WO2015188606A1 - 一种多通道集成光波分复用/解复用的组件结构 - Google Patents

一种多通道集成光波分复用/解复用的组件结构 Download PDF

Info

Publication number
WO2015188606A1
WO2015188606A1 PCT/CN2014/094329 CN2014094329W WO2015188606A1 WO 2015188606 A1 WO2015188606 A1 WO 2015188606A1 CN 2014094329 W CN2014094329 W CN 2014094329W WO 2015188606 A1 WO2015188606 A1 WO 2015188606A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
division multiplexing
wavelength division
array
chip
Prior art date
Application number
PCT/CN2014/094329
Other languages
English (en)
French (fr)
Inventor
林雪枫
胡百泉
刘成刚
余向红
Original Assignee
武汉电信器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉电信器件有限公司 filed Critical 武汉电信器件有限公司
Priority to CA2960732A priority Critical patent/CA2960732A1/en
Priority to US15/503,566 priority patent/US20170242195A1/en
Publication of WO2015188606A1 publication Critical patent/WO2015188606A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/03WDM arrangements
    • H04J14/0307Multiplexers; Demultiplexers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features

Definitions

  • the present invention relates to the field of optical communication technologies, and in particular to a component structure of a multi-channel integrated optical wavelength division multiplexing/demultiplexing.
  • the rate of semiconductor lasers is limited by the bottleneck of semiconductor optoelectronic technology, and the rate of single-channel commercial products cannot be improved temporarily.
  • the high-speed optical transceiver module currently mainly uses a multi-channel semiconductor laser/detector array to be packaged in an optical port input/output transmission by optical wavelength division multiplexing/demultiplexing technology. / Receive optical components to increase the transmission rate of single-ended optical ports.
  • the transmit/receive optical component in a 40 Gbps QSFP+ optical transceiver module uses four CWDM laser/detector chips with different wavelengths of 10 Gbps to couple with a single fiber using optical wavelength division multiplexing/demultiplexing technology to achieve a single fiber transmission of 40 Gbps.
  • the signal, and the 40Gbps QSFP+ optical transceiver module is only slightly larger than the conventional lOGbps SFP+ optical transceiver module, and its transmission rate is four times.
  • IEEE Institute of Electrical and Electronics Engineers deployed and developed standards for this new high-speed network protocol.
  • the 40Gbps and lOOGbps Ethernet standards under the P802.3ba Engineering Task Force have been released, and the 400Gbps standard is also being developed.
  • the key technology of the multi-channel integrated optical wavelength division multiplexing/demultiplexing function of the transmitting/receiving optical component is how to realize the optical wavelength division multiplexing/demultiplexing function in a very small component, which is realized.
  • FIG. 1 a technical solution mainly adopted in the industry is shown in FIG. 1 .
  • the number of channels may be 4, 12, 16, or any other number, which is represented by four channels in this patent.
  • the channel spacing must be strictly equal.
  • the passband wavelength of the band pass filter group 103 corresponds to the wavelength of each channel laser, band pass The filter 103 enables transmission of wavelengths within the passband and reflection of wavelengths outside the channel.
  • the total reflection mirror 105 totally reflects light of all wavelengths.
  • the glass substrate 104 is a glass or other light transmissive material having good light transmittance, and has two planes which have extremely high parallelism and mutual distance tolerance.
  • the band pass filter group 103 is mounted on one plane of the glass substrate 104, and the other plane of the glass substrate 104 is mounted with a full-wavelength mirror 105.
  • the light emitted by the laser array 101 is converted into collimated light parallel to each other by the collimating lens group 102, and the multi-channel collimated light is obliquely incident on the band pass filter group 103 at a certain incident angle and transmitted to the glass substrate 104.
  • the light advances along the Z shape or the W shape on the glass substrate, and the specific optical path diagram is "arrow" as shown in FIG. Shown.
  • the beams of all of the channels substantially coincide at the exit of the glass substrate 104 and are then incident on the coupling lens 106 and coupled into the fiber 107.
  • An optical isolator can also be added between the coupling lens 106 and the optical fiber 107 depending on the performance requirements of the component.
  • the structural principle is substantially the same as that of FIG. 1, except that the laser array 101 is turned into a detector array, and a plurality of different wavelengths of light are emitted from the optical fiber 107, and the optical path proceeds in the reverse direction of the arrow optical path in FIG. A plurality of optical paths of different wavelengths are branched and coupled into corresponding channels of the detector array.
  • the key to the structure of the transmitting/receiving optical component for transmitting the multi-channel integrated optical wavelength division multiplexing/demultiplexing function is that it is necessary to ensure that the optical paths of all the channels can overlap as much as possible at the front end of the coupling lens 106 so as to pass a coupling.
  • the lens 106 provides high coupling efficiency for both channel and fiber coupling to achieve the performance requirements of the optical assembly. Since the glass substrate has no limiting effect on the light beam, the control of the overall optical path is mainly determined by the position of the band pass filter 103 and the total reflection mirror 105, so the Z-shaped or W-shaped optical path is very sensitive to the angle and distance of the back and forth reflecting surface.
  • the light of the last channel and the multiple beams of the first channel may be in the light. Offsets of a dozen or tens of microns are created on the road, making the optical coupling efficiencies of the two channels very different.
  • the deviation of the parallelism and the spacing between the multi-channel collimated lights also causes the beams of all the channels to eventually fail to coincide well, so the spacing between each channel of the laser array 101, the collimating lens group.
  • the conventional structure of the transmitting/receiving optical component of the multi-channel integrated optical wavelength division multiplexing/demultiplexing function is related to
  • the processing tolerance and installation accuracy of the material have very strict requirements, which greatly increase the material cost and the production process cost.
  • the qualified yield of all channels is also very high. Great impact.
  • the main object of the present invention is to provide a multi-channel integrated optical wavelength division multiplexing/demultiplexing component structure, which solves the prior art material processing tolerance and component mounting process.
  • the technical requirements of the accuracy requirements are very demanding and the coupling process is difficult and the product yield is low.
  • a multi-channel integrated optical wavelength division multiplexing/demultiplexing component structure provided by the present invention, comprising a light emitting component and a light receiving component, wherein the light emitting component is mainly composed of a laser chip array And a coupling lens group, a wavelength division multiplexing component, a coupling single lens, and a single-core optical fiber, wherein the wavelength division multiplexing component is disposed between the coupling lens group and the coupling single lens and includes an optical waveguide chip and a band pass filter group a full-wavelength reflecting unit and a plurality of waveguide optical paths continuously distributed in the optical waveguide chip in a Z-shape or a W-shape, wherein the multi-segment waveguide optical paths each have an input and an output port and are respectively distributed on left and right sides of the optical waveguide chip, the output The port has an end port and is coupled to a single lens arrangement, the band pass filter set overlying the input port, the full wavelength reflective
  • the laser chip array has a light emitting unit, wherein the laser chip array is an array of a plurality of discrete different wavelength laser chips or a plurality of light emitting units having different wavelengths.
  • the laser chips constitute an array, and the light-emitting units are arranged equidistantly on the same straight line or are not equidistant on the same straight line and arranged at arbitrary intervals.
  • the coupling lens group is an array of a plurality of discrete lenses or a single chip having a plurality of lens units forming an array.
  • the light emitting component further comprises an optical isolator disposed at a position between the coupled single lens and the single core fiber optic assembly.
  • the light receiving component comprises a detector chip array and a demultiplexing component
  • the demultiplexing component includes an optical waveguide chip, a band pass filter group, a full wavelength reflection unit, and a plurality of segments continuously distributed in the optical waveguide chip in a Z shape or a W shape.
  • a waveguide optical path each of which has an input and an output port and is respectively distributed on left and right sides of the optical waveguide chip, wherein the output port has an end port and is coupled to a single lens, and the band pass filter group covers On the input port, the full wavelength reflective unit is overlaid on an output port other than the end port.
  • the light receiving component further includes a coupling lens group disposed at a position between the detector chip array and the demultiplexing component.
  • the detector chip array is an array of a plurality of discrete detector chips or a single array of detector chips having a plurality of detector units, wherein the detector chip The array corresponds to the operating wavelength of each channel of the array of laser chips.
  • the optical waveguide chip comprises a substrate, a core layer, and upper and lower cladding layers, wherein the material of the core layer is exotic silicon dioxide or pure silicon; upper and lower cladding materials Both are pure silica or the upper cladding is air, and the lower cladding is silica.
  • the single-core optical fiber comprises a ceramic ferrule with an optical fiber or a glass component with an optical fiber.
  • the full wavelength reflecting unit is a coating layer or a mirror having reflective properties.
  • the optical waveguide chip is in the form of a flat quadrangular block.
  • the multi-segment waveguide optical path is a multi-segment linear waveguide or a multi-segment curved waveguide that is Z-shaped or W-shaped continuously distributed.
  • the spacing between the input ports may be equidistant or unequal, and the spacing between the output ports may be equidistant or unequal. distance.
  • the width of the multi-segment waveguide optical path is a scalar converter structure of uniform size or unevenness.
  • the invention has the beneficial effects of: using the optical waveguide chip to the inside of the optical component
  • the channel optical path is limited to improve the dimensional processing tolerance and mounting accuracy tolerance of each component, thereby improving the product yield, especially for the optical component product with a large number of channels, which can effectively improve the production of optical components. Effective, reducing the cost of optical components.
  • FIG. 1 is a schematic structural diagram of a multi-channel integrated optical wavelength division multiplexing transmitting optical component of the prior art.
  • FIG. 2 is a schematic view showing the structure of a preferred embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical wavelength division multiplexing/demultiplexing component of FIG. 2.
  • FIG. 4 is a schematic structural view of another preferred embodiment of a light emitting device.
  • FIG. 5 is a schematic structural view of another preferred embodiment of a light receiving assembly.
  • the present invention provides a multi-channel integrated optical wavelength division multiplexing/demultiplexing component structure, including a light emitting component 10 and a light receiving component 20, wherein:
  • the light emitting component 10 is mainly composed of a laser chip array 11, a coupling lens group 12, a wavelength division multiplexing component 13, a coupling single lens 14, and a single-core optical fiber 15, wherein: the laser chip array 11 may be multiple
  • the array of discrete wavelength laser chips may also be a single laser chip array with multiple light-emitting units of different wavelengths, and the wavelength of each channel may be different CWDM, LW DM, DWDM wavelengths satisfying IEEE specifications, or other Any wavelength; the number of array channels n can be 4, 16 or any other number.
  • the effective light emitting units of the laser chip array 11 may be arranged equidistantly on the same straight line, or may be arranged at equal intervals on the same straight line; the coupling lens group 12 may be an array of a plurality of discrete lenses.
  • the detector chip array 21 includes It can be a matrix of multiple discrete detector chips, or a single detector chip array with multiple detector units.
  • the working wavelength of the chip corresponds to each channel wavelength of the laser chip array 11; the opposite left side of the demultiplexing component 23 is mounted corresponding to the detector chip array 21; the coupling single lens 24 is mounted on the demultiplexing
  • the component 23 is interposed between the single core fiber 25.
  • the multi-channel light beam emitted by the laser chip array 10 is incident on the optical wave wavelength division multiplexing component 13 through the coupling lens group 20 at a certain incident angle, and the output waveguide port 01 passing through the end thereof Exiting, the single-core fiber optic assembly 15 is accessed through the coupling of a single lens 14.
  • an optical isolator 16 is further disposed between the coupling single lens 14 of the light emitting assembly 10 and the single-core optical fiber assembly 15.
  • the working beam, the light beam incident on the light wave wavelength division multiplexing component 13 is output through the output waveguide port 01 to the coupling single lens 14, and then enters the single core fiber 15 through the optical isolator 16.
  • a coupling lens group 22 is further disposed between the detector chip array 21 and the demultiplexing component 23, and works. ⁇ , the light beam emerging from the single-core fiber 25 of the light-receiving component 20 includes a plurality of light beams of different wavelengths, coupled through the coupling single lens 24 into the end-most output waveguide port 01, and then beams of different wavelengths from the corresponding input waveguide ports The exits are coupled to the detector chip array 21 via the coupling lens group 22, respectively.
  • the wavelength division multiplexing component 13 and the demultiplexing component 23 (hereinafter referred to as “division multiplexing/demultiplexing"
  • the component "" is the same structural component, and the coupling single lens 24 and the coupling single lens 14 in the light emitting component 10 and the single-core optical fiber 25 are the same as the single-core optical fiber 15 in the light-emitting component 10.
  • the sub-multiplexing/demultiplexing component 13/23 comprises an optical waveguide chip 131/231, a band pass filter set 132/232, a full-wavelength reflecting unit 133/233, and a waveguide optical path 134/234, wherein :
  • the optical waveguide chip 131/231 is a quadrangular block shape having a plurality of waveguide optical paths 134/234, and the core layer of the multi-segment waveguide optical path is Z-shaped or W-shaped continuously distributed (as shown in the shaded portion in FIG. 3).
  • the left and right sides of the optical waveguide chip 1 31/231 are respectively provided with n input conduction ports II ... In and output waveguide ports 01 ... On
  • n is the number of channels of the transmitting/receiving optical component of the multi-channel integrated optical wavelength division multiplexing/demultiplexing function; in this embodiment, the multi-segment waveguide optical path 134/234 may be multi-segment
  • the linear waveguides are continuously distributed in a Z-shape or a W-shape, or the multi-segment curved waveguides may be continuously distributed in a Z-shape or a W-shape, and the distance between adjacent input or output ports may be equidistant or may be unequal distances.
  • the width of the multi-segment waveguide optical path may be a uniform size or a non-uniform size, for example, a spot size converter (SSC) is used in the input or output waveguide port.
  • SSC spot size converter
  • the preparation material of the optical waveguide chip 131/231 may adopt any conventional process waveguide material, such as a silicon-based silicon dioxide material, the substrate is silicon, the core layer is uncomfortable silicon dioxide, and the upper and lower cladding layers are pure.
  • the lateral cross-sectional dimension of the silicon dioxide core waveguide satisfies the conditions for single-mode waveguide transmission; for example, the silicon material on the insulating layer, the substrate is silicon, the lower cladding layer is silicon dioxide, the core layer is pure silicon, and the upper cladding layer For air or silica.
  • the transverse cross-sectional dimension of the core waveguide satisfies the conditions of single mode transmission;
  • the band pass filter set 132/232 includes n different band pass filters, each pass band wavelength corresponding to each channel operating wavelength of the multi-channel transmit/receive optical component, band pass filter set
  • the 132/232 allows transmission of wavelengths in the passband to reflect wavelengths outside the passband.
  • the band pass filter groups 132/232 are respectively mounted on n input ports on the opposite left sides of the waveguide chips 131/231, and the full wavelength reflection unit 133/23 3 is a reflection capable of reflecting all working wavelengths.
  • the mirror is mounted on the n-1 output optical waveguide ports except the end output waveguide port 1341/2341 opposite to the opposite right side of the optical waveguide chip 131/132.
  • the full wavelength reflection unit 133/233 is further It may be a coating layer having reflective properties.
  • the light of different wavelengths of the n channels enters the input or output port ⁇ corresponding to the waveguide optical path, because the band pass filter group 132/232 is reflected outside the pass band, and the full-wavelength reflecting unit 133/233 In the reflection effect, the light beam sequentially travels along the Z-shaped or W-shaped waveguide optical path into the next segment of the waveguide. Under the restriction of the optical waveguide on the direction of propagation of the beam, the light of the final n channels is emitted or incident from the end output waveguide port 1341/1342.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种多通道集成光波分复用/解复用的组件结构,包括光发射组件(10)和光接收组件(20),光发射组件(10)包括激光器芯片阵列(11)、耦合透镜组(12)、波分复用组件(13)、耦合单透镜(14)以及单芯光纤(15),其中:波分复用组件(13)包括光波导芯片(131)、带通滤光片组(132)、全波长反射单元(133)以及呈Z形或W形连续分布在光波导芯片(131)中的多段波导光路(134),多段波导光路(134)均具有输入端口(I1…In)、输出端口(O1……On)并分别分布在光波导芯片(131)的左右侧面,输出端口(O1……On)具有末端端口并对应耦合单透镜(14)设置,带通滤光片组(132)覆盖在输入端口(I1…In)上,全波长反射单元(133)覆盖在除末端端口以外的输出端口上,解决了总体光路精度偏差的技术问题,达成了易于组装、降低成本以及提高产品良率的效果。

Description

说明书 发明名称:一种多通道集成光波分复用 /解复用的组件结构 技术领域
[0001] 本发明本涉及光通信技术领域, 尤其是指一种多通道集成光波分复用 /解复用 的组件结构。
背景技术
[0002] 随着现代通信对带宽需求的极速增长, 光通信系统对高速光收发模块以及模块 内部的光发射组件和光接收组件的要求随之不断提高, 主要发展趋势为速率越 来越高, 光收发模块体积也越来越小, 功耗也越来越低。
[0003] 目前半导体激光器的速率受半导体光电技术的瓶颈限制, 单通道的商用化产品 速率暂吋无法提高。 为了提高光通信设备的单位体积内的传输容量, 高速光收 发模块目前主要采用将多通道半导体激光器 /探测器阵列通过光波分复用 /解复用 技术封装在只有一个光口输入 /输出的发射 /接收光组件里, 来提高单端光口的传 输速率。 例如 40Gbps QSFP+光收发模块中的发射 /接收光组件将 4个 CWDM不同 波长的 lOGbps的激光器 /探测器芯片利用光波分复用 /解复用技术和单根光纤耦合 , 以实现单根光纤传输 40Gbps信号, 而 40Gbps QSFP+光收发模块的体积仅比常 规 lOGbps SFP+光收发模块稍大一点, 传输速率却是其 4倍。 电气电子工程师学 会(Institute of Electrical and Electronics Engineers, IEEE)对这种新的高速网络协 议进行了部署和制订了相关标准。 P802.3ba工程任务组下的 40Gbps和 lOOGbps 以太网标准已经发布, 400Gbps标准也正在制定中。
[0004] 这种多通道集成光波分复用 /解复用功能的发射 /接收光组件的关键技术就是如 何实现在体积非常小的组件内部实现光波分复用 /解复用功能, 既要实现所有通 道高效率的光耦合, 还要实现小尺寸封装以满足光收发模块的体积要求。
[0005] 目前, 业内主要采用的一种技术方案如图 1所示。 对于发射光组件, 其中激光 器阵列 101是多个不同波长的激光器芯片组成的多通道阵列, 通道数量可以是 4 、 12、 16或其他任意数量, (本专利中以 4通道为代表进行说明) , 通道间距必 须严格相等。 带通滤光片组 103的通带波长和各通道激光器的波长相对应, 带通 滤光片 103可实现对通带内的波长进行透射, 对通道外的波长进行反射。 全反射 镜 105对所有波长的光全部反射。 玻璃基板 104是具有良好的透光率的玻璃或其 他透光材质, 其有两个平面对相互的平行度和相互距离公差要求极高。
[0006] 带通滤光片组 103安装在玻璃基板 104的一个平面上, 玻璃基板 104的另一个平 面上安装有全波长反射镜 105。 激光器阵列 101发射的光通过准直透镜组 102变成 多通道互相平行的准直光, 多通道准直光以一定的入射角斜入射到带通滤光片 组 103上并透射到玻璃基板 104内, 经过全反射镜 105的反射和带通滤光片组 103 对非通带波长光的反射, 光线在玻璃基板上沿 Z形或 W形前进, 具体光路图如图 1中的"箭头"所示。 最终所有通道的光束在玻璃基板 104的出口处基本重合, 然后 入射到耦合透镜 106, 耦合进入光纤 107。 根据组件性能需要, 也可在耦合透镜 1 06和光纤 107之间加入光隔离器。
[0007] 对于接收光组件, 结构原理和图 1基本相同, 只是将激光器阵列 101变成探测器 阵列, 多个不同波长的光从光纤 107出射, 光路沿图 1中箭头光路的逆向前进, 最终多个不同波长的光路分幵, 耦合进探测器阵列分别对应的通道。
[0008] 上述发多通道集成光波分复用 /解复用功能的发射 /接收光组件结构的关键在于 必须保证所有通道的光路在耦合透镜 106的前端能够全部尽可能重合, 这样才能 通过一个耦合透镜 106使得所有通道的光和光纤耦合都具有较高的耦合效率, 以 达到光组件的性能要求。 由于玻璃基板对光束没有限制作用, 总体光路的控制 主要由带通滤光片 103和全反射镜 105的位置来决定, 因此这种 Z形或 W形光路对 来回反射面的角度和距离非常敏感, 例如玻璃基板两个表面之间如果存在 0.3度 夹角或者二者之间的距离和目标值有十几个微米的偏差, 都可能导致最末通道 的光束和第一通道的多光束在光路上产生十几或几十微米的偏移, 从而使得这 两个通道的光耦合效率相差甚远。 除此之外, 多通道准直光之间的平行度和间 距的偏差也会导致所有通道的光束最终无法较好地重合, 因此激光器阵列 101的 每个通道之间的间距、 准直透镜组的安装位置、 准直光的准直度等众多相关因 素都对总体光路光组件最终的性能都有着较大影响。 而在通道数量较多的组件 中, 由于光路更长, 同样的精度偏差或导致最终光路更大的偏移。 综上所述, 传统的这种多通道集成光波分复用 /解复用功能的发射 /接收光组件结构对相关物 料的加工公差和安装精度有着十分苛刻的要求, 极大增加了物料成本和生产工 艺成本, 在实际组件生产过程中由于物料公差和工艺精度不可避免的影响, 全 部通道合格的成品率也受到很大的影响。
技术问题
[0009] 为解决上述技术问题, 本发明的主要目的在于提供一种多通道集成光波分复用 /解复用的组件结构, 该组件结构解决了现有技术中对物料加工公差和组件安装 工艺精度要求十分苛刻以及耦合工艺难度较大, 产品良率低的技术问题。
问题的解决方案
技术解决方案
[0010] 本发明采取的技术方案是: 本发明提供的一种多通道集成光波分复用 /解复用 的组件结构, 包括光发射组件和光接收组件, 所述光发射组件主要由激光器芯 片阵列、 耦合透镜组、 波分复用组件、 耦合单透镜以及单芯光纤构成, 其中该 波分复用组件设于耦合透镜组与耦合单透镜之间并包括光波导芯片、 带通滤光 片组、 全波长反射单元以及呈 Z形或 W形连续分布在光波导芯片中的多段波导光 路, 所述多段波导光路均具有输入、 输出端口并分别分布在该光波导芯片的左 右侧面, 所述输出端口具有末端端口并对应该耦合单透镜设置, 该带通滤光片 组覆盖在所述输入端口上, 该全波长反射单元覆盖在除末端端口以外的输出端 口上。
[0011] 在本发明之实施例中优选, 所述激光器芯片阵列具有发光单元, 其中该激光器 芯片阵列是多个分立的不同波长激光器芯片构成阵列或是单片具有不同波长的 多个发光单元的激光器芯片构成阵列, 所述发光单元是在同一直线上等距排列 或是在同一直线上不等距并以任意间隔排列。
[0012] 在本发明之实施例中优选, 所述耦合透镜组是多个分立透镜构成的阵列或是单 片具有多个透镜单元构成阵列。
[0013] 在本发明之实施例中优选, 所述光发射组件还包括光隔离器, 该光隔离器设在 该耦合单透镜与所述单芯光纤组件之间的位置。
[0014] 在本发明之实施例中优选, 所述光接收组件包括探测器芯片阵列、 解复用组件
、 耦合单透镜以及单芯光纤。 [0015] 在本发明之实施例中优选, 所述解复用组件包括光波导芯片、 带通滤光片组、 全波长反射单元以及呈 Z形或 W形连续分布在光波导芯片中的多段波导光路, 所 述多段波导光路均具有输入、 输出端口并分别分布在该光波导芯片的左右侧面 , 其中所述输出端口具有末端端口并对应该耦合单透镜设置, 该带通滤光片组 覆盖在所述输入端口上, 该全波长反射单元覆盖在除末端端口以外的输出端口 上。
[0016] 在本发明之实施例中优选, 所述光接收组件还包括耦合透镜组, 该耦合透镜组 设在该探测器芯片阵列与所述解复用组件之间的位置。
[0017] 在本发明之实施例中优选, 所述探测器芯片阵列是多个分立的探测器芯片构成 阵列或是单片具有多个探测器单元的探测器芯片构成阵列, 其中该探测器芯片 阵列与所述激光器芯片阵列的各通道的工作波长相对应。
[0018] 在本发明之实施例中优选, 所述光波导芯片包括衬底、 芯层、 上下包层, 其中 芯层的材料为惨锗的二氧化硅或纯硅; 上、 下包层材料均为纯二氧化硅或上包 层为空气, 下包层则为二氧化硅。
[0019] 在本发明之实施例中优选, 所述单芯光纤包括带光纤的陶瓷插芯或带光纤的玻 璃组件。
[0020] 在本发明之实施例中优选, 所述全波长反射单元是具有反射性能的镀膜层或是 反射镜。
[0021] 在本发明之实施例中优选, 所述光波导芯片为平形四边形块状。
[0022] 在本发明之实施例中优选, 所述多段波导光路是多段直线波导或多段弯曲波导 为 Z形或 W形连续分布。
[0023] 在本发明之实施例中优选, 所述输入端口之间的间距可以是等距离或是不等的 任意距离, 所述输出端口之间的间距可以是等距离或是不等的任意距离。
[0024] 在本发明之实施例中优选, 所述多段波导光路的宽度是均匀大小或是不均匀大 小的模斑转换器结构。
发明的有益效果
有益效果
[0025] 本发明与现有技术相比, 其有益的效果是: 利用光波导芯片对光组件内部的多 通道光路进行限制, 提高各组件的尺寸加工容差和安装精度容差, 藉此提升产 品良率, 尤其对通道数量较多的光组件产品良率的提升明显, 这样可有效提高 光组件的生产吋效, 降低光组件成本。
对附图的简要说明
附图说明
[0026] 图 1是现有技术的多通道集成光波分复用发射光组件结构示意图。
[0027] 图 2是本发明之较佳实施例的结构的示意图。
[0028] 图 3是图 2中光波分复用 /解复用组件的结构示意图。
[0029] 图 4是光发射组件另一较佳实施例的结构示意图。
[0030] 图 5是光接收组件另一较佳实施例的结构示意图。
本发明的实施方式
[0031] 下面结合附图对本发明作进一步的说明。
[0032] 请参阅图 2所示, 本发明提供一种多通道集成光波分复用 /解复用的组件结构, 包括光发射组件 10和光接收组件 20, 其中:
[0033] 所述光发射组件 10主要由激光器芯片阵列 11、 耦合透镜组 12、 波分复用组件 13 、 耦合单透镜 14以及单芯光纤 15构成, 其中: 该激光器芯片阵列 11可以是多个 分立的不同波长激光器芯片组成的阵列, 也可以是单片具有不同波长的多个发 光单元的激光器芯片阵列, 各通道波长可以是满足 IEEE规范的不同 CWDM、 LW DM、 DWDM波长, 也可以是其他任意波长; 阵列通道数量 n可以是 4个、 16个或 其他任意数量。 当然, 激光器芯片阵列 11的有效发光单元可以是在同一直线上 等距排列, 也可以是同一直线上不等距以任意间隔排列; 该耦合透镜组 12可以 是多个分立的透镜组成的阵列, 也可以是单片具有多个透镜单元的透镜阵列; 该波分复用组件 13设置于耦合透镜组 12与耦合单透镜 14之间的位置; 该单芯光 纤 15是裸光纤、 带光纤的陶瓷插芯或者带光纤的玻璃组件, 以及所述光接收组 件 20主要由探测器芯片阵列 21、 解复用组件 23、 耦合单透镜 24以及单芯光纤 25 构成, 其中: 该探测器芯片阵列 21包括可以是多个分立的探测器芯片组成的阵 歹 |J, 也可以是单片具有多个探测器单元的探测器芯片阵列, 各通道的探测器芯 片的工作波长和激光器芯片阵列 11的各通道波长相对应; 该解复用组件 23其相 对的左侧对应于所述探测器芯片阵列 21安装; 该耦合单透镜 24安装在所述解复 用组件 23与该单芯光纤 25之间。 在本发明创造之实施例中, 所述激光芯片阵列 1 0发出的多通道光束, 经过耦合透镜组 20以一定入射角入射到光波波分复用组件 13后, 经其末端的输出波导端口 01出射, 通过耦合单透镜 14进入单芯光纤组件 1 5。
[0034] 请结合参阅图 3、 图 4所示, 在本发明创造之实施例中, 在所述光发射组件 10的 耦合单透镜 14与单芯光纤组件 15之间还设置有光隔离器 16, 工作吋, 其入射到 光波波分复用组件 13的光束经其输出波导端口 01出射至耦合单透镜 14, 再经该 光隔离器 16进入单芯光纤 15。
[0035] 请结合参阅图 3、 图 5所示, 在本发明创造之实施例中, 在所述探测器芯片阵列 21与所述解复用组件 23之间还设有耦合透镜组 22, 工作吋, 从光接收组件 20的 单芯光纤 25出射的光束包括了多个不同波长的光束, 通过该耦合单透镜 24耦合 进入最末端输出波导端口 01, 然后不同波长的光束从对应的输入波导端口出射 , 经过该耦合透镜组 22分别耦合到探测器芯片阵列 21。
[0036] 请再参阅图 2并结合参阅 3所示, 在本发明创造之实施例中, 所述波分复用组件 13与所述解复用组件 23 (以下简称"分复用 /解复用组件") 为相同结构组件, 所 述耦合单透镜 24与所述光发射组件 10中的耦合单透镜 14以及所述单芯光纤 25与 所述光发射组件 10中的单芯光纤 15也是相同结构组件, 其中: 该分复用 /解复用 组件 13/23包括光波导芯片 131/231、 带通滤光片组 132/232、 全波长反射单元 133/ 233以及波导光路 134/234, 其中:
[0037] 该光波导芯片 131/231为平形四边形块状, 具有多段波导光路 134/234, 其多段 波导光路的芯层为 Z形或 W形连续分布 (如图 3中阴影部分) , 在该光波导芯片 1 31/231左右两个侧面分别设有 n个输入导的端口 II ...In和输出波导的端口 01...On
(以下简称"输入、 输出端口") , n为多通道集成光波分复用 /解复用功能的发射 / 接收光组件的通道数量; 在本实施例中, 多段波导光路 134/234可以是多段直线 波导为 Z形或 W形连续分布, 也可以是多段弯曲波导为 Z形或 W形连续分布, 其 相邻的输入或输出端口之间距可以是等距离, 也可以是不等的任意距离。 在本 实施例中, 多段波导光路的宽度可以是均匀大小, 也可以是不均匀大小, 例如 在输入或输出波导端口采用模斑转换器结构 (Spot Size Converter, SSC) 。 所述 光波导芯片 131/231的制备材料可采用任意常规工艺的波导材料, 例如硅基二氧 化硅材料, 其衬底为硅、 芯层为惨锗的二氧化硅、 上下包层均为纯二氧化硅, 芯层波导的横向截面尺寸满足单模波导传输的条件; 又如绝缘层上硅材料, 其 衬底为硅、 下包层为二氧化硅、 芯层为纯硅、 上包层为空气或者二氧化硅。 芯 层波导的横向截面尺寸满足单模传输的条件;
[0038] 该带通滤光片组 132/232包含 n个不同带通的滤光片, 各个通带波长和多通道发 射 /接收光组件的各通道工作波长相对应, 带通滤光片组 132/232可实现对通带内 的波长进行透射, 对通带外的波长进行反射。 带通滤光片组 132/232分别安装覆 盖在波导芯片 131/231相对的左侧的 n个输入端口上,以及该全波长反射单元 133/23 3是可实现对全部工作波长进行反射的反射镜, 安装覆盖该光波导芯片 131/132相 对的右侧的除了末端输出波导端口 1341/2341以外的 n-1个输出光波导端口上, 在 本实施例中, 全波长反射单元 133/233还可以是具有反射性能的镀膜层。 在本实 施例中, n个通道的不同波长的光进入波导光路对应的输入或输出端口吋, 由于 带通滤光片组 132/232对通带外的反射、 全波长反射单元 133/233的反射作用, 光 束沿 Z形或 W形波导光路依次进入下一段波导传播, 在光波导对光束传播方向的 限制作用下, 最终 n个通道的光都从末端输出波导端口 1341/1342出射或者入射。
[0039] 综上所述, 仅为本发明之较佳实施例, 不以此限定本发明的保护范围, 凡依本 发明专利范围及说明书内容所作的等效变化与修饰, 皆为本发明专利涵盖的范 围之内。

Claims

权利要求书
一种多通道集成光波分复用 /解复用的组件结构, 包括光发射组件 和光接收组件, 所述光发射组件主要由激光器芯片阵列、 耦合透 镜组、 波分复用组件、 耦合单透镜以及单芯光纤构成, 其特征在 于: 该波分复用组件设于耦合透镜组与耦合单透镜之间并包括光 波导芯片、 带通滤光片组、 全波长反射单元以及呈 Z形或 W形连续 分布在光波导芯片中的多段波导光路, 所述多段波导光路均具有 输入、 输出端口并分别分布在该光波导芯片的左右侧面, 所述输 出端口具有末端端口并对应该耦合单透镜设置, 该带通滤光片组 覆盖在所述输入端口上, 该全波长反射单元覆盖在除末端端口以 外的输出端口上。
如权利要求 1所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述激光器芯片阵列具有发光单元, 其中该激光器芯 片阵列是多个分立的不同波长激光器芯片构成阵列或是单片具有 不同波长的多个发光单元的激光器芯片构成阵列, 所述发光单元 是在同一直线上等距排列或是在同一直线上不等距并以任意间隔 排列。
如权利要求 2所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述耦合透镜组是多个分立透镜构成的阵列或是单片 具有多个透镜单元构成阵列。
如权利要求 3所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述光发射组件还包括光隔离器, 该光隔离器设在该 耦合单透镜与所述单芯光纤组件之间的位置。
如权利要求 1所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述光接收组件包括探测器芯片阵列、 解复用组件、 耦合单透镜以及单芯光纤。
如权利要求 5所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述解复用组件包括光波导芯片、 带通滤光片组、 全 波长反射单元以及呈 Z形或 W形连续分布在光波导芯片中的多段波 导光路, 所述多段波导光路均具有输入、 输出端口并分别分布在 该光波导芯片的左右侧面, 其中所述输出端口具有末端端口并对 应该耦合单透镜设置, 该带通滤光片组覆盖在所述输入端口上, 该全波长反射单元覆盖在除末端端口以外的输出端口上。
如权利要求 6所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述光接收组件还包括耦合透镜组, 该耦合透镜组设 在该探测器芯片阵列与所述解复用组件之间的位置。
如权利要求 7所述的多通道集成光波分复用 /解复用的组件结构, 其 特征在于: 所述探测器芯片阵列是多个分立的探测器芯片构成阵 列或是单片具有多个探测器单元的探测器芯片构成阵列, 其中该 探测器芯片阵列与所述激光器芯片阵列的各通道的工作波长相对 应。
如权利要求 1或 6所述的多通道集成光波分复用 /解复用的组件结构 , 其特征在于: 所述光波导芯片包括衬底、 芯层、 上下包层, 其 中芯层的材料为惨锗的二氧化硅或纯硅; 上、 下包层材料均为纯 二氧化硅或上包层为空气, 下包层则为二氧化硅。
如权利要求 1或 6所述的多通道集成光波分复用 /解复用的组件结构 , 其特征在于: 所述单芯光纤包括带光纤的陶瓷插芯或带光纤的 玻璃组件。
如权利要求 1或 6所述的多通道集成光波分复用 /解复用的组件结构 , 其特征在于: 所述全波长反射单元是具有反射性能的镀膜层或 是反射镜。
如权利要求 1或 6所述的多通道集成光波分复用 /解复用的组件结构 , 其特征在于: 所述光波导芯片为平形四边形块状。
PCT/CN2014/094329 2014-06-11 2014-12-19 一种多通道集成光波分复用/解复用的组件结构 WO2015188606A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2960732A CA2960732A1 (en) 2014-06-11 2014-12-19 Multi-channel integrated optical wavelength division multiplexing/demultiplexing assembly structure
US15/503,566 US20170242195A1 (en) 2014-06-11 2014-12-19 Multi-channel integrated optical wavelength division multiplexing/demultiplexing assembly structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410255328.8A CN104020527A (zh) 2014-06-11 2014-06-11 一种多通道集成光波分复用/解复用的组件结构
CN201410255328.8 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015188606A1 true WO2015188606A1 (zh) 2015-12-17

Family

ID=51437379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094329 WO2015188606A1 (zh) 2014-06-11 2014-12-19 一种多通道集成光波分复用/解复用的组件结构

Country Status (4)

Country Link
US (1) US20170242195A1 (zh)
CN (1) CN104020527A (zh)
CA (1) CA2960732A1 (zh)
WO (1) WO2015188606A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020527A (zh) * 2014-06-11 2014-09-03 武汉电信器件有限公司 一种多通道集成光波分复用/解复用的组件结构
US9529079B1 (en) 2015-03-26 2016-12-27 Google Inc. Multiplexed multichannel photodetector
CN105425338B (zh) * 2015-11-10 2019-03-08 武汉电信器件有限公司 一种波分复用/解复用组件
CN105334580B (zh) * 2015-11-26 2019-01-25 武汉光迅科技股份有限公司 一种波分复用光接收组件
CN105717589B (zh) * 2016-04-25 2018-06-26 武汉光迅科技股份有限公司 一种单光口多路并行光发射组件
CN105866904A (zh) * 2016-05-23 2016-08-17 宁波环球广电科技有限公司 多通道并行的光接收器件
CN106130649A (zh) * 2016-07-12 2016-11-16 武汉电信器件有限公司 一种qsfp+光模块组件
CN108415130B (zh) * 2017-08-24 2024-06-04 四川新易盛通信技术有限公司 一种八通道高速率光接收器件
CN107966773B (zh) * 2018-01-10 2019-12-24 青岛海信宽带多媒体技术有限公司 光发射次模块及光模块
CN108614332A (zh) * 2018-07-24 2018-10-02 大连优迅科技有限公司 一种多路光高速传输发射装置
CN108761672B (zh) * 2018-07-29 2024-02-27 广东瑞谷光网通信股份有限公司 单光纤的双收双发光路系统
CN108718215B (zh) * 2018-07-29 2024-06-11 广东瑞谷光网通信股份有限公司 一种qsfp28型封装的100g光模块的通信系统
CN109061810B (zh) * 2018-08-03 2020-10-09 武汉电信器件有限公司 一种激光器组件以及相应的光模块
CN109061804A (zh) * 2018-08-17 2018-12-21 杭州耀芯科技有限公司 多路多模光信号聚合、传输、分离装置及方法
US10950651B2 (en) * 2018-11-28 2021-03-16 Applied Optoelectronics, Inc. Photodiode (PD) array with integrated back-side lenses and a multi-channel transceiver module implementing same
CN109683254B (zh) * 2018-11-30 2020-10-27 广东瑞谷光网通信股份有限公司 计算机可读存储介质和应用该介质的四通道波分复用光接收器件的准直透镜耦合装置
CN109669250A (zh) * 2019-03-07 2019-04-23 上海葛西光学科技有限公司 紧凑型一体化单纤三向传输用光收发光学组件
CN112013794B (zh) * 2019-05-31 2024-06-25 福州高意光学有限公司 一种多通道光束平行度和间距测试方法及装置
CN110542950B (zh) * 2019-07-18 2023-11-07 北京大学 一种基于空间三维波导的简并模式组的模式解复用器
CN110941050A (zh) * 2019-10-30 2020-03-31 宁波环球广电科技有限公司 一种多通道高密度波分复用高速光器件
CN113448022B (zh) * 2020-03-24 2022-04-22 华为技术有限公司 光发射机、光模块、光收发设备以及光通信系统
CN111404609B (zh) * 2020-03-31 2021-05-11 武汉光迅科技股份有限公司 多通道光接收模块
CN111427121A (zh) * 2020-04-27 2020-07-17 武汉光鱼科技有限公司 一种八通道波分复用及波分解复用光器件
CN113805284A (zh) * 2020-06-12 2021-12-17 武汉光迅科技股份有限公司 光发射组件及光收发模块
CN112130130B (zh) * 2020-09-07 2024-06-04 联合微电子中心有限责任公司 硅光芯片以及激光雷达系统
CN112162357A (zh) * 2020-09-24 2021-01-01 易锐光电科技(安徽)有限公司 光学结构
CN112649919A (zh) * 2020-12-26 2021-04-13 易锐光电科技(安徽)有限公司 一种波分复用器件
CN116931200B (zh) * 2023-09-19 2023-12-12 武汉钧恒科技有限公司 一种400g dr4光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877264A2 (en) * 1997-05-07 1998-11-11 Hewlett-Packard Company An improved optical waveguide device for wavelength demultiplexing and waveguide crossing
CN100373194C (zh) * 2003-03-22 2008-03-05 秦内蒂克有限公司 光波分复用器/波分去复用器装置
CN102684794A (zh) * 2012-06-06 2012-09-19 苏州旭创科技有限公司 应用于高速并行长距离传输的新型波分复用解复用光组件
CN104020527A (zh) * 2014-06-11 2014-09-03 武汉电信器件有限公司 一种多通道集成光波分复用/解复用的组件结构

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2258751B1 (zh) * 1974-01-18 1978-12-08 Thomson Csf
CA1258786A (en) * 1985-04-11 1989-08-29 Omur M. Sezerman Tilt adjustable optical fibre connectors
DE3903019A1 (de) * 1989-02-02 1990-08-09 Hell Rudolf Dr Ing Gmbh Optische farbteiler-anordnung
JP3284659B2 (ja) * 1993-04-09 2002-05-20 株式会社フジクラ 波長多重光通信用光スイッチング装置
US5583683A (en) * 1995-06-15 1996-12-10 Optical Corporation Of America Optical multiplexing device
US6008920A (en) * 1998-03-11 1999-12-28 Optical Coating Laboratory, Inc. Multiple channel multiplexer/demultiplexer devices
US6751373B2 (en) * 2001-04-10 2004-06-15 Gazillion Bits, Inc. Wavelength division multiplexing with narrow band reflective filters
US7031610B2 (en) * 2001-06-13 2006-04-18 Jds Uniphase Corporation Diffraction-compensated integrated WDM
US6748133B2 (en) * 2001-11-26 2004-06-08 Alliance Fiber Optic Products, Inc. Compact multiplexing/demultiplexing modules
US20040067014A1 (en) * 2002-10-04 2004-04-08 Hollars Dennis R. Miniature optical multiplexer/de-multiplexer DWDM device, and method of aligning components thereof
US7212343B1 (en) * 2003-07-11 2007-05-01 Alliance Fiber Optic Products, Inc. Compact wavelength multiplexer/demultiplexer and method for making the same
JP2005241730A (ja) * 2004-02-24 2005-09-08 Nec Corp 光合分波器および光モジュール
WO2012057792A1 (en) * 2010-10-29 2012-05-03 Hewlett-Packard Development Company, L.P. Optical interconnect fabrics implemented with star couplers
CN202351467U (zh) * 2011-12-22 2012-07-25 福州高意通讯有限公司 一种多路并行的光耦合器
CN202563118U (zh) * 2012-01-12 2012-11-28 苏州海光芯创光电科技有限公司 一种波分复用器件及其在高速光器件中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0877264A2 (en) * 1997-05-07 1998-11-11 Hewlett-Packard Company An improved optical waveguide device for wavelength demultiplexing and waveguide crossing
CN100373194C (zh) * 2003-03-22 2008-03-05 秦内蒂克有限公司 光波分复用器/波分去复用器装置
CN102684794A (zh) * 2012-06-06 2012-09-19 苏州旭创科技有限公司 应用于高速并行长距离传输的新型波分复用解复用光组件
CN104020527A (zh) * 2014-06-11 2014-09-03 武汉电信器件有限公司 一种多通道集成光波分复用/解复用的组件结构

Also Published As

Publication number Publication date
CN104020527A (zh) 2014-09-03
CA2960732A1 (en) 2015-12-17
US20170242195A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
WO2015188606A1 (zh) 一种多通道集成光波分复用/解复用的组件结构
CN105717589B (zh) 一种单光口多路并行光发射组件
US20130330080A1 (en) Wavelength Division Multiplexing/De-Multiplexing Optical Assembly for High Speed Parallel Long Distance Transmission
CN202713311U (zh) 应用于高速并行长距离传输的新型波分复用解复用光组件
US20090097847A1 (en) Optical module
US10578804B2 (en) Optical slab
CN105334580A (zh) 一种波分复用光接收组件
WO2016112576A1 (zh) 波分复用/解复用器以及光发射组件
US20160187585A1 (en) Optical fitler subassembly for compact wavelength demultiplexing device
EP2981010B1 (en) Optical module and optical network system
JP2015075734A (ja) 光モジュール及び光モジュール製造方法。
WO2015076469A1 (ko) 좁은 파장 간격의 양방향 통신용 광모듈 패키지 구조
CN202563118U (zh) 一种波分复用器件及其在高速光器件中的应用
CN104714277A (zh) 波分复用器及光模块
US20210278613A1 (en) Short-waveband active optical component based on vertical emitting laser and multi-mode optical fiber
CN109814213A (zh) 一种光模块用集成光学组件
WO2023246297A1 (zh) 光收发组件
US11747566B2 (en) Coupling multiple optical channels using a z-block
JP2014182224A (ja) 光素子
CN110989079B (zh) 一种空气包层su8阵列波导光栅
WO2021203359A1 (zh) 一种光通信器件及光信号处理方法
JPH05203830A (ja) 光合分波器
CN209446844U (zh) 光模块用集成光学组件
WO2019087872A1 (ja) 光レセプタクル、光モジュールおよび光伝送器
CN109799619A (zh) 一种8通道偏振合波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14894437

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15503566

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2960732

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 14894437

Country of ref document: EP

Kind code of ref document: A1