrode 12 ′, and a second MOV metal electrode.
  • 13' can usually be made of non-ferrous metals with a certain thickness, such as copper, copper alloy, aluminum or aluminum alloy, or it can be coated (or plated, sintered, etc.) with a certain thickness (usually greater than 0.1mm). Electrodes of metal materials, etc. Thus, these metal electrodes are both good conductors of heat and good conductors of electricity.
  • Both surfaces of the varistor substrate 11' are provided with conductive electrodes 14', a first MOV metal electrode 12' and a second MOV metal electrode 13'. Soldering and electrically connecting the two conductive electrodes 14', respectively, the varistor 1' may be encapsulated by an insulating material;
  • the alloy type temperature fuse 2' may include a housing 21', a first TCO electrode 24', a second TCO electrode 22', and a low melting point alloy wire 23', wherein the low melting point alloy wire 23' is welded to the first TCO electrode 24 Between the second TCO electrode 22', the second MOV metal electrode 13' and the first TCO electrode 24' may be an integral electrode, and the low melting point alloy wire 23' is electrically connected to the second MOV metal electrode 13' of the varistor 1. There is no other connection between the low melting point alloy wire 23' and the second MOV metal electrode 13' of the varistor 1;
  • the first TCO electrode 24', the second TCO electrode 22' and the low melting point alloy wire 23' may be attached together by a housing 21', and the alloy type thermal fuse 2' may further include a fluxing aid and a sealing resin to assist the fuse
  • the agent encapsulates the low melting point alloy wire 23', and the fluxing agent reduces the interfacial tension between the low melting point alloy wire 23' in a molten state, thereby increasing the surface tension of the molten alloy, causing the molten alloy to rapidly shrink and reach the break.
  • the fusible aid is organic.
  • the sealing resin and the housing 21' form a sealed cavity and fix the TCO electrode, and the sealed cavity accommodates the low melting point alloy wire 23' wrapped by the fluxing agent;
  • the auxiliary heat conduction path 3' may include an insulating heat conducting member 31' and an auxiliary heat conducting electrode 32', which are insulated
  • the heat conducting member 31' may be made of one or a combination of two or more of the foregoing materials, such as a heat conductive silicone rubber or a silicon nitride ceramic or an alumina ceramic or a thermally conductive epoxy resin, and the insulating heat conducting member 31' is tightly fitted over the auxiliary heat conducting electrode 32.
  • the auxiliary thermal conductive electrode 32' and the second TCO electrode 22' are the same body electrode; the outer portion of the insulating and thermally conductive member 31' is in close contact with the extension portion 121' of the first MOV metal electrode 12';
  • the outer lead electrode 4' may include a first outer lead electrode 41' and a second outer lead electrode 42'.
  • the first outer lead electrode 41' and the second outer lead electrode 41' are soldered to form an electrical path, and the second outer lead electrode 42 'The epitaxial portion 121' of the first MOV metal electrode 12' is soldered to form an electrical path.
  • a composite component of a novel thermal protection varistor includes: a parallel thermal protection varistor component A and a thermal protection varistor component B, and an auxiliary heat conduction path 3 ', the outer lead electrode 4' and the protective casing system 5' and the insulating mat 53'.
  • the thermal protection varistor assembly A can include:
  • the varistor A-1 may include a varistor substrate A-11 and a first MOV metal electrode A-12 having a thermally conductive material, a second MOV metal electrode A-13, and a first MOV metal electrode A-12.
  • the second MOV metal electrode A-13 can usually be made of a non-ferrous metal having a certain thickness, such as copper, copper alloy, aluminum or aluminum alloy, or can be coated on an insulating material (or plating, sintering, etc.).
  • these metal electrodes are both good conductors of heat and good conductors of electricity.
  • the surface of the varistor substrate A-11 is provided with a conductive electrode A-14, and the first MOV metal electrode A-12 and the second MOV metal electrode A-13 are respectively soldered and electrically connected to the two conductive electrodes A-14.
  • the varistor A-1 may be encapsulated with an insulating material;
  • the alloy type temperature fuse A-2 may include a housing A-21, a first TCO electrode A-24, a second TCO electrode A-22, and a first TCO electrode A-24 and a second TCO electrode A-22.
  • the upper low melting point alloy wire A-23, the second MOV metal electrode A-13 and the first TCO electrode A-24 are the same body electrode, and are combined with a low melting point
  • the gold wire A-23 is electrically connected, and the second MOV metal electrode A-13 has no other connection with the low melting alloy wire A-23;
  • the second MOV metal electrode A-13 of the varistor A-1, the first TCO electrode A-24, the second TCO electrode A-22, and the low melting alloy wire A-23 of the alloy type thermal fuse A-2 are respectively They are attached together by the housing A-21.
  • the alloy type temperature fuse A-2 may further include a fluxing aid and a sealing resin, the fluxing agent encloses the low melting point alloy wire A-23, the sealing resin and the casing A-21 form a closed cavity and fix the TCO electrode, and the sealed cavity It contains a low melting point alloy wire A-23 wrapped by a fluxing agent.
  • the thermal protection varistor component B can include:
  • the varistor B-1 may include a varistor substrate B-11 and a first MOV metal electrode B-12 having thermal conductivity and conductivity, a second MOV metal electrode B-13, and a varistor substrate B-11.
  • the two surfaces are provided with conductive electrodes B-14, and the first MOV metal electrodes B-12 and the second MOV metal electrodes B-13 are respectively soldered and electrically connected to the two conductive electrodes B-14, and the varistor B-1 may be made of an insulating material.
  • the alloy type thermal fuse B-2 may include a casing B-21, a first TCO electrode B-24, a second TCO electrode B-22, and a first TCO electrode B-24 and a second TCO electrode B-
  • the low melting point alloy wire B-23 on 22, the second MOV metal electrode B-13 and the first TCO electrode B-24 are the same body electrode, and the low melting point alloy wire B-23 is directly electrically connected to the varistor B-1
  • the two MOV metal electrodes B-13, the first TCO electrode B-24, the second TCO electrode B-22, and the low melting alloy wire B-23 are respectively attached through the casing B-21.
  • the alloy type thermal fuse B-2 may further include a fluxing aid and a sealing resin, the fluxing agent encloses the low melting point alloy wire B-23, the sealing resin and the shell B-21 form a closed cavity and fix the TCO electrode, and the sealed cavity Containing a low melting point alloy wire B-23 wrapped by a fluxing agent;
  • the auxiliary heat conduction path 3' may include an insulating heat conducting member 31' and an auxiliary heat conducting electrode 32'.
  • the insulating heat conducting member 31' may be one or two of a heat conductive silicone rubber or a silicon nitride ceramic or an alumina ceramic or a thermal conductive epoxy resin.
  • the insulating and thermally conductive member 31' is tightly sleeved on the auxiliary thermally conductive electrode 32', and the auxiliary thermally conductive electrode 32' and the second TCO electrode A-22 of the thermal protection varistor assembly A are And the second TCO electrode B-22 of the thermal protection varistor assembly B is the same body electrode, and the first MOV metal electrode A-12 and the thermal protection of the thermal protection component 31' are respectively adhered to the thermal protection varistor assembly A a first MOV metal electrode B-12 of the varistor assembly B;
  • the outer lead electrode 4' may include a first outer lead electrode 41' and a second outer lead electrode 42'.
  • the first outer lead electrode 41' is soldered to the second TCO electrode A-22 of the thermal protection varistor assembly A and the second TCO electrode B-22 of the thermal protection varistor assembly B to form an electrical path.
  • the second outer lead electrode 42' is soldered to the first MOV metal electrode A-12 of the thermal protection varistor assembly A and the first MOV metal electrode B-12 of the thermal protection varistor assembly B to form an electrical path.
  • the protective casing system 5' may include a lower cover 51' and a casing 52'.
  • the first outer lead electrode 41' and the second outer lead electrode 42' pass through the lower cover 51', and the outer casing 52' is engaged with the lower cover 51'.
  • the thermal protection varistor component A and the thermal protection varistor component B are loaded therein.
  • the protective casing system 5' may further include an insulating mat 53' that thermally protects the first MOV metal electrode A-12 of the varistor assembly A and the first MOV metal of the thermal protection varistor assembly B
  • the electrodes B-12 are placed in a chamber composed of a casing 52' and a lower cover 51' together with a thermal protection varistor.
  • a combined component of a thermal protection varistor may include a parallel thermal protection varistor component A and a thermal protection varistor component B, and an auxiliary thermal conduction path 3' , the outer lead electrode 4' and the protective casing system 5'.
  • the thermal protection varistor component A may include: a varistor A-1, an alloy type thermal fuse A-2.
  • the varistor A-1 may include a varistor substrate A-11 and a first MOV metal electrode A-12 having a heat conductive and a conductive material, a second MOV metal electrode A-13, and a varistor substrate A-
  • the two surfaces of the 11 are provided with conductive electrodes A-14, and the first MOV metal electrode A-12 and the second MOV metal electrode A-13 are respectively soldered and electrically connected to the two conductive electrodes A-14, and the varistor A-1 can be used.
  • the alloy type temperature fuse A-2 may include a casing A-21, a first TCO electrode A-24, a second TCO electrode A-22, and a first TCO electrode A-24 and a second TCO electrode A-
  • the low melting point alloy wire A-23 on 22, the second MOV metal electrode A-13 and the first TCO electrode A-24 are the same body electrode, and the alloy wire A-23 is directly electrically connected to the second MOV of the varistor A-1.
  • the metal electrode A-13, the first TCO electrode A-24, the second TCO electrode A-22, and the low melting alloy wire A-23 are attached together by the housing A-21.
  • the alloy type thermal fuse A-2 may further include a fluxing aid and a sealing resin, the fluxing agent may wrap the low melting point alloy wire A-23, the sealing resin and the casing A-21 form a closed cavity and fix the TCO electrode, and the sealing capacity
  • the chamber contains a low melting point alloy wire A-23 wrapped by a fluxing agent.
  • the thermal protection varistor component B may include a varistor B-1 and an alloy type thermal fuse B-2.
  • the varistor B-1 may include a varistor substrate B-11 and a first MOV metal electrode B-12 having a heat conductive and a conductive material, a second MOV metal electrode B-13, and a varistor substrate B-
  • the two surfaces of the 11 are provided with a conductive electrode B-14, and the first MOV metal electrode B-12 and the second MOV metal electrode B-13 are respectively soldered and electrically connected to the two conductive electrodes B-14, and the varistor B-1 can be used.
  • the alloy type thermal fuse B-2 may include a casing B-21, a first TCO electrode B-24, a second TCO electrode B-22, and a first TCO electrode B-24 and a second TCO electrode B-
  • the low melting point alloy wire B-23 on 22, the second MOV metal electrode B-13 and the first TCO electrode B-24 are the same body electrode, and the alloy wire B-23 is directly electrically connected to the second of the varistor unit B-1
  • the MOV metal electrode B-13, the first TCO electrode B-24, the second TCO electrode B-22, and the low melting alloy wire B-23 are attached together through the housing B-21.
  • the alloy type thermal fuse B-2 may further include a fluxing aid and a sealing resin, the fluxing agent encloses the low melting point alloy wire B-23, the sealing resin and the shell B-21 form a closed cavity and fix the TCO electrode, and the sealed cavity Containing a low melting point alloy wire B-23 wrapped by a fluxing agent;
  • the auxiliary heat conduction path 3' may include two sets of insulating and heat conducting parts A-31, an insulating and heat conducting part B-31 and an auxiliary heat conducting electrode 32', and the insulating and heat conducting parts A-31 and B-31 may be either silicon nitride ceramic or alumina.
  • Tao Made of a composite of one or two or more of the foregoing materials, such as porcelain or a thermally conductive epoxy resin, pressed tightly on the auxiliary thermally conductive electrode 32', the auxiliary thermally conductive electrode 32' and the second TCO electrode A of the thermal protection varistor assembly A -22 and the second TCO electrode B-22 of the thermal protection varistor assembly B are formed by welding to form a good electrical path and a thermal path, and the other side of the insulating and thermally conductive member A-31 and the second MOV metal electrode A of the component A are 13 is closely attached, the other side of the insulating and heat-conductive component B-31 is in close contact with the second MOV metal electrode B-13 of the thermal protection varistor component B;
  • the outer lead electrode 4' may include a first outer lead electrode 41' and a second outer lead electrode 42'.
  • the first outer lead electrode 41' and the auxiliary heat conducting electrode 32' form an electrical path
  • the second outer lead electrode 42' and The first MOV metal electrode A-12 of the thermal protection varistor assembly A and the first MOV metal electrode B-12 of the thermal protection varistor assembly B are soldered to form an electrical path;
  • the protective casing system 5' may include a lower cover 51' and a casing 52'.
  • the first outer lead electrode 41' and the second outer lead electrode 42' pass through the lower cover 51', and the outer casing 52' is engaged with the lower cover 51' to mount the thermal protection varistor assembly A and the thermal protection varistor assembly B. Into it.

Abstract

一种新型的热保护压敏电阻及浪涌保护器,新型的热保护压敏电阻包括压敏电阻(MOV)和合金型的温度保险丝(TCO),压敏电阻包括压敏电阻基片及第一MOV金属电极、第二MOV金属电极,合金型的温度保险丝包括一壳体、第一TCO电极、第二TCO电极和焊接在第一与第二TCO电极之间的低熔点合金丝,第二MOV金属电极和第一TCO电极为同一电极,低熔点合金丝被放置在壳体中。它具有如下优点:缩短了压敏电阻与合金型的温度保险丝的热传导路径,更有效降低热传导路径的热阻抗,从而缩短了当压敏电阻异常发热时温度保险丝断开电路所需的时间,提高了温度保险丝的热保护功能的有效性,实现了提高压敏电阻使用安全性的目的。

Description

新型的热保护压敏电阻及浪涌保护器 技术领域
本申请涉及一种浪涌保护器,特别涉及一种新型的热保护压敏电阻、一种浪涌保护器、一种热保护压敏电阻和一种热保护压敏电阻组合元件。
背景技术
压敏电阻作为性价比最高的浪涌防护器件广泛地应用在低压配电系统中。然而,由于压敏电阻属于半导体器件,在使用过程中,随着自身资源的消耗,必然存在劣化失效,流过压敏电阻的漏电流会增加,流过压敏电阻的电流会使压敏电阻发热,当压敏电阻上的热量累积会使压敏电阻本体温度上升,随着温度的上升,漏电流会进一步增加,形成恶性循环,最终导致压敏电阻熔融击穿,形成电气短路。
通过为压敏电阻增加热保护装置(例如保险丝)的方式可以避免这种情况的发生。具有热保护装置的热保护压敏电阻,利用压敏电阻在劣化时产生的热量使得热保护装置动作,将压敏电阻从电路中脱离,可以有效地降低压敏电阻失效引起的电气短路发生概率。
常用的方法是通过将温度保险丝(TCO)的引脚焊接在压敏电阻(MOV)电极上并密闭在容腔中来对压敏电阻在缓慢劣化过程中出现的过热现象进行保护,具体地,将压敏电阻和温度保险丝串联后接到配电系统中的不同线路之间。压敏电阻具有明显的非线性特征,可以泄放浪涌电流和限制过电压的幅值,达到保护用电设备的目的;温度保险丝具有在特定温度时断开的特性,在环境温度没有达到其动作温度时,该温度保险丝是良导体,在环境温度达到或超过其动作温度时,温度保险丝成开路状态,将该压敏电阻从线路中脱离。
但随着对压敏电阻失效过程中安全性要求的标准地提高以及对较大等级的短路电流耐受要求提高,该方法在压敏电阻承受暂时过电压时性能略显不足。而且,温度保险丝的额定动作温度通常选择在125-135℃,热保护压敏电阻的使用温度的上限工作温度只有85℃。当使用在环境温度较高的设备中,例如通信设备中时,热保护压敏电阻的使用寿命会缩短。
发明内容
本申请提供了一种新型的热保护压敏电阻,其克服了背景技术中所述的不足。
本申请解决其技术问题的所采用的技术方案之一是:
一种新型的热保护压敏电阻,它包括:
压敏电阻,包括压敏电阻基片及具有能导热导电的第一MOV金属电极、第二MOV金属电极,所述压敏电阻基片之两表面都设有导电电极,所述第一MOV金属电极和所述第二MOV金属电极分别焊接且电接两所述导电电极;
合金型的温度保险丝,包括一壳体、第一TCO电极、第二TCO电极和焊接并电连接在所述第一TCO电极和所述第二TCO电极之间的低熔点合金丝,所述第二MOV金属电极和所述第一TCO电极为同一电极,所述第一TCO电极、所述第二TCO电极和所述低熔点合金丝分别都通过所述壳体装接在一起。
一实施例之中:所述第二MOV金属电极的本体具有翘起的部分,所述翘起的部分成为所述第一TCO电极。
一实施例之中:所述第二MOV金属电极的本体边缘具有向外延伸的部分,所述向外延伸的部分成为所述第一TCO电极。
一实施例之中:所述第二MOV金属电极与所述第一TCO电极通过焊接或压接方式连接,并形成整体。
一实施例之中:所述壳体设有一通孔,所述第二MOV金属电极翘起的部分自 外向内穿过所述通孔,所述低熔点合金丝一端焊接在所述翘起的部分。
一实施例之中:所述壳体为单面开口,所述第二MOV金属电极向外延伸的部分通过所述开口伸进所述壳体并扣接在所述壳体上,所述低熔点合金丝一端焊接在所述向外延伸的部分。
一实施例之中:所述合金型的温度保险丝还包括助熔断剂和封口树脂,所述助熔断剂包裹所述低熔点合金丝,所述封口树脂与所述壳体构成密闭容腔并固定所述第一TCO电极、所述第二TCO电极,所述密闭容腔容纳着被所述助熔断剂包裹着的所述低熔点合金丝。
一实施例之中:所述第一TCO电极、所述第二TCO电极和所述低熔点合金丝在所述壳体内部的部分关于所述第一TCO电极和所述第二TCO电极之间的中心面旋转对称。
一实施例之中:所述壳体内部设有至少一个配置为将所述低熔点合金丝进行间隔隔离的筋条。
本申请解决其技术问题的所采用的技术方案之二是:
一种浪涌保护器,基于方案之一所述的新型的热保护压敏电阻,它包括三个热保护压敏电阻单元、装接壳体、气体放电管、第一引脚、第二引脚和连接件,所述热保护压敏电阻单元包括一个所述新型的热保护压敏电阻或至少两个并联连接的所述新型的热保护压敏电阻,所述三个热保护压敏电阻单元分别通过所述第一MOV金属电极和所述第二TCO电极两两相接,并形成一闭合的环形结构,所述三个两两相接处分别与所述第一引脚、所述第二引脚和所述连接件进行电连接,所述气体放电管一端连接所述连接件,所述气体放电管另一端电连接一第三引脚,所述热保护压敏电阻单元、所述气体放电管都装接在所述装接壳体内,所述第一引脚和所述第二引脚伸出所述装接壳体之外并分别连接单相系统的零线和火线, 所述第三引脚伸出所述装接壳体之外并通过所述气体放电管连接地端。
一实施例之中:所述三个热保护压敏电阻单元在空间上呈“π”型布局,或呈“H”型布局,或呈叠层结构布局。
本技术方案与背景技术相比,它具有如下优点:
1、新型的热保护压敏电阻包括压敏电阻(MOV)和合金型的温度保险丝(TCO),压敏电阻包括压敏电阻基片及具有能导热导电的第一MOV金属电极、第二MOV金属电极,合金型的温度保险丝包括一壳体、第一TCO电极、第二TCO电极和焊接在第一与第二TCO电极上的低熔点合金丝,第二MOV金属电极和第一TCO电极为同一体电极,第一TCO电极、第二TCO电极和低熔点合金丝分别都通过壳体装接在一起。上述方式缩短了压敏电阻与温度保险丝的热传导路径,更充分地利用了压敏电阻的热量,实现了较低温度下温度保险丝迅速熔断,使压敏电阻脱离回路,及更短的时间内大电流的分断,提高了温度保险丝热保护的可靠性,从而提高了压敏电阻的安全性。
2、第二MOV金属电极的本体具有翘起的部分,翘起的部分成为第一TCO电极。第二MOV金属电极本体边缘具有向外延伸的部分,向外延伸的部分成为第一TCO电极。第二MOV金属电极与第一TCO电极通过焊接或压接方式连接,形成整体。缩短了低熔点合金丝与压敏电阻之间的电传导距离,减少低熔点合金丝与压敏电阻之间的热阻抗,当压敏电阻失效时产生的热量会在尽可能短的时间传导到低熔点合金丝上,使低熔点合金丝在最短时间内熔断,将压敏电阻从电路中脱离。
3、第二MOV金属电极本体中间翘起的部分成为第一TCO电极;壳体设有一通孔,翘起的部分自外向内穿过通孔,低熔点合金丝装接在壳体中,并在壳体中与翘起的部分电连接,结构紧凑,缩小体积。
4、第一TCO电极、第二TCO电极和低熔点合金丝在壳体内部的部分关于第一 TCO电极和第二TCO电极之间的中心面旋转对称。将第一TCO电极和第二TCO电极设计成旋转对称结构,使得多根并联连接的低熔点合金丝在每个电气支路中的分布参数接近,从而使得流过每根低熔点合金丝的浪涌电流幅值接近,在满足相同的浪涌电流耐受要求时,低熔点合金丝所需的截面积最小,使TCO具有更大的通流能力。在特定频率下,并联的每个支路的分布参数是由低熔点合金丝以及电极的形状、长度和截面积确定的。因此保证每个支路的各种材料一致,形状等的相对一致,就可以保证每个支路的分布参数接近。
5、壳体内部设有至少一个配置为将低熔点合金丝进行间隔隔离的筋条。筋条将两两相邻的低熔点合金丝分隔在筋条的两边,避免某一根低熔点合金丝在熔化时连接到其他低熔点合金丝上,造成安全距离不够,使得温度保护动作失败。
6、浪涌保护器,它包括三个热保护压敏电阻单元、装接壳体、气体放电管、第一引脚、第二引脚和连接件,热保护压敏电阻单元包括一个新型的热保护压敏电阻或至少两个并联连接的新型的热保护压敏电阻,三个热保护压敏电阻单元分别通过第一MOV金属电极和第二TCO电极两两相接,并形成一闭合的环形结构,三个两两相接处分别与第一引脚、第二引脚和连接件进行电连接,气体放电管的一端连接连接件,气体放电管另一端电连接一第三引脚,热保护压敏电阻单元、气体放电管都装接在装接壳体内,第一引脚和第二引脚伸出装接壳体之外并分别连接单相系统的零线和火线,第三引脚伸出装接壳体之外并通过气体放电管连接地端。结构的浪涌保护器具有较小的体积,具备了更高的故障电流耐受能力。
为了更加有效地利用压敏电阻异常发热时产生的热量,缩短压敏电阻异常发热时温度保险丝断开电路所需的时间,提高温度保险丝热保护功能的有效性,提高压敏电阻的使用安全性;并且通过提高温度保险丝对压敏电阻发热的利用,提 高温度保险丝的额定动作温度,达到提高使用上限温度的目的。
本申请解决其技术问题的所采用的技术方案之三是:
一种热保护压敏电阻,包括:压敏电阻,合金型的温度保险丝,辅助导热通路及外引电极。所述压敏电阻包括压敏电阻基片及具有能导热导电的第一MOV金属电极、第二MOV金属电、第一导电电极及第二导电电极,所述第一导电电极及所述第二导电电极分别位于所述压敏电阻基片的两个表面上,所述第一MOV金属电极及所述第二MOV金属电极分别焊接并电连接至所述第一导电电极和所述第二导电电极,所述压敏电阻采用绝缘材料包封;
合金型温度保险丝,包括一壳体、第一TCO电极、第二TCO电极和焊接并电连接在所述第一TCO电极和所述第二TCO电极之间的低熔点合金丝,所述第二MOV金属电极和所述第一TCO电极为同一电极,所述第一TCO电极、所述第二TCO电极和所述低熔点合金丝均位于所述壳体内并由所述壳体装接在一起,所述合金型的温度保险丝还包括助熔断剂和封口树脂,所述助熔断剂包裹所述低熔点合金丝,所述封口树脂与所述壳体构成密闭容腔并固定TCO电极,所述密闭容腔容纳着被所述助熔断剂包裹着的所述低熔点合金丝;
辅助导热通路,包括一绝缘导热部件和辅助导热电极,所述辅助导热电极通过所述绝缘导热部件与所述第一MOV金属电极紧密接触,并且所述辅助导热电极与所述第二TCO电极为一体电极或通过焊接或压接方式连接,并形成整体;
外引电极,包括第一外引电极和第二外引电极,所述第一外引电极与所述第二TCO电极连接,所述第二外引电极与所述第一MOV金属电极连接。
一实施例之中:所述绝缘导热部件由具有高导热系数的绝缘材料制成,可以是氮化铝陶瓷,或氧化铝陶瓷,或氮化硅,或导热硅橡胶等。
一实施例之中:所述第一外引电极与所述第二TCO电极是一体电极或通过焊 接或压接方式连接,并形成整体,其中,所述第一外引电极与所述第二TCO电极优先采用压接方式连接,以便减少热量向外引电极及其连接物体散发。
一实施例之中:所述第二外引电极与所述第一MOV电极是一体电极或通过焊接或压接方式连接,并形成整体,其中,所述第二外引电极与所述第一MOV电极优选为采用压接方式连接,以便减少热量向外引电极及其连接物体散发。
一实施例之中:所述热保护型压敏电阻还可包括保护外壳系统,所述外壳保护系统包括外壳和下盖。
本申请解决其技术问题的所采用的技术方案之四是:
一种热保护压敏电阻的组合元件,包括至少两个上述的热保护压敏电阻,所述至少两个热保护压敏电阻并联。
一实施例之中:所述至少两个热保护压敏电阻之间由绝缘部件分隔开。
一实施例之中:热保护压敏电阻组合元件还包括保护外壳系统,所述外壳保护系统包括外壳和下盖。
本技术方案与技术方案之一和技术方案之二相比,它具有如下优点:
本申请有效地提高了对压敏电阻劣化过程中电流引起压敏电阻发热的热量的利用,一方面,可将温度保险丝的额定动作温度提高到145℃至200℃之间,由此可将热保护压敏电阻的使用温度的上限工作温度提高到85℃以上,甚至可以达到125℃,以便更好的保护通信行业中内部温度高达90℃以上的通信设备;第二方面,本申请可以使得温度保险丝的动作时间进一步缩短,减少压敏电阻处于劣化状态的时间,进一步降低压敏电阻击穿短路的概率,降低着火风险的发生。
本申请改变了对压敏电阻热保护的TCO的设计,这些设计包括:进行热传导优化设计,缩短热传导路径,减小热阻抗;将TCO电极设计成旋转对称结构,使得多根并联结构的低熔点合金丝在每个电气支路中的分布参数接近,从而使得流 过每根低熔点合金丝的浪涌电流幅值接近,在满足相同的浪涌电流耐受要求时,低熔点合金丝所需的截面积最小;在TCO的壳体中间设计隔离的筋条,将每根低熔点合金丝进行隔离,形成相对独立空间,避免多根低熔点合金丝在熔断过程相互干扰。通过这些设计形成的一种热保护装置,既能在较低的温度下(通常不超过160℃)实现更快的脱离动作,又能在更短的时间内实现更大电流的分断,进一步提高热保护压敏电阻的安全性和热保护的可靠性,采用此类热保护压敏电阻设计的浪涌保护器具有更安全的故障电流耐受能力。另外,本申请还增设了温度保险丝第二电极与压敏电阻之间的热传递通路,使得压敏电阻劣化时产生的热量能被完全利用。
附图说明
下面结合附图和实施例对本申请作进一步说明。
图1a绘示了新型的热保护压敏电阻的原理图;
图1b绘示了浪涌保护器的原理图之一;
图1c绘示了浪涌保护器的原理图之二;
图2绘示了实施例一所述的新型的热保护压敏电阻的一种实施方式的爆炸图;
图3绘示了实施例一所述的新型的热保护压敏电阻的一种实施方式的组装示意图之一;
图4绘示了实施例一所述的新型的热保护压敏电阻的一种实施方式的组装示意图之二;
图5绘示了实施例一所述的新型的热保护压敏电阻的一种实施方式的组装示意图之三;
图6绘示了实施例二所述的浪涌保护器一种实施方式的爆炸图之一;
图7绘示了实施例二所述的浪涌保护器一种实施方式的组装图;
图8绘示了实施例二所述的浪涌保护器一种方式的爆炸图之二;
图9示出了热保护压敏电阻第一实施例的原理图;
图10示出了热保护压敏电阻第二实施例、第三实施例的原理图;
图11示出了热保护压敏电阻第一实施例正面透视图;
图12示出了图9所示的热保护压敏电阻的后面透视图;
图13示出了热保护压敏电阻组合元件第二实施例的组装示意图;
图14示出了图11所示的热保护压敏电阻组合元件的局部爆炸图;
图15示出了热保护压敏电阻组合元件第三实施例的组装示意图;
图16示出了图13所示的热保护压敏电阻组合元件的局部爆炸图。
具体实施方式
下文中将参照附图对实施例进行详细说明。
实施例一:请查阅图1a以及图2至图5,新型的热保护压敏电阻,它可以包括:
压敏电阻1,可以包括压敏电阻基片11及具有能导热导电的第一MOV金属电极12、第二MOV金属电极13,压敏电阻基片之两表面都设有导电电极14,第一MOV金属电极12和第二MOV金属电极13分别焊接且电接两导电电极14;
合金型的温度保险丝2,可以包括一壳体21、第一TCO电极24、第二TCO电极22和焊接并电连接在第一TCO电极24和第二TCO电极22之间的低熔点合金丝23,第二MOV金属电极13和第一TCO电极24为同一体电极,低熔点合金丝23直接电连接压敏电阻1的第二MOV金属电极13,第一TCO电极24、第二TCO电极22和低熔点合金丝23分别都通过壳体21装接在一起。
第一较佳方案中,请查阅图2、图3和图4,第一TCO电极24可以是由第二MOV金属电极13本体中间通过冲压折弯形成的一翘起的部分131。壳体21可以设有一通孔211,翘起的部分131自外向内穿过通孔211,低熔点合金丝23装接在壳体21中,低熔点合金丝23的一端焊接并电连接翘起的部分131。
第二较佳方案中,请查阅图5,第一TCO电极24可以是由第二MOV金属电极13的本体边缘向外延伸形成的向外延伸的部分132,壳体21为单面开口,向外延伸的部分132通过开口伸进壳体21并扣接在壳体21上,低熔点合金丝23装接在壳体21中,低熔点合金丝23一端焊接并电连接向外延伸的部分132。
第三较佳方案中:第二MOV金属电极13可以与第一TCO电极24通过焊接或压接方式连接,并形成整体。
上述第一、第二、第三较佳方案中第一TCO电极24的形成方式以及第一TCO电极24和第二MOV金属电极13的连接方式缩短了低熔点合金丝23与压敏电阻1之间的电传导距离,减少了低熔点合金丝23与压敏电阻1之间的热阻抗,从而压敏电阻1在失效时产生的热量会在尽可能短的时间传导到低熔点合金丝23上,使低熔点合金丝23在最短时间内熔断,将压敏电阻1从电路中脱离。如果压敏电阻1与低熔点合金丝23间的热阻抗较大,压敏电阻1与低熔点合金丝23之间会存在较大的温度差,使低熔点合金丝23实际感受到的温度达到低熔点合金丝23的熔断温度的时间变长,如当热阻抗特别大时,由于温度差过大,甚至出现在低熔点合金丝23出现熔断动作之前压敏电阻1失效起火燃烧的现象,从而导致温度保险丝2失去保护压敏电阻1的作用。
第一TCO电极24、第二TCO电极22和低熔点合金丝23在壳体21内部的部分可以关于第一TCO电极24和第二TCO电极22之间的中心面旋转对称。将第一TCO电极24和第二TCO电极22设计成旋转对称结构,使得多根并联连接的低熔 点合金丝23在每个电气支路中的分布参数接近,从而使得流过每根低熔点合金丝23的浪涌电流幅值接近,在满足相同的浪涌电流耐受要求时,低熔点合金丝23所需的截面积最小,可以使TCO具有更大的通流能力。其中,在特定频率下,并联的每个支路的分布参数是由低熔点合金丝23以及电极的形状、长度和截面积确定的。因此保证每个支路的各种材料一致,形状等的相对一致,就可以保证每个支路的分布参数接近。
壳体21内部可以设有至少一个配置为将低熔点合金丝23进行间隔隔离的筋条212。筋条212将两两相邻的低熔点合金丝23分隔在筋条212的两边,避免某一根低熔点合金丝23在熔化时连接到其他低熔点合金丝23上,造成安全距离不够,使得温度保护动作失败。
合金型的温度保险丝2还可以包括助熔断剂和封口树脂,助熔断剂包裹合低熔点金丝23,封口树脂与壳体21构成密闭容腔并固定第一TCO电极24、第二TCO电极22,密闭容腔容纳着被助熔断剂包裹着的低熔点合金丝23。封口树脂可以是市售的高温树脂。
新型的热保护压敏电阻还可以包括一绝缘外壳3,通过壳体21固定装设在一起的温度保险丝2和压敏电阻1分别都装接在绝缘外壳3内,且第一MOV金属电极12和第二TCO电极22伸出绝缘外壳3之外。该新型的热保护压敏电阻结构体积小,装接牢固,便于安装。
本实施例中,第二TCO电极22靠近低熔点合金丝23端可以设有若干个小孔221,压敏电阻1在劣化过程中会迅速产生热量由第二MOV金属电极13向低熔点合金丝23传导,并由第二TCO电极22向与之连接的电路板等物体传导;若在第二TCO电极22设有若干个小孔221,经由第二TCO电极22向与之连接的电路板等物体传导的热量就会受到阻碍,低熔点合金丝23的热量会迅速累积,使低熔点 合金丝23达到熔点温度,及早动作。
根据压敏电阻1浪涌防护性能的要求,低熔点合金丝23的根数可以在1-10根内配置。同理,其长度也可以在2-20mm内选取,其熔点可以为60-250℃。
按照本实施例中的方式进行生产的标称压敏电压为470V;标称放电电流为10kA的新型的热保护压敏电阻,包括两根直径为1.2mm、长度为5mm的柱状体低熔点合金丝23。它与按目前方式生产的相同规格产品在开路电压800V、短路电流20A的测试条件下,进行断开时间的测试比较,两种产品的测试数据如表1所示。
表1
Figure PCTCN2015081185-appb-000001
从表1中可以看到,按照本实施例中的方式进行生产的新型的热保护压敏电阻较按目前技术方式生产的相同规格产品在相同的测试条件下,新型的热保护压敏电阻断开时间缩短一半以上,性能明显提高,实现了较低温度下温度保险丝2迅速熔断,使压敏电阻1脱离回路,及更短的时间内大电流的分断,提高了温度保险丝2热保护的可靠性,从而提高了压敏电阻1的安全性。
实施例二:请查阅图1b、图1c、图6、图7和图8,浪涌保护器,它可以包括三个热保护压敏电阻单元10、装接壳体20、一气体放电管30、一第一引脚40、一第二引脚50和一连接件60,热保护压敏电阻单元10可以包括一个新型的热保护压敏电阻或至少两个并联连接的新型的热保护压敏电阻,三个热保护压敏电阻 单元10分别都通过其各自的第一MOV金属电极12和第二TCO电极22两两相接,并形成一闭合的环形结构。三个两两相接处分别与第一引脚40、第二引脚50和连接件60进行电连接,气体放电管30一端连接连接件60,气体放电管30另一端电连接一第三引脚70,热保护压敏电阻单元10、气体放电管30都装接在装接壳体20内,第一引脚40和第二引脚50伸出装接壳体20之外并分别连接单相系统的零线和火线,第三引脚70通过气体放电管30伸出装接壳体20之外并连接单相系统的地端。三个两两相接处通过第一引脚40、第二引脚50和连接件60进行电连接,避免了压敏电阻1失效过程中由熔融物质造成的电气短路,提高了安全性能。结构的浪涌保护器具有较小的体积,具备了更高的故障电流耐受能力,原因在于一个浪涌保护器中的多个TCO不可能完全同时动作,当没有动作的TCO将电压限制在较低时,先动作的TCO会很容易断开电流,而当最后一个TCO将断开时,由于经过一段时间的热量累计,加上电流导致的低熔点合金丝23自身发热,断开更为容易。
举例:一个需要满足60kA雷电浪涌测试的浪涌保护器,可以分别采用以下方案进行,方案一采用三个新型的热保护压敏电阻单元10并联设计(即上述方案),单个新型的热保护压敏电阻单元10的浪涌耐受能力为25kA,三个TCO的额定工作电流为15A;方案二采用一个新型的热保护压敏电阻单元10,浪涌耐受能力为60kA,TCO的额定工作电流为40A。假设这两种方案的产品在应用中遇到过电压,会产生100A故障过电流流过热保护压敏电阻单元10的回路;那么,方案一的产品会出现三个热保护压敏电阻单元10逐渐脱离电路,当只剩最后一个热保护压敏电阻单元10时,由于热保护压敏电阻单元10额定电流只有15A,在100A时,TCO低熔点合金丝23的自身发热会很明显,加速熔断;方案二的产品,由于额定电流为40A,TCO低熔点合金丝23的自身发热没有方案一中迅速,只能依靠压敏电阻 1的发热导致TCO低熔点合金丝23熔断。其中,两种方案中的压敏电阻1的发热性能是一样的。
本实施例中,上述浪涌保护器的技术方案只列举了单相系统的全模保护方案,通过本技术方案的启发,很容易去掉部分器件而形成单相差模、共模的保护方案或增加同样的压敏电阻保护单元形成三相系统的全模、共模和差模保护方案,在此处不再一一列举。
一较佳方案中,请查阅图7,三个新型的热保护压敏电阻单元10在空间上可以呈“π”型布局,或呈“H”型布局;
另一较佳方案中,请查阅图8,三个新型的热保护压敏电阻单元10在空间上可以呈叠层结构,从而可以有效地提高产品性能,降低产品安装时的占板面积。
参见图9和图10所示的原理图,热保护压敏电阻可以包括压敏电阻1’和合金型的温度保险丝2’,压敏电阻1’和合金型的温度保险丝2’串联后接到配电系统中的不同线路之间。压敏电阻1’具有明显的非线性特征,可以泄放浪涌电流和限制过电压的幅值,达到保护用电设备的目的;合金型的温度保险丝2’具有在特定温度时断开的特性,在环境温度没有达到合金型的温度保险丝2’的动作温度时,合金型温度保险丝2’是良导体,在环境温度达到或超过合金型的温度保险丝2’的动作温度时,合金型的温度保险丝2’成开路状态,将压敏电阻1’从线路中脱离。在压敏电阻1’的使用过程中,随着自身资源的消耗,流过压敏电阻1’的漏电流会增加,流过压敏电阻1’的电流会使其发热,当压敏电阻1’上的热量累积会使压敏电阻1’本体温度上升,随着温度的上升,漏电流会进一步增加,形成恶性循环。当压敏电阻1’上的温度传递到合金型的温度保险丝2’上,当温度达到或超过合金型的温度保险丝2’的动作温度时,合金型的温度保 险丝2’成开路状态,将压敏电阻1’从线路中脱离。
实施例三:参见图9、图11和图12,热保护压敏电阻可以包括:
压敏电阻1’,可以包括压敏电阻基片11’及具有能导热导电的第一MOV金属电极12’、第二MOV金属电极13’,第一MOV金属电极12’、第二MOV金属电极13’通常可以采用具有一定厚度的有色金属制成,比如铜、铜合金、铝或铝合金等、也可以是在绝缘材料上涂(或镀、烧结等)具有一定厚度(通常大于0.1mm)金属材料的电极等。这样,这些金属电极既是热的良导体,也是电的良导体,压敏电阻基片11’之两表面都设有导电电极14’,第一MOV金属电极12’和第二MOV金属电极13’分别焊接且电连接两导电电极14’,压敏电阻1’可以采用绝缘材料包封;
合金型的温度保险丝2’,可以包括壳体21’、第一TCO电极24’、第二TCO电极22’和低熔点合金丝23’,其中低熔点合金丝23’焊接在第一TCO电极24’和第二TCO电极22’之间,第二MOV金属电极13’和第一TCO电极24’可以为一体电极,低熔点合金丝23’电连接压敏电阻1的第二MOV金属电极13’,在低熔点合金丝23’与压敏电阻1的第二MOV金属电极13’间不存在其他连接;
第一TCO电极24’、第二TCO电极22’和低熔点合金丝23’可以通过壳体21’装接在一起,合金型的温度保险丝2’还可以包括助熔断剂和封口树脂,助熔断剂包裹低熔点合金丝23’,助熔断剂在低熔点合金丝23’成熔融状态时,降低两者之间的界面张力,从而提高熔融合金的表面张力,使熔融合金快速收缩,到达断开的目的,助熔断剂是有机物。封口树脂与壳体21’构成密闭容腔并固定TCO电极,密闭容腔容纳着被助熔断剂包裹着的低熔点合金丝23’;
辅助导热通路3’,可以包括一绝缘导热部件31’和辅助导热电极32’,绝缘 导热部件31’可以为导热硅橡胶或氮化硅陶瓷或氧化铝陶瓷或导热环氧树脂等一种或两种及以上前述材料的复合体制成,绝缘导热部件31’紧密套在辅助导热电极32’上,辅助导热电极32’与第二TCO电极22’是同一体电极;绝缘导热部件31’外部紧贴第一MOV金属电极12’的外延部分121’;
外引电极4’,可以包括第一外引电极41’与第二外引电极42’,第一外引电极41’与第二TCO电极22’焊接,形成电通路,第二外引电极42’与第一MOV金属电极12’的外延部分121’焊接,形成电通路。
实施例四:参见图10、图13及图14,一种新型热保护压敏电阻的组合元件,包括:并联的热保护压敏电阻组件A与热保护压敏电阻组件B、辅助导热通路3’、外引电极4’及保护外壳系统5’及绝缘垫板53’。
热保护压敏电阻组件A可以包括:
压敏电阻A-1,可以包括压敏电阻基片A-11及具有能导热导电的第一MOV金属电极A-12、第二MOV金属电极A-13,第一MOV金属电极A-12、第二MOV金属电极A-13通常可以采用具有一定厚度的有色金属等制成,比如铜、铜合金、铝或铝合金等、也可以是在绝缘材料上涂(或镀、烧结等)具有一定厚度(通常大于0.1mm)金属材料的电极等。这样,这些金属电极既是热的良导体,也是电的良导体。压敏电阻基片A-11之两表面都设有导电电极A-14,第一MOV金属电极A-12和第二MOV金属电极A-13分别焊接且电连接两导电电极A-14,压敏电阻A-1可以采用绝缘材料包封;
合金型的温度保险丝A-2,可以包括壳体A-21、第一TCO电极A-24、第二TCO电极A-22和焊接在第一TCO电极A-24和第二TCO电极A-22上的低熔点合金丝A-23,第二MOV金属电极A-13和第一TCO电极A-24为同一体电极,与低熔点合 金丝A-23电连接,第二MOV金属电极A-13与低熔点合金丝A-23不存在其他连接;
压敏电阻A-1的第二MOV金属电极A-13,合金型的温度保险丝A-2的第一TCO电极A-24、第二TCO电极A-22和低熔点合金丝A-23分别都通过壳体A-21装接在一起。合金型的温度保险丝A-2还可以包括助熔断剂和封口树脂,助熔断剂包裹低熔点合金丝A-23,封口树脂与壳体A-21构成密闭容腔并固定TCO电极,密闭容腔容纳着被助熔断剂包裹着的低熔点合金丝A-23。
热保护压敏电阻组件B,可以包括:
压敏电阻B-1,可以包括压敏电阻基片B-11及具有能导热导电的第一MOV金属电极B-12、第二MOV金属电极B-13,压敏电阻基片B-11之两表面都设有导电电极B-14,第一MOV金属电极B-12和第二MOV金属电极B-13分别焊接且电连接两导电电极B-14,压敏电阻B-1可以采用绝缘材料包封;
合金型的温度保险丝B-2,可以包括一壳体B-21、第一TCO电极B-24、第二TCO电极B-22和焊接在第一TCO电极B-24和第二TCO电极B-22上的低熔点合金丝B-23,第二MOV金属电极B-13和第一TCO电极B-24为同一体电极,低熔点合金丝B-23直接电连接压敏电阻B-1的第二MOV金属电极B-13,第一TCO电极B-24、第二TCO电极B-22和低熔点合金丝B-23分别都通过壳体B-21装接在一起。合金型的温度保险丝B-2还可以包括助熔断剂和封口树脂,助熔断剂包裹低熔点合金丝B-23,封口树脂与壳体B-21构成密闭容腔并固定TCO电极,密闭容腔容纳着被助熔断剂包裹着的低熔点合金丝B-23;
辅助导热通路3’,可以包括一绝缘导热部件31’和辅助导热电极32’,绝缘导热部件31’可以为导热硅橡胶或氮化硅陶瓷或氧化铝陶瓷或导热环氧树脂等一种或两种及以上前述材料的复合体制成,绝缘导热部件31’紧密套在辅助导热电极32’上,辅助导热电极32’与热保护压敏电阻组件A的第二TCO电极A-22以 及热保护压敏电阻组件B的第二TCO电极B-22是同一体电极,绝缘导热部件31’两侧分别紧贴热保护压敏电阻组件A的第一MOV金属电极A-12和热保护压敏电阻组件B的第一MOV金属电极B-12;
外引电极4’,可以包括第一外引电极41’与第二外引电极42’。第一外引电极41’与热保护压敏电阻组件A的第二TCO电极A-22以及热保护压敏电阻组件B的第二TCO电极B-22焊接,形成电通路。第二外引电极42’与热保护压敏电阻组件A的第一MOV金属电极A-12以及热保护压敏电阻组件B的第一MOV金属电极B-12焊接,形成电通路。
保护外壳系统5’,可以包括下盖51’、外壳52’,第一外引电极41’与第二外引电极42’穿过下盖51’,外壳52’与下盖51’卡接,将热保护压敏电阻组件A、热保护压敏电阻组件B装入其中。
保护外壳系统5’,还可以包括绝缘垫板53’,绝缘垫板53’在热保护压敏电阻组件A的第一MOV金属电极A-12与热保护压敏电阻组件B的第一MOV金属电极B-12之间,并与热保护压敏电阻一起装入由外壳52’与下盖51’组成的腔室中。
实施例五:参见图10、图15及图16,一种热保护压敏电阻的组合元件,可以包括并联的热保护压敏电阻组件A与热保护压敏电阻组件B、辅助导热通路3’、外引电极4’及保护外壳系统5’。
其中,热保护压敏电阻组件A,可以包括:压敏电阻A-1,合金型的温度保险丝A-2。其中,压敏电阻A-1,可以包括压敏电阻基片A-11及具有能导热导电的第一MOV金属电极A-12、第二MOV金属电极A-13,压敏电阻基片A-11之两表面都设有导电电极A-14,第一MOV金属电极A-12和第二MOV金属电极A-13分别焊接且电连接两导电电极A-14,压敏电阻A-1可以采用绝缘材料包封;
合金型的温度保险丝A-2,可以包括一壳体A-21、第一TCO电极A-24、第二TCO电极A-22和焊接在第一TCO电极A-24和第二TCO电极A-22上的低熔点合金丝A-23,第二MOV金属电极A-13和第一TCO电极A-24为同一体电极,合金丝A-23直接电连接压敏电阻A-1的第二MOV金属电极A-13,第一TCO电极A-24、第二TCO电极A-22和低熔点合金丝A-23通过壳体A-21装接在一起。合金型的温度保险丝A-2还可以包括助熔断剂和封口树脂,助熔断剂可以包裹低熔点合金丝A-23,封口树脂与壳体A-21构成密闭容腔并固定TCO电极,密闭容腔容纳着被助熔断剂包裹着的低熔点合金丝A-23。
其中,热保护压敏电阻组件B,可以包括压敏电阻B-1,合金型的温度保险丝B-2。其中,压敏电阻B-1,可以包括压敏电阻基片B-11及具有能导热导电的第一MOV金属电极B-12、第二MOV金属电极B-13,压敏电阻基片B-11之两表面都设有导电电极B-14,第一MOV金属电极B-12和第二MOV金属电极B-13分别焊接且电连接两导电电极B-14,压敏电阻B-1可以采用绝缘材料包封;
合金型的温度保险丝B-2,可以包括一壳体B-21、第一TCO电极B-24、第二TCO电极B-22和焊接在第一TCO电极B-24和第二TCO电极B-22上的低熔点合金丝B-23,第二MOV金属电极B-13和第一TCO电极B-24为同一体电极,合金丝B-23直接电连接压敏电阻单元B-1的第二MOV金属电极B-13,第一TCO电极B-24、第二TCO电极B-22和低熔点合金丝B-23通过壳体B-21装接在一起。合金型的温度保险丝B-2还可以包括助熔断剂和封口树脂,助熔断剂包裹低熔点合金丝B-23,封口树脂与壳体B-21构成密闭容腔并固定TCO电极,密闭容腔容纳着被助熔断剂包裹着的低熔点合金丝B-23;
辅助导热通路3’,可以包括两组绝缘导热部件A-31、绝缘导热部件B-31和辅助导热电极32’,绝缘导热部件A-31与B-31可以为或氮化硅陶瓷或氧化铝陶 瓷或导热环氧树脂等一种或两种及以上前述材料的复合体制成,紧密压在辅助导热电极32’上,辅助导热电极32’与热保护压敏电阻组件A的第二TCO电极A-22以及热保护压敏电阻组件B的第二TCO电极B-22是通过焊接形成良好的电通路和热通路,绝缘导热部件A-31另一侧与组件A的第二MOV金属电极A-13紧贴,绝缘导热部件B-31另一侧与热保护压敏电阻组件B的第二MOV金属电极B-13紧贴;
外引电极4’,可以包括第一外引电极41’与第二外引电极42’,第一外引电极41’与辅助导热电极32’,形成电通路,第二外引电极42’与热保护压敏电阻组件A的第一MOV金属电极A-12以及热保护压敏电阻组件B的第一MOV金属电极B-12焊接,形成电通路;
保护外壳系统5’,可以包括下盖51’和外壳52’。第一外引电极41’与第二外引电极42’穿过下盖51’,外壳52’与下盖51’卡接,将热保护压敏电阻组件A与热保护压敏电阻组件B装入其中。
以上所述,仅为本申请较佳实施例而已,故不能依此限定本申请实施的范围,即依本申请专利范围及说明书内容所作的等效变化与修饰,皆应仍属本申请涵盖的范围内。

Claims (19)

  1. 一种新型的热保护压敏电阻,包括:
    压敏电阻,包括压敏电阻基片及具有能导热导电的第一MOV金属电极、第二MOV金属电极,所述压敏电阻基片之两表面都设有导电电极,所述第一MOV金属电极和所述第二MOV金属电极分别焊接且电接两所述导电电极;
    合金型的温度保险丝,包括一壳体、第一TCO电极、第二TCO电极和焊接并电连接在所述第一TCO电极和所述第二TCO电极之间的低熔点合金丝,所述第二MOV金属电极和所述第一TCO电极为同一电极,所述第一TCO电极、所述第二TCO电极和所述低熔点合金丝分别都通过所述壳体装接在一起。
  2. 根据权利要求1所述的新型的热保护压敏电阻,其中,所述第二MOV金属电极的本体具有翘起的部分,所述翘起的部分成为所述第一TCO电极。
  3. 根据权利要求1所述的新型的热保护压敏电阻,其中,所述第二MOV金属电极的本体边缘具有向外延伸的部分,所述向外延伸的部分成为所述第一TCO电极。
  4. 根据权利要求1所述的新型的热保护压敏电阻,其中,所述第二MOV金属电极与所述第一TCO电极通过焊接或压接方式连接,并形成整体。
  5. 根据权利要求2所述的新型的热保护压敏电阻,其中,:所述壳体设有一通孔,所述第二MOV金属电极翘起的部分自外向内穿过所述通孔,所述低熔点合金丝一端焊接在所述翘起的部分。
  6. 根据权利要求3所述的新型的热保护压敏电阻,其中,所述壳体为单面开口,所述第二MOV金属电极向外延伸的部分通过所述开口伸进所述壳体并扣接在所述壳体上,所述低熔点合金丝一端焊接在所述向外延伸的部分。
  7. 根据权利要求1所述的新型的热保护压敏电阻,其中,所述合金型的温度 保险丝还包括助熔断剂和封口树脂,所述助熔断剂包裹所述低熔点合金丝,所述封口树脂与所述壳体构成密闭容腔并固定所述第一TCO电极、所述第二TCO电极,所述密闭容腔容纳着被所述助熔断剂包裹着的所述低熔点合金丝。
  8. 根据权利要求1所述的新型的热保护压敏电阻,其中,所述第一TCO电极、所述第二TCO电极和所述低熔点合金丝在所述壳体内部的部分关于所述第一TCO电极和所述第二TCO电极之间的中心面旋转对称。
  9. 根据权利要求1所述的新型的热保护压敏电阻,其中,所述壳体内部设有至少一个配置为将所述低熔点合金丝进行间隔隔离的筋条。
  10. 一种浪涌保护器,基于权利要求1至9中任一项所述的新型的热保护压敏电阻,包括三个热保护压敏电阻单元、装接壳体、气体放电管、第一引脚、第二引脚和连接件,每个所述热保护压敏电阻单元包括一个所述新型的热保护压敏电阻或至少两个并联连接的所述新型的热保护压敏电阻,所述三个热保护压敏电阻单元分别通过所述第一MOV金属电极和所述第二TCO电极两两相接,并形成一闭合的环形结构,所述三个两两相接处分别与所述第一引脚、所述第二引脚和所述连接件进行电连接,所述气体放电管一端连接所述连接件,所述气体放电管另一端电连接一第三引脚,所述热保护压敏电阻单元、所述气体放电管都装接在所述装接壳体内,所述第一引脚和所述第二引脚伸出所述装接壳体之外并分别连接单相系统的零线和火线,所述第三引脚伸出所述装接壳体之外并通过所述气体放电管连接地端。
  11. 根据权利要求10所述的浪涌保护器,其中,所述三个热保护压敏电阻单元在空间上呈“π”型布局,或呈“H”型布局,或呈叠层结构布局。
  12. 一种热保护压敏电阻,包括:
    压敏电阻,所述压敏电阻包括压敏电阻基片、第一MOV金属电极及第二MOV 金属电极、第一导电电极及第二导电电极,所述第一导电电极及所述第二导电电极分别位于所述压敏电阻基片的两个表面上,所述第一MOV金属电极及所述第二MOV金属电极分别焊接并电连接至所述第一导电电极和所述第二导电电极,所述压敏电阻采用绝缘材料包封;
    合金型的温度保险丝,所述合金型的温度保险丝包括壳体、第一TCO电极、第二TCO电极和低熔点合金丝,所述低熔点合金丝焊接并电连接在所述第一TCO电极和所述第二TCO电极之间,所述第二MOV金属电极和所述第一TCO电极为一体电极,所述第一TCO电极、所述第二TCO电极和所述低熔点合金丝由所述壳体装接在一起,所述合金型的温度保险丝还包括助熔断剂和封口树脂,所述助熔断剂包裹所述低熔点合金丝,所述封口树脂与所述壳体构成密闭容腔并固定TCO电极,所述密闭容腔容纳着被所述助熔断剂包裹着的所述低熔点合金丝;
    辅助导热通路,所述辅助导热通路包括绝缘导热部件和辅助导热电极,所述辅助导热电极通过所述绝缘导热部件与所述第一MOV金属电极紧密接触,并且所述辅助导热电极与所述第二TCO电极为一体电极或通过焊接或压接方式连接;以及
    外引电极,所述外引电极包括第一外引电极和第二外引电极,所述第一外引电极与所述第二TCO电极连接,所述第二外引电极与所述第一MOV金属电极连接。
  13. 根据权利要求12所述的热保护压敏电阻,其中,所述绝缘导热部件由具有高导热系数的绝缘材料制成。
  14. 根据权利要求12所述的热保护压敏电阻,其中,所述第一外引电极与所述第二TCO电极是一体电极,或通过焊接或压接方式连接形成整体。
  15. 根据权利要求12所述的热保护压敏电阻,其中,所述第二外引电极与所述第一MOV金属电极是一体电极,或通过焊接或压接方式连接形成整体。
  16. 根据权利要求12所述的热保护压敏电阻,其中,还包括保护外壳系统,所述外壳保护系统包括外壳和下盖。
  17. 一种热保护压敏电阻组合元件,包括至少两个根据权利要求12-16中任一项所述的热保护压敏电阻,所述至少两个热保护压敏电阻并联。
  18. 根据权利要求17所述的热保护压敏电阻组合元件,其中,所述至少两个热保护压敏电阻之间由绝缘部件分隔开。
  19. 根据权利要求17所述的热保护压敏电阻组合元件,其中,还包括保护外壳系统,所述外壳保护系统包括外壳和下盖。
PCT/CN2015/081185 2014-06-10 2015-06-10 新型的热保护压敏电阻及浪涌保护器 WO2015188752A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201420306127.1U CN203950625U (zh) 2014-06-10 2014-06-10 新型的热保护压敏电阻及浪涌保护器
CN201420306127.1 2014-06-10
CN201520376567.9 2015-06-03
CN201520376567.9U CN204695887U (zh) 2015-06-03 2015-06-03 一种热保护压敏电阻及其组合元件

Publications (1)

Publication Number Publication Date
WO2015188752A1 true WO2015188752A1 (zh) 2015-12-17

Family

ID=54832914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081185 WO2015188752A1 (zh) 2014-06-10 2015-06-10 新型的热保护压敏电阻及浪涌保护器

Country Status (1)

Country Link
WO (1) WO2015188752A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208020A (zh) * 2016-08-17 2016-12-07 深圳市槟城电子有限公司 一种复合气体放电管
CN109243739A (zh) * 2018-11-12 2019-01-18 深圳市槟城电子有限公司 一种压敏电阻及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113420Y (zh) * 2007-10-23 2008-09-10 苏州工业园区新大诚科技发展有限公司 电源浪涌保护器
CN101303926A (zh) * 2008-06-19 2008-11-12 兴勤(常州)电子有限公司 一种压敏电阻
CN201838413U (zh) * 2010-10-27 2011-05-18 兴勤(常州)电子有限公司 带遥控接口的温度保护型压敏电阻
CN203950625U (zh) * 2014-06-10 2014-11-19 厦门赛尔特电子有限公司 新型的热保护压敏电阻及浪涌保护器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113420Y (zh) * 2007-10-23 2008-09-10 苏州工业园区新大诚科技发展有限公司 电源浪涌保护器
CN101303926A (zh) * 2008-06-19 2008-11-12 兴勤(常州)电子有限公司 一种压敏电阻
CN201838413U (zh) * 2010-10-27 2011-05-18 兴勤(常州)电子有限公司 带遥控接口的温度保护型压敏电阻
CN203950625U (zh) * 2014-06-10 2014-11-19 厦门赛尔特电子有限公司 新型的热保护压敏电阻及浪涌保护器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208020A (zh) * 2016-08-17 2016-12-07 深圳市槟城电子有限公司 一种复合气体放电管
CN109243739A (zh) * 2018-11-12 2019-01-18 深圳市槟城电子有限公司 一种压敏电阻及电子设备

Similar Documents

Publication Publication Date Title
US9837236B2 (en) High-voltage direct-current thermal fuse
US7741946B2 (en) Metal oxide varistor with heat protection
TWI494965B (zh) 用於切斷過電流及吸收浪湧之合成保護組件
US9530545B2 (en) Device comprising a thermal fuse and a resistor
US9240300B2 (en) Device comprising a thermal fuse and a resistor
TWI521558B (zh) 熔絲
US10148079B2 (en) Surge protection device
TWI533347B (zh) 電路保護裝置
TWI545606B (zh) 複合保護裝置
KR101614123B1 (ko) 퓨즈가 일체화된 저항기
US10347402B1 (en) Thermal fuse resistor
WO2015188752A1 (zh) 新型的热保护压敏电阻及浪涌保护器
US20170222426A1 (en) Surge protection device with an independent chamber comprising a fuse for overcurrent protection
US6980411B2 (en) Telecom circuit protection apparatus
WO2020237771A1 (zh) 一种两段式耐受雷电流的熔断结构及采用该结构的熔断器
TWI718757B (zh) 具有溫度保險絲之暫態電壓抑制裝置
KR101395495B1 (ko) 비정상상태의 전류 및 전압을 차단하는 복합보호소자
US20230037262A1 (en) Circuit protection device with ptc device and backup fuse
US10895609B2 (en) Circuit protection device with PTC element and secondary fuse
CN204695887U (zh) 一种热保护压敏电阻及其组合元件
TWI805729B (zh) 變阻器熱保護裝置
CN110859051B (zh) 热保护的金属氧化物变阻器
KR101987019B1 (ko) 전력형 온도퓨즈 저항기 및 그 제조방법
TWI547967B (zh) 複合保護裝置
US11501942B2 (en) PTC device with integrated fuses for high current operation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15806721

Country of ref document: EP

Kind code of ref document: A1