WO2023246297A1 - 光收发组件 - Google Patents

光收发组件 Download PDF

Info

Publication number
WO2023246297A1
WO2023246297A1 PCT/CN2023/091069 CN2023091069W WO2023246297A1 WO 2023246297 A1 WO2023246297 A1 WO 2023246297A1 CN 2023091069 W CN2023091069 W CN 2023091069W WO 2023246297 A1 WO2023246297 A1 WO 2023246297A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
channel spacing
chip
optical transceiver
filter
Prior art date
Application number
PCT/CN2023/091069
Other languages
English (en)
French (fr)
Inventor
邓秀菱
魏尹
肖鹏
易翎杰
Original Assignee
成都旭创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都旭创科技有限公司 filed Critical 成都旭创科技有限公司
Publication of WO2023246297A1 publication Critical patent/WO2023246297A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements

Definitions

  • the utility model relates to the field of optical communications, and in particular to an optical transceiver component.
  • WDM wavelength division multiplexing
  • Optical signals achieve Direct multiplexing and amplification, and the individual wavelengths are independent of each other.
  • using optical transceiver lenses with discrete optical filters to achieve multiplexing and demultiplexing is limited by the size of the optical filters, resulting in a large channel gap and the need to disperse single-channel optical chips (PD/VCSEL). ) to meet the large channel gap, which increases the overall size of the optical module and increases its manufacturing cost.
  • PD/VCSEL disperse single-channel optical chips
  • the purpose of this utility model is to provide an optical transceiver assembly that reduces the optical channel gap.
  • an optical transceiver assembly which includes a circuit board, an optical transceiver lens disposed on the circuit board, and at least two optoelectronic chips.
  • the circuit board is electrically connected to the There are at least two optoelectronic chips.
  • the optical transceiver lens is provided with a filter corresponding to the at least two optoelectronic chips.
  • the optical filter realizes beam combining or splitting of light.
  • the optical transceiver lens includes at least A channel spacing adjustment member. When the light beams are respectively emitted from the at least two optoelectronic chips, they are reflected to the filter through the channel spacing adjustment member. The channel spacing adjustment member will emit light from the at least two optoelectronic chips. The distance between at least two adjacent beams of light emitted by the chip is increased before reaching the optical filter.
  • the optical transceiver assembly includes four optoelectronic chips, and the four optoelectronic chips are arranged along the first direction.
  • the optical transceiver lens includes two channel spacing adjustment members. The channel spacing adjusting members are arranged relatively along the first direction.
  • the optical transceiver assembly includes four optical filters corresponding to the optoelectronic chips, and the aforementioned four optoelectronic chips are simultaneously configured as light emitting chips or light receiving chips.
  • the optical transceiver lens includes a bottom wall spaced apart from the circuit board, a side wall connected to the periphery of the bottom wall and connected to the circuit board, and two side walls spaced apart from one end of the bottom wall away from the circuit board.
  • the four optical filters are spaced apart along the first direction on the two installation walls, and the channel spacing adjustment member is provided on the bottom wall.
  • a light-transmitting block is provided on one end of the bottom wall away from the circuit board.
  • the light-transmitting block has a first end face and a second end face opposite to each other along the first direction.
  • the aforementioned channel spacing is adjusted Among the two total reflection surfaces of the component, one of them is formed on the first end surface, and the other of the two total reflection surfaces is formed on the second end surface.
  • Figure 3 is a cross-sectional view of the optical transceiver assembly at A-A in Figure 1;
  • Figure 5 is a cross-sectional view of the optical transceiver lens at B-B in Figure 4;
  • Figure 9 is a cross-sectional view of the optical transceiver lens in Figure 8 at C-C;
  • Figure 10 is a schematic diagram of the optical path of the optical transceiver component in Figure 7.
  • the drawings and the text include an arbitrarily defined XYZ coordinate system to assist in understanding the relative orientation of the various drawings.
  • the X axis or X direction is parallel to the front and rear directions of the optical transceiver component and the propagation direction of light entering or exiting the optical port.
  • the Z-axis or Z-direction is laterally orthogonal to the y-axis and generally defines the lateral direction.
  • the Y axis or Y direction is orthogonal to both the X and Z axes, and generally defines the vertical direction.
  • the terminology of relative directionality is used for understanding in the context of the XYZ coordinate system.
  • backward, posterior, backward and similar terms may be used to refer to the positive X direction; and forward, anterior, forward and similar terms may be used to refer to the negative X direction unless the context indicates otherwise.
  • forward, anterior, forward and similar terms may be used to refer to the negative X direction unless the context indicates otherwise.
  • upward, upper, top, and similar terms may be used to refer to the positive Y direction; while downward, lower, bottom, and similar terms may be used to refer to the negative Y direction, unless the context indicates otherwise.
  • an optical transceiver component includes a circuit board 10 and an optical transceiver lens 20 provided on the circuit board 10 .
  • the optical transceiver lens 20 is made of polyetherimide (PEI for short) material, thereby realizing the transmission of optical signals within the optical transceiver lens 20 .
  • PEI polyetherimide
  • the optical transceiver lens 20 is fixed on the circuit board 10 by adhesive.
  • the optical transceiver assembly further includes at least two optoelectronic chips 30 disposed on the circuit board 10 , and the circuit board 10 is electrically connected to the at least two optoelectronic chips 30 .
  • a driver 60 (dirver) is coupled to the circuit board 10 , and the driver 60 and the optoelectronic chip 30 are electrically connected through wiring.
  • the optical transceiver lens 20 is provided with an optical filter 40 corresponding to the at least two optoelectronic chips 30, and the optical filter 40 realizes beam combining or splitting of light.
  • the optical filters 40 can transmit optical signals of specific wavelengths and reflect optical signals of other wavelengths.
  • the number of optical filters 40 is the same as the number of optoelectronic chips 30 .
  • the optical signals emitted by multiple optoelectronic chips 30 can be multiplexed, or multiple received optical signals coupled in the same optical fiber can be demultiplexed, so that they can be multiplexed by multiple optical signals.
  • a photoelectric chip 30 receives.
  • the optical transceiver lens 20 includes at least one channel spacing adjustment member 21 , and the channel spacing adjustment member 21 is disposed between the optical filter 40 and the optoelectronic chip 30 . After the light beams are respectively emitted from the at least two optoelectronic chips 30, they are reflected to the filter 40 through the channel spacing adjustment member 21. The channel spacing adjustment member 21 will be emitted from the at least two optoelectronic chips 30. The distance between at least two adjacent beams of light increases and reaches the filter 40 .
  • the channel gap between adjacent incident lights increases.
  • the receiving end receives the optical signal and then transmits it to the filter 40 , and the incident light from the filter 40 is reflected to the optoelectronic chip 30 through the channel spacing adjustment member 21 Finally, the channel gap between adjacent incident lights decreases.
  • the spacing between adjacent optoelectronic chips 30 is reduced, thereby reducing the wiring length between the driver 60 and the optoelectronic chip 30, and rationally connecting the driver 60 and the optoelectronic chip 30.
  • the optoelectronic chip 30 is arranged on the circuit board 10, thereby saving the space occupied by the optical transceiver component, thereby reducing the overall size of the optical module and reducing its manufacturing cost. Moreover, using a single driver 60 to drive multiple optoelectronic chips 30 simultaneously shortens the wiring length and saves energy consumption of the circuit board 10 .
  • the channel spacing adjustment member 21 By arranging the channel spacing adjustment member 21 on the optical transceiver lens 20, the distance between adjacent optoelectronic chips 30 is reduced, thereby eliminating the need to disperse and mount single-channel optical chips, thereby reducing the overall size of the optical module and reducing its manufacturing cost. cost.
  • the channel spacing adjustment member 21 includes at least two mutually parallel total reflection surfaces 21a. Among the two total reflection surfaces 21a, one of them is aligned with the optoelectronic chip 30 at a preset angle, and the other of the two total reflection surfaces 21a is aligned with The filter 40 is aligned at a preset angle.
  • the channel spacing adjustment member 21 has two mutually parallel total reflection surfaces 21a, similar to the structure of a periscope, so that the outgoing light and the incident light emitted after being reflected by the two total reflection surfaces 21a are parallel to each other, so that The distance between the incident light and the outgoing light is changed, and then the distance between adjacent optoelectronic chips 30 is adjusted as needed. Therefore, the extension direction of the connection line between the two total reflection surfaces 21a or the channel spacing adjustment member 21 remains perpendicular to the incident light of the photoelectric chip 30 or the optical filter 40 when installed.
  • the incident light from one of the optoelectronic chip 30 and the optical filter 40 hits one of the total reflection surfaces 21 a of the channel spacing adjustment member 21 , the incident light is reflected by the total reflection surface 21 a to the channel spacing adjustment member.
  • 21 has another total reflection surface 21a, the reflected outgoing light is perpendicular to the incident light, and then is reflected to the other side of the photoelectric chip 30 and the filter 40 through the other total reflection surface 21a, and the reflected light The outgoing light is perpendicular to the incident light.
  • the optical transceiver assembly includes at least four optoelectronic chips 30, and the at least four optoelectronic chips 30 are all arranged along the first direction.
  • the optical transceiver lens 20 includes at least two channel spacing adjustment members 21, and the aforementioned two The channel spacing adjusting members 21 are arranged oppositely along the first direction.
  • the light emitting component or the light receiving component of the optical transceiver component includes four optoelectronic chips 30 to emit or receive optical signals of four different wavelengths. Then, with the corresponding two channel spacing adjustment members 21, it can Adjust the spacing between adjacent optical signals or optical channels.
  • the first direction is parallel to the X-axis direction, and the four optoelectronic chips 30 and the two channel spacing adjustment members 21 are arranged along the first direction, which can save the space of the optical transceiver assembly in the Y direction or Z direction.
  • the two channel spacing adjustment members 21 are arranged oppositely along the first direction to ensure that the spacing between adjacent optoelectronic chips 30 is minimized.
  • the optical transceiver assembly includes four optical filters 40 corresponding to the optoelectronic chips 30, and the aforementioned at least four optoelectronic chips 30 are simultaneously configured as light emitting chips or light receiving chips.
  • the optoelectronic chip 30 when the optoelectronic chip 30 is used in a light emitting component, the optoelectronic chip 30 is configured as a laser emitting chip, that is, a vertical cavity surface emitting laser (VCSEL, Vertical Cavity Surface Emitting Laser), for generating incident light signals.
  • VCSEL Vertical Cavity Surface Emitting Laser
  • the photoelectric chip 30 is configured as a detector receiving chip, that is, a photodiode (Photo-Diode), for receiving incident light signals. Therefore, the light emitting component of the optical transceiver component includes four laser emitting chips arranged along the first direction, and the light receiving component of the optical transceiver component includes four detector receiving chips arranged along the first direction.
  • the optical transceiver lens 20 includes a bottom wall 20 a spaced apart from the circuit board 10 , a side wall 20 b connected to the periphery of the bottom wall 20 a and connected to the circuit board 10 , and a side wall 20 b spaced apart from the bottom wall 20 a.
  • the side wall 20b extends along the Y direction and is connected to the peripheral edge of the bottom wall 20a, and the side wall 20b is bonded to the circuit board 10, so that there is a certain gap between the bottom wall 20a and the circuit board 10. Clearance for mounting other optical components.
  • the two installation walls 20c are both located in the side wall 20b and are arranged opposite to the upper end of the bottom wall 20a along the Z direction.
  • the channel spacing adjustment member 21 is disposed on the bottom wall 20a and is located in the side wall 20b, thereby being placed inside the optical transceiver lens 20 to avoid being affected by external factors during installation and use, and improve the use of the channel spacing adjustment member 21 time stability.
  • a first molding groove 20a1 is recessed at one end of the bottom wall 20a close to the circuit board 10
  • a second molding groove is recessed at an end of the bottom wall 20a away from the circuit board 10 .
  • 20a2 among the two total reflection surfaces 21a of the aforementioned channel spacing adjustment member 21, one of them is formed on the inner wall of the first molding groove 20a1, and the other of the two is formed on the inner wall of the second molding groove 20a2.
  • the bottom wall 20a has at least one second forming groove 20a2 and two first forming grooves 20a1 corresponding to one second forming groove 20a2, and the second forming groove 20a2 is located adjacent to the first forming groove 20a1. between them, and the adjacent first forming grooves 20a1 are arranged symmetrically with respect to the axis of symmetry of the second forming groove 20a2, so that the two aforementioned channel spacing adjustment members 21 are symmetrical along the axis of symmetry of the second forming groove 20a2.
  • the cross section of the second molding groove 20a2 is set to a "V" shape, so that the two total reflection surfaces 21a of the two channel spacing adjustment members 21 are formed on both sides of the same second molding groove 20a2.
  • the molding and manufacturing of a second forming groove 20a2 can be omitted.
  • the cross-section of the first molding groove 20a1 is set to an inverted "U" shape, and the two first molding grooves 20a1 are symmetrical with respect to the aforementioned one second molding groove 20a2, which rationally utilizes the space of the bottom wall 20a and facilitates the first molding. Forming and manufacturing of groove 20a1. In this way, when the corresponding total reflection surfaces 21a of the two channel spacing adjustment members 21 are formed on the light transceiver lens 20, the manufacturing cost is reduced.
  • the first chip 301 When the optoelectronic chip 30 is used in a light emitting component, the first chip 301 generates incident light with a wavelength ⁇ 1, the second chip 302 generates incident light with a wavelength ⁇ 2, the third chip 303 generates incident light with a wavelength ⁇ 3, and the fourth chip 303 generates incident light with a wavelength ⁇ 3. 304 generates incident light with wavelength ⁇ 4.
  • the incident light generated by the first chip 301 directly passes through the bottom wall 20a and is incident toward the second filter 402. Since the second filter 402 can reflect light with the wavelength ⁇ 1 and transmit light with other wavelengths, the first chip The incident light generated by 301 passes through the first filter 401 along the negative X direction, and finally exits the light transceiver lens 20 .
  • the optical transceiver assembly has two adapter parts 20e, one is used as a transmitting optical path, and the other is used as a receiving optical path.
  • an end of the bottom wall 20 a facing away from the circuit board 10 is provided with a mounting groove 20 d that accommodates at least two channel spacing adjustment members 21 .
  • One of the two channel spacing adjustment members 21 is connected to the circuit.
  • the distance between the boards 10 is greater than the distance between the other one and the circuit board 10 to reduce the groove width of the mounting groove 20d along the first direction.
  • the two channel spacing adjustment members 21 are unequal in distance from the circuit board 10 in the Y direction, which reduces the width of the installation groove 20d in the X direction, thus saving the space occupied by the two light-transmitting blocks 50.
  • the incident light generated by the second chip 302 first passes through the bottom wall 20a toward the total reflection surface 21a on the rear side of the first channel spacing adjustment member 211, and is reflected to the front side of the first channel spacing adjustment member 211 through the total reflection surface 21a.
  • the total reflection surface 21a is reflected to the first optical filter 401 through the total reflection surface 21a. Since the first optical filter 401 can reflect the light with the wavelength ⁇ 2 and transmit the light of other wavelengths, the second chip 302 generates The incident light finally exits the light transceiver lens 20 along the negative X direction.
  • the first optical filter 401, the second optical filter 402, the third optical filter 403 and the fourth optical filter 404 are parallel to each other, the light with the wavelengths ⁇ 1, ⁇ 2, ⁇ 3 and ⁇ 4 finally overlap each other and direction The light is emitted from the outside of the light transmitting and receiving lens 20 .
  • the incident light of different wavelengths generated by the first chip 301, the second chip 302, the third chip 303 and the fourth chip 301 are finally merged together and coupled to the same optical fiber of the optical line for transmission, achieving The function of transmitting multiple optical signals of different wavelengths simultaneously in the same optical fiber.
  • the optoelectronic chip 30 when used in a light receiving component, due to the reversibility of the optical path, the received optical carrier signals of multiple different wavelengths can also be separated through the above structure, and are finally separated by four corresponding light receiving chips. take over.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光收发组件,包括电路板以及设置于电路板上的光收发透镜和至少两个光电芯片,所述电路板电连接所述至少两个光电芯片,所述光收发透镜上设有与所述至少两个光电芯片相对应的滤光片,所述滤光片实现光的合束或分束,所述光收发透镜包括至少一个通道间距调整件,当光束分别自所述至少两个光电芯片处发射后,经由所述通道间距调整件反射至所述滤光片,所述通道间距调整件将自所述至少两个光电芯片发射的相邻的至少两束光的间距增大后到达所述滤光片;通过在光收发透镜上设置通道间距调整件,缩小了相邻光电芯片之间的距离,从而无需分散贴装单通道的光芯片,即可减小光模块的外形尺寸,降低其制造成本。

Description

光收发组件
本申请要求于2022年6月21日提交中国专利局、申请号为202221560110.X、发明名称为“光收发组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及光通信领域,尤其涉及一种光收发组件。
背景技术
随着光纤通信的发展,带宽需求也呈现爆炸性增长,同时出于成本考虑,还需要最小化用于构建网络基础架构的硬件。为了实现这两个目标,复用机制被从电信号转移到光信号上,其中一种复用方法是波分复用(WDM),用波分复用的方式提高传输速率,光信号实现了直接复用和放大,并且各个波长彼此独立。但是,使用光收发透镜配合分立的滤光片实现多路合分波,这种方式受限于滤光片的尺寸,导致通道间隙较大,需要分散贴装单通道的光芯片(PD/VCSEL)来满足大通道间隙,增加了光模块的外形尺寸,提高其制造成本。
技术问题
本实用新型的目的在于提供一种缩小光通道间隙的光收发组件。
技术解决方案
为实现上述实用新型目的之一,本实用新型一实施方式提供一种光收发组件,包括电路板以及设置于电路板上的光收发透镜和至少两个光电芯片,所述电路板电连接所述至少两个光电芯片,所述光收发透镜上设有与所述至少两个光电芯片相对应的滤光片,所述滤光片实现光的合束或分束,所述光收发透镜包括至少一个通道间距调整件,当光束分别自所述至少两个光电芯片处发射后,经由所述通道间距调整件反射至所述滤光片,所述通道间距调整件将自所述至少两个光电芯片发射的相邻的至少两束光的间距增大后到达所述滤光片。
作为本实用新型一实施方式的进一步改进,所述通道间距调整件设于所述滤光片和所述光电芯片之间,所述通道间距调整件包括两个相互平行的全反射面,两个全反射面中,二者之一以预设的角度对准光电芯片,二者另一以预设的角度对准滤光片。
作为本实用新型一实施方式的进一步改进,所述光收发组件包括四个光电芯片,前述四个光电芯片均沿第一方向排列设置,所述光收发透镜包括两个通道间距调整件,前述两个通道间距调整件沿着第一方向相对设置。
作为本实用新型一实施方式的进一步改进,所述光收发组件包括与光电芯片相对应的四个滤光片,前述四个光电芯片同时设置为光发射芯片或光接收芯片。
作为本实用新型一实施方式的进一步改进,所述光收发透镜包括与电路板间隔设置的底壁、连接于底壁周缘并连接电路板的侧壁、间隔设置于底壁背离电路板一端的两安装壁,前述四个滤光片沿第一方向间隔设置于两安装壁上,所述通道间距调整件设置于底壁上。
作为本实用新型一实施方式的进一步改进,在所述底壁靠近电路板的一端凹陷形成有第一成型槽,在所述底壁背离电路板的一端凹陷形成有第二成型槽,前述通道间距调整件的两个全反射面中,二者之一形成于第一成型槽的槽内壁,二者另一形成于第二成型槽的槽内壁。
作为本实用新型一实施方式的进一步改进,所述底壁具有一个第二成型槽以及与一个第二成型槽相对应的两个第一成型槽,所述第二成型槽位于相邻第一成型槽之间,且相邻第一成型槽相对于第二成型槽的对称轴线对称设置,以使前述两个通道间距调整件沿着第二成型槽的对称轴线对称。
作为本实用新型一实施方式的进一步改进,所述底壁背离电路板的一端设置有透光块,所述透光块具有沿第一方向相对的第一端面和第二端面,前述通道间距调整件的两个全反射面中,二者之一形成于第一端面,二者另一形成于第二端面。
作为本实用新型一实施方式的进一步改进,所述底壁背离电路板的一端设置有容纳两个通道间距调整件的安装槽,前述两个通道间距调整件其中之一与电路板之间的距离大于其中另一与电路板之间的距离,以减小安装槽沿第一方向的槽宽。
作为本实用新型一实施方式的进一步改进,所述光收发组件包括沿第一方向排列的第一芯片、第二芯片、第三芯片、第四芯片、沿第一方向排列的第一滤光片、第二滤光片、第三滤光片、第四滤光片以及沿第一方向排列的第一通道间距调整件、第二通道间距调整件,所述第一滤光片、第二滤光片、第三滤光片、第四滤光片之间相互平行且与电路板之间的夹角为45°,所述第一通道间距调整件的两个全反射面与电路板之间的夹角为45°,以使自所述第一芯片的入射光对准第二滤光片、自所述第二芯片的入射光经由第一通道间距调整件反射至第一滤光片、自所述第三芯片的入射光经由第二通道间距调整件反射至第四滤光片、自所述第四芯片的入射光对准第三滤光片。
作为本实用新型一实施方式的进一步改进,所述光收发透镜上设有与光电芯片相对应的第一透镜,所述第一透镜设置于底壁朝向电路板的一端,所述光收发透镜还包括连接侧壁的适配部、形成于适配部内的光口,在所述适配部内、于光口的轴线上设有第二透镜,所述第二透镜与滤光片沿着第一方向相对设置。
有益效果
与现有技术相比,本实用新型的实施方式中通过在光收发透镜上设置通道间距调整件,缩小了相邻光电芯片之间的距离,从而无需分散贴装单通道的光芯片,即可减小光模块的外形尺寸,降低其制造成本。
附图说明
图1是本实用新型优选的一实施方式中光收发组件的立体示意图;
图2是图1中光收发组件的分解示意图;
图3是图1中光收发组件在A-A处的剖视图;
图4是图3中光收发透镜的立体示意图;
图5是图4中光收发透镜在B-B处的剖视图;
图6是图3中光收发组件的光路示意图;
图7是本实用新型优选的另一实施方式中光收发组件在A-A处的剖视图;
图8是图7中光收发透镜的立体示意图;
图9是图8中光收发透镜在C-C处的剖视图;
图10是图7中光收发组件的光路示意图。
本发明的实施方式
以下将结合附图所示的具体实施方式对本实用新型进行详细描述。但这些实施方式并不限制本实用新型,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本实用新型的保护范围内。
应该理解,本文使用的例如“上”、“下、”“外”、“内”等表示空间相对位置的术语是出于便于说明的目的来描述如附图中所示的一个单元或特征相对于另一个单元或特征的关系。空间相对位置的术语可以旨在包括设备在使用或工作中除了图中所示方位以外的不同方位。
附图及本文中包括任意限定的XYZ坐标系,以有助于理解各个附图的相对方向。在XYZ坐标系中,X轴或X方向平行于光收发组件的前后方向和光线射入或射出光口的传播方向。Z轴或Z方向横向正交于y轴,且通常限定侧向。Y轴或Y方向与X和Z轴两者正交,并通常限定垂直方向。使用相对方向性的术语是为了在XYZ坐标系环境下进行理解。例如,向后,后部,后向及类似术语可用于指代正X方向;而向前,前部,前向及类似术语可用于指代负X方向,除非上下文另有声明。作为另一个示例,向上,上部,顶部及类似术语可用于指代正Y方向;而向下,下部,底部及类似术语可用于指代负Y方向,除非上下文另有声明。
参考图1到图6所示,本实用新型的优选的一实施方式提供的一种光收发组件,该光收发组件包括了光发射组件和光接收组件,其中光发射组件用于将多种不同波长的光载波信号经复用器汇合在一起,并耦合到光线路的同一根光纤中进行传输;其中光接收组件用于将接收到的多种不同波长的光载波信号经解复用器进行分离。从而实现在同一根光纤中同时传输多种不同波长光信号,继而单根光线传输多种独立的信号。
如图1,具体的,一种光收发组件,包括电路板10以及设置于电路板10上的光收发透镜20。本实施例中,光收发透镜20采用聚醚酰亚胺(Polyetherimide,简称PEI)材料制作,从而实现光信号在光收发透镜20内传输。光收发透镜20通过胶粘的方式固定在电路板10上。
配合参照图2所示,具体的,所述光收发组件还包括设置于电路板10上的至少两个光电芯片30,所述电路板10电连接所述至少两个光电芯片30。本实施例中,电路板10上耦合有驱动器60(dirver),驱动器60与光电芯片30之间通过打线的方式实现电连接。
具体的,所述光收发透镜20上设有与所述至少两个光电芯片30相对应的滤光片40,所述滤光片40实现光的合束或分束。本实施例中,所述滤光片40可透射特定波长的光信号而反射其余波长的光信号,滤光片40的数量与光电芯片30的数量相同。利用多块不同型号的滤光片40,能够对多个光电芯片30发射的光信号进行复用,或者将接收到的耦合于同一根光纤内的多个光信号进行解复用,从而被多个光电芯片30接收。
配合参照图3所示,进一步的,所述光收发透镜20包括至少一个通道间距调整件21,所述通道间距调整件21设于所述滤光片40和所述光电芯片30之间,当光束分别自所述至少两个光电芯片30处发射后,经由所述通道间距调整件21反射至所述滤光片40,所述通道间距调整件21将自所述至少两个光电芯片30发射的相邻的至少两束光的间距增大后到达所述滤光片40。
本实施例中,当光电芯片30用在光发射组件时,自光电芯片30的入射光经由通道间距调整件21反射至滤光片40后,相邻入射光之间的通道间隙增大。根据光路的可逆性,当光电芯片30用在光接收组件时,接收端接收到光信号后传输至滤光片40,自滤光片40的入射光经由通道间距调整件21反射至光电芯片30后,相邻入射光之间的通道间隙减小。从而,在滤光片40尺寸及相邻间距不变的情况下,缩小了相邻光电芯片30之间的间距,从而减少驱动器60与光电芯片30之间打线长度,合理地将驱动器60及光电芯片30布局在电路板10上,从而节约了光收发组件的占用空间,继而减小光模块的外形尺寸,降低其制造成本。而且,使用单个驱动器60同时驱动多个光电芯片30,缩短打线长度后,还能节约电路板10的能耗。
通过在光收发透镜20上设置通道间距调整件21,缩小了相邻光电芯片30之间的距离,从而无需分散贴装单通道的光芯片,即可减小光模块的外形尺寸,降低其制造成本。
具体的,所述通道间距调整件21包括至少两个相互平行的全反射面21a,两个全反射面21a中,二者之一以预设的角度对准光电芯片30,二者另一以预设的角度对准滤光片40。
本实施例中,通道间距调整件21具有两个相互平行的全反射面21a,类似于潜望镜的结构,使得经过两个全反射面21a反射后发出的出射光与入射光之间相互平行,从而改变入射光与出射光之间的距离,继而根据需要调整相邻光电芯片30之间的距离。从而,两个全反射面21a之间的连线或通道间距调整件21的延伸方向在设置时,保持与光电芯片30或滤光片40的入射光相垂直。
这样一来,当光电芯片30和滤光片40二者之一的入射光射向通道间距调整件21的其中一个全反射面21a后,入射光被该全反射面21a反射至通道间距调整件21的另外一个全反射面21a,经反射后的出射光与入射光垂直,再通过该另一全反射面21a反射至光电芯片30和滤光片40二者另一上,且经反射后的出射光与入射光垂直。
进一步的,所述光收发组件包括至少四个光电芯片30,前述至少四个光电芯片30均沿第一方向排列设置,所述光收发透镜20包括至少两个通道间距调整件21,前述两个通道间距调整件21沿着第一方向相对设置。
本实施例中,光收发组件的光发射组件或者光接收组件均包括四个光电芯片30,从而发射或接收四种不同波长的光信号,然后配合相对应的两个通道间距调整件21,能够对相邻光信号或者光通道之间的间距进行调整。其中,第一方向平行于X轴方向,将四个光电芯片30、两个通道间距调整件21均沿着第一方向排列设置,能够节约光收发组件在Y向或者Z向内的空间。两个通道间距调整件21沿着第一方向相对设置,能够确保相邻光电芯片30之间的间距最小。
具体的,所述光收发组件包括与光电芯片30相对应的四个滤光片40,前述至少四个光电芯片30同时设置为光发射芯片或光接收芯片。本实施例中,当光电芯片30用在光发射组件时,光电芯片30设置为激光器发射芯片,即为垂直腔面发射激光器(VCSEL,Vertical Cavity Surface Emitting Laser),用于产生入射光信号。当光电芯片30用在光接收组件时,光电芯片30设置为探测器接收芯片,即为光电二极管(Photo-Diode),用于接收入射光信号。因此,光收发组件的光发射组件包括了四个沿第一方向排列的激光器发射芯片,光收发组件的光接收组件均包括了四个沿第一方向排列的探测器接收芯片。
配合参照图4所示,具体的,所述光收发透镜20包括与电路板10间隔设置的底壁20a、连接于底壁20a周缘并连接电路板10的侧壁20b、间隔设置于底壁20a背离电路板10一端的两安装壁20c。本实施例中,侧壁20b沿着Y向延伸,并连接于底壁20a的周侧缘处,而且侧壁20b粘接于电路板10,使得底壁20a与电路板10之间存在一定的间隙,用于安装其它光学件。两安装壁20c均位于侧壁20b内,并沿着Z向相对设置于底壁20a的上端。
进一步的,所述滤光片40沿第一方向间隔设置于两安装壁20c上,所述通道间距调整件21设置于底壁20a上。本实施例中,通过在两安装壁20c的顶部设置于滤光片40相匹配的定位槽,使得滤光片40限位于定位槽内。其中,定位槽的横截面设置为“V”型。而且,滤光片40还沿着Z向限位于侧壁20b内,后期还能通过胶粘的方式固定于定位槽上,以提高滤光片40在光收发透镜20上的安装强度。滤光片40、通道间距调整件21以及光电芯片30沿着Y向排列设置。通道间距调整件21设置于底壁20a上,并位于侧壁20b内,从而置于光收发透镜20的内部,避免在安装时和使用时受到外界因素的影响,提高通道间距调整件21在使用时稳定性。
配合参照图5所示,具体的,在所述底壁20a靠近电路板10的一端凹陷形成有第一成型槽20a1,在所述底壁20a背离电路板10的一端凹陷形成有第二成型槽20a2,前述通道间距调整件21的两个全反射面21a中,二者之一形成于第一成型槽20a1的槽内壁,二者另一形成于第二成型槽20a2的槽内壁。
本实施例中,第一成型槽20a1与第二成型槽20a2沿着Y向相对设置于底壁20a的两端。而且,第一成型槽20a1具有形成其中之一全反射面21a的槽内壁,第二成型槽20a2也具有形成其中另一全反射面21a的槽内壁,两个槽内壁相互平行,由于光收发透镜20采用的聚醚酰亚胺材料为光密介质,光由光密介质进入空气(光疏介质)且入射角大于临界角时,能够产生全反射,从而实现了入射光在两个槽内壁上发生反射。
而且,在光收发透镜20成型时,将通道间距调整件21通过一体成型的方式形成于光收发透镜20上,能够节约光收发组件的制造成本。
进一步的,所述底壁20a具有至少一个第二成型槽20a2以及与一个第二成型槽20a2相对应的两个第一成型槽20a1,所述第二成型槽20a2位于相邻第一成型槽20a1之间,且相邻第一成型槽20a1相对于第二成型槽20a2的对称轴线对称设置,以使前述两个通道间距调整件21沿着第二成型槽20a2的对称轴线对称。
本实施例中,如图5,第二成型槽20a2的横截面设置为“V”型,实现两个通道间距调整件21的两个全反射面21a形成于同一个第二成型槽20a2的两个槽内壁上,从而能够省去一个第二成型槽20a2的成型制造。第一成型槽20a1的横截面设置为倒“U”型,而且两个第一成型槽20a1相对于前述一个第二成型槽20a2对称,合理地利用底壁20a的利用空间,还便于第一成型槽20a1的成型制造。这样一来,将两个通道间距调整件21对应地全反射面21a成型于光收发透镜20时,制造成本得到降低。
配合参照图6所示,进一步的,所述光收发组件包括沿第一方向排列的第一芯片301、第二芯片302、第三芯片303、第四芯片304、沿第一方向排列的第一滤光片401、第二滤光片402、第三滤光片403、第四滤光片404以及沿第一方向排列的第一通道间距调整件211、第二通道间距调整件212,所述第一滤光片301、第二滤光片302、第三滤光片303、第四滤光片304之间相互平行且与电路板10之间的夹角为45°,所述第一通道间距调整件211的两个全反射面21a与电路板10之间的夹角为45°,以使自所述第一芯片301的入射光对准第二滤光片402、自所述第二芯片302的入射光经由第一通道间距调整件211反射至第一滤光片401、自所述第三芯片303的入射光经由第二通道间距调整件212反射至第四滤光片404、自所述第四芯片304的入射光对准第三滤光片403。
本实施例中,第一滤光片401、第二滤光片402、第三滤光片403以及第四滤光片404均与负X向呈45°夹角,第一通道间距调整件211的两个全反射面21a均与负X向呈45°夹角,第二通道间距调整件212的两个全反射面21a均与正X向呈45°夹角。
当光电芯片30用在光发射组件时,第一芯片301产生波长为λ1的入射光,第二芯片302产生波长为λ2的入射光,第三芯片303产生波长为λ3的入射光,第四芯片304产生波长为λ4的入射光。
第一芯片301产生的入射光,直接透过底壁20a朝向第二滤光片402入射,由于第二滤光片402能够反射波长为λ1的光并透过其他波长的光,使得第一芯片301产生的入射光沿着负X向透过第一滤光片401,并最终射出光收发透镜20。
第二芯片302产生的入射光,先是透过底壁20a朝向第一通道间距调整件211后侧的全反射面21a入射,经过该全反射面21a反射至第一通道间距调整件211前侧的全反射面21a,并通过该全反射面21a反射至第一滤光片401,由于第一滤光片401能够反射波长为λ2的光并透过其他波长的光,使得第二芯片302产生的入射光最终沿着负X向射出光收发透镜20。
第三芯片303产生的入射光,先是透过底壁20a朝向第二通道间距调整件212前侧的全反射面21a入射,经过该全反射面21a反射至第二通道间距调整件212后侧的全反射面21a,并通过该全反射面21a反射至第四滤光片404,由于第四滤光片404能够反射波长为λ3的光并透过其他波长的光,使得第三芯片303产生的入射光沿着负X向透过第三滤光片403、第二滤光片402、第一滤光片401,并最终射出光收发透镜20。
第四芯片304产生的入射光,直接透过底壁20a朝向第三滤光片403入射,由于第三滤光片403能够反射波长为λ4的光并透过其他波长的光,使得第四芯片304产生的入射光沿着负X向透过第二滤光片402、第一滤光片401,并最终射出光收发透镜20。
而且,由于第一滤光片401、第二滤光片402、第三滤光片403以及第四滤光片404相互平行,从而波长为λ1、λ2、λ3、λ4的光最终相互重合地朝向光收发透镜20外侧射出。这样一来,第一芯片301、第二芯片302、第三芯片303以及第四芯片301产生的不同波长的入射光最终均汇合在一起,并耦合到光线路的同一根光纤中进行传输,实现在同一根光纤中同时传输多种不同波长光信号的功能。
另外,当光电芯片30用在光接收组件时,由于光路的可逆性,也能够通过上述结构实现将接收到的多种不同波长的光载波信号进行分离,最终被四个对应的光接收芯片所接收。
进一步的,所述光收发透镜20上设有与光电芯片30相对应的第一透镜23,所述第一透镜23设置于底壁20a朝向电路板10的一端。本实施例中,第一透镜23的数量与光电芯片30的数量相同,即为图6中的四个第一透镜23。而且第一透镜23与光电芯片20一一正对,第一透镜23均位于光电芯片20的正上方。当光电芯片30用在光发射芯片时,第一透镜23能够将光电芯片30发出的发散光束转变为准直光束。当光电芯片30用在光接收芯片时,第一透镜23能够将来自通道间距调整件21或者滤光片40的入射光转变为准直光束,从而被光电芯片30接收。
进一步的,所述光收发透镜20还包括连接侧壁20b的适配部20e、形成于适配部20e内的光口20f。本实施例中,适配部20e用于与外部连接器进行对接,在与外部连接器对接后,光纤处于光口20f内,并与光口20f的轴线重合。
配合参照图1和图6可知,光收发组件具有两个适配部20e,一个作为发射光路使用,另一个作为接收光路使用。
进一步的,在所述适配部20e内、于光口20f的轴线上设有第二透镜25,所述第二透镜25与滤光片40沿着第一方向相对设置。本实施例中,适配部20e在与外部连接器对接后,第二透镜25正对于外部光纤。当光电芯片30用在光发射芯片时,第二透镜25能够将经由多个滤光片40反射或者透射过来的不同波长的光整形成会聚光,从而被外部光纤接收。当光电芯片30用在光接收芯片时,第二透镜25能够将外部光纤传输过来的光束整形成会聚光,并朝向由多个滤光片40入射。
参考图1、图7到图10所示,本实用新型的优选的另一实施方式提供的一种光收发组件,除了该光收发组件的通道间距调整件21与光收发透镜20之间采用分体设计外,其他结构均与上述实施例的结构相同。根据用户对不同光通道间距的需要,可以更换不同的通道间距调整件21来配合光收发透镜20,而无需重新制造光收发透镜20或者整体更换光收发透镜20,节约了制造和更换成本的同时,满足用户不同的需要。
如图7和图8所示,具体的,所述底壁20a背离电路板10的一端设置有透光块50。本实施例中,透光块50能够采用聚醚酰亚胺材料制作,或者采用光学玻璃制作,并通过粘接的方式固定在底壁20a上。滤光片40、透光块50以及光电芯片30沿着Y向排列设置。
进一步的,所述透光块50具有沿第一方向相对的第一端面50a和第二端面50b,前述通道间距调整件21的两个全反射面21a中,二者之一形成于第一端面50a,二者另一形成于第二端面50b。
本实施例中,由于光电芯片30产生的入射光沿垂直于透光块50下端面的方向入射,因此该入射光会直接进入透光块50内,而不会产生反射。而且,第一端面50a和第二端面50b均与X向呈一定角度设置,由于透光块50采用的聚醚酰亚胺材料为光密介质,光由光密介质进入空气(光疏介质)且入射角大于临界角时,能够产生全反射,从而实现了入射光在两个端面上发生反射。
配合参照图9所示,进一步的,所述底壁20a背离电路板10的一端设置有容纳至少两个通道间距调整件21的安装槽20d,前述两个通道间距调整件21其中之一与电路板10之间的距离大于其中另一与电路板10之间的距离,以减小安装槽20d沿第一方向的槽宽。本实施例中,两个通道间距调整件21在Y向内距离电路板10的距离不相等,减小了安装槽20d在X向的槽宽,从而节约两个透光块50占用的空间。
如图10,本实施例中,第一通道间距调整件211的两个全反射面21a均与负X向呈45°夹角,第二通道间距调整件212的两个全反射面21a均与正X向呈45°夹角。
当光电芯片30用在光发射组件时,第一芯片301产生波长为λ1的入射光,第二芯片302产生波长为λ2的入射光,第三芯片303产生波长为λ3的入射光,第四芯片304产生波长为λ4的入射光。
第一芯片301产生的入射光,直接透过底壁20a和第一通道间距调整件211朝向第二滤光片402入射,由于第二滤光片402能够反射波长为λ1的光并透过其他波长的光,使得第一芯片301产生的入射光沿着负X向透过第一滤光片401,并最终射出光收发透镜20。
第二芯片302产生的入射光,先是透过底壁20a朝向第一通道间距调整件211后侧的全反射面21a入射,经过该全反射面21a反射至第一通道间距调整件211前侧的全反射面21a,并通过该全反射面21a反射至第一滤光片401,由于第一滤光片401能够反射波长为λ2的光并透过其他波长的光,使得第二芯片302产生的入射光最终沿着负X向射出光收发透镜20。
第三芯片303产生的入射光,先是透过底壁20a朝向第二通道间距调整件212前侧的全反射面21a入射,经过该全反射面21a反射至第二通道间距调整件212后侧的全反射面21a,并通过该全反射面21a反射至第四滤光片404,由于第四滤光片404能够反射波长为λ3的光并透过其他波长的光,使得第三芯片303产生的入射光沿着负X向透过第三滤光片403、第二滤光片402、第一滤光片401,并最终射出光收发透镜20。
第四芯片304产生的入射光,直接透过底壁20a和第二通道间距调整件212朝向第三滤光片403入射,由于第三滤光片403能够反射波长为λ4的光并透过其他波长的光,使得第四芯片304产生的入射光沿着负X向透过第二滤光片402、第一滤光片401,并最终射出光收发透镜20。
而且,由于第一滤光片401、第二滤光片402、第三滤光片403以及第四滤光片404相互平行,从而波长为λ1、λ2、λ3、λ4的光最终相互重合地朝向光收发透镜20外侧射出。这样一来,第一芯片301、第二芯片302、第三芯片303以及第四芯片301产生的不同波长的入射光最终均汇合在一起,并耦合到光线路的同一根光纤中进行传输,实现在同一根光纤中同时传输多种不同波长光信号的功能。
另外,当光电芯片30用在光接收组件时,由于光路的可逆性,也能够通过上述结构实现将接收到的多种不同波长的光载波信号进行分离,最终被四个对应的光接收芯片所接收。
应当理解,虽然本说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
上文所列出的一系列的详细说明仅仅是针对本实用新型的可行性实施方式的具体说明,它们并非用以限制本实用新型的保护范围,凡未脱离本实用新型技艺精神所作的等效实施方式或变更均应包含在本实用新型的保护范围之内。

Claims (11)

  1. 一种光收发组件,包括电路板以及设置于电路板上的光收发透镜和至少两个光电芯片,所述电路板电连接所述至少两个光电芯片,所述光收发透镜上设有与所述至少两个光电芯片相对应的滤光片,所述滤光片实现光的合束或分束,其特征在于,所述光收发透镜包括至少一个通道间距调整件,当光束分别自所述至少两个光电芯片处发射后,经由所述通道间距调整件反射至所述滤光片,所述通道间距调整件将自所述至少两个光电芯片发射的相邻的至少两束光的间距增大后到达所述滤光片。
  2. 如权利要求1所述的光收发组件,其特征在于,所述通道间距调整件设于所述滤光片和所述光电芯片之间,所述通道间距调整件包括两个相互平行的全反射面,两个全反射面中,二者之一以预设的角度对准光电芯片,二者另一以预设的角度对准滤光片。
  3. 如权利要求2所述的光收发组件,其特征在于,所述光收发组件包括四个光电芯片,前述四个光电芯片均沿第一方向排列设置,所述光收发透镜包括两个通道间距调整件,前述两个通道间距调整件沿着第一方向相对设置。
  4. 如权利要求3所述的光收发组件,其特征在于,所述光收发组件包括与光电芯片相对应的四个滤光片,前述四个光电芯片同时设置为光发射芯片或光接收芯片。
  5. 如权利要求3所述的光收发组件,其特征在于,所述光收发透镜包括与电路板间隔设置的底壁、连接于底壁周缘并连接电路板的侧壁、间隔设置于底壁背离电路板一端的两安装壁,前述四个滤光片沿第一方向间隔设置于两安装壁上,所述通道间距调整件设置于底壁上。
  6. 如权利要求5所述的光收发组件,其特征在于,在所述底壁靠近电路板的一端凹陷形成有第一成型槽,在所述底壁背离电路板的一端凹陷形成有第二成型槽,前述通道间距调整件的两个全反射面中,二者之一形成于第一成型槽的槽内壁,二者另一形成于第二成型槽的槽内壁。
  7. 如权利要求6所述的光收发组件,其特征在于,所述底壁具有一个第二成型槽以及与一个第二成型槽相对应的两个第一成型槽,所述第二成型槽位于相邻第一成型槽之间,且相邻第一成型槽相对于第二成型槽的对称轴线对称设置,以使前述两个通道间距调整件沿着第二成型槽的对称轴线对称。
  8. 如权利要求5所述的光收发组件,其特征在于,所述底壁背离电路板的一端设置有透光块,所述透光块具有沿第一方向相对的第一端面和第二端面,前述通道间距调整件的两个全反射面中,二者之一形成于第一端面,二者另一形成于第二端面。
  9. 如权利要求8所述的光收发组件,其特征在于,所述底壁背离电路板的一端设置有容纳两个通道间距调整件的安装槽,前述两个通道间距调整件其中之一与电路板之间的距离大于其中另一与电路板之间的距离,以减小安装槽沿第一方向的槽宽。
  10. 如权利要求7所述的光收发组件,其特征在于,所述光收发组件包括沿第一方向排列的第一芯片、第二芯片、第三芯片、第四芯片、沿第一方向排列的第一滤光片、第二滤光片、第三滤光片、第四滤光片以及沿第一方向排列的第一通道间距调整件、第二通道间距调整件,所述第一滤光片、第二滤光片、第三滤光片、第四滤光片之间相互平行且与电路板之间的夹角为45°,所述第一通道间距调整件的两个全反射面与电路板之间的夹角为45°,以使自所述第一芯片的入射光对准第二滤光片、自所述第二芯片的入射光经由第一通道间距调整件反射至第一滤光片、自所述第三芯片的入射光经由第二通道间距调整件反射至第四滤光片、自所述第四芯片的入射光对准第三滤光片。
  11. 如权利要求5所述的光收发组件,其特征在于,所述光收发透镜上设有与光电芯片相对应的第一透镜,所述第一透镜设置于底壁朝向电路板的一端,所述光收发透镜还包括连接侧壁的适配部、形成于适配部内的光口,在所述适配部内、于光口的轴线上设有第二透镜,所述第二透镜与滤光片沿着第一方向相对设置。
PCT/CN2023/091069 2022-06-21 2023-04-27 光收发组件 WO2023246297A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221560110.X 2022-06-21
CN202221560110.XU CN217879736U (zh) 2022-06-21 2022-06-21 光收发组件

Publications (1)

Publication Number Publication Date
WO2023246297A1 true WO2023246297A1 (zh) 2023-12-28

Family

ID=84097386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/091069 WO2023246297A1 (zh) 2022-06-21 2023-04-27 光收发组件

Country Status (2)

Country Link
CN (1) CN217879736U (zh)
WO (1) WO2023246297A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217879736U (zh) * 2022-06-21 2022-11-22 成都旭创科技有限公司 光收发组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008041A2 (ko) * 2009-07-17 2011-01-20 주식회사 포투 파장분할 다중화 광 모듈
CN104597575A (zh) * 2014-12-25 2015-05-06 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN108008487A (zh) * 2018-01-05 2018-05-08 北极光电(深圳)有限公司 一种波分复用器
CN109375315A (zh) * 2018-11-12 2019-02-22 武汉电信器件有限公司 一种四光路波分复用器件
CN109613654A (zh) * 2018-11-27 2019-04-12 武汉联特科技有限公司 多通道并行波分复用/解复用分光组件及其光器件
CN109683257A (zh) * 2018-12-27 2019-04-26 武汉联特科技有限公司 一种多通道平行光路压缩组件及其接收光器件
CN217879736U (zh) * 2022-06-21 2022-11-22 成都旭创科技有限公司 光收发组件

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011008041A2 (ko) * 2009-07-17 2011-01-20 주식회사 포투 파장분할 다중화 광 모듈
CN104597575A (zh) * 2014-12-25 2015-05-06 武汉电信器件有限公司 一种多波长复用/解复用的并行光收发组件
CN108008487A (zh) * 2018-01-05 2018-05-08 北极光电(深圳)有限公司 一种波分复用器
CN109375315A (zh) * 2018-11-12 2019-02-22 武汉电信器件有限公司 一种四光路波分复用器件
CN109613654A (zh) * 2018-11-27 2019-04-12 武汉联特科技有限公司 多通道并行波分复用/解复用分光组件及其光器件
CN109683257A (zh) * 2018-12-27 2019-04-26 武汉联特科技有限公司 一种多通道平行光路压缩组件及其接收光器件
CN217879736U (zh) * 2022-06-21 2022-11-22 成都旭创科技有限公司 光收发组件

Also Published As

Publication number Publication date
CN217879736U (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
CN107065083B (zh) 一种多通道光收发一体模块
US10090934B2 (en) Optical receiver module that receives wavelength-multiplexed signal
EP3088928B1 (en) Optical transceiver and optical communications product
EP3063574B1 (en) Multiplexed optoelectronic engines
US11561351B2 (en) Optical module
CN107966773B (zh) 光发射次模块及光模块
US9995941B2 (en) Wavelength division multiplexing of uncooled lasers with wavelength-common dispersive element
CN107045197B (zh) 光路控制系统及光模块
KR101925476B1 (ko) 광학 모듈 및 이를 포함하는 광학 엔진
WO2023246297A1 (zh) 光收发组件
TWI760468B (zh) 光通信模組及雙向光通信模組
US10763987B2 (en) Transceiver with multi-wavelength coexistence
US11378761B2 (en) Optical module
CN115421259A (zh) 光模块
CN111665599A (zh) 光模块
WO2014205636A1 (zh) 一种光模块及光网络系统
US20060013541A1 (en) Optoelectronic module
WO2011032843A1 (en) Optoelectronic device for bidirectionally transporting information through optical fibers and method of manufacturing such a device
WO2019173998A1 (zh) 光接收、组合收发组件、组合光模块、olt及pon系统
CN108551372B (zh) 一种多波长空间错位分合波模块
CN113296199A (zh) 一种单纤双向光组件和光模块
CN116068700A (zh) 波分复用装置
CN210605101U (zh) 一种基于光波导的多路波分解复用光接收组件
CN211856998U (zh) 一种5G通信用的25GBiDi光模块的微光学组件
US11474311B1 (en) Parabolic lens device for use in optical subassembly modules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825950

Country of ref document: EP

Kind code of ref document: A1