WO2015186606A1 - Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass - Google Patents

Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass Download PDF

Info

Publication number
WO2015186606A1
WO2015186606A1 PCT/JP2015/065449 JP2015065449W WO2015186606A1 WO 2015186606 A1 WO2015186606 A1 WO 2015186606A1 JP 2015065449 W JP2015065449 W JP 2015065449W WO 2015186606 A1 WO2015186606 A1 WO 2015186606A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
glass
less
separated
phase separation
Prior art date
Application number
PCT/JP2015/065449
Other languages
French (fr)
Japanese (ja)
Inventor
篤 虫明
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014113865A external-priority patent/JP2015227273A/en
Priority claimed from JP2014113864A external-priority patent/JP2015227272A/en
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2015186606A1 publication Critical patent/WO2015186606A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a phase separation glass, a phase separation glass, an organic EL device, and a method for producing a phase separation glass.
  • the light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area.
  • LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb.
  • an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
  • the organic EL element includes a glass plate, a transparent conductive film as an anode, an organic EL layer including an organic compound exhibiting electroluminescence that emits light by current injection, and a cathode, and a cathode. It is an element.
  • As the organic EL layer used in the organic EL element a low molecular dye material, a conjugated polymer material or the like is used.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection A laminated structure with layers and the like is formed.
  • An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode The electrons recombine in the light emitting layer, and the emission center is excited by the recombination energy to emit light.
  • Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use.
  • the organic EL element has a luminous efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
  • Patent Document 1 a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass plate, and a scattering substance is dispersed in the light extraction layer, thereby reducing the light extraction efficiency. It is also described to increase.
  • the present invention has been made in view of the above circumstances, and its technical problem is that the light extraction efficiency of the organic EL element can be increased without forming a light extraction layer made of a sintered body, and Provide glass with excellent productivity.
  • phase separation glass having a high refractive index and restricting the total light transmittance to a predetermined range, and proposes the present invention.
  • the refractive index n d is 1.55 or more, and having a phase separation structure comprising at least a first phase and a second phase.
  • “refractive index n d ” refers to the value of the d-line measured by a refractive index measuring device.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.).
  • the refractive index n d is aligned, it can be measured by the refractive index measuring instrument KPR-2000 of Shimadzu Corporation (hereinafter, the same).
  • the light scattering accompanying formation of a 1st phase and a 2nd phase can be confirmed visually.
  • the details of each phase can be confirmed by observing the surface of the sample after being immersed in a 1M hydrochloric acid solution for 10 minutes with a scanning electron microscope.
  • the phase-separated glass of the present invention is characterized by having a phase-separated structure including at least a first phase and a second phase.
  • a phase-separated structure including at least a first phase and a second phase.
  • the refractive index n d is 1.55 or more.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9.
  • the refractive index n d of the glass plate was typically about 1.50.
  • the refractive index nd is regulated as described above, so that the difference in refractive index between the glass plate and the transparent conductive film is reduced, so that light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film. Light extraction efficiency can be increased.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is preferably 40% or less.
  • phase-separated glass When phase-separated glass is used, short-wavelength light is scattered more strongly than long-wavelength light due to Rayleigh scattering, and when an organic EL element, particularly a white OLED, is produced, the viewing angle dependency of the color increases, and lighting applications There is a risk of becoming unsuitable. Therefore, the phase separation glass of the present invention regulates the total light transmittance as described above in order to eliminate such problems.
  • the difference between the maximum value and the minimum value of the total light transmittance at wavelengths of 400 to 700 nm can be reduced by regulating the particle size of the phase-separated particles within a predetermined range and causing a scattering phenomenon due to Mie scattering. it can.
  • the “total light transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation). For example, glass whose both surfaces are mirror-polished is used as a measurement sample. be able to.
  • the phase separation glass of the present invention preferably has a diffuse transmittance of 10% or more at a wavelength of 400 to 700 nm.
  • diffuse transmittance is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation).
  • a spectrophotometer for example, UV-2500PC manufactured by Shimadzu Corporation.
  • glass whose both surfaces are mirror-polished is used as a measurement sample. Can do.
  • the phase separation glass of the present invention preferably has a wavelength having a haze value of 5% or more at a wavelength of 400 to 700 nm. If it does in this way, since it will become easy to scatter light in glass, it will become easy to take out light outside, and it will become easy to raise light extraction efficiency as a result.
  • the “haze value” is a value calculated by (diffuse transmittance) ⁇ 100 / (total light transmittance).
  • the phase separation glass of the present invention preferably has a total light transmittance of 10% or more at a wavelength of 400 to 700 nm.
  • the phase-separated glass of the present invention preferably has an average particle diameter of phase-separated particles of 100 nm or more.
  • phase-separated glass of the present invention preferably has a refractive index n d is less than 1.65.
  • the phase-separated glass of the present invention is composed of 30 to 75% of SiO 2 , 0.1 to 50% of B 2 O 3 , and Al 2 O 3 0 to 35 as a glass composition. % Is preferably contained. If it does in this way, it will become easy to raise a refractive index and it will become easy to raise productivity of a glass plate.
  • the phase-separated glass of the present invention does not substantially contain a rare metal oxide in the glass composition.
  • rare metal oxide refers to rare earth oxides such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , and CeO 2 , Y 2 O 3 , Nb 2 O 5 , and Ta 2 O 5 .
  • are metal oxide refers to the case where the content of the rare metal oxide in the glass composition is 0.1% by mass or less.
  • the content of SiO 2 in the first phase is preferably larger than the content of SiO 2 in the second phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
  • the content of the second of B 2 O 3 in the phase is preferably larger than the content of B 2 O 3 in the first phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
  • the phase-separated glass of the present invention preferably has a P 2 O 5 content of 0.001 to 10% by mass in the glass composition.
  • the mass ratio (Al 2 O 3 + B 2 O 3 ) / SiO 2 in the glass composition is preferably 0.3 or more.
  • the phase separation glass of the present invention preferably has a mass ratio TiO 2 / B 2 O 3 in the glass composition of 0.01 to 2.
  • the phase-separated glass of the present invention preferably has a BaO—SrO content of 1 to 12% by mass in the glass composition.
  • the phase separation glass of the present invention has a flat plate shape.
  • the phase separation glass of the present invention preferably has a thickness of 5 to 500 ⁇ m.
  • the organic EL device of the present invention is characterized by comprising the above phase separation glass.
  • the organic EL device of the present invention is preferably illumination.
  • phase-separated glass of the present invention After the refractive index n d is molded more than 1.55 min chemistry glass, by heat-treating phase separation glass obtained, at least a first phase And a phase-separated glass having a phase-separated structure including the second phase. If it does in this way, in order to obtain a phase separation glass by heat-processing a phase separation glass, it becomes easy to control a phase separation structure. In particular, if the element structure of the organic EL device is different, the optimal phase separation structure will also be different, but from the same phase separation glass, the optimum phase separation structure for the element structure of the organic EL device can be obtained simply by adjusting the heat treatment conditions. Obtainable.
  • phase-separating glass refers to glass that has not yet phase-separated but has a property of phase-separating by heat treatment at 1100 ° C. or lower.
  • the refractive index n d is molded phase separation glass of less than 1.65.
  • the method for producing a phase separation glass of the present invention preferably forms the phase separation glass into a flat plate shape.
  • the refractive index n d is not less than 1.55, and when subjected to heat treatment 800 ° C. 24 hours, the state where no phase separation, at least a first phase And the second phase.
  • Sample No. after heat treatment according to Example 2 This is data obtained by mirror-polishing both surfaces of 1 (plate thickness: 1.0 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • Sample No. 2 according to Example 2. 1 is an image obtained by observing the obtained sample surface with a scanning electron microscope after 1 was immersed in a 1M hydrochloric acid solution for 10 minutes.
  • Sample No. after heat treatment according to Example 3 8 is an image obtained by immersing 8 in a 1M hydrochloric acid solution for 10 minutes and observing the obtained sample surface with a scanning electron microscope.
  • Example 3 8 is a data obtained by mirror-polishing both surfaces of 8 (plate thickness 1.0 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer. It is the data which measured the total light transmittance and diffuse transmittance of the thickness direction about the composite substrate which concerns on Example 4 (plate thickness of 0.3 mm of a phase separation glass plate, total plate thickness of 2.3 mm) with the spectrophotometer. . It is the data which measured the total light transmittance and diffuse transmittance of the thickness direction about the composite substrate which concerns on Example 4 (plate thickness of the phase separation glass plate 0.1mm, total plate thickness 2.1mm) with the spectrophotometer. . Sample No.
  • Example 6 It is the image which observed the sample surface obtained by immersing 17 in 1M hydrochloric acid solution for 10 minutes with the scanning electron microscope.
  • Sample No. 6 in Example 6 20 is an image obtained by immersing 20 in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained sample surface with a scanning electron microscope.
  • Sample No. 6 in Example 6 22 shows an image obtained by immersing 22 in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained sample surface with a scanning electron microscope.
  • Sample No. 6 in Example 6 23 is an image obtained by observing the obtained sample surface with a scanning electron microscope after 23 was immersed in a 1M hydrochloric acid solution for 10 minutes.
  • Example 7 This is data obtained by mirror-polishing both surfaces of 20 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 21 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 22 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 23 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
  • the phase separation glass of the present invention is characterized by having a phase separation structure including at least a first phase and a second phase.
  • the content of SiO 2 in the first phase is preferably larger than the content of SiO 2 in the second phase. If in the glass composition containing B 2 O 3, B 2 O 3 content in the second phase is preferably larger than the content of B 2 O 3 in the first phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
  • the refractive index n d is 1.55 or more, preferably 1.56 or more, 1.57 or more, 1.58 or more, 1.59 or more, 1.60 or more, 1. 61 or more and 1.62 or more, particularly preferably 1.63 or more.
  • the refractive index n d is less than 1.55, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film.
  • the refractive index n d is too high, since the introduction of the components to improve the devitrification resistance is limited, the liquidus viscosity becomes difficult to prepare a high glass plate.
  • the refractive index n d is preferably 2.30 or less, 2.00 or less, 1.80 or less, in particular less than 1.65.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is preferably 40% or less, 30% or less, 20% or less, and 10% or less, particularly preferably. Is 5% or less.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is too large, a scattering phenomenon due to Rayleigh scattering occurs. In this case, when an organic EL element, particularly a white OLED is manufactured. In addition, the viewing angle dependency of color increases.
  • the average particle size of the phase-separated particles of at least one phase is preferably 100 nm or more, 200 nm or more, 300 nm or more, 400 to 5000 nm.
  • the thickness is preferably 600 to 3000 nm. In this way, a scattering phenomenon due to Mie scattering is likely to occur, and the wavelength dependency of the total light transmittance is easily reduced.
  • the average particle size of the phase-separated particles can be adjusted by the glass composition, molding conditions, slow cooling conditions, heat treatment temperature, heat treatment time, and the like.
  • Phase-separated glass of the present invention has a glass composition, in mass%, SiO 2 30 ⁇ 75% , Al 2 O 3 0 ⁇ 35%, preferably contains 2 O 3 0.1 ⁇ 50% B .
  • % display means the mass%.
  • the content of SiO 2 is preferably 30 to 75%.
  • the content of SiO 2 is preferably 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 42% or less, 40% or less, Preferably it is less than 40%.
  • the content of SiO 2 is preferably 30% or more, 32% or more, 34% or more, and particularly preferably 36% or more.
  • the content of Al 2 O 3 is preferably 0 to 35%.
  • Al 2 O 3 is a component that enhances devitrification resistance. However, if the content of Al 2 O 3 is too large, the phase separation is liable to decrease, and the component balance of the glass composition is impaired. Conversely, devitrification resistance tends to decrease. Moreover, acid resistance tends to decrease. Therefore, the content of Al 2 O 3 is preferably 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 12% or less, 10% or less, and particularly preferably 8% or less. is there.
  • the content of Al 2 O 3 is preferably 0.1% or more, 3% or more and 4% or more, particularly preferably 5% or more.
  • the content of B 2 O 3 is preferably 0.1 to 50%.
  • B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease. The acid resistance tends to decrease. Therefore, the content of B 2 O 3 is preferably 50% or less, 40% or less, 30% or less, 25% or less, 20% or less, or 17% or less, and particularly preferably 15% or less. Further, the content of B 2 O 3 is preferably 0.1% or more, 0.5% or more, 1% or more, 4% or more, 7% or more, 9% or more, particularly preferably 10% or more. is there.
  • the mass ratio (Al 2 O 3 + B 2 O 3 ) / SiO 2 is preferably 0.3 or more, 0.33 or more, 0.35 or more, 0.37 or more, 0.39 or more, 0.4 or more, 0 .41 or more, 0.42 or more, 0.43 to 0.7, 0.44 to 0.65, and particularly preferably 0.45 to 0.6. If it does in this way, it will become easy to improve a refractive index, phase separation, and devitrification resistance simultaneously.
  • “(Al 2 O 3 + B 2 O 3 ) / SiO 2 ” is a value obtained by dividing the total amount of Al 2 O 3 and B 2 O 3 by the content of SiO 2 .
  • the content of Li 2 O is preferably 0 to 30%.
  • Li 2 O is a component that enhances phase separation. However, if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the content of Li 2 O is preferably 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, and particularly preferably 0.5% or less.
  • the content of Na 2 O is preferably 0-30%.
  • Na 2 O is a component that enhances the phase separation.
  • the content of Na 2 O is preferably 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, and particularly preferably 0.5% or less.
  • the content of K 2 O is preferably 0 to 30%.
  • K 2 O is a component that enhances phase separation. However, if the content of K 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the content of K 2 O is preferably 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, and particularly preferably 0.5% or less.
  • the content of MgO is preferably 0 to 30%.
  • MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity.
  • the content of MgO is preferably 30% or less, 20% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less. Yes, particularly preferably less than 1%.
  • the content of MgO is preferably 0.1% or more, particularly preferably 0.9% or more.
  • the CaO content is preferably 0-30%.
  • CaO is a component that lowers the high-temperature viscosity. However, when the content of CaO increases, the density tends to increase, and the balance of components of the glass composition is impaired, and devitrification resistance tends to decrease. Therefore, the CaO content is preferably 30% or less, 20% or less, 10% or less, 8% or less, 5% or less, and particularly preferably 3% or less.
  • the CaO content is preferably 0.1% or more and 0.5% or more, and particularly preferably 1% or more.
  • the SrO content is preferably 0-30%. If the SrO content is increased, the refractive index and the density are likely to be increased, and the balance of components of the glass composition is impaired, so that the devitrification resistance is likely to be lowered. Therefore, the SrO content is preferably 30% or less, 25% or less, 20% or less, or 18% or less, and particularly preferably 15% or less. The SrO content is preferably 1% or more, 3% or more, 5% or more, 7% or more, 9% or more, and particularly preferably 10% or more.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass.
  • the BaO content is preferably 40% or less, 30% or less, 26% or less, 24% or less, or 22% or less, and particularly preferably 20% or less.
  • the content of BaO is preferably 1% or more, more than 5%, more than 7%, 10% or more, 12% or more, 14% or more, and particularly preferably 16% or more.
  • MgO + CaO + SrO + BaO The content of MgO + CaO + SrO + BaO is preferably 25 to 40%, 28 to 37%, particularly preferably 30 to 35%, from the viewpoint of refractive index and devitrification resistance.
  • MgO + CaO + SrO + BaO refers to the total amount of MgO, CaO, SrO and BaO.
  • the content of BaO—SrO is preferably 1 to 12%, 2 to 11%, 3 to 10%, 4 to 9%, particularly preferably 5 to 8%. If it does in this way, it will become easy to improve devitrification resistance, maintaining a high refractive index.
  • BaO—SrO refers to a value obtained by subtracting the SrO content from the BaO content.
  • the content of ZnO is preferably 0 to 20%.
  • the content of ZnO is preferably 20% or less, 10% or less, 7% or less, 5% or less, and particularly preferably 4% or less.
  • the content of ZnO is preferably 0.1% or more, 0.5% or more, 1% or more, 1.5% or more, and particularly preferably 2% or more.
  • TiO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of TiO 2 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is easily lowered. In addition, the total light transmittance may be reduced. Therefore, the content of TiO 2 is preferably 20% or less, 15% or less, 10% or less, and particularly preferably 8% or less. The content of TiO 2 is preferably 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, 2% or more, 3% or more, 4% or more, particularly preferably 5% or more.
  • TiO 2 / B 2 O 3 is preferably 0.01 to 2 , 0.1 to 1.7, 0.15 to 1.4, 0.2 to 1.2, 0.25 to 1. Particularly preferred is 0.3 to 0.8. If it does in this way, it will become easy to make high refractive index and high phase separation compatible.
  • TiO 2 / B 2 O 3 is a value obtained by dividing the content of TiO 2 by the content of B 2 O 3 .
  • ZrO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the content of ZrO 2 is preferably 20% or less, 10% or less, and particularly preferably 5% or less. Further, the content of ZrO 2 is preferably 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, 1.5% or more, and particularly preferably 2% or more.
  • P 2 O 5 is a component that increases phase separation, and its content is preferably 0 to 10%. However, when the content of P 2 O 5 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is likely to be lowered. Therefore, the content of P 2 O 5 is preferably 10% or less, 7% or less, 4% or less, 3% or less, and particularly preferably 2% or less. Further, the content of P 2 O 5 is preferably 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, 1.4% or more, particularly preferably 1.6%. That's it.
  • the mass ratio P 2 O 5 / (MgO + CaO) is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, particularly preferably more than 0.6. .
  • P 2 O 5 / (MgO + CaO) is a value obtained by dividing the content of P 2 O 5 by the total amount of MgO and CaO.
  • La 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the content of La 2 O 3 is preferably 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
  • Nb 2 O 5 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the content of Nb 2 O 5 increases, the density tends to increase and the devitrification resistance tends to decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the content of Nb 2 O 5 is preferably 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
  • Gd 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%.
  • the content of Gd 2 O 3 is preferably 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
  • the total content of rare metal oxides is preferably 0 to 10%.
  • Rare metal oxide is a component that increases the refractive index, but as the content of these components increases, the density and thermal expansion coefficient tend to increase, and devitrification resistance decreases, ensuring high liquid phase viscosity. It becomes difficult to do. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the rare metal oxide content is preferably 10% or less, 5% or less, 3% or less, 1% or less, or 0.5% or less, and particularly preferably 0.1% or less.
  • the following oxide conversion means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
  • the content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, and particularly preferably 0.01 to 0.5%.
  • the content of Fe 2 O 3 is preferably 0.05% or less, 0.04% or less, or 0.03% or less, and particularly preferably 0.02% or less. Further, the content of Fe 2 O 3 is preferably 0.001% or more.
  • the CeO 2 content is preferably 0 to 6%.
  • the content of CeO 2 is preferably 6% or less, 5% or less, 3% or less, 2% or less, 1% or less, and particularly preferably 0.1% or less.
  • the content of CeO 2 is preferably 0.001% or more, particularly preferably 0.01% or more.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view.
  • the content of PbO is preferably 0.5% or less, and particularly preferably less than 0.1%.
  • other components may be introduced in a total amount, preferably up to 10% (desirably 5%).
  • the phase-separated glass of the present invention preferably has the following characteristics.
  • the density is preferably 5.0 g / cm 3 or less, 4.5 g / cm 3 or less, 4.0 g / cm 3 or less, and 3.5 g / cm 3 or less, and particularly preferably 3.2 g / cm 3 or less. is there. If it does in this way, an organic EL device can be reduced in weight.
  • the average thermal expansion coefficient at 30 to 380 ° C. is preferably 30 ⁇ 10 ⁇ 7 / ° C. to 100 ⁇ 10 ⁇ 7 / ° C., 40 ⁇ 10 ⁇ 7 / ° C. to 90 ⁇ 10 ⁇ 7 / ° C., 50 ⁇ 10 ⁇ 7 / ° C. to 80 ⁇ 10 ⁇ 7 / ° C., particularly preferably 55 ⁇ 10 ⁇ 7 / ° C. to 65 ⁇ 10 ⁇ 7 / ° C.
  • flexibility is required for a glass plate from the viewpoint of enhancing design elements. In order to increase flexibility, it is necessary to reduce the thickness of the glass plate.
  • the thermal expansion coefficients of the glass plate and the transparent conductive film such as ITO or FTO are mismatched, the glass plate warps. It becomes easy. Therefore, if the average coefficient of thermal expansion at 30 to 380 ° C. is set in the above range, such a situation can be easily prevented.
  • the “average thermal expansion coefficient at 30 to 380 ° C.” can be measured with a dilatometer or the like.
  • the strain point is preferably 450 ° C. or higher, 500 ° C. or higher, 550 ° C. or higher, and particularly preferably 600 ° C. or higher.
  • the higher the temperature of the transparent conductive film the higher the transparency and the lower the electrical resistance.
  • the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, when the strain point is within the above range, both transparency of the transparent conductive film and low electric resistance can be achieved, and furthermore, in the manufacturing process of the organic device, the glass plate is hardly thermally contracted by heat treatment.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1350 ° C. or lower, 1300 ° C. or lower, 1250 ° C. or lower, and particularly preferably 1200 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
  • Liquid phase temperature becomes like this. Preferably it is 1300 degrees C or less, 1250 degrees C or less, 1200 degrees C or less, Most preferably, it is 1150 degrees C or less.
  • the liquid phase viscosity is preferably 10 2.5 dPa ⁇ s or more, 10 3.0 dPa ⁇ s or more, 10 3.5 dPa ⁇ s or more, 10 3.8 dPa ⁇ s or more, 10 4.0 dPa or more.
  • the “liquid phase temperature” passed through 30 mesh (500 ⁇ m sieve opening), and the glass powder remaining in 50 mesh (300 ⁇ m sieve opening) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours. Later, it refers to a value obtained by measuring the temperature at which crystals are deposited. “Liquid phase viscosity” refers to the viscosity of the glass at the liquidus temperature.
  • the phase separation temperature is preferably 900 ° C. or lower, and particularly preferably 850 ° C. or lower.
  • the phase separation viscosity is preferably 10 4.0 dPa ⁇ s or more, and particularly preferably 10 5.0 to 10 8.0 dPa ⁇ s. In this way, the heat treatment temperature can be lowered. As a result, the heat treatment cost can be reduced.
  • the “phase separation temperature” indicates that clear turbidity is observed when glass is placed in a platinum boat and remelted at 1400 ° C., then the platinum boat is transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes. Refers to temperature.
  • Phase separation viscosity refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method.
  • the phase-separated glass of the present invention is based on the premise that the glass does not phase-separate in the molding step and the slow cooling (cooling) step, but phase-separates in the subsequent heat treatment step, but the molding step and / or the slow cooling step.
  • the glass may be phase-separated.
  • the phase separation temperature is preferably 700 ° C. or higher, 750 ° C. or higher, and particularly preferably 780 ° C. or higher.
  • the phase separation viscosity is preferably 10 9.0 dPa ⁇ s or less, and particularly preferably 10 5.0 to 10 8.0 dPa ⁇ s.
  • a glass plate which has a phase separation structure by a float process or an overflow down draw method.
  • a separate heat treatment step becomes unnecessary, and the manufacturing cost of the glass plate can be easily reduced.
  • a phase separation phenomenon may occur in the bowl-shaped structure, or a phase separation phenomenon may occur during stretch molding or slow cooling. If it does in this way, the number of manufacturing processes of glass will decrease and glass productivity can be raised.
  • the phase separation phenomenon can be controlled by the glass composition, molding conditions, slow cooling conditions, and the like.
  • the glass may be phase-separated in the melting step, for example, other than the forming step and the slow cooling (cooling) step.
  • the total light transmittance at a wavelength of 400 to 700 nm is preferably 20% or more, 30% or more, 40% or more, and particularly preferably 50% or more. If the total light transmittance is too low, it becomes difficult to extract the light in the glass into the air.
  • the diffuse transmittance at a wavelength of 400 to 700 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, and particularly preferably 50% or more. If the diffuse transmittance is too low, it becomes difficult to extract the light in the glass into the air.
  • the haze value at a wavelength of 400 to 700 nm is preferably 5% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, Preferably it is 90% or more. If the haze value is too low, the desire for light scattering becomes insufficient, and it becomes difficult to extract the light in the glass into the air.
  • the phase-separated glass of the present invention preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • a flat plate shape it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface).
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the thickness (in the case of a flat plate) is preferably 5 to 500 ⁇ m. If the thickness is too large, if the light scattering function is excessive, the total light transmittance becomes low, and it becomes difficult to extract the light in the phase separation glass into the air. Therefore, the thickness is preferably 500 ⁇ m or less, 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, 100 ⁇ m or less, and particularly preferably 50 ⁇ m or less. On the other hand, if the thickness is too small, the light scattering function tends to be lowered, and it becomes difficult to take out the light in the phase separation glass into the air. Therefore, the thickness is preferably 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, and particularly preferably 30 ⁇ m or more.
  • the surface roughness Ra of at least one surface is preferably 0.01 to 1 ⁇ m.
  • the surface roughness Ra is preferably 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, 0.03 ⁇ m or less, particularly preferably Is 10 nm or less.
  • the phase-separated glass (or phase-separated glass) of the present invention is preferably formed by a downdraw method, particularly an overflow downdraw method.
  • a downdraw method particularly an overflow downdraw method.
  • the overflow down draw method the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state.
  • a slot downdraw method can be employed. If it does in this way, it will become easy to produce a thin glass plate.
  • a redraw method for example, a float method, a roll-out method, etc.
  • the float process can efficiently produce a large glass plate.
  • the phase-separated glass of the present invention is preferably subjected to a heat treatment step. This makes it easy to control the scattering phenomenon of the phase separation glass (especially the scattering phenomenon due to Mie scattering), and to easily reduce the difference between the maximum value and the minimum value of the total light transmittance at wavelengths of 400 to 700 nm.
  • the heat treatment temperature is preferably 610 ° C. or higher, 710 ° C. or higher, 760 ° C. or higher, 800 ° C., particularly preferably 810 ° C. or higher. This makes it easier to control the scattering phenomenon (particularly the scattering phenomenon due to Mie scattering) of the phase separation glass.
  • the heat treatment temperature is preferably 1100 ° C. or lower and 1000 ° C. or lower, particularly preferably 900 ° C. or lower. If the heat treatment temperature is too high, in addition to an increase in heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • the heat treatment time is preferably 1 minute or longer, particularly 5 minutes or longer. This makes it easier to control the scattering phenomenon (particularly the scattering phenomenon due to Mie scattering) of the phase separation glass.
  • the heat treatment temperature is preferably 72 hours or less, 48 hours or less, 24 hours or less, and particularly preferably 60 minutes or less. If the heat treatment time is too long, in addition to an increase in the heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
  • At least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, and particularly preferably 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like.
  • the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • the uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, and particularly preferably 50 mm or more.
  • Phase-separated glass of the present invention when incorporated into the organic EL element, the current efficiency of the organic EL element becomes is preferably higher than that incorporating the glass having a refractive index n d is not phase separation of the same extent.
  • the current efficiency at 20 mA / cm 2 compared with a case incorporating a glass having a refractive index n d is not phase separation of comparable, more than 5%, 8% or more, 10% or more, particularly 12% or more It is preferable to be high. In this way, the brightness of the organic EL device can be increased. In particular, even if the existing glass composition is not significantly changed, the luminance of the organic EL device can be increased only by introducing a component that induces phase separation in the glass composition.
  • phase-separated glass of the present invention is a plate-shaped phase-separated glass plate, it can be bonded to a substrate to constitute a composite substrate.
  • the phase separation glass plate functions as a light scattering plate, it is possible to increase the light extraction efficiency of the organic EL element only by combining with the substrate.
  • the phase separation glass plate and the substrate are joined and the phase separation glass plate is disposed on the side in contact with air, the scratch resistance of the composite substrate can be improved.
  • a resin substrate As the substrate, various materials can be used.
  • a metal substrate, or a glass substrate can be used.
  • a glass substrate is preferable from the viewpoints of permeability, weather resistance, and heat resistance.
  • Various materials can be used as the glass substrate.
  • a soda lime glass substrate, an aluminosilicate glass substrate, and an alkali-free glass substrate can be used.
  • the thickness of the glass substrate is preferably from 0.3 to 3.0 mm, from 0.4 to 2.0 mm, particularly preferably from more than 0.5 to 1.8 mm, from the viewpoint of maintaining strength.
  • Refractive index n d of the glass substrate is preferably 1.50 greater, 1.51 or more, 1.52 or more, 1.53 or more, 1.54 or more, 1.55 or more, 1.56 or more, 1.60 or more And particularly preferably 1.63 or more. If the refractive index of the glass substrate is too low, it becomes difficult to efficiently extract light by reflection at the interface of the glass substrate and the transparent conductive film. On the other hand, if the refractive index nd is too high, the reflectance at the interface between the glass substrate and the phase separation glass plate becomes high, and it becomes difficult to extract the light in the glass substrate into the air through the phase separation glass plate. Therefore, the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, particularly preferably 1.75 or less is there.
  • the surface roughness Ra of at least one surface (particularly the unpolished surface) of the glass substrate is preferably 0.01 to 1 ⁇ m. If the surface roughness Ra is too large, it becomes difficult to produce a composite substrate by optical contact. In addition, when a transparent conductive film or the like is formed on the surface, the quality of the transparent conductive film is lowered and uniform. It becomes difficult to obtain luminescence. Therefore, the surface roughness Ra of at least one surface is preferably 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, 0. It is 03 ⁇ m or less, particularly preferably 10 nm or less.
  • a method of joining with an adhesive tape, an adhesive sheet, an adhesive, a curing agent, or the like, or a method of joining with an optical contact can be used.
  • a method of bonding with an ultraviolet curable resin is preferable from the viewpoint of bonding reliability
  • a method of bonding with an optical contact is preferable from the viewpoint of increasing the transmittance of the composite substrate.
  • the organic EL device of the present invention includes the above-described phase separation glass.
  • Examples of the organic EL device include organic EL lighting.
  • this organic EL device it is preferable to incorporate phase separation glass in the state of the composite substrate.
  • Method of manufacturing a phase-separated glass of the present invention after the refractive index n d is molded more than 1.55 min chemistry glass, by heat-treating phase separation glass obtained, at least a first phase and a second phase A phase separation glass having a phase separation structure containing is obtained.
  • the phase-separated glass is phase-separated by heat treatment at 1100 ° C. or lower to become the above-described phase-separated glass.
  • the phase-separable glass has a property of phase separation from at least a first phase and a second phase from a state where the phase separation is not performed when heat treatment is performed at 800 ° C. for 24 hours.
  • various characteristics such as the refractive index of the phase-separated glass plate are the same as those of the above-described phase-separated glass except that the phase-separated glass plate is not phase-separated, detailed description is omitted.
  • the heat treatment means a heat treatment step separately performed after the molding step and the slow cooling step. Since the heat treatment temperature and the heat treatment time are as described above, detailed description thereof is omitted.
  • Table 1 shows sample No. 1 to 7 are shown.
  • the obtained glass batch was supplied to the glass melting furnace, and it melted at 1400 degreeC for 7 hours.
  • a simple slow cooling treatment was performed from the strain point to room temperature over 10 hours.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the density ⁇ is a value measured by the well-known Archimedes method.
  • the average thermal expansion coefficient ⁇ is a value measured with a dilatometer in a temperature range of 30 to 380 ° C.
  • a ⁇ 5 mm ⁇ 20 mm cylindrical sample (the end surface is R-processed) was used as a measurement sample.
  • the strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
  • the annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
  • the temperatures at high temperature viscosities of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s, and 10 2.0 dPa ⁇ s are values measured by the platinum ball pulling method. In addition, it is excellent in a meltability, so that high temperature viscosity is low.
  • the liquid phase temperature TL passes through 30 mesh (a sieve opening of 500 ⁇ m), puts the glass powder remaining in a 50 mesh (a sieve opening of 300 ⁇ m) into a platinum boat, and holds it in a temperature gradient furnace for 24 hours. It is the value which measured the temperature which precipitates.
  • the liquid phase viscosity log ⁇ TL is a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method.
  • the phase separation temperature TP is measured at a temperature at which white turbidity is clearly recognized when each glass is put in a platinum boat, remelted at 1400 ° C., then transferred to a temperature gradient furnace, and held in the temperature gradient furnace for 30 minutes. It is a thing.
  • the phase separation viscosity log ⁇ TP is obtained by measuring the viscosity of each glass at the phase separation temperature by the platinum ball pulling method.
  • phase separation after molding was transparent when the molded sample after the above-mentioned slow cooling treatment was visually observed as “ ⁇ ” when white turbidity due to phase separation was observed, and without white turbidity due to phase separation. Things were evaluated as “x”.
  • the phase separation after the heat treatment is the one in which white turbidity due to the phase separation was observed when the molded sample after the slow cooling treatment was heat-treated at 800 ° C. for 24 hours and the obtained heat-treated sample was visually observed. “ ⁇ ” was evaluated as “ ⁇ ” when the sample was transparent without white turbidity due to phase separation.
  • Refractive index n d is the value of the d-line as determined by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Specifically, first, a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is prepared, and the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.) is set at a cooling rate of 0.1 ° C./min. It is a value measured by infiltrating an immersion liquid having a matching refractive index n d after annealing.
  • Specimen No. after the above slow cooling treatment 1 was put into a platinum boat having a size of about 15 mm ⁇ 130 mm, and then the platinum boat was put into an electric furnace and remelted at 1400 ° C.
  • the remelted glass in the platinum boat had a thickness of about 3 to 5 mm.
  • the platinum boat was taken out of the electric furnace and allowed to cool in the air.
  • the obtained phase separation glass it heat-processed on the conditions for 24 hours at 800 degreeC, and was made to phase-separate.
  • Each of the heat-treated samples 1 had a wavelength at which the haze value was 5% or more at a wavelength of 400 to 700 nm, and had a light scattering function.
  • the obtained glass batch was supplied to the glass melting furnace, and it melted at 1400 degreeC for 7 hours.
  • a simple slow cooling treatment was performed from the strain point to room temperature over 10 hours.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the measuring method of various characteristics is as described in the first embodiment.
  • the molded glass plate (Sample No. 8) was put into a platinum boat having a size of about 15 mm ⁇ 130 mm, and the platinum boat was put into an electric furnace and remelted at 1400 ° C.
  • the remelted glass in the platinum boat had a thickness of about 3 to 5 mm.
  • the platinum boat was taken out of the electric furnace and allowed to cool in the air.
  • the obtained glass it heat-processed on condition of 850 degreeC for 24 hours, and phase-separated. Further, it was immersed in a 1M hydrochloric acid solution for 10 minutes, and after carbon deposition, the surface of the sample was observed with a field emission scanning electron microscope (S-4300SE manufactured by Hitachi High-Technologies Corporation).
  • Sample No. 8 subjected to heat treatment has a phase separation structure having phase separation particles of about 300 to 400 nm, and a phase rich in B 2 O 3 (second phase: layer poor in SiO 2 ) is a hydrochloric acid solution.
  • a phase rich in B 2 O 3 (second phase: layer poor in SiO 2 ) is a hydrochloric acid solution.
  • the phase rich in B 2 O 3 is eluted by the hydrochloric acid solution, and the phase rich in SiO 2 is not eluted in the hydrochloric acid solution.
  • phase-separated glass after the heat treatment is processed into a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm, both surfaces are mirror-polished, and the spectrophotometer (Spectrophotometer UV-2500PC, manufactured by Shimadzu Corporation) The total light transmittance and diffuse transmittance of were measured. The result is shown in FIG.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is within 20%, the total light transmittance at a wavelength of 400 to 700 nm is 20% or more, The diffuse transmittance at a wavelength of 400 to 700 nm was 20% or more.
  • phase-separated glass after the heat treatment was processed into a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm to obtain a phase-separated glass plate.
  • a glass substrate (OA-10L manufactured by Nippon Electric Glass Co., Ltd .: refractive index n d 1.52) having a thickness of about 10 mm ⁇ 30 mm ⁇ 2.0 mm was prepared.
  • an ultraviolet curable resin Optoclave UT20 manufactured by MS Ardel Co., Ltd.
  • a composite substrate having a total thickness of 2.3 mm was obtained.
  • the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). The result is shown in FIG.
  • phase-separated glass after the heat treatment was processed into a glass plate having a thickness of about 10 mm ⁇ 30 mm ⁇ 1.0 mm to obtain a phase-separated glass plate.
  • a glass substrate (OA-10L manufactured by Nippon Electric Glass Co., Ltd .: refractive index n d 1.52) having a thickness of about 10 mm ⁇ 30 mm ⁇ 2.0 mm was prepared.
  • an ultraviolet curable resin Optoclave UT20 manufactured by MS Ardel Co., Ltd.
  • a composite substrate having a total thickness of 2.1 mm was obtained.
  • the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). The result is shown in FIG.
  • the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is within 20%, and the total light transmittance at a wavelength of 400 to 700 nm is low.
  • the diffuse transmittance at a wavelength of 400 to 700 nm was 20% or more.
  • Example 3 sample no. No. 8 was used for the experiment.
  • Regarding 9 to 14 it is considered that the same tendency can be obtained by the same experiment.
  • Tables 4 and 5 show the sample numbers. 15 to 46 are shown.
  • the obtained glass batch was supplied to the glass melting furnace, and it melted at 1400 degreeC for 7 hours.
  • a slow cooling treatment was performed from the strain point to room temperature over 10 hours.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the measuring method of various characteristics is as described in the first embodiment.
  • FIGS. 7 to 10 show sample Nos. Images obtained by observing the sample surfaces of 17, 20, 22, and 23 with a field emission scanning electron microscope are shown.
  • FIGS. 17,20,22,23 has a phase separation structure, phase rich in B 2 O 3 (second phase: poor SiO 2 layer) were eluted by hydrochloric acid solution.
  • the phase rich in B 2 O 3 is eluted by the hydrochloric acid solution, and the phase rich in SiO 2 is not eluted in the hydrochloric acid solution.
  • Sample No. in Table 4 23 (plate thickness 0.7 mm: not heat-treated after forming) was produced, and ITO (thickness 100 nm) was deposited on the glass plate surface as a transparent electrode layer using a mask. Subsequently, 6% by mass of polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer, ⁇ -NPD (thickness 50 nm) as a hole transport layer, and Ir (ppy) 3 as an organic light emitting layer were doped on ITO.
  • PEDOT-PSS thickness 40 nm
  • ⁇ -NPD thickness 50 nm
  • Ir (ppy) 3 as an organic light emitting layer
  • the glass plate according to the comparative example as a glass composition, in mass%, SiO 2 36.0%, Al 2 O 3 5.1%, B 2 O 3 14.1%, CaO 7.0%, SrO 11.2%, BaO 17.9%, ZnO 3.1%, ZrO 2 2.0%, and contains TiO 2 3.6%, a refractive index n d is 1.63.
  • Sample No. in Table 4 A glass plate (thickness 0.7 mm: not heat-treated after molding) according to No. 21 was prepared, and ITO (thickness 100 nm) was deposited on the glass plate surface as a transparent electrode layer using a mask. Subsequently, 6% by mass of polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer, ⁇ -NPD (thickness 50 nm) as a hole transport layer, and Ir (ppy) 3 as an organic light emitting layer were doped on ITO.
  • PEDOT-PSS thickness 40 nm
  • ⁇ -NPD thickness 50 nm
  • Ir (ppy) 3 an organic light emitting layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

 Phase-separated glass having a refractive index nd of 1.55 or higher, and having a phase-separated structure including at least a first phase and a second phase.

Description

分相ガラス、分相性ガラス、有機ELデバイス及び分相ガラスの製造方法Phase separation glass, phase separation glass, organic EL device, and method for producing phase separation glass
 本発明は、分相ガラス、分相性ガラス、有機ELデバイス及び分相ガラスの製造方法に関する。 The present invention relates to a phase separation glass, a phase separation glass, an organic EL device, and a method for producing a phase separation glass.
 近年、家電製品の普及、大型化、多機能化等の理由から、家庭等の生活空間で消費されるエネルギーが増えている。特に、照明機器のエネルギー消費が多くなっている。このため、高効率の照明が活発に検討されている。 In recent years, the energy consumed in living spaces such as homes has increased due to the widespread use, increase in size, and multifunctionality of home appliances. In particular, the energy consumption of lighting equipment is increasing. For this reason, highly efficient illumination is actively studied.
 照明用光源は、限られた範囲を照らす「指向性光源」と、広範囲を照らす「拡散光源」とに分けられる。LED照明は、「指向性光源」に相当し、白熱球の代替として採用されつつある。その一方で、「拡散光源」に相当する蛍光灯の代替光源が望まれており、その候補として、有機EL(エレクトロルミネッセンス)照明が有力である。 The light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area. LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb. On the other hand, an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
 有機EL素子は、ガラス板と、陽極である透明導電膜と、電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物からなる一層又は複数層の発光層を含む有機EL層と、陰極とを備えた素子である。有機EL素子に用いられる有機EL層として、低分子色素系材料、共役高分子系材料等が用いられており、発光層を形成する場合、ホール注入層、ホール輸送層、電子輸送層、電子注入層等との積層構造が形成される。このような積層構造を有する有機EL層を、陽極と陰極の間に配置し、陽極と陰極に電界を印加することにより、陽極である透明電極から注入された正孔と、陰極から注入された電子とが、発光層内で再結合し、その再結合エネルギーによって発光中心が励起されて、発光する。 The organic EL element includes a glass plate, a transparent conductive film as an anode, an organic EL layer including an organic compound exhibiting electroluminescence that emits light by current injection, and a cathode, and a cathode. It is an element. As the organic EL layer used in the organic EL element, a low molecular dye material, a conjugated polymer material or the like is used. When forming a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection A laminated structure with layers and the like is formed. An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode The electrons recombine in the light emitting layer, and the emission center is excited by the recombination energy to emit light.
 有機EL素子は、携帯電話、ディスプレイ用途として検討が進められており、一部では既に実用化されている。また、有機EL素子は、液晶ディスプレイ、プラズマディスプレイ等の薄型テレビと同等の発光効率を有している。 Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use. In addition, the organic EL element has a luminous efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
 しかし、有機EL素子を照明用光源に適用するためには、輝度が未だ実用レベルに到達しておらず、更なる発光効率の改善が必要である。 However, in order to apply the organic EL element to the light source for illumination, the luminance has not yet reached the practical level, and further improvement of the luminous efficiency is necessary.
 ガラス板と空気の屈折率差に起因して、ガラス板内に光が閉じ込められることが輝度低下の原因の一つである。例えば、屈折率n1.50のガラス板を用いた場合、空気の屈折率nは1.0であるため、臨界角はスネルの法則より42°と計算される。よって、この臨界角以上の入射角の光は、全反射を起こし、ガラス板内に閉じ込められて、空気中に取り出されないことになる。 One reason for the decrease in luminance is that light is confined in the glass plate due to the difference in refractive index between the glass plate and air. For example, when a glass plate having a refractive index n d of 1.50 is used, since the refractive index n d of air is 1.0, the critical angle is calculated to be 42 ° from Snell's law. Therefore, light having an incident angle greater than the critical angle causes total reflection, is confined in the glass plate, and is not extracted into the air.
特開2012-25634号公報JP 2012-25634 A
 上記問題を解決するために、透明導電膜等とガラス板の間に、光取り出し層を形成することが検討されている。例えば、特許文献1には、ソーダガラス板の表面に、高屈折率のガラスフリットを焼結させた光取り出し層を形成すると共に、光取り出し層内に散乱物質を分散させることにより、光取り出し効率を高めることも記載されている。 In order to solve the above problems, it has been studied to form a light extraction layer between a transparent conductive film or the like and a glass plate. For example, in Patent Document 1, a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass plate, and a scattering substance is dispersed in the light extraction layer, thereby reducing the light extraction efficiency. It is also described to increase.
 しかし、ガラス板の表面に光取り出し層を形成するためには、ガラス板の表面にガラスペーストを塗布する印刷工程が必要になり、この工程は生産コストの高騰を招く。更に、ガラスフリット中に散乱粒子を分散させる場合、散乱粒子自体の吸収により光取り出し層の透過率が低くなる。 However, in order to form the light extraction layer on the surface of the glass plate, a printing step of applying a glass paste to the surface of the glass plate is required, and this step causes an increase in production cost. Further, when the scattering particles are dispersed in the glass frit, the transmittance of the light extraction layer is lowered due to the absorption of the scattering particles themselves.
 本発明は、上記事情に鑑み成されたものであり、その技術的課題は、焼結体からなる光取り出し層を形成しなくても、有機EL素子の光取り出し効率を高めることができ、しかも生産性に優れるガラスを提供する。 The present invention has been made in view of the above circumstances, and its technical problem is that the light extraction efficiency of the organic EL element can be increased without forming a light extraction layer made of a sintered body, and Provide glass with excellent productivity.
 本発明者は、鋭意検討の結果、高屈折率の分相ガラスを用い、その全光線透過率を所定範囲に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の分相ガラスは、屈折率nが1.55以上であり、少なくとも第一の相と第二の相を含む分相構造を有することを特徴とする。ここで、「屈折率n」は、屈折率測定器で測定したd線の値を指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所社製の屈折率測定器KPR-2000により測定することができる(以下、同様)。また、第一の相と第二の相の形成に伴う光散乱は、目視で確認可能である。更に、1Mの塩酸溶液に10分間浸漬させた後の試料表面を走査型電子顕微鏡で観察すれば、各相の詳細を確認可能である。 As a result of intensive studies, the inventor has found that the above technical problem can be solved by using a phase separation glass having a high refractive index and restricting the total light transmittance to a predetermined range, and proposes the present invention. To do. That is, phase-separated glass of the present invention, the refractive index n d is 1.55 or more, and having a phase separation structure comprising at least a first phase and a second phase. Here, “refractive index n d ” refers to the value of the d-line measured by a refractive index measuring device. For example, a rectangular parallelepiped sample of 25 mm × 25 mm × about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps−50 ° C.). after, while penetration of immersion the refractive index n d is aligned, it can be measured by the refractive index measuring instrument KPR-2000 of Shimadzu Corporation (hereinafter, the same). Moreover, the light scattering accompanying formation of a 1st phase and a 2nd phase can be confirmed visually. Furthermore, the details of each phase can be confirmed by observing the surface of the sample after being immersed in a 1M hydrochloric acid solution for 10 minutes with a scanning electron microscope.
 本発明の分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有することを特徴とする。このようにすれば、有機ELデバイスに適用した場合、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱するため、光を外部に取り出し易くなり、結果として、焼結体からなる光取り出し層を形成しなくても、光取り出し効率を高めることができる。なお、「有機ELデバイス」には、有機EL照明のみならず、有機ELディスプレイ等が含まれる。 The phase-separated glass of the present invention is characterized by having a phase-separated structure including at least a first phase and a second phase. In this way, when applied to an organic EL device, the light incident on the glass plate from the organic EL layer is scattered at the interface between the first phase and the second phase, so that the light can be easily taken out to the outside. As a result, the light extraction efficiency can be increased without forming a light extraction layer made of a sintered body. The “organic EL device” includes not only organic EL lighting but also an organic EL display.
 本発明の分相ガラスは、屈折率nが1.55以上である。従来の有機EL照明等の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題もあった。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9であった。これに対して、ガラス板の屈折率nは、通常、1.50程度であった。そこで、上記のように屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなるため、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなり、光取り出し効率を高めることができる。 Phase-separated glass of the present invention, the refractive index n d is 1.55 or more. In conventional organic EL devices such as organic EL lighting, the light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film due to the large difference in refractive index between the glass plate and the transparent conductive film. However, there is also a problem that the light extraction efficiency is lowered. Specifically, the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9. In contrast, the refractive index n d of the glass plate was typically about 1.50. Therefore, if the refractive index nd is regulated as described above, the difference in refractive index between the glass plate and the transparent conductive film is reduced, so that light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film. Light extraction efficiency can be increased.
 第二に、本発明の分相ガラスは、波長400~700nmにおける全光線透過率の最大値と最小値との差が40%以下であることが好ましい。分相ガラスを用いると、レイリー散乱により短波長の光が長波長の光よりも強く散乱し、有機EL素子、特に白色OLEDを作製した場合に、色の視野角依存性が大きくなり、照明用途として不適になる虞がある。そこで、本発明の分相ガラスは、このような不具合を解消するために、上述のように全光線透過率を規制している。なお、波長400~700nmにおける全光線透過率の最大値と最小値との差は、分相粒子の粒子サイズを所定範囲に規制して、ミー散乱による散乱現象を生じさせることにより低減することができる。ここで、「全光線透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。 Secondly, in the phase-separated glass of the present invention, the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is preferably 40% or less. When phase-separated glass is used, short-wavelength light is scattered more strongly than long-wavelength light due to Rayleigh scattering, and when an organic EL element, particularly a white OLED, is produced, the viewing angle dependency of the color increases, and lighting applications There is a risk of becoming unsuitable. Therefore, the phase separation glass of the present invention regulates the total light transmittance as described above in order to eliminate such problems. Note that the difference between the maximum value and the minimum value of the total light transmittance at wavelengths of 400 to 700 nm can be reduced by regulating the particle size of the phase-separated particles within a predetermined range and causing a scattering phenomenon due to Mie scattering. it can. Here, the “total light transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation). For example, glass whose both surfaces are mirror-polished is used as a measurement sample. be able to.
 第三に、本発明の分相ガラスは、波長400~700nmにおける拡散透過率が10%以上であることが好ましい。ここで、「拡散透過率」は、分光光度計(例えば、島津製作所社製UV-2500PC)により厚み方向で測定した値であり、例えば、両表面が鏡面研磨されたガラスを測定試料とすることができる。 Third, the phase separation glass of the present invention preferably has a diffuse transmittance of 10% or more at a wavelength of 400 to 700 nm. Here, “diffuse transmittance” is a value measured in the thickness direction with a spectrophotometer (for example, UV-2500PC manufactured by Shimadzu Corporation). For example, glass whose both surfaces are mirror-polished is used as a measurement sample. Can do.
 第四に、本発明の分相ガラスは、波長400~700nmにおけるヘーズ値が5%以上の波長を有することが好ましい。このようにすれば、ガラス中で光が散乱し易くなるため、光を外部に取り出し易くなり、結果として、光取り出し効率を高め易くなる。ここで、「ヘーズ値」は、(拡散透過率)×100/(全光線透過率)で算出される値である。 Fourth, the phase separation glass of the present invention preferably has a wavelength having a haze value of 5% or more at a wavelength of 400 to 700 nm. If it does in this way, since it will become easy to scatter light in glass, it will become easy to take out light outside, and it will become easy to raise light extraction efficiency as a result. Here, the “haze value” is a value calculated by (diffuse transmittance) × 100 / (total light transmittance).
 第五に、本発明の分相ガラスは、波長400~700nmにおける全光線透過率が10%以上であることが好ましい。 Fifth, the phase separation glass of the present invention preferably has a total light transmittance of 10% or more at a wavelength of 400 to 700 nm.
 第六に、本発明の分相ガラスは、分相粒子の平均粒子径が100nm以上であることが好ましい。 Sixth, the phase-separated glass of the present invention preferably has an average particle diameter of phase-separated particles of 100 nm or more.
 第七に、本発明の分相ガラスは、屈折率nが1.65未満であることが好ましい。 Seventh, phase-separated glass of the present invention preferably has a refractive index n d is less than 1.65.
 第八に、本発明の分相ガラスは、分相ガラスが、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することが好ましい。このようにすれば、屈折率を高め易くなり、またガラス板の生産性を高め易くなる。 Eighth, in the phase-separated glass of the present invention, the phase-separated glass is composed of 30 to 75% of SiO 2 , 0.1 to 50% of B 2 O 3 , and Al 2 O 3 0 to 35 as a glass composition. % Is preferably contained. If it does in this way, it will become easy to raise a refractive index and it will become easy to raise productivity of a glass plate.
 第九に、本発明の分相ガラスは、ガラス組成中に、実質的にレアメタル酸化物を含まないことが好ましい。ここで、「レアメタル酸化物」は、La、Nd、Gd、CeO等の希土類酸化物、Y、Nb、Taを指す。「レアメタル酸化物」とは、ガラス組成中のレアメタル酸化物の含有量が0.1質量%以下の場合を指す。 Ninth, it is preferable that the phase-separated glass of the present invention does not substantially contain a rare metal oxide in the glass composition. Here, “rare metal oxide” refers to rare earth oxides such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , and CeO 2 , Y 2 O 3 , Nb 2 O 5 , and Ta 2 O 5 . “Rare metal oxide” refers to the case where the content of the rare metal oxide in the glass composition is 0.1% by mass or less.
 第十に、本発明の分相ガラスは、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの散乱機能を高めることができる。 Tenth, in the phase-separated glass of the present invention, the content of SiO 2 in the first phase is preferably larger than the content of SiO 2 in the second phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
 第十一に、本発明の分相ガラスは、第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの散乱機能を高めることができる。 Eleventh, phase-separated glass of the present invention, the content of the second of B 2 O 3 in the phase is preferably larger than the content of B 2 O 3 in the first phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
 第十二に、本発明の分相ガラスは、ガラス組成中のPの含有量が0.001~10質量%であることが好ましい。 Twelfth, the phase-separated glass of the present invention preferably has a P 2 O 5 content of 0.001 to 10% by mass in the glass composition.
 第十三に、本発明の分相ガラスは、ガラス組成中の質量比(Al+B)/SiOが0.3以上であることが好ましい。 Thirteenth, in the phase-separated glass of the present invention, the mass ratio (Al 2 O 3 + B 2 O 3 ) / SiO 2 in the glass composition is preferably 0.3 or more.
 第十四に、本発明の分相ガラスは、ガラス組成中の質量比TiO/Bが0.01~2であることが好ましい。 Fourteenth, the phase separation glass of the present invention preferably has a mass ratio TiO 2 / B 2 O 3 in the glass composition of 0.01 to 2.
 第十五に、本発明の分相ガラスは、ガラス組成中のBaO-SrOの含有量が1~12質量%であることが好ましい。 Fifteenth, the phase-separated glass of the present invention preferably has a BaO—SrO content of 1 to 12% by mass in the glass composition.
 第十六に、本発明の分相ガラスは、平板形状であることが好ましい。 Sixteenth, it is preferable that the phase separation glass of the present invention has a flat plate shape.
 第十七に、本発明の分相ガラスは、厚みが5~500μmであることが好ましい。 Seventeenth, the phase separation glass of the present invention preferably has a thickness of 5 to 500 μm.
 第十八に、本発明の有機ELデバイスは、上記の分相ガラスを備えてなることを特徴とする。 Eighteenth, the organic EL device of the present invention is characterized by comprising the above phase separation glass.
 第十九に、本発明の有機ELデバイスは、照明であることが好ましい。 Nineteenth, the organic EL device of the present invention is preferably illumination.
 第二十に、本発明の分相ガラスの製造方法は、屈折率nが1.55以上の分相性ガラスを成形した後、得られた分相性ガラスを熱処理して、少なくとも第一の相と第二の相を含む分相構造を有する分相ガラスを得ることを特徴とする。このようにすれば、分相性ガラスを熱処理して分相ガラスを得るため、分相構造を制御し易くなる。特に、有機ELデバイスの素子構造が異なると、最適な分相構造も異なってくるが、同一の分相性ガラスから、熱処理条件を調整するだけで有機ELデバイスの素子構造に最適な分相構造を得ることができる。更に、成形時にガラスを分相させようとすると、ガラスが失透し易くなるという問題が発生するが、成形時の分相を抑制した上で、成形後に熱処理して、ガラスを分相させると、このような問題を的確に回避することができる。なお、分相現象は、熱処理条件(熱処理温度、熱処理時間)以外にも、ガラス組成、成形条件、徐冷条件等により制御することができる。ここで、「分相性ガラス」は、未だ分相していないが、1100℃以下の熱処理により分相する性質を有するガラスを指す。 To a twenty-producing method of the phase-separated glass of the present invention, after the refractive index n d is molded more than 1.55 min chemistry glass, by heat-treating phase separation glass obtained, at least a first phase And a phase-separated glass having a phase-separated structure including the second phase. If it does in this way, in order to obtain a phase separation glass by heat-processing a phase separation glass, it becomes easy to control a phase separation structure. In particular, if the element structure of the organic EL device is different, the optimal phase separation structure will also be different, but from the same phase separation glass, the optimum phase separation structure for the element structure of the organic EL device can be obtained simply by adjusting the heat treatment conditions. Obtainable. Furthermore, if the glass is phase-separated at the time of molding, there is a problem that the glass is easily devitrified. However, after the phase-separation at the time of molding is suppressed, heat treatment is performed after molding to phase-separate the glass. Such a problem can be avoided accurately. The phase separation phenomenon can be controlled not only by heat treatment conditions (heat treatment temperature, heat treatment time) but also by glass composition, molding conditions, annealing conditions, and the like. Here, “phase-separating glass” refers to glass that has not yet phase-separated but has a property of phase-separating by heat treatment at 1100 ° C. or lower.
 第二十一に、本発明の分相ガラスの製造方法は、屈折率nが1.65未満の分相性ガラスを成形することが好ましい。 The twenty-first method of manufacturing a phase-separated glass of the present invention, it is preferable that the refractive index n d is molded phase separation glass of less than 1.65.
 第二十二に、本発明の分相ガラスの製造方法は、分相性ガラスを平板形状に成形することが好ましい。 Twenty-second, the method for producing a phase separation glass of the present invention preferably forms the phase separation glass into a flat plate shape.
 第二十三に、本発明の分相ガラスの製造方法は、分相性ガラスをオーバーフローダウンドロー法で成形することが好ましい。 Twenty-third, in the method for producing a phase separation glass of the present invention, it is preferable to form the phase separation glass by an overflow down draw method.
 第二十四に、本発明の分相性ガラスは、屈折率nが1.55以上であり、且つ800℃24時間の熱処理を行うと、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有することを特徴とする。 The twenty-fourth, phase separation glass of the present invention, the refractive index n d is not less than 1.55, and when subjected to heat treatment 800 ° C. 24 hours, the state where no phase separation, at least a first phase And the second phase.
実施例2に係る熱処理後の試料No.1(板厚1.0mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。Sample No. after heat treatment according to Example 2 This is data obtained by mirror-polishing both surfaces of 1 (plate thickness: 1.0 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer. 実施例2に係る試料No.1を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。Sample No. 2 according to Example 2. 1 is an image obtained by observing the obtained sample surface with a scanning electron microscope after 1 was immersed in a 1M hydrochloric acid solution for 10 minutes. 実施例3に係る熱処理後の試料No.8を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。Sample No. after heat treatment according to Example 3 8 is an image obtained by immersing 8 in a 1M hydrochloric acid solution for 10 minutes and observing the obtained sample surface with a scanning electron microscope. 実施例3に係る熱処理後の試料No.8(板厚1.0mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。Sample No. after heat treatment according to Example 3 8 is a data obtained by mirror-polishing both surfaces of 8 (plate thickness 1.0 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer. 実施例4に係る複合基板(分相ガラス板の板厚0.3mm、総板厚2.3mm)について、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。It is the data which measured the total light transmittance and diffuse transmittance of the thickness direction about the composite substrate which concerns on Example 4 (plate thickness of 0.3 mm of a phase separation glass plate, total plate thickness of 2.3 mm) with the spectrophotometer. . 実施例4に係る複合基板(分相ガラス板の板厚0.1mm、総板厚2.1mm)について、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。It is the data which measured the total light transmittance and diffuse transmittance of the thickness direction about the composite substrate which concerns on Example 4 (plate thickness of the phase separation glass plate 0.1mm, total plate thickness 2.1mm) with the spectrophotometer. . 実施例6に係る試料No.17を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。Sample No. 6 in Example 6 It is the image which observed the sample surface obtained by immersing 17 in 1M hydrochloric acid solution for 10 minutes with the scanning electron microscope. 実施例6に係る試料No.20を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。Sample No. 6 in Example 6 20 is an image obtained by immersing 20 in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained sample surface with a scanning electron microscope. 実施例6に係る試料No.22を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。Sample No. 6 in Example 6 22 shows an image obtained by immersing 22 in a 1M hydrochloric acid solution for 10 minutes and then observing the obtained sample surface with a scanning electron microscope. 実施例6に係る試料No.23を1Mの塩酸溶液に10分間浸漬させた後、得られた試料表面を走査型電子顕微鏡で観察した像である。Sample No. 6 in Example 6 23 is an image obtained by observing the obtained sample surface with a scanning electron microscope after 23 was immersed in a 1M hydrochloric acid solution for 10 minutes. 実施例7に係る試料No.20(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 20 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer. 実施例7に係る試料No.21(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 21 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer. 実施例7に係る試料No.22(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 22 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer. 実施例7に係る試料No.23(板厚0.7mm)の両表面を鏡面研磨し、分光光度計により、厚み方向の全光線透過率及び拡散透過率を測定したデータである。Sample No. 7 in Example 7 This is data obtained by mirror-polishing both surfaces of 23 (plate thickness 0.7 mm) and measuring the total light transmittance and diffuse transmittance in the thickness direction with a spectrophotometer.
 本発明の分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有することを特徴とする。第一の相中のSiOの含有量は、第二の相中のSiOの含有量よりも多いことが好ましい。ガラス組成中にBを含む場合、第二の相中のBの含有量は、第一の相中のBの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの散乱機能を高めることができる。 The phase separation glass of the present invention is characterized by having a phase separation structure including at least a first phase and a second phase. The content of SiO 2 in the first phase is preferably larger than the content of SiO 2 in the second phase. If in the glass composition containing B 2 O 3, B 2 O 3 content in the second phase is preferably larger than the content of B 2 O 3 in the first phase. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved.
 本発明の分相ガラスは、屈折率nは、1.55以上であり、好ましくは1.56以上、1.57以上、1.58以上、1.59以上、1.60以上、1.61以上、1.62以上であり、特に好ましくは1.63以上である。屈折率nが1.55未満になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、耐失透性を高める成分の導入が制限されるため、液相粘度が高いガラス板を作製し難くなる。またガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.00以下、1.80以下、特に1.65未満である。 Phase-separated glass of the present invention, the refractive index n d is 1.55 or more, preferably 1.56 or more, 1.57 or more, 1.58 or more, 1.59 or more, 1.60 or more, 1. 61 or more and 1.62 or more, particularly preferably 1.63 or more. When the refractive index n d is less than 1.55, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film. On the other hand, if the refractive index n d is too high, since the introduction of the components to improve the devitrification resistance is limited, the liquidus viscosity becomes difficult to prepare a high glass plate. Further, the reflectance at the interface between the glass plate and the air becomes high, and it becomes difficult to extract light to the outside. Therefore, the refractive index n d is preferably 2.30 or less, 2.00 or less, 1.80 or less, in particular less than 1.65.
 本発明の分相ガラスにおいて、波長400~700nmにおける全光線透過率の最大値と最小値との差は、好ましくは40%以下、30%以下、20%以下、10%以下であり、特に好ましくは5%以下である。波長400~700nmにおける全光線透過率の最大値と最小値との差が大き過ぎると、レイリー散乱による散乱現象が生じていることになり、この場合、有機EL素子、特に白色OLEDを作製した場合に、色の視野角依存性が大きくなる。 In the phase separation glass of the present invention, the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is preferably 40% or less, 30% or less, 20% or less, and 10% or less, particularly preferably. Is 5% or less. When the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is too large, a scattering phenomenon due to Rayleigh scattering occurs. In this case, when an organic EL element, particularly a white OLED is manufactured. In addition, the viewing angle dependency of color increases.
 本発明の分相ガラスにおいて、少なくとも一方の相(第一の相及び/又は第二の相)の分相粒子の平均粒子径は、好ましくは100nm以上、200nm以上、300nm以上、400~5000nmであり、特に好ましくは600~3000nmである。このようにすれば、ミー散乱による散乱現象が生じ易くなり、全光線透過率の波長依存性を低減し易くなる。なお、分相粒子の平均粒子径は、ガラス組成、成形条件、徐冷条件、熱処理温度、熱処理時間等により調整することができる。 In the phase-separated glass of the present invention, the average particle size of the phase-separated particles of at least one phase (first phase and / or second phase) is preferably 100 nm or more, 200 nm or more, 300 nm or more, 400 to 5000 nm. In particular, the thickness is preferably 600 to 3000 nm. In this way, a scattering phenomenon due to Mie scattering is likely to occur, and the wavelength dependency of the total light transmittance is easily reduced. The average particle size of the phase-separated particles can be adjusted by the glass composition, molding conditions, slow cooling conditions, heat treatment temperature, heat treatment time, and the like.
 本発明の分相ガラスは、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、B 0.1~50%を含有することが好ましい。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。 Phase-separated glass of the present invention has a glass composition, in mass%, SiO 2 30 ~ 75% , Al 2 O 3 0 ~ 35%, preferably contains 2 O 3 0.1 ~ 50% B . Hereinafter, the reason why each component is limited as described above will be described. In addition, in description of the containing range of each component,% display means the mass%.
 SiOの含有量は30~75%が好ましい。SiOの含有量が多くなると、溶融性、成形性が低下し易くなり、また屈折率が低下し易くなる。よって、SiOの含有量は、好ましくは75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、45%以下、42%以下、40%以下であり、特に好ましくは40%未満である。一方、SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの含有量は、好ましくは30%以上、32%以上、34%以上であり、特に好ましくは36%以上である。 The content of SiO 2 is preferably 30 to 75%. When the content of SiO 2 increases, the meltability and moldability tend to decrease, and the refractive index tends to decrease. Therefore, the content of SiO 2 is preferably 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, 45% or less, 42% or less, 40% or less, Preferably it is less than 40%. On the other hand, when the content of SiO 2 decreases, it becomes difficult to form a glass network structure, and vitrification becomes difficult. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, the content of SiO 2 is preferably 30% or more, 32% or more, 34% or more, and particularly preferably 36% or more.
 Alの含有量は0~35%が好ましい。Alは、耐失透性を高める成分であるが、Alの含有量が多過ぎると、分相性が低下し易くなることに加えて、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。また耐酸性が低下し易くなる。よって、Alの含有量は、好ましくは35%以下、30%以下、25%以下、20%以下、15%以下、12%以下、10%以下であり、特に好ましくは8%以下である。また、Alの含有量は、好ましくは0.1%以上、3%以上、4%以上であり、特に好ましくは5%以上である。 The content of Al 2 O 3 is preferably 0 to 35%. Al 2 O 3 is a component that enhances devitrification resistance. However, if the content of Al 2 O 3 is too large, the phase separation is liable to decrease, and the component balance of the glass composition is impaired. Conversely, devitrification resistance tends to decrease. Moreover, acid resistance tends to decrease. Therefore, the content of Al 2 O 3 is preferably 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 12% or less, 10% or less, and particularly preferably 8% or less. is there. The content of Al 2 O 3 is preferably 0.1% or more, 3% or more and 4% or more, particularly preferably 5% or more.
 Bの含有量は0.1~50%が好ましい。Bは、分相性を高める成分であるが、Bの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなることに加えて、耐酸性が低下し易くなる。よって、Bの含有量は、好ましくは50%以下、40%以下、30%以下、25%以下、20%以下、17%以下であり、特に好ましくは15%以下である。また、Bの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、4%以上、7%以上、9%以上であり、特に好ましくは10%以上である。 The content of B 2 O 3 is preferably 0.1 to 50%. B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease. The acid resistance tends to decrease. Therefore, the content of B 2 O 3 is preferably 50% or less, 40% or less, 30% or less, 25% or less, 20% or less, or 17% or less, and particularly preferably 15% or less. Further, the content of B 2 O 3 is preferably 0.1% or more, 0.5% or more, 1% or more, 4% or more, 7% or more, 9% or more, particularly preferably 10% or more. is there.
 質量比(Al+B)/SiOは、好ましくは0.3以上、0.33以上、0.35以上、0.37以上、0.39以上、0.4以上、0.41以上、0.42以上、0.43~0.7、0.44~0.65であり、特に好ましくは0.45~0.6である。このようにすれば、屈折率、分相性、耐失透性を同時に高め易くなる。なお、「(Al+B)/SiO」は、AlとBの合量をSiOの含有量で除した値である。 The mass ratio (Al 2 O 3 + B 2 O 3 ) / SiO 2 is preferably 0.3 or more, 0.33 or more, 0.35 or more, 0.37 or more, 0.39 or more, 0.4 or more, 0 .41 or more, 0.42 or more, 0.43 to 0.7, 0.44 to 0.65, and particularly preferably 0.45 to 0.6. If it does in this way, it will become easy to improve a refractive index, phase separation, and devitrification resistance simultaneously. “(Al 2 O 3 + B 2 O 3 ) / SiO 2 ” is a value obtained by dividing the total amount of Al 2 O 3 and B 2 O 3 by the content of SiO 2 .
 上記成分以外にも、例えば、以下の成分を導入することができる。 In addition to the above components, for example, the following components can be introduced.
 LiOの含有量は0~30%が好ましい。LiOは、分相性を高める成分であるが、LiOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、LiOの含有量は、好ましくは30%以下、20%以下、10%以下、5%以下、1%未満であり、特に好ましくは0.5%以下である。 The content of Li 2 O is preferably 0 to 30%. Li 2 O is a component that enhances phase separation. However, if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the content of Li 2 O is preferably 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, and particularly preferably 0.5% or less.
 NaOの含有量は0~30%が好ましい。NaOは、分相性を高める成分であるが、NaOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、NaOの含有量は、好ましくは30%以下、20%以下、10%以下、5%以下、1%未満であり、特に好ましくは0.5%以下である。 The content of Na 2 O is preferably 0-30%. Na 2 O is a component that enhances the phase separation. However, when the content of Na 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the content of Na 2 O is preferably 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, and particularly preferably 0.5% or less.
 KOの含有量は0~30%が好ましい。KOは、分相性を高める成分であるが、KOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、KOの含有量は、好ましくは30%以下、20%以下、10%以下、5%以下、1%未満であり、特に好ましくは0.5%以下である。 The content of K 2 O is preferably 0 to 30%. K 2 O is a component that enhances phase separation. However, if the content of K 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the content of K 2 O is preferably 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, and particularly preferably 0.5% or less.
 MgOの含有量は0~30%が好ましい。MgOは、屈折率、ヤング率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、液相温度が上昇して、耐失透性が低下したり、密度が高くなり過ぎる虞がある。よって、MgOの含有量は、好ましくは30%以下、20%以下、10%以下、8%以下、7%以下、6%以下、5%以下、4%以下、3%以下、2%以下であり、特に好ましくは1%未満である。なお、MgOを導入する場合、MgOの含有量は、好ましくは0.1%以上であり、特に好ましくは0.9%以上である。 The content of MgO is preferably 0 to 30%. MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity. However, when MgO is contained in a large amount, the liquidus temperature rises and devitrification resistance decreases. Or the density may become too high. Therefore, the content of MgO is preferably 30% or less, 20% or less, 10% or less, 8% or less, 7% or less, 6% or less, 5% or less, 4% or less, 3% or less, 2% or less. Yes, particularly preferably less than 1%. When MgO is introduced, the content of MgO is preferably 0.1% or more, particularly preferably 0.9% or more.
 CaOの含有量は0~30%が好ましい。CaOは、高温粘度を低下させる成分であるが、CaOの含有量が多くなると、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、CaOの含有量は、好ましくは30%以下、20%以下、10%以下、8%以下、5%以下であり、特に好ましくは3%以下である。また、CaOの含有量は、好ましくは0.1%以上、0.5%以上であり、特に好ましくは1%以上である。 The CaO content is preferably 0-30%. CaO is a component that lowers the high-temperature viscosity. However, when the content of CaO increases, the density tends to increase, and the balance of components of the glass composition is impaired, and devitrification resistance tends to decrease. Therefore, the CaO content is preferably 30% or less, 20% or less, 10% or less, 8% or less, 5% or less, and particularly preferably 3% or less. The CaO content is preferably 0.1% or more and 0.5% or more, and particularly preferably 1% or more.
 SrOの含有量は0~30%が好ましい。SrOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、SrOの含有量は、好ましくは30%以下、25%以下、20%以下、18%以下であり、特に好ましくは15%以下である。また、SrOの含有量は、好ましくは1%以上、3%以上、5%以上、7%以上、9%以上であり、特に好ましくは10%以上である。 The SrO content is preferably 0-30%. If the SrO content is increased, the refractive index and the density are likely to be increased, and the balance of components of the glass composition is impaired, so that the devitrification resistance is likely to be lowered. Therefore, the SrO content is preferably 30% or less, 25% or less, 20% or less, or 18% or less, and particularly preferably 15% or less. The SrO content is preferably 1% or more, 3% or more, 5% or more, 7% or more, 9% or more, and particularly preferably 10% or more.
 BaOは、アルカリ土類金属酸化物の中ではガラスの粘性を極端に低下させずに、屈折率を高める成分である。BaOの含有量が多くなると、屈折率、密度が高くなり易く、またBaOの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、BaOの含有量は、好ましくは40%以下、30%以下、26%以下、24%以下、22%以下であり、特に好ましくは20%以下である。また、BaOの含有量は、好ましくは1%以上、5%超、7%超、10%以上、12%以上、14%以上であり、特に好ましくは16%以上である。 BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass. When the content of BaO increases, the refractive index and density tend to increase. When the content of BaO is too large, the component balance of the glass composition is impaired and devitrification resistance tends to decrease. Therefore, the BaO content is preferably 40% or less, 30% or less, 26% or less, 24% or less, or 22% or less, and particularly preferably 20% or less. Further, the content of BaO is preferably 1% or more, more than 5%, more than 7%, 10% or more, 12% or more, 14% or more, and particularly preferably 16% or more.
 MgO+CaO+SrO+BaOの含有量は、屈折率と耐失透性の観点から、好ましくは25~40%、28~37%であり、特に好ましくは30~35%である。ここで、「MgO+CaO+SrO+BaO」は、MgO、CaO、SrO及びBaOの合量を指す。 The content of MgO + CaO + SrO + BaO is preferably 25 to 40%, 28 to 37%, particularly preferably 30 to 35%, from the viewpoint of refractive index and devitrification resistance. Here, “MgO + CaO + SrO + BaO” refers to the total amount of MgO, CaO, SrO and BaO.
 BaO-SrOの含有量は、好ましくは1~12%、2~11%、3~10%、4~9%であり、特に好ましくは5~8%である。このようにすれば、高屈折率を維持しながら、耐失透性を高め易くなる。なお、「BaO-SrO」は、BaOの含有量からSrOの含有量を減じた値を指す。 The content of BaO—SrO is preferably 1 to 12%, 2 to 11%, 3 to 10%, 4 to 9%, particularly preferably 5 to 8%. If it does in this way, it will become easy to improve devitrification resistance, maintaining a high refractive index. “BaO—SrO” refers to a value obtained by subtracting the SrO content from the BaO content.
 ZnOの含有量は0~20%が好ましい。ZnOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZnOの含有量は、好ましくは20%以下、10%以下、7%以下、5%以下であり、特に好ましくは4%以下である。また、ZnOの含有量は、好ましくは0.1%以上、0.5%以上、1%以上、1.5%以上であり、特に好ましくは2%以上である。 The content of ZnO is preferably 0 to 20%. When the ZnO content is increased, the refractive index and density are likely to be increased, the balance of the components of the glass composition is impaired, and devitrification resistance is likely to be reduced. Therefore, the content of ZnO is preferably 20% or less, 10% or less, 7% or less, 5% or less, and particularly preferably 4% or less. The content of ZnO is preferably 0.1% or more, 0.5% or more, 1% or more, 1.5% or more, and particularly preferably 2% or more.
 TiOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、TiOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。また全光線透過率が低下する虞がある。よって、TiOの含有量は、好ましくは20%以下、15%以下、10%以下であり、特に好ましくは8%以下である。また、TiOの含有量は、好ましくは0.001%以上、0.01%以上、0.1%以上、1%以上、2%以上、3%以上、4%以上であり、特に好ましくは5%以上である。 TiO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of TiO 2 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is easily lowered. In addition, the total light transmittance may be reduced. Therefore, the content of TiO 2 is preferably 20% or less, 15% or less, 10% or less, and particularly preferably 8% or less. The content of TiO 2 is preferably 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, 2% or more, 3% or more, 4% or more, particularly preferably 5% or more.
 質量比TiO/Bは、好ましくは0.01~2、0.1~1.7、0.15~1.4、0.2~1.2、0.25~1であり、特に好ましくは0.3~0.8である。このようにすれば、高屈折率と高分相性を両立し易くなる。なお、「TiO/B」は、TiOの含有量をBの含有量を除した値である。 The mass ratio TiO 2 / B 2 O 3 is preferably 0.01 to 2 , 0.1 to 1.7, 0.15 to 1.4, 0.2 to 1.2, 0.25 to 1. Particularly preferred is 0.3 to 0.8. If it does in this way, it will become easy to make high refractive index and high phase separation compatible. “TiO 2 / B 2 O 3 ” is a value obtained by dividing the content of TiO 2 by the content of B 2 O 3 .
 ZrOは、屈折率を高める成分であり、その含有量は0~20%が好ましい。しかし、ZrOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZrOの含有量は、好ましくは20%以下、10%以下であり、特に好ましくは5%以下である。また、ZrOの含有量は、好ましくは0.001%以上、0.01%以上、0.1%以上、1%以上、1.5%以上であり、特に好ましくは2%以上である。 ZrO 2 is a component that increases the refractive index, and its content is preferably 0 to 20%. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the content of ZrO 2 is preferably 20% or less, 10% or less, and particularly preferably 5% or less. Further, the content of ZrO 2 is preferably 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, 1.5% or more, and particularly preferably 2% or more.
 PОは、分相性を高める成分であり、その含有量は0~10%が好ましい。しかし、PОの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、PОの含有量は、好ましくは10%以下、7%以下、4%以下、3%以下であり、特に好ましくは2%以下である。また、PОの含有量は、好ましくは0.001%以上、0.01%以上、0.1%以上、1%以上、1.4%以上であり、特に好ましくは1.6%以上である。 P 2 O 5 is a component that increases phase separation, and its content is preferably 0 to 10%. However, when the content of P 2 O 5 is increased, the component balance of the glass composition is impaired, and the devitrification resistance is likely to be lowered. Therefore, the content of P 2 O 5 is preferably 10% or less, 7% or less, 4% or less, 3% or less, and particularly preferably 2% or less. Further, the content of P 2 O 5 is preferably 0.001% or more, 0.01% or more, 0.1% or more, 1% or more, 1.4% or more, particularly preferably 1.6%. That's it.
 質量比PО/(MgO+CaO)は、好ましくは0.1以上、0.2以上、0.3以上、0.4以上、0.5以上であり、特に好ましくは0.6超である。このようにすれば、高歪点を維持しつつ、分相性を高めることができる。ここで、「PО/(MgO+CaO)」は、PОの含有量をMgOとCaOの合量で除した値である。 The mass ratio P 2 O 5 / (MgO + CaO) is preferably 0.1 or more, 0.2 or more, 0.3 or more, 0.4 or more, 0.5 or more, particularly preferably more than 0.6. . In this way, phase separation can be improved while maintaining a high strain point. Here, “P 2 O 5 / (MgO + CaO)” is a value obtained by dividing the content of P 2 O 5 by the total amount of MgO and CaO.
 Laは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Laの含有量が多くなると、密度が高くなり易く、また耐失透性や耐酸性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Laの含有量は、好ましくは10%以下、5%以下、3%以下、1%以下、0.5%以下であり、特に好ましくは0.1%以下である。 La 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%. When the content of La 2 O 3 increases, the density tends to increase, and the devitrification resistance and acid resistance easily decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the content of La 2 O 3 is preferably 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
 Nbは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Nbの含有量が多くなると、密度が高くなり易く、また耐失透性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Nbの含有量は、好ましくは10%以下、5%以下、3%以下、1%以下、0.5%以下であり、特に好ましくは0.1%以下である。 Nb 2 O 5 is a component that increases the refractive index, and its content is preferably 0 to 10%. When the content of Nb 2 O 5 increases, the density tends to increase and the devitrification resistance tends to decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the content of Nb 2 O 5 is preferably 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
 Gdは、屈折率を高める成分であり、その含有量は0~10%が好ましい。Gdの含有量が多くなると、密度が高くなり過ぎたり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、Gdの含有量は、好ましくは10%以下、5%以下、3%以下、1%以下、0.5%以下であり、特に好ましくは0.1%以下である。 Gd 2 O 3 is a component that increases the refractive index, and its content is preferably 0 to 10%. When the content of Gd 2 O 3 is increased, the density becomes too high, the component balance of the glass composition is lacking, the devitrification resistance is lowered, the high temperature viscosity is lowered too much, and a high liquid phase viscosity is secured. It becomes difficult to do. Therefore, the content of Gd 2 O 3 is preferably 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, and particularly preferably 0.1% or less.
 レアメタル酸化物の含有量は合量で0~10%が好ましい。レアメタル酸化物は、屈折率を高める成分であるが、これらの成分の含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性が低下して、高い液相粘度を確保し難くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、レアメタル酸化物の含有量は、好ましくは10%以下、5%以下、3%以下、1%以下、0.5%以下であり、特に好ましくは0.1%以下である。 The total content of rare metal oxides is preferably 0 to 10%. Rare metal oxide is a component that increases the refractive index, but as the content of these components increases, the density and thermal expansion coefficient tend to increase, and devitrification resistance decreases, ensuring high liquid phase viscosity. It becomes difficult to do. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the rare metal oxide content is preferably 10% or less, 5% or less, 3% or less, 1% or less, or 0.5% or less, and particularly preferably 0.1% or less.
 清澄剤として、下記酸化物換算で、As、Sb、SnO、Fe、F、Cl、SO、CeOの群から選択された一種又は二種以上を0~3%導入することができる。特に、清澄剤として、SnO、Fe及びCeOが好ましい。一方、AsとSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量は、好ましくは0.3%未満、特に好ましくは0.1%未満である。ここで、「下記酸化物換算」は、表記の酸化物とは価数が異なる酸化物であっても、表記の酸化物に換算した上で取り扱うことを意味する。 As a refining agent, one or two or more selected from the group of As 2 O 3 , Sb 2 O 3 , SnO 2 , Fe 2 O 3 , F, Cl, SO 3 , and CeO 2 are converted into the following oxides. Up to 3% can be introduced. In particular, SnO 2 , Fe 2 O 3 and CeO 2 are preferable as the fining agent. On the other hand, it is preferable to refrain from using As 2 O 3 and Sb 2 O 3 as much as possible from the environmental viewpoint, and the content of each is preferably less than 0.3%, particularly preferably less than 0.1%. is there. Here, “the following oxide conversion” means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
 SnOの含有量は、好ましくは0~1%、0.001~1%であり、特に好ましくは0.01~0.5%である。 The content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, and particularly preferably 0.01 to 0.5%.
 Feの含有量は、好ましくは0.05%以下、0.04%以下、0.03%以下であり、特に好ましくは0.02%以下である。また、Feの含有量は、好ましくは0.001%以上である。 The content of Fe 2 O 3 is preferably 0.05% or less, 0.04% or less, or 0.03% or less, and particularly preferably 0.02% or less. Further, the content of Fe 2 O 3 is preferably 0.001% or more.
 CeOの含有量は0~6%が好ましい。CeOの含有量が多くなると、耐失透性が低下し易くなる。よって、CeOの含有量は、好ましくは6%以下、5%以下、3%以下、2%以下、1%以下であり、特に好ましくは0.1%以下である。一方、CeOを導入する場合、CeOの含有量は、好ましくは0.001%以上、特に好ましくは0.01%以上である。 The CeO 2 content is preferably 0 to 6%. When the content of CeO 2 is increased, the devitrification resistance is likely to be lowered. Therefore, the content of CeO 2 is preferably 6% or less, 5% or less, 3% or less, 2% or less, 1% or less, and particularly preferably 0.1% or less. On the other hand, when CeO 2 is introduced, the content of CeO 2 is preferably 0.001% or more, particularly preferably 0.01% or more.
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、その使用を極力控えることが好ましい。PbOの含有量は、好ましくは0.5%以下であり、特に好ましくは0.1%未満である。 PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view. The content of PbO is preferably 0.5% or less, and particularly preferably less than 0.1%.
 上記成分以外にも、他の成分を合量で好ましくは10%(望ましくは5%)まで導入してもよい。 In addition to the above components, other components may be introduced in a total amount, preferably up to 10% (desirably 5%).
 本発明の分相ガラスは、以下の特性を有することが好ましい。 The phase-separated glass of the present invention preferably has the following characteristics.
 密度は、好ましくは5.0g/cm以下、4.5g/cm以下、4.0g/cm以下、3.5g/cm以下であり、特に好ましくは3.2g/cm以下である。このようにすれば、有機ELデバイスを軽量化することができる。 The density is preferably 5.0 g / cm 3 or less, 4.5 g / cm 3 or less, 4.0 g / cm 3 or less, and 3.5 g / cm 3 or less, and particularly preferably 3.2 g / cm 3 or less. is there. If it does in this way, an organic EL device can be reduced in weight.
 30~380℃における平均熱膨張係数は、好ましくは30×10-7/℃~100×10-7/℃、40×10-7/℃~90×10-7/℃、50×10-7/℃~80×10-7/℃であり、特に好ましくは55×10-7/℃~65×10-7/℃である。近年、有機ELデバイスにおいて、デザイン的要素を高める観点から、ガラス板に可撓性が要求される場合がある。可撓性を高めるためには、ガラス板の板厚を小さくする必要があるが、この場合、ガラス板とITO、FTO等の透明導電膜の熱膨張係数が不整合になると、ガラス板が反り易くなる。そこで、30~380℃における平均熱膨張係数を上記範囲とすれば、このような事態を防止し易くなる。なお、「30~380℃における平均熱膨張係数」は、ディラトメーター等で測定可能である。 The average thermal expansion coefficient at 30 to 380 ° C. is preferably 30 × 10 −7 / ° C. to 100 × 10 −7 / ° C., 40 × 10 −7 / ° C. to 90 × 10 −7 / ° C., 50 × 10 −7 / ° C. to 80 × 10 −7 / ° C., particularly preferably 55 × 10 −7 / ° C. to 65 × 10 −7 / ° C. In recent years, in an organic EL device, there is a case where flexibility is required for a glass plate from the viewpoint of enhancing design elements. In order to increase flexibility, it is necessary to reduce the thickness of the glass plate. In this case, if the thermal expansion coefficients of the glass plate and the transparent conductive film such as ITO or FTO are mismatched, the glass plate warps. It becomes easy. Therefore, if the average coefficient of thermal expansion at 30 to 380 ° C. is set in the above range, such a situation can be easily prevented. The “average thermal expansion coefficient at 30 to 380 ° C.” can be measured with a dilatometer or the like.
 歪点は、好ましくは450℃以上、500℃以上、550℃以上であり、特に好ましくは600℃以上である。透明導電膜を高温で形成する程、透明性が高く、電気抵抗が低くなり易い。しかし、従来のガラス板は、耐熱性が不十分であるため、透明導電膜を高温で成膜することが困難であった。そこで、歪点を上記範囲とすれば、透明導電膜の透明性と低電気抵抗の両立が可能になり、更には有機デバイスの製造工程において、熱処理によりガラス板が熱収縮し難くなる。 The strain point is preferably 450 ° C. or higher, 500 ° C. or higher, 550 ° C. or higher, and particularly preferably 600 ° C. or higher. The higher the temperature of the transparent conductive film, the higher the transparency and the lower the electrical resistance. However, since the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, when the strain point is within the above range, both transparency of the transparent conductive film and low electric resistance can be achieved, and furthermore, in the manufacturing process of the organic device, the glass plate is hardly thermally contracted by heat treatment.
 102.5dPa・sにおける温度は、好ましくは1450℃以下、1400℃以下、1350℃以下、1300℃以下、1250℃以下であり、特に好ましくは1200℃以下である。このようにすれば、溶融性が向上するため、ガラス板の生産性が向上する。 The temperature at 10 2.5 dPa · s is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1350 ° C. or lower, 1300 ° C. or lower, 1250 ° C. or lower, and particularly preferably 1200 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
 液相温度は、好ましくは1300℃以下、1250℃以下、1200℃以下であり、特に好ましくは1150℃以下である。また、液相粘度は、好ましくは102.5dPa・s以上、103.0dPa・s以上、103.5dPa・s以上、103.8dPa・s以上、104.0dPa・s以上、104.4dPa・s以上であり、特に好ましくは104.6dPa・s以上である。このようにすれば、成形時にガラスが失透し難くなり、例えば、フロート法又はオーバーフローダウンドロー法でガラス板を成形し易くなる。ここで、「液相温度」は、30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値を指す。また「液相粘度」は、液相温度におけるガラスの粘度を指す。 Liquid phase temperature becomes like this. Preferably it is 1300 degrees C or less, 1250 degrees C or less, 1200 degrees C or less, Most preferably, it is 1150 degrees C or less. The liquid phase viscosity is preferably 10 2.5 dPa · s or more, 10 3.0 dPa · s or more, 10 3.5 dPa · s or more, 10 3.8 dPa · s or more, 10 4.0 dPa or more. · S or more, 10 4.4 dPa · s or more, particularly preferably 10 4.6 dPa · s or more. If it does in this way, it will become difficult to devitrify glass at the time of shaping | molding, for example, it will become easy to shape | mold a glass plate by the float method or the overflow downdraw method. Here, the “liquid phase temperature” passed through 30 mesh (500 μm sieve opening), and the glass powder remaining in 50 mesh (300 μm sieve opening) was placed in a platinum boat and held in a temperature gradient furnace for 24 hours. Later, it refers to a value obtained by measuring the temperature at which crystals are deposited. “Liquid phase viscosity” refers to the viscosity of the glass at the liquidus temperature.
 分相温度は、好ましくは900℃以下であり、特に好ましくは850℃以下である。また、分相粘度は、好ましくは104.0dPa・s以上であり、特に好ましくは105.0~108.0dPa・sである。このようにすれば、熱処理温度を低下させることができる。結果として、熱処理コストを低減することができる。ここで、「分相温度」は、ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、明確な白濁が認められる温度を指す。「分相粘度」は、分相温度におけるガラスの粘度を白金引き上げ法で測定した値を指す。 The phase separation temperature is preferably 900 ° C. or lower, and particularly preferably 850 ° C. or lower. The phase separation viscosity is preferably 10 4.0 dPa · s or more, and particularly preferably 10 5.0 to 10 8.0 dPa · s. In this way, the heat treatment temperature can be lowered. As a result, the heat treatment cost can be reduced. Here, the “phase separation temperature” indicates that clear turbidity is observed when glass is placed in a platinum boat and remelted at 1400 ° C., then the platinum boat is transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes. Refers to temperature. “Phase separation viscosity” refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method.
 なお、本発明の分相ガラスは、成形工程及び徐冷(冷却)工程でガラスが分相せず、その後の熱処理工程で分相することを前提としているが、成形工程及び/又は徐冷工程でガラスが分相していてもよい。成形工程及び/又は徐冷工程でガラスが分相させる場合には、分相温度は、好ましくは700℃以上、750℃以上であり、特に好ましくは780℃以上である。また、分相粘度は、好ましくは109.0dPa・s以下であり、特に好ましくは105.0~108.0dPa・sである。このようにすれば、成形工程及び/又は徐冷工程でガラスが分相し易くなり、フロート法又はオーバーフローダウンドロー法で分相構造を有するガラス板を成形し易くなる。結果として、ガラス板を成形した後に、別途の熱処理工程が不要になり、ガラス板の製造コストを低減し易くなる。オーバーフローダウンドロー法でガラス板を成形する場合、樋状構造物内で分相現象が生じていてもよく、延伸成形時や徐冷時に分相現象が生じていてもよい。このようにすれば、ガラスの製造工程数が減少し、ガラスの生産性を高めることができる。分相現象は、ガラス組成、成形条件、徐冷条件等により制御することができる。なお、成形工程及び徐冷(冷却)工程以外、例えば溶融工程でガラスが分相していてもよい。 The phase-separated glass of the present invention is based on the premise that the glass does not phase-separate in the molding step and the slow cooling (cooling) step, but phase-separates in the subsequent heat treatment step, but the molding step and / or the slow cooling step. The glass may be phase-separated. When glass is subjected to phase separation in the forming step and / or the slow cooling step, the phase separation temperature is preferably 700 ° C. or higher, 750 ° C. or higher, and particularly preferably 780 ° C. or higher. In addition, the phase separation viscosity is preferably 10 9.0 dPa · s or less, and particularly preferably 10 5.0 to 10 8.0 dPa · s. If it does in this way, it will become easy to phase-separate glass at a formation process and / or a slow cooling process, and it will become easy to shape a glass plate which has a phase separation structure by a float process or an overflow down draw method. As a result, after forming the glass plate, a separate heat treatment step becomes unnecessary, and the manufacturing cost of the glass plate can be easily reduced. When a glass plate is formed by the overflow downdraw method, a phase separation phenomenon may occur in the bowl-shaped structure, or a phase separation phenomenon may occur during stretch molding or slow cooling. If it does in this way, the number of manufacturing processes of glass will decrease and glass productivity can be raised. The phase separation phenomenon can be controlled by the glass composition, molding conditions, slow cooling conditions, and the like. In addition, the glass may be phase-separated in the melting step, for example, other than the forming step and the slow cooling (cooling) step.
 波長400~700nmにおける全光線透過率は、好ましくは20%以上、30%以上、40%以上であり、特に好ましくは50%以上である。全光線透過率が低過ぎると、ガラス中の光を空気中に取り出し難くなる。 The total light transmittance at a wavelength of 400 to 700 nm is preferably 20% or more, 30% or more, 40% or more, and particularly preferably 50% or more. If the total light transmittance is too low, it becomes difficult to extract the light in the glass into the air.
 波長400~700nmにおける拡散透過率は、好ましくは10%以上、20%以上、30%以上、40%以上であり、特に好ましくは50%以上である。拡散透過率が低過ぎると、ガラス中の光を空気中に取り出し難くなる。 The diffuse transmittance at a wavelength of 400 to 700 nm is preferably 10% or more, 20% or more, 30% or more, 40% or more, and particularly preferably 50% or more. If the diffuse transmittance is too low, it becomes difficult to extract the light in the glass into the air.
 波長400~700nmにおけるヘーズ値は、好ましくは5%以上、10%以上、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上であり、特に好ましくは90%以上である。ヘーズ値が低過ぎると、光散乱希望が不十分になり、ガラス中の光を空気中に取り出し難くなる。 The haze value at a wavelength of 400 to 700 nm is preferably 5% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, Preferably it is 90% or more. If the haze value is too low, the desire for light scattering becomes insufficient, and it becomes difficult to extract the light in the glass into the air.
 本発明の分相ガラスは、平板形状を有することが好ましく、つまりガラス板であることが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。平板形状を有する場合、少なくとも一方の表面に未研磨面を有すること(特に、少なくとも一方の表面の有効面全体が未研磨面であること)が好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス板の表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。 The phase-separated glass of the present invention preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device. When it has a flat plate shape, it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface). The theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
 厚み(平板形状の場合は、板厚)は5~500μmが好ましい。厚みが大き過ぎると、光散乱機能が過剰である場合、全光線透過率が低くなり、分相ガラス中の光を空気中に取り出し難くなる。よって、厚みは、好ましくは500μm以下、400μm以下、300μm以下、200μm以下、100μm以下であり、特に好ましくは50μm以下である。一方、厚みが小さ過ぎると、光散乱機能が低下し易くなり、分相ガラス中の光を空気中に取り出し難くなる。よって、厚みは、好ましくは5μm以上、10μm以上、20μm以上であり、特に好ましくは30μm以上である。 The thickness (in the case of a flat plate) is preferably 5 to 500 μm. If the thickness is too large, if the light scattering function is excessive, the total light transmittance becomes low, and it becomes difficult to extract the light in the phase separation glass into the air. Therefore, the thickness is preferably 500 μm or less, 400 μm or less, 300 μm or less, 200 μm or less, 100 μm or less, and particularly preferably 50 μm or less. On the other hand, if the thickness is too small, the light scattering function tends to be lowered, and it becomes difficult to take out the light in the phase separation glass into the air. Therefore, the thickness is preferably 5 μm or more, 10 μm or more, 20 μm or more, and particularly preferably 30 μm or more.
 平板形状を有する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面粗さRaが大きいと、その面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaは、好ましくは1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下、0.03μm以下であり、特に好ましくは10nm以下である。 When it has a flat plate shape, the surface roughness Ra of at least one surface (especially an unpolished surface) is preferably 0.01 to 1 μm. When surface roughness Ra is large, when forming a transparent conductive film etc. on the surface, the quality of a transparent conductive film falls and it becomes difficult to obtain uniform light emission. The surface roughness Ra is preferably 1 μm or less, 0.8 μm or less, 0.5 μm or less, 0.3 μm or less, 0.1 μm or less, 0.07 μm or less, 0.05 μm or less, 0.03 μm or less, particularly preferably Is 10 nm or less.
 本発明の分相ガラス(又は分相性ガラス)は、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、薄肉のガラス板を作製し易くなる。 The phase-separated glass (or phase-separated glass) of the present invention is preferably formed by a downdraw method, particularly an overflow downdraw method. In this way, it is possible to produce a glass plate that is unpolished and has good surface quality. The reason is that, in the case of the overflow down draw method, the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state. In addition to the overflow downdraw method, a slot downdraw method can be employed. If it does in this way, it will become easy to produce a thin glass plate.
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法は、大型のガラス板を効率良く作製することができる。 Other than the above molding method, for example, a redraw method, a float method, a roll-out method, etc. can be employed. In particular, the float process can efficiently produce a large glass plate.
 本発明の分相ガラスは、熱処理工程を経ていることが好ましい。これにより、分相ガラスの散乱現象(特にミー散乱による散乱現象)を制御し易くなり、波長400~700nmにおける全光線透過率の最大値と最小値との差を低減し易くなる。 The phase-separated glass of the present invention is preferably subjected to a heat treatment step. This makes it easy to control the scattering phenomenon of the phase separation glass (especially the scattering phenomenon due to Mie scattering), and to easily reduce the difference between the maximum value and the minimum value of the total light transmittance at wavelengths of 400 to 700 nm.
 熱処理温度は、好ましくは610℃以上、710℃以上、760℃以上、800℃であり、特に好ましくは810℃以上である。このようにすれば、分相ガラスの散乱現象(特にミー散乱による散乱現象)を制御し易くなる。一方、熱処理温度は、好ましくは1100℃以下、1000℃以下であり、特に好ましくは900℃以下である。熱処理温度が高過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。 The heat treatment temperature is preferably 610 ° C. or higher, 710 ° C. or higher, 760 ° C. or higher, 800 ° C., particularly preferably 810 ° C. or higher. This makes it easier to control the scattering phenomenon (particularly the scattering phenomenon due to Mie scattering) of the phase separation glass. On the other hand, the heat treatment temperature is preferably 1100 ° C. or lower and 1000 ° C. or lower, particularly preferably 900 ° C. or lower. If the heat treatment temperature is too high, in addition to an increase in heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
 熱処理時間は、好ましくは1分間以上、特に5分間以上である。このようにすれば、分相ガラスの散乱現象(特にミー散乱による散乱現象)を制御し易くなる。一方、熱処理温度は、好ましくは72時間以下、48時間以下、24時間以下であり、特に好ましくは60分間以下である。熱処理時間が長過ぎると、熱処理コストが増大することに加えて、散乱強度が強くなり過ぎて、直線透過率、全光線透過率等が低下する虞がある。 The heat treatment time is preferably 1 minute or longer, particularly 5 minutes or longer. This makes it easier to control the scattering phenomenon (particularly the scattering phenomenon due to Mie scattering) of the phase separation glass. On the other hand, the heat treatment temperature is preferably 72 hours or less, 48 hours or less, 24 hours or less, and particularly preferably 60 minutes or less. If the heat treatment time is too long, in addition to an increase in the heat treatment cost, the scattering intensity becomes too strong, and the linear transmittance, total light transmittance, and the like may decrease.
 本発明の分相ガラスは、平板形状を有する場合、少なくとも一方の表面を粗面化面としてもよい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の散乱効果に加えて、粗面化面の無反射構造により、有機EL層から放射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上であり、特に好ましくは50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。 When the phase separation glass of the present invention has a flat plate shape, at least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased. The surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, and particularly preferably 50 mm or more. The roughened surface can be formed by HF etching, sandblasting, or the like. Moreover, you may form an uneven | corrugated shape in the surface of a glass plate by heat processing, such as a repress. In this way, an accurate non-reflective structure can be formed on the glass surface. Uneven shape, taking into account the refractive index n d, may be adjusted the spacing and depth.
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。 Further, the roughened surface can be formed by an atmospheric pressure plasma process. In this way, it is possible to uniformly roughen the other surface while maintaining the surface state of one surface of the glass plate. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。 Furthermore, a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
 なお、ガラス板に粗面化面を形成せずに、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。なお、凹凸形状の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上であり、特に好ましくは50Å以上である。 In addition, you may affix the resin film which has a predetermined uneven | corrugated shape on the surface of a glass plate, without forming a roughening surface in a glass plate. The uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, and particularly preferably 50 mm or more.
 本発明の分相ガラスは、有機EL素子に組み込んだ時に、有機EL素子の電流効率が、屈折率nが同程度の分相していないガラスを組み込んだ場合よりも高くなることが好ましい。例えば、20mA/cmにおける電流効率が、屈折率nが同程度の分相していないガラスを組み込んだ場合と比較して、5%以上、8%以上、10%以上、特に12%以上高くなることが好ましい。このようにすれば、有機ELデバイスの輝度を高めることができる。特に、既存のガラス組成を大幅に変更しなくても、ガラス組成中に分相を誘起する成分を導入するだけで有機ELデバイスの輝度を高めることができる。 Phase-separated glass of the present invention, when incorporated into the organic EL element, the current efficiency of the organic EL element becomes is preferably higher than that incorporating the glass having a refractive index n d is not phase separation of the same extent. For example, the current efficiency at 20 mA / cm 2, compared with a case incorporating a glass having a refractive index n d is not phase separation of comparable, more than 5%, 8% or more, 10% or more, particularly 12% or more It is preferable to be high. In this way, the brightness of the organic EL device can be increased. In particular, even if the existing glass composition is not significantly changed, the luminance of the organic EL device can be increased only by introducing a component that induces phase separation in the glass composition.
 本発明の分相ガラスは、板状の分相ガラス板とした場合、基板と接合して複合基板を構成することができる。このようにすれば、分相ガラス板が光散乱板として機能するため、基板と複合化するだけで、有機EL素子の光取り出し効率を高めることができる。更に、分相ガラス板と基板を接合し、分相ガラス板を空気と接する側に配置すると、複合基板の耐傷性を高めることができる。 When the phase-separated glass of the present invention is a plate-shaped phase-separated glass plate, it can be bonded to a substrate to constitute a composite substrate. In this way, since the phase separation glass plate functions as a light scattering plate, it is possible to increase the light extraction efficiency of the organic EL element only by combining with the substrate. Furthermore, if the phase separation glass plate and the substrate are joined and the phase separation glass plate is disposed on the side in contact with air, the scratch resistance of the composite substrate can be improved.
 基板として、種々の材料を使用することが可能であり、例えば、樹脂基板、金属基板、ガラス基板を使用することが可能である。その中でも、透過性、耐候性、耐熱性の観点から、ガラス基板が好ましい。ガラス基板として、種々の材料が使用可能であり、例えば、ソーダライムガラス基板、アルミノシリケートガラス基板、無アルカリガラス基板が使用可能である。 As the substrate, various materials can be used. For example, a resin substrate, a metal substrate, or a glass substrate can be used. Among these, a glass substrate is preferable from the viewpoints of permeability, weather resistance, and heat resistance. Various materials can be used as the glass substrate. For example, a soda lime glass substrate, an aluminosilicate glass substrate, and an alkali-free glass substrate can be used.
 ガラス基板の厚みは、強度を維持する観点から、好ましくは0.3~3.0mm、0.4~2.0mmであり、特に好ましくは0.5超~1.8mmである。 The thickness of the glass substrate is preferably from 0.3 to 3.0 mm, from 0.4 to 2.0 mm, particularly preferably from more than 0.5 to 1.8 mm, from the viewpoint of maintaining strength.
 ガラス基板の屈折率nは、好ましくは1.50超、1.51以上、1.52以上、1.53以上、1.54以上、1.55以上、1.56以上、1.60以上であり、特に好ましくは1.63以上である。ガラス基板の屈折率が低過ぎると、ガラス基板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、ガラス基板と分相ガラス板の界面での反射率が高くなり、分相ガラス板を通して、ガラス基板中の光を空気中に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.20以下、2.10以下、2.00以下、1.90以下、1.80以下であり、特に好ましくは1.75以下である。 Refractive index n d of the glass substrate is preferably 1.50 greater, 1.51 or more, 1.52 or more, 1.53 or more, 1.54 or more, 1.55 or more, 1.56 or more, 1.60 or more And particularly preferably 1.63 or more. If the refractive index of the glass substrate is too low, it becomes difficult to efficiently extract light by reflection at the interface of the glass substrate and the transparent conductive film. On the other hand, if the refractive index nd is too high, the reflectance at the interface between the glass substrate and the phase separation glass plate becomes high, and it becomes difficult to extract the light in the glass substrate into the air through the phase separation glass plate. Therefore, the refractive index n d is preferably 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, particularly preferably 1.75 or less is there.
 ガラス基板の少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面の表面粗さRaが大き過ぎると、オプティカルコンタクトで複合基板を作製し難くなることに加えて、その表面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。よって、少なくとも一方の表面の表面粗さRaは、好ましくは1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下、0.03μm以下であり、特に好ましくは10nm以下である。 The surface roughness Ra of at least one surface (particularly the unpolished surface) of the glass substrate is preferably 0.01 to 1 μm. If the surface roughness Ra is too large, it becomes difficult to produce a composite substrate by optical contact. In addition, when a transparent conductive film or the like is formed on the surface, the quality of the transparent conductive film is lowered and uniform. It becomes difficult to obtain luminescence. Therefore, the surface roughness Ra of at least one surface is preferably 1 μm or less, 0.8 μm or less, 0.5 μm or less, 0.3 μm or less, 0.1 μm or less, 0.07 μm or less, 0.05 μm or less, 0. It is 03 μm or less, particularly preferably 10 nm or less.
 分相ガラス板と基板を接合する方法として、種々の方法が利用可能である。例えば、粘着テープ、粘着シート、接着剤、硬化剤等により接合する方法、オプティカルコンタクトで接合する方法が利用可能である。その中でも、接合信頼性の観点から、紫外線硬化樹脂により接合する方法が好ましく、複合基板の透過率を高める観点から、オプティカルコンタクトで接合する方法が好ましい。 Various methods can be used as a method of joining the phase separation glass plate and the substrate. For example, a method of joining with an adhesive tape, an adhesive sheet, an adhesive, a curing agent, or the like, or a method of joining with an optical contact can be used. Among them, a method of bonding with an ultraviolet curable resin is preferable from the viewpoint of bonding reliability, and a method of bonding with an optical contact is preferable from the viewpoint of increasing the transmittance of the composite substrate.
 本発明の有機ELデバイスは、上述の分相ガラスを備えている。有機ELデバイスとしては、例えば有機EL照明が挙げられる。この有機ELデバイスには、上述の複合基板の状態で分相ガラスを組み込むことが好ましい。 The organic EL device of the present invention includes the above-described phase separation glass. Examples of the organic EL device include organic EL lighting. In this organic EL device, it is preferable to incorporate phase separation glass in the state of the composite substrate.
 本発明の分相ガラスの製造方法は、屈折率nが1.55以上の分相性ガラスを成形した後、得られた分相性ガラスを熱処理して、少なくとも第一の相と第二の相を含む分相構造を有する分相ガラスを得る。 Method of manufacturing a phase-separated glass of the present invention, after the refractive index n d is molded more than 1.55 min chemistry glass, by heat-treating phase separation glass obtained, at least a first phase and a second phase A phase separation glass having a phase separation structure containing is obtained.
 分相性ガラスは、1100℃以下の熱処理によって分相し、上述の分相ガラスになるものである。詳細には、分相性ガラスは、800℃24時間の熱処理を行うと、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有することが好ましい。ここで、分相性ガラス板の屈折率などの諸特性は、分相していない点を除いて上述の分相ガラスと同様であるため、詳しい説明は省略する。 The phase-separated glass is phase-separated by heat treatment at 1100 ° C. or lower to become the above-described phase-separated glass. Specifically, it is preferable that the phase-separable glass has a property of phase separation from at least a first phase and a second phase from a state where the phase separation is not performed when heat treatment is performed at 800 ° C. for 24 hours. Here, since various characteristics such as the refractive index of the phase-separated glass plate are the same as those of the above-described phase-separated glass except that the phase-separated glass plate is not phase-separated, detailed description is omitted.
 ここでいう熱処理は、成形工程及び徐冷工程後に別途行う熱処理工程を意味する。熱処理温度・熱処理時間などは、上述の通りであるので詳しい説明は省略する。 Here, the heat treatment means a heat treatment step separately performed after the molding step and the slow cooling step. Since the heat treatment temperature and the heat treatment time are as described above, detailed description thereof is omitted.
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1は、試料No.1~7を示している。 Table 1 shows sample No. 1 to 7 are shown.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 まず、表1に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した後、歪点より室温まで10時間かけて簡易な徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。 First, after preparing a glass raw material so that it might become a glass composition of Table 1, the obtained glass batch was supplied to the glass melting furnace, and it melted at 1400 degreeC for 7 hours. Next, after the obtained molten glass was poured onto a carbon plate and formed into a flat plate shape, a simple slow cooling treatment was performed from the strain point to room temperature over 10 hours. Finally, the obtained glass plate was processed as necessary to evaluate various properties.
 密度ρは、周知のアルキメデス法で測定した値である。 The density ρ is a value measured by the well-known Archimedes method.
 平均熱膨張係数αは、30~380℃の温度範囲においてディラトメーターで測定した値である。なお、測定試料として、φ5mm×20mmの円柱状試料(端面はR加工されている)を用いた。 The average thermal expansion coefficient α is a value measured with a dilatometer in a temperature range of 30 to 380 ° C. In addition, a φ5 mm × 20 mm cylindrical sample (the end surface is R-processed) was used as a measurement sample.
 歪点Psは、ASTM C336-71に記載の方法で測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。 The strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
 徐冷点Ta、軟化点Tsは ASTM C338-93に記載の方法で測定した値である。 The annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、高温粘度が低い程、溶融性に優れる。 The temperatures at high temperature viscosities of 10 4.0 dPa · s, 10 3.0 dPa · s, 10 2.5 dPa · s, and 10 2.0 dPa · s are values measured by the platinum ball pulling method. In addition, it is excellent in a meltability, so that high temperature viscosity is low.
 液相温度TLは、30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値である。液相粘度logηTLは、液相温度におけるガラスの粘度を白金球引き上げ法で測定した値である。 The liquid phase temperature TL passes through 30 mesh (a sieve opening of 500 μm), puts the glass powder remaining in a 50 mesh (a sieve opening of 300 μm) into a platinum boat, and holds it in a temperature gradient furnace for 24 hours. It is the value which measured the temperature which precipitates. The liquid phase viscosity log ηTL is a value obtained by measuring the viscosity of the glass at the liquid phase temperature by a platinum ball pulling method.
 分相温度TPは、各ガラスを白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、白濁が明確に認められる温度を測定したものである。 The phase separation temperature TP is measured at a temperature at which white turbidity is clearly recognized when each glass is put in a platinum boat, remelted at 1400 ° C., then transferred to a temperature gradient furnace, and held in the temperature gradient furnace for 30 minutes. It is a thing.
 分相粘度logηTPは、分相温度における各ガラスの粘度を白金球引き上げ法で測定したものである。 The phase separation viscosity log ηTP is obtained by measuring the viscosity of each glass at the phase separation temperature by the platinum ball pulling method.
 成形後の分相は、上記の徐冷処理後の成形試料を目視観察した際に、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。 The phase separation after molding was transparent when the molded sample after the above-mentioned slow cooling treatment was visually observed as “◯” when white turbidity due to phase separation was observed, and without white turbidity due to phase separation. Things were evaluated as “x”.
 熱処理後の分相は、上記の徐冷処理後の成形試料を800℃で24時間の条件で熱処理し、得られた熱処理試料を目視観察した際に、分相による白濁が認められたものを「○」、分相による白濁が認められず、透明であったものを「×」として評価した。 The phase separation after the heat treatment is the one in which white turbidity due to the phase separation was observed when the molded sample after the slow cooling treatment was heat-treated at 800 ° C. for 24 hours and the obtained heat-treated sample was visually observed. “◯” was evaluated as “×” when the sample was transparent without white turbidity due to phase separation.
 屈折率nは、島津製作所社製の屈折率測定器KPR-2000により測定したd線の値である。具体的には、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させて測定した値である。 Refractive index n d is the value of the d-line as determined by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Specifically, first, a rectangular parallelepiped sample of 25 mm × 25 mm × about 3 mm is prepared, and the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps−50 ° C.) is set at a cooling rate of 0.1 ° C./min. It is a value measured by infiltrating an immersion liquid having a matching refractive index n d after annealing.
 上記徐冷処理後の試料No.1を約15mm×130mmのサイズの白金ボートに投入した後、その白金ボートを電気炉内に投入し、1400℃でリメルトした。なお、白金ボート内でリメルトされたガラスの厚みは約3~5mmであった。リメルトした後、電気炉から白金ボートを取り出し、空気中で放冷した。得られた分相性ガラスについて、800℃で24時間の条件で熱処理し、分相させた。更に、熱処理試料を約10mm×30mm×1.0mm厚のガラス板に加工した後、両表面を鏡面研磨し、波長300~800nmについて、分光光度計(島津製作所社製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図1に示す。また、上記熱処理試料を1Mの塩酸溶液に10分間浸漬させた後、カーボン蒸着し、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製S-4300SE)により観察した。その結果を図2に示す。 Specimen No. after the above slow cooling treatment 1 was put into a platinum boat having a size of about 15 mm × 130 mm, and then the platinum boat was put into an electric furnace and remelted at 1400 ° C. The remelted glass in the platinum boat had a thickness of about 3 to 5 mm. After remelting, the platinum boat was taken out of the electric furnace and allowed to cool in the air. About the obtained phase separation glass, it heat-processed on the conditions for 24 hours at 800 degreeC, and was made to phase-separate. Further, after the heat-treated sample was processed into a glass plate having a thickness of about 10 mm × 30 mm × 1.0 mm, both surfaces were mirror-polished, and a spectrophotometer (spectrum photometer UV-2500PC manufactured by Shimadzu Corporation) was used for wavelengths of 300 to 800 nm. Thus, the total light transmittance and diffuse transmittance in the thickness direction were measured. The result is shown in FIG. Further, the heat-treated sample was immersed in a 1M hydrochloric acid solution for 10 minutes, and then carbon deposited, and the surface of the sample was observed with a field emission scanning electron microscope (S-4300SE manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG.
 図2に示すように、試料No.1の熱処理試料は、何れも波長400~700nmにおいてヘーズ値が5%以上となる波長が存在し、光散乱機能を有していた。 As shown in FIG. Each of the heat-treated samples 1 had a wavelength at which the haze value was 5% or more at a wavelength of 400 to 700 nm, and had a light scattering function.
 表2は、試料No.8を示している。 Table 2 shows sample No. 8 is shown.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 まず、表2に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した後、歪点より室温まで10時間かけて簡易な徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。各種特性の測定方法は、実施例1で説明した通りとする。 First, after preparing a glass raw material so that it might become a glass composition of Table 2, the obtained glass batch was supplied to the glass melting furnace, and it melted at 1400 degreeC for 7 hours. Next, after the obtained molten glass was poured onto a carbon plate and formed into a flat plate shape, a simple slow cooling treatment was performed from the strain point to room temperature over 10 hours. Finally, the obtained glass plate was processed as necessary to evaluate various properties. The measuring method of various characteristics is as described in the first embodiment.
 成形後のガラス板(試料No.8)を約15mm×130mmのサイズの白金ボートに投入し、その白金ボートを電気炉内に投入し、1400℃でリメルトした。なお、白金ボート内でリメルトされたガラスの厚みは約3~5mmであった。リメルトした後、電気炉から白金ボートを取り出し、空気中で放冷した。得られたガラスについて、850℃で24時間の条件で熱処理を行い、分相させた。更に、1Mの塩酸溶液に10分間浸漬させて、カーボン蒸着後、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ社製S-4300SE)により観察した。その結果を図3に示す。試料No.8に対し熱処理を施したものは300~400nm程度の分相粒子を有する分相構造を有しており、Bに富む相(第二の相:SiOに乏しい層)が塩酸溶液により溶出していた。なお、Bに富む相が塩酸溶液により溶出し、SiOに富む相が塩酸溶液に溶出しない。 The molded glass plate (Sample No. 8) was put into a platinum boat having a size of about 15 mm × 130 mm, and the platinum boat was put into an electric furnace and remelted at 1400 ° C. The remelted glass in the platinum boat had a thickness of about 3 to 5 mm. After remelting, the platinum boat was taken out of the electric furnace and allowed to cool in the air. About the obtained glass, it heat-processed on condition of 850 degreeC for 24 hours, and phase-separated. Further, it was immersed in a 1M hydrochloric acid solution for 10 minutes, and after carbon deposition, the surface of the sample was observed with a field emission scanning electron microscope (S-4300SE manufactured by Hitachi High-Technologies Corporation). The result is shown in FIG. Sample No. 8 subjected to heat treatment has a phase separation structure having phase separation particles of about 300 to 400 nm, and a phase rich in B 2 O 3 (second phase: layer poor in SiO 2 ) is a hydrochloric acid solution. Was eluted. Note that the phase rich in B 2 O 3 is eluted by the hydrochloric acid solution, and the phase rich in SiO 2 is not eluted in the hydrochloric acid solution.
 上記熱処理後の分相ガラスを約10mm×30mm×1.0mm厚のガラス板に加工した後、両表面を鏡面研磨し、分光光度計(島津製作所製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図4に示す。 The phase-separated glass after the heat treatment is processed into a glass plate having a thickness of about 10 mm × 30 mm × 1.0 mm, both surfaces are mirror-polished, and the spectrophotometer (Spectrophotometer UV-2500PC, manufactured by Shimadzu Corporation) The total light transmittance and diffuse transmittance of were measured. The result is shown in FIG.
 図4に示すように、波長400~700nmにおける全光線透過率の最大値と最小値との差が20%以内であり、また波長400~700nmにおける全光線透過率が20%以上であり、更に波長400~700nmにおける拡散透過率が20%以上であった。 As shown in FIG. 4, the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is within 20%, the total light transmittance at a wavelength of 400 to 700 nm is 20% or more, The diffuse transmittance at a wavelength of 400 to 700 nm was 20% or more.
 上記熱処理後の分相ガラスを約10mm×30mm×1.0mm厚のガラス板に加工し、分相ガラス板を得た。また、約10mm×30mm×2.0mm厚のガラス基板(日本電気硝子社製OA-10L:屈折率n1.52)を用意した。次に、紫外線硬化樹脂(MSアーデル株式会社製オプトクレーブUT20)を用いて、分相ガラス板とガラス基板を接合した後、分相ガラス板の表面を研磨により0.3mm厚に加工することにより、総板厚2.3mmの複合基板を得た。この複合基板について、分光光度計(島津製作所製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図5に示す。 The phase-separated glass after the heat treatment was processed into a glass plate having a thickness of about 10 mm × 30 mm × 1.0 mm to obtain a phase-separated glass plate. Moreover, a glass substrate (OA-10L manufactured by Nippon Electric Glass Co., Ltd .: refractive index n d 1.52) having a thickness of about 10 mm × 30 mm × 2.0 mm was prepared. Next, after joining the phase-separated glass plate and the glass substrate using an ultraviolet curable resin (Optoclave UT20 manufactured by MS Ardel Co., Ltd.), the surface of the phase-separated glass plate is processed to a thickness of 0.3 mm by polishing. A composite substrate having a total thickness of 2.3 mm was obtained. With respect to this composite substrate, the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). The result is shown in FIG.
 更に、上記熱処理後の分相ガラスを約10mm×30mm×1.0mm厚のガラス板に加工し、分相ガラス板を得た。また、約10mm×30mm×2.0mm厚のガラス基板(日本電気硝子社製OA-10L:屈折率n1.52)を用意した。次に、紫外線硬化樹脂(MSアーデル株式会社製オプトクレーブUT20)を用いて、分相ガラス板とガラス基板を接合した後、分相ガラス板の表面を研磨により0.1mm厚に加工することにより、総板厚2.1mmの複合基板を得た。この複合基板について、分光光度計(島津製作所製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図6に示す。 Furthermore, the phase-separated glass after the heat treatment was processed into a glass plate having a thickness of about 10 mm × 30 mm × 1.0 mm to obtain a phase-separated glass plate. Moreover, a glass substrate (OA-10L manufactured by Nippon Electric Glass Co., Ltd .: refractive index n d 1.52) having a thickness of about 10 mm × 30 mm × 2.0 mm was prepared. Next, after joining the phase-separated glass plate and the glass substrate using an ultraviolet curable resin (Optoclave UT20 manufactured by MS Ardel Co., Ltd.), the surface of the phase-separated glass plate is processed to a thickness of 0.1 mm by polishing. A composite substrate having a total thickness of 2.1 mm was obtained. With respect to this composite substrate, the total light transmittance and diffuse transmittance in the thickness direction were measured with a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). The result is shown in FIG.
 図5、6に示すように、上記複合基板は、波長400~700nmにおける全光線透過率の最大値と最小値との差が20%以内であり、また波長400~700nmにおける全光線透過率が40%以上であり、更に波長400~700nmにおける拡散透過率が20%以上であった。 As shown in FIGS. 5 and 6, in the composite substrate, the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is within 20%, and the total light transmittance at a wavelength of 400 to 700 nm is low. The diffuse transmittance at a wavelength of 400 to 700 nm was 20% or more.
 実施例3、実施例4では、試料No.8を用いて、実験したが、表3の試料No.9~14についても、同様の実験により、同様の傾向が得られるものと考えられる。 In Example 3 and Example 4, sample no. No. 8 was used for the experiment. Regarding 9 to 14, it is considered that the same tendency can be obtained by the same experiment.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表4、5は、試料No.15~46を示している。 Tables 4 and 5 show the sample numbers. 15 to 46 are shown.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 まず、表中に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した後、歪点より室温まで10時間かけて徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。各種特性の測定方法は、実施例1で説明した通りとする。 First, after preparing a glass raw material so that it might become a glass composition as described in a table | surface, the obtained glass batch was supplied to the glass melting furnace, and it melted at 1400 degreeC for 7 hours. Next, after the obtained molten glass was poured on a carbon plate and formed into a flat plate shape, a slow cooling treatment was performed from the strain point to room temperature over 10 hours. Finally, the obtained glass plate was processed as necessary to evaluate various properties. The measuring method of various characteristics is as described in the first embodiment.
 上記試料No.17、20、22、23を1Mの塩酸溶液に10分間浸漬させた後、カーボン蒸着し、試料表面を電界放出型走査電子顕微鏡(日立ハイテクノロジーズ製S-4300SE)により観察した。その結果を図7~10にそれぞれ示す。図7~10は、試料No.17、20、22、23の試料表面を電界放出型走査電子顕微鏡で観察した像をそれぞれ示している。図7~10から分かるように、試料No.17、20、22、23は、分相構造を有しており、Bに富む相(第二の相:SiOに乏しい層)が塩酸溶液により溶出していた。なお、分相ガラスにおいて、Bに富む相が塩酸溶液により溶出し、SiOに富む相が塩酸溶液に溶出しない。 Sample No. above. After immersing 17, 20, 22, and 23 in a 1M hydrochloric acid solution for 10 minutes, carbon was deposited, and the surface of the sample was observed with a field emission scanning electron microscope (S-4300SE, manufactured by Hitachi High-Technologies Corporation). The results are shown in FIGS. 7 to 10 show sample Nos. Images obtained by observing the sample surfaces of 17, 20, 22, and 23 with a field emission scanning electron microscope are shown. As can be seen from FIGS. 17,20,22,23 has a phase separation structure, phase rich in B 2 O 3 (second phase: poor SiO 2 layer) were eluted by hydrochloric acid solution. In the phase-separated glass, the phase rich in B 2 O 3 is eluted by the hydrochloric acid solution, and the phase rich in SiO 2 is not eluted in the hydrochloric acid solution.
 板厚が0.7mmになるように、試料No.20~23を加工し、更に両表面を鏡面研磨した後、波長300~800nmについて、分光光度計(島津製作所社製分光光度計UV-2500PC)により、厚み方向の全光線透過率及び拡散透過率を測定した。その結果を図11~14に示す。図11~14から分かるように、試料No.20~23は、何れも波長400~700nmにおいてヘーズ値が5%以上となる波長が存在し、光散乱機能を有していた。 Specimen No. so that the plate thickness is 0.7 mm. After processing 20 to 23 and further mirror-polishing both surfaces, the total light transmittance and diffuse transmittance in the thickness direction were measured at a wavelength of 300 to 800 nm using a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). Was measured. The results are shown in FIGS. As can be seen from FIGS. Nos. 20 to 23 each had a wavelength with a haze value of 5% or more at a wavelength of 400 to 700 nm, and had a light scattering function.
 表4の試料No.23に係るガラス板(板厚0.7mm:成形後に熱処理していないもの)を作製し、該ガラス板表面上に、マスクを用いて透明電極層としてITO(厚み100nm)を蒸着させた。続いて、ITO上に、正孔注入層として高分子PEDOT-PSS(厚み40nm)、正孔輸送層としてα-NPD(厚み50nm)、有機発光層としてIr(ppy)を6質量%ドープしたCBP(厚み30nm)、正孔阻止層BAlq(厚み10nm)、電子輸送層Alq(厚み30nm)、電子注入層としてLiF(厚み0.8nm)、対向電極としてAl(厚み150nm)を形成した後、内部を封止して、有機EL素子を作製した。得られた有機EL素子について、発光面に垂直な方向に輝度計(株式会社トプコン製BM-9)を配置し、正面輝度を測定し、電流効率を評価した。比較例として試料No.23と同程度の屈折率nを有する分相していないガラス板(板厚0.7mm)を組み込んで有機EL素子を作製した場合についても、同様にして正面輝度を測定し、電流効率を評価した。その結果、試料No.23に係るガラスを組み込んだ場合、20mA/cmにおける電流効率は、比較例に係るガラス板を組み込んだ場合よりも14%向上した。なお、比較例に係るガラス板は、ガラス組成として、質量%で、SiO 36.0%、Al 5.1%、B 14.1%、CaO 7.0%、SrO 11.2%、BaO 17.9%、ZnO 3.1%、ZrO 2.0%、TiO 3.6%を含有しており、屈折率nが1.63である。 Sample No. in Table 4 23 (plate thickness 0.7 mm: not heat-treated after forming) was produced, and ITO (thickness 100 nm) was deposited on the glass plate surface as a transparent electrode layer using a mask. Subsequently, 6% by mass of polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer, α-NPD (thickness 50 nm) as a hole transport layer, and Ir (ppy) 3 as an organic light emitting layer were doped on ITO. After forming CBP (thickness 30 nm), hole blocking layer BAlq (thickness 10 nm), electron transporting layer Alq (thickness 30 nm), LiF (thickness 0.8 nm) as an electron injection layer, and Al (thickness 150 nm) as a counter electrode, The inside was sealed and the organic EL element was produced. With respect to the obtained organic EL element, a luminance meter (BM-9 manufactured by Topcon Co., Ltd.) was arranged in a direction perpendicular to the light emitting surface, front luminance was measured, and current efficiency was evaluated. As a comparative example, Sample No. In the case where an organic EL element was fabricated by incorporating a non-phase-divided glass plate (plate thickness 0.7 mm) having the same refractive index nd as 23, the front luminance was measured in the same manner, and the current efficiency was evaluated. As a result, sample no. When the glass according to No. 23 was incorporated, the current efficiency at 20 mA / cm 2 was improved by 14% as compared with the case where the glass plate according to the comparative example was incorporated. The glass plate according to the comparative example, as a glass composition, in mass%, SiO 2 36.0%, Al 2 O 3 5.1%, B 2 O 3 14.1%, CaO 7.0%, SrO 11.2%, BaO 17.9%, ZnO 3.1%, ZrO 2 2.0%, and contains TiO 2 3.6%, a refractive index n d is 1.63.
 表4の試料No.21に係るガラス板(板厚0.7mm:成形後に熱処理していないもの)を作製し、該ガラス板表面上に、マスクを用いて透明電極層としてITO(厚み100nm)を蒸着させた。続いて、ITO上に、正孔注入層として高分子PEDOT-PSS(厚み40nm)、正孔輸送層としてα-NPD(厚み50nm)、有機発光層としてIr(ppy)を6質量%ドープしたCBP(厚み30nm)、正孔阻止層BAlq(厚み10nm)、電子輸送層Alq(厚み30nm)、電子注入層としてLiF(厚み0.8nm)、対向電極としてAl(厚み150nm)を形成した後、内部を封止して、有機EL素子を作製した。得られた有機EL素子について、発光面に垂直な方向に輝度計(株式会社トプコン製BM-9)を配置し、正面輝度を測定し、電流効率を評価した。比較例として実施例8で用いた比較例と同じガラス板(板厚0.7mm)を組み込んで有機EL素子を作製した場合についても、同様にして正面輝度を測定し、電流効率を評価した。その結果、試料No.21に係るガラス板を組み込んだ場合、20mA/cmにおける電流効率は、比較例に係るガラス板を組み込んだ場合よりも9%向上した。 Sample No. in Table 4 A glass plate (thickness 0.7 mm: not heat-treated after molding) according to No. 21 was prepared, and ITO (thickness 100 nm) was deposited on the glass plate surface as a transparent electrode layer using a mask. Subsequently, 6% by mass of polymer PEDOT-PSS (thickness 40 nm) as a hole injection layer, α-NPD (thickness 50 nm) as a hole transport layer, and Ir (ppy) 3 as an organic light emitting layer were doped on ITO. After forming CBP (thickness 30 nm), hole blocking layer BAlq (thickness 10 nm), electron transporting layer Alq (thickness 30 nm), LiF (thickness 0.8 nm) as an electron injection layer, and Al (thickness 150 nm) as a counter electrode, The inside was sealed and the organic EL element was produced. With respect to the obtained organic EL element, a luminance meter (BM-9 manufactured by Topcon Co., Ltd.) was arranged in a direction perpendicular to the light emitting surface, front luminance was measured, and current efficiency was evaluated. As a comparative example, when the organic EL element was fabricated by incorporating the same glass plate (plate thickness 0.7 mm) as that used in Example 8, the front luminance was measured in the same manner to evaluate the current efficiency. As a result, sample no. When incorporating the glass plate according to 21, the current efficiency at 20 mA / cm 2 was improved by 9% than incorporating a glass plate according to a comparative example.

Claims (24)

  1.  屈折率nが1.55以上であり、少なくとも第一の相と第二の相を含む分相構造を有することを特徴とする分相ガラス。 Refractive index n d is not less than 1.55, phase-separated glass, characterized in that it comprises a phase-separated structure including at least a first phase and a second phase.
  2.  波長400~700nmにおける全光線透過率の最大値と最小値との差が40%以下であることを特徴とする請求項1に記載の分相ガラス。 2. The phase separation glass according to claim 1, wherein the difference between the maximum value and the minimum value of the total light transmittance at a wavelength of 400 to 700 nm is 40% or less.
  3.  波長400~700nmにおける拡散透過率が10%以上であることを特徴とする請求項1又は2に記載の分相ガラス。 3. The phase separation glass according to claim 1 or 2, wherein the diffuse transmittance at a wavelength of 400 to 700 nm is 10% or more.
  4.  波長400~700nmにおけるヘーズ値が5%以上の波長を有することを特徴とする請求項1~3のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 3, wherein a haze value at a wavelength of 400 to 700 nm has a wavelength of 5% or more.
  5.  波長400~700nmにおける全光線透過率が10%以上であることを特徴とする請求項1~4のいずれか1項に記載の分相ガラス。 The phase separation glass according to any one of claims 1 to 4, wherein the total light transmittance at a wavelength of 400 to 700 nm is 10% or more.
  6.  分相粒子の平均粒子径が100nm以上であることを特徴とする請求項1~5のいずれか1項に記載の分相ガラス。 6. The phase separation glass according to claim 1, wherein the average particle size of the phase separation particles is 100 nm or more.
  7.  屈折率nが1.65未満であることを特徴とする請求項1~6のいずれか1項に記載の分相ガラス。 Phase-separated glass according to any one of claims 1 to 6, the refractive index n d is equal to or less than 1.65.
  8.  分相ガラスが、ガラス組成として、質量%で、SiO 30~75%、B 0.1~50%、Al 0~35%を含有することを特徴とする請求項1~7のいずれか1項に記載の分相ガラス。 The phase-separated glass contains, by mass%, SiO 2 30 to 75%, B 2 O 3 0.1 to 50%, and Al 2 O 3 0 to 35% as a glass composition. 8. The phase separation glass according to any one of 1 to 7.
  9.  ガラス組成中に、実質的にレアメタル酸化物を含まないことを特徴とする請求項1~8のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 8, wherein the glass composition does not substantially contain a rare metal oxide.
  10.  第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことを特徴とする請求項1~9のいずれか1項に記載の分相ガラス。 The content of SiO 2 in the first phase, phase-separated glass according to any one of claims 1 to 9, characterized in that more than the content of SiO 2 in the second phase.
  11.  第二の相中のBの含有量が、第一の相中のBの含有量よりも多いことを特徴とする請求項1~10のいずれか1項に記載の分相ガラス。 Second content of B 2 O 3 in phases, divided according to any one of claims 1 to 10, characterized in that more than the content of B 2 O 3 in the first phase Phase glass.
  12.  ガラス組成中のPの含有量が0.001~10質量%であることを特徴とする請求項1~11のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 11, wherein the content of P 2 O 5 in the glass composition is 0.001 to 10 mass%.
  13.  ガラス組成中の質量比(Al+B)/SiOが0.3以上であることを特徴とする請求項1~12のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 12, wherein a mass ratio (Al 2 O 3 + B 2 O 3 ) / SiO 2 in the glass composition is 0.3 or more.
  14.  ガラス組成中の質量比TiO/Bが0.01~2であることを特徴とする請求項1~13のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 13, wherein a mass ratio TiO 2 / B 2 O 3 in the glass composition is 0.01 to 2.
  15.  ガラス組成中のBaO-SrOの含有量が1~12質量%であることを特徴とする請求項1~14のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 14, wherein the content of BaO-SrO in the glass composition is 1 to 12 mass%.
  16.  平板形状であることを特徴とする請求項1~15のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 15, which has a flat plate shape.
  17.  厚みが5~500μmであることを特徴とする請求項1~16のいずれか1項に記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 16, wherein the thickness is 5 to 500 µm.
  18.  請求項1~17のいずれか1項に記載の分相ガラスを備えてなることを特徴とする有機ELデバイス。 An organic EL device comprising the phase-separated glass according to any one of claims 1 to 17.
  19. 照明であることを特徴とする請求項18に記載の有機ELデバイス。 The organic EL device according to claim 18, wherein the organic EL device is illumination.
  20.  屈折率nが1.55以上の分相性ガラスを成形した後、得られた分相性ガラスを熱処理して、少なくとも第一の相と第二の相を含む分相構造を有する分相ガラスを得ることを特徴とする分相ガラスの製造方法。 After the refractive index n d is molded more than 1.55 min chemistry glass, by heat-treating phase separation glass obtained, the phase-separated glass with a phase separation structure comprising at least a first phase and a second phase A method for producing phase-separated glass, characterized in that it is obtained.
  21.  屈折率nが1.65未満の分相性ガラスを成形することを特徴とする請求項20に記載の分相ガラスの製造方法。 Method of manufacturing a phase-separated glass of claim 20 having a refractive index n d is characterized by shaping the phase separation of glass of less than 1.65.
  22.  分相性ガラスを平板形状に成形することを特徴とする請求項21に記載の分相ガラスの製造方法。 The method for producing a phase separation glass according to claim 21, wherein the phase separation glass is formed into a flat plate shape.
  23.  分相性ガラスをオーバーフローダウンドロー法で成形することを特徴とする請求項21又は22に記載の分相ガラスの製造方法。 The method for producing a phase separation glass according to claim 21 or 22, wherein the phase separation glass is formed by an overflow downdraw method.
  24.  屈折率nが1.55以上であり、且つ800℃24時間の熱処理を行うと、分相していない状態から、少なくとも第一の相と第二の相に分相する性質を有することを特徴とする分相性ガラス。
     
     
    Refractive index n d is not less than 1.55, and when subjected to heat treatment 800 ° C. 24 hours, the state where no phase separation, that it has the property of phase separation into at least a first phase and a second phase Characteristic phase separation glass.

PCT/JP2015/065449 2014-06-02 2015-05-28 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass WO2015186606A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014113866 2014-06-02
JP2014113865A JP2015227273A (en) 2014-06-02 2014-06-02 Production method of phase separated glass
JP2014-113866 2014-06-02
JP2014113864A JP2015227272A (en) 2014-06-02 2014-06-02 Phase-split glass and composite substrate using the same
JP2014-113865 2014-06-02
JP2014-113864 2014-06-02
JP2014192172 2014-09-22
JP2014-192172 2014-09-22

Publications (1)

Publication Number Publication Date
WO2015186606A1 true WO2015186606A1 (en) 2015-12-10

Family

ID=54766679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065449 WO2015186606A1 (en) 2014-06-02 2015-05-28 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass

Country Status (2)

Country Link
TW (1) TW201602042A (en)
WO (1) WO2015186606A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202971A (en) * 2014-04-11 2015-11-16 日本電気硝子株式会社 Phase-separated glass and composite substrate prepared using the same
JP2015202970A (en) * 2014-04-11 2015-11-16 日本電気硝子株式会社 Glass film and composite substrate prepared using the same
WO2016117406A1 (en) * 2015-01-21 2016-07-28 日本電気硝子株式会社 Phase-separated glass
US11787731B2 (en) 2020-10-29 2023-10-17 Corning Incorporated Phase separable glass compositions having improved mechanical durability

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040937B (en) * 2021-10-28 2024-04-19 荣耀终端有限公司 Phase-separated glass, reinforced glass, preparation method of phase-separated glass, shell of electronic equipment, display screen of electronic equipment and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071539A (en) * 1983-08-30 1985-04-23 シヨツト、グラスヴエルケ Optical glass with high chemical stability of more than 1.60 reflactive index and more than 58 abbe's number and resistance to phase separation and to crystallization
JP2004075494A (en) * 2002-08-22 2004-03-11 Nippon Electric Glass Co Ltd Glass substrate and its manufacturing method
JP2010520139A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Extruded glass structure and manufacturing method thereof
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
WO2015034030A1 (en) * 2013-09-03 2015-03-12 日本電気硝子株式会社 Glass and method for producing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6071539A (en) * 1983-08-30 1985-04-23 シヨツト、グラスヴエルケ Optical glass with high chemical stability of more than 1.60 reflactive index and more than 58 abbe's number and resistance to phase separation and to crystallization
JP2004075494A (en) * 2002-08-22 2004-03-11 Nippon Electric Glass Co Ltd Glass substrate and its manufacturing method
JP2010520139A (en) * 2007-02-28 2010-06-10 コーニング インコーポレイテッド Extruded glass structure and manufacturing method thereof
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
WO2015034030A1 (en) * 2013-09-03 2015-03-12 日本電気硝子株式会社 Glass and method for producing same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUMIO SAKUKA: "3.1. Kogaku Sekkei to Kogaku Glass", GLASS HANDBOOK, 30 September 1975 (1975-09-30), pages 71 - 73 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015202971A (en) * 2014-04-11 2015-11-16 日本電気硝子株式会社 Phase-separated glass and composite substrate prepared using the same
JP2015202970A (en) * 2014-04-11 2015-11-16 日本電気硝子株式会社 Glass film and composite substrate prepared using the same
WO2016117406A1 (en) * 2015-01-21 2016-07-28 日本電気硝子株式会社 Phase-separated glass
US11787731B2 (en) 2020-10-29 2023-10-17 Corning Incorporated Phase separable glass compositions having improved mechanical durability

Also Published As

Publication number Publication date
TW201602042A (en) 2016-01-16

Similar Documents

Publication Publication Date Title
KR101638488B1 (en) High-refractive-index glass
JP6269933B2 (en) Glass plate
TWI609515B (en) Crystalline glass substrate, crystallized glass substrate, production method thereof and diffuser
WO2015186606A1 (en) Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass
JP6066060B2 (en) Crystallized glass substrate and method for producing the same
US20160200624A1 (en) Glass and method for producing same
WO2016013612A1 (en) Glass with high refractive index
WO2015186584A1 (en) Phase-separated glass, method for producing phase-separated glass and composite substrate using phase-separated glass
JP2016098118A (en) Phase-separated glass
WO2015034030A1 (en) Glass and method for producing same
JP6249218B2 (en) Glass manufacturing method and glass
JP2004051473A (en) Glass substrate for flat panel display device
JP2016028996A (en) Glass with high refractive index
WO2014175418A1 (en) High refractive index glass
JP2016064970A (en) Phase splitting glass
JP6406571B2 (en) Glass
JP6331076B2 (en) Glass film and composite substrate using the same
JP6331077B2 (en) Phase separation glass and composite substrate using the same
JP6435610B2 (en) High refractive index glass
JP2015227272A (en) Phase-split glass and composite substrate using the same
JP2016011245A (en) Phase-separated glass
WO2016117406A1 (en) Phase-separated glass
JP2015105218A (en) Glass substrate and production method thereof
TW201602021A (en) Phase-separated glass, method for producing phase-separated glass and composite substrate using phase-separated glass
JP2015227274A (en) Phase separated glass and composite substrate using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802422

Country of ref document: EP

Kind code of ref document: A1