JP2004075494A - Glass substrate and its manufacturing method - Google Patents

Glass substrate and its manufacturing method Download PDF

Info

Publication number
JP2004075494A
JP2004075494A JP2002241449A JP2002241449A JP2004075494A JP 2004075494 A JP2004075494 A JP 2004075494A JP 2002241449 A JP2002241449 A JP 2002241449A JP 2002241449 A JP2002241449 A JP 2002241449A JP 2004075494 A JP2004075494 A JP 2004075494A
Authority
JP
Japan
Prior art keywords
glass substrate
glass
particle size
phase separation
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002241449A
Other languages
Japanese (ja)
Other versions
JP4168320B2 (en
Inventor
Yoshinari Kato
加藤 嘉成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002241449A priority Critical patent/JP4168320B2/en
Publication of JP2004075494A publication Critical patent/JP2004075494A/en
Application granted granted Critical
Publication of JP4168320B2 publication Critical patent/JP4168320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate which is hard to crack even when it is thinned, and a method of producing the same. <P>SOLUTION: The glass substrate is aluminosilicate glass having a composition in which SrO and BaO are contained in an amount of 0-6.5 mass % in total, and the glass substrate has a separate phase structure of grain sizes of 2-100 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイ基板及びハードディスク基板等に用いられるガラス基板に関するものである。
【0002】
【従来の技術】
従来より、フラットパネルディスプレイ基板やハードディスク基板としては、ガラス基板が広く使用されている。
【0003】
特に、フラットパネルディスプレイに用いられるガラス基板の表面には、透明導電膜、絶縁膜、半導体膜、金属膜等が成膜され、しかもフォトリソグラフィーエッチング(フォトエッチング)によって種々の回路やパターンが形成される。これらの成膜、フォトエッチング工程において、ガラス基板には、種々の熱処理や薬品処理が施される。
【0004】
従って、フラットパネルディスプレイに使用されるガラス基板には、以下のような特性が要求される。
(1)ガラス中にアルカリ金属酸化物が含有されていると、熱処理中にアルカリイオンが成膜された半導体物質中に拡散し、膜特性の劣化を招くため、実質的にアルカリ金属酸化物を含有しないこと。
(2)フォトエッチング工程において使用される種々の酸、アルカリ等の薬品によって劣化しないような耐薬品性を有すること。
(3)ガラスの歪点が低いと、成膜等の熱処理工程でガラス基板が熱収縮してパターンずれを起こすため、高い歪点を有すること。
(4)製造工程において、自重によってガラス基板がたわみ、装置と接触してガラス基板が破損するのを防止するために、高い比ヤング率(ヤング率/密度)を有すること。
【0005】
また、フラットパネルディスプレイは、モバイル分野への応用が進められており、機器の軽量化が要求されている。これに伴ってガラス基板にも軽量化が要求されている。
【0006】
【発明が解決しようとする課題】
ガラス基板の軽量化のために、ガラス基板の薄肉化が検討されている。
【0007】
しかしながら、ガラス基板の肉厚が薄くなる程、ガラス基板の強度が低下するため割れやすくなるといった問題が生じる。
【0008】
本発明の目的は、ガラス基板を薄肉化しても、割れ難いガラス基板及びその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者は、種々の実験を繰り返した結果、ガラス基板に微小な分相構造を意図的に導入することで、ガラス基板の強度が向上することを見いだし、本発明として提案するものである。
【0010】
すなわち、本発明のガラス基板は、質量百分率で、SrO+BaO 0〜6.5%の組成を有するアルミノシリケートガラスであって、且つ、2〜100nmの粒子サイズの分相構造を有することを特徴とする。
【0011】
また、本発明のガラス基板の製造方法は、質量百分率で、SiO 50〜70%、Al 10〜20%、B 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%の組成を有するアルミノシリケートガラスを、2〜50nmの粒子サイズの分相構造が得られるように、熱処理を行うことを特徴とする。
【0012】
【作用】
ガラス基板の割れは、ガラス基板の表面に傷が付き、それが伸展することにより発生する。従って、ガラス基板の耐クラック性を向上させてクラックの発生を抑制すればガラス基板の強度は飛躍的に向上することになる。
【0013】
そこで、本発明のガラス基板では、粒子サイズが2〜100nmである分相構造をガラス基板に意図的に導入して、クラックの発生を抑制してガラス基板の強度を飛躍的に向上させている。
【0014】
ガラス基板中に2〜100nmの微小な分相構造を導入することで、クラックが分相粒子の界面で停止する、または、クラックが界面で停止しない場合でも、粒子を迂回するのに余分なエネルギーが必要となるため、クラックが伸展しにくくなり割れを抑えることができると考えられる。
【0015】
尚、分相の粒子サイズが2nmより小さいと、クラックの発生を抑制する効果が得られないため好ましくない。一方、分相の粒子サイズが100nmより大きくなると、熱処理に時間が掛かり生産性が悪化するため好ましくない。好ましくは2〜90nmであり、更に好ましくは、5〜80nmである。
【0016】
また、分相の粒子サイズが50nmより大きくなると、光の散乱により、ガラス基板が白濁する傾向にあり、ガラス基板の透過率が低下する可能性がある。このため、ガラス基板をフラットパネルディスプレイ基板に用いる場合、分相の粒子サイズは50nm以下であることが望ましい。
【0017】
また、ガラス基板に粒子サイズが2〜100nmのサイズの分相構造を導入するには、ガラス基板を500℃〜ガラスの徐冷点+60℃の温度で0.5〜300時間保持するような熱処理を行えばよい。尚、熱処理は、溶融ガラスの冷却工程で行ってもよいし、溶融ガラスを一旦冷却し、ガラス基板に加工成形した後に行っても良い。また、熱処理温度を高くすれば、熱処理時間を短縮することもできる。
【0018】
更に、本発明のガラス基板の好適な組成範囲は、質量百分率で、SiO 50〜70%、Al 10〜20%、B 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%である。
【0019】
尚、本発明においてガラスの組成を上記のように限定した理由は、ガラスの分相傾向、密度、耐薬品性、熱収縮性、ヤング率等を考慮したものであり、各成分の限定理由は、次のとおりである。
【0020】
SiOは、ガラスのネットワークフォーマーとなる成分であり、ガラスの耐酸性を向上させたり、ガラスの歪点を上昇させてガラス基板の熱収縮を小さくする効果がある。含有量が多くなると、ガラスの高温粘度が高くなり、溶融性が悪化する傾向にあるが、含有量が50〜70%であれば、ガラスの溶融性を悪化させることなく、耐酸性が高く、熱収縮の小さいガラス基板を得ることができる。好ましい範囲は、58〜67%である。
【0021】
Alは、ガラスのネットワークフォーマーとなる成分であると共に、ガラスのヤング率を高める成分であり、ガラス基板がたわむのを抑制する効果がある。含有量が多くなると、液相温度が上昇して成形しにくくなる傾向にあるが、含有量が10〜20%であれば、液相温度が低く、たわみの小さいガラス基板を得ることができる。好ましい範囲は、12〜18%である。
【0022】
は、融剤として作用し、ガラスの粘性を下げ、溶融性を改善する成分であり、且つガラスの密度を下げる成分である。含有量が多くなると、ガラスの歪点が低下する傾向にあるが、含有量が7〜15%であれば、ガラスの歪点を低下させることなく、上記効果を得ることができる。好ましい範囲は、7〜13%である。
【0023】
MgOとCaOは、高温粘度を下げる成分であり、ガラスの溶融性を改善する効果がある。含有量が多くなると、ガラスの耐薬品性、特に耐バッファードフッ酸性が悪化する傾向にあるが、MgOとCaOが合量で15%以下であれば、耐バッファードフッ酸性を特に悪化させることはない。好ましい範囲は、合量で0〜10%である。
【0024】
SrOとBaOは、ガラスの耐薬品性を向上させる成分であるが、これら成分が多くなると、ガラスの分相傾向が小さくなり、短時間の熱処理で分相を形成することができなくなる。このため、合量で6.5%より多く含有させるべきではない。好ましい範囲は、合量で0〜5%である。
【0025】
尚、本発明においては、上記の成分以外にも、特性を損なわない範囲で他の成分、例えば、清澄剤としてAs、Sb、SnO、Cl、SO等をそれぞれ3%まで、ガラスの耐薬品性、耐失透性を向上させるために、ZrO、TiO、Y、La、Pをそれぞれ5%まで添加しても良い。
【0026】
更に、前記した理由から、アルカリ金属酸化物(NaO、KO、LiO)の添加も避けるべきである。また、一般に融剤として使用されるPbOもガラスの耐薬品性を著しく低下させたり、ガラス溶融時に融液の表面から揮発し、環境を汚染する虞れもあるため好ましくない。
【0027】
また、本発明のガラス基板は、板ガラスの成形方法として知られているスロットダウンドロー法、オーバーフローダウンドロー法、フロート法、ロールアウト法等の方法によって製造できる。
【0028】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
【0029】
表1〜6は本発明の実施例(試料No.1〜27)を、表7は比較例(試料No.28及び29)をそれぞれ示している。
【0030】
【表1】

Figure 2004075494
【0031】
【表2】
Figure 2004075494
【0032】
【表3】
Figure 2004075494
【0033】
【表4】
Figure 2004075494
【0034】
【表5】
Figure 2004075494
【0035】
【表6】
Figure 2004075494
【0036】
【表7】
Figure 2004075494
【0037】
表中の各試料は、次のようにして作製した。
【0038】
まず、表の組成となるようにガラス原料を調合し、白金ポットで1600℃で24時間溶融した。続いて、溶融ガラスをカーボン板上に流し出して板状に成形し、徐冷後、板厚が0.7mmになるように両面研磨して、得られた板ガラスを200mm角の大きさに切断加工した。その後、表中の条件で熱処理を施し分相させることで試料を作製した。
【0039】
このようにして作製した各試料について、各種の特性を評価した。結果を表に示す。
【0040】
表1〜表7から明らかなように、試料No.1〜27は、粒子サイズが2nm以上の分相構造を有しているため、クラック抵抗が8.8N以上と高かった。また、密度は2.466g/cm以下であり、熱膨張係数は30.0〜36.5×10−7/℃で耐熱衝撃性に優れ、歪点は656℃以上で熱収縮は小さく、比ヤング率は27.5GPa/g・cm−3以上でたわみ量は小さくなることが予想される。更に耐酸性、耐BHF性にも優れていた。
【0041】
これに対し、比較例である試料No.28、29は、熱処理を行ったものの、分相しなかったため、クラック抵抗が7.4Nと低かった。
【0042】
次に、No.1のガラス組成を用い、熱処理条件を変えて、様々な大きさの粒子を有するガラス基板を作製し、分相の粒子サイズと耐クラック性の関係について調査した。結果を表8及び図1に示す。尚、図1において、縦軸はガラス基板の耐クラック性を表すクラックの発生率、横軸はダイヤモンド圧子に加える荷重を示している。図中、Aは分相構造を有していないガラス基板、Bは粒子サイズが2nmの分相構造を有するガラス基板(試料No.1)、Cは粒子サイズが10nmの分相構造を有するガラス基板、Dは粒子サイズが20nmの分相構造を有するガラス基板、Eは粒子サイズが50nmの分相構造を有するガラス基板、Fは粒子サイズが100nmの分相構造を有するガラス基板、Gは粒子サイズが110nmの分相構造を有するガラス基板を表している。
【0043】
【表8】
Figure 2004075494
【0044】
表8及び図1から明らかなように、分相構造を有していないガラス基板(試料A)と、分相構造を有するガラス基板(試料B〜G)のクラック発生率を比較すると、分相構造を有するガラス基板の方が、クラックは発生しにくくなり耐クラック性が向上することが判る。また、粒子サイズが100nmまでは、粒子サイズが大きくなる程、クラックは発生しにくくなり耐クラック性は向上するが、100nmより大きくなると、徐々に耐クラック性は低下する傾向にあることが判る。
【0045】
尚、分相の粒子サイズはTEM(透過型電子顕微鏡)で観察することによって測定した。
【0046】
また、ガラスの耐クラック性の評価は、和田らが提案した方法(M.Wadaet al. Proc., the Xth ICG, vol.11, Ceram. Soc., Japan, Kyoto, 1974, p39)を用いた。この方法は、ビッカース硬度計のステージに試料ガラスを置き、試料ガラスの表面に菱形状のダイヤモンド圧子を種々の荷重で15秒間押し付ける。そして、除荷後15秒までに圧痕の四隅から発生するクラック数をカウントし、最大発生しうるクラック数(4ヶ)に対する割合を求め、クラック発生率とした。また、クラック発生率が50%になるときの荷重を「クラック抵抗」とした。クラック抵抗が大きいということは、高い荷重でもクラックが発生しにくい、つまり、耐クラック性に優れているということである。尚、クラック発生率の測定は、同一荷重で20回測定し、その平均値を求めた。また、測定条件は、気温25℃、湿度30%の条件で行った。
【0047】
密度は、周知のアルキメデス法によって測定し、熱膨張係数は、ディラトメーターを用いて、30〜380℃における平均熱膨張係数を測定したものである。
【0048】
歪点及び徐冷点は、ASTM C336−71の方法に基づいて、軟化点は、ASTM C338−73の方法に基づいて測定した。104.0〜102.5dPa・sの粘度は、白金球引き上げ法により測定した。
【0049】
ヤング率は、曲げ共振法により測定し、比ヤング率は、ヤング率と密度の測定値から算出した。
【0050】
耐塩酸性は、各試料を80℃に保持された10重量%塩酸水溶液に24時間浸漬した後、それらの表面状態を目視で観察することによって評価した。耐BHF性は、各試料を20℃に保持された30質量%弗化アンモニウム、6質量%フッ酸からなるバッファードフッ酸に30分間浸漬した後、それらの表面状態を目視で観察することによって評価した。ガラス基板の表面が白濁したものは×、全く変化のないものは○で示した。
【0051】
液相温度の測定は、ガラスを粉砕し、標準篩30メッシュ(500nm)を通過し、50メッシュ(300nm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定したものである。
【0052】
【発明の効果】
以上のように本発明のガラス基板は、優れた耐クラック性を有するため、薄型、軽量化が要求されているフラットパネルディスプレイ基板及びハードディスク基板等に用いられるガラス基板として好適である。
【図面の簡単な説明】
【図1】分相の粒子サイズとクラック発生率の関係を示すグラフである。[0001]
[Industrial applications]
The present invention relates to a glass substrate used for a flat panel display substrate such as a liquid crystal display, an electroluminescence display, and a field emission display, and a hard disk substrate.
[0002]
[Prior art]
Conventionally, glass substrates have been widely used as flat panel display substrates and hard disk substrates.
[0003]
In particular, a transparent conductive film, an insulating film, a semiconductor film, a metal film, and the like are formed on the surface of a glass substrate used for a flat panel display, and various circuits and patterns are formed by photolithography etching (photo etching). You. In these film forming and photo-etching steps, the glass substrate is subjected to various heat treatments and chemical treatments.
[0004]
Therefore, the glass substrate used for the flat panel display is required to have the following characteristics.
(1) When an alkali metal oxide is contained in glass, alkali ions diffuse into a formed semiconductor material during heat treatment, causing deterioration of film characteristics. Do not contain.
(2) It has chemical resistance such that it is not deteriorated by various acids, alkalis, and other chemicals used in the photoetching step.
(3) If the strain point of the glass is low, the glass substrate is thermally contracted in a heat treatment step such as film formation to cause a pattern shift, so that the glass substrate has a high strain point.
(4) In the manufacturing process, the glass substrate has a high specific Young's modulus (Young's modulus / density) in order to prevent the glass substrate from bending due to its own weight and being damaged by contact with the device.
[0005]
In addition, the application of the flat panel display to the mobile field has been promoted, and the weight of the device has been required to be reduced. Along with this, the weight of the glass substrate is also required to be reduced.
[0006]
[Problems to be solved by the invention]
In order to reduce the weight of the glass substrate, thinning of the glass substrate has been studied.
[0007]
However, as the thickness of the glass substrate becomes thinner, the strength of the glass substrate decreases, so that there is a problem that the glass substrate is more easily broken.
[0008]
An object of the present invention is to provide a glass substrate which is hardly broken even when the glass substrate is thinned, and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
As a result of repeating various experiments, the present inventor has found that the strength of the glass substrate is improved by intentionally introducing a minute phase separation structure into the glass substrate, and proposes the present invention.
[0010]
That is, the glass substrate of the present invention is aluminosilicate glass having a composition of SrO + BaO of 0 to 6.5% by mass percentage, and has a phase separation structure with a particle size of 2 to 100 nm. .
[0011]
Further, the method for producing a glass substrate of the present invention is characterized in that, in terms of mass percentage, 50 to 70% of SiO 2 , 10 to 20% of Al 2 O 3 , 7 to 15% of B 2 O 3 , 0 to 20% of MgO + CaO, 0 to 20% of SrO + BaO 0 A heat treatment is performed on an aluminosilicate glass having a composition of 6.5% so as to obtain a phase-separated structure having a particle size of 2 to 50 nm.
[0012]
[Action]
The cracks in the glass substrate occur when the surface of the glass substrate is scratched and extended. Therefore, if the crack resistance of the glass substrate is improved to suppress the occurrence of cracks, the strength of the glass substrate will be dramatically improved.
[0013]
Therefore, in the glass substrate of the present invention, a phase separation structure having a particle size of 2 to 100 nm is intentionally introduced into the glass substrate, thereby suppressing the occurrence of cracks and dramatically improving the strength of the glass substrate. .
[0014]
By introducing a fine phase separation structure of 2 to 100 nm in the glass substrate, the crack stops at the interface of the phase-separated particles, or even when the crack does not stop at the interface, extra energy to bypass the particles. Therefore, it is considered that the crack is difficult to extend and the crack can be suppressed.
[0015]
If the particle size of the phase separation is smaller than 2 nm, the effect of suppressing the generation of cracks cannot be obtained, which is not preferable. On the other hand, when the particle size of the phase separation is larger than 100 nm, heat treatment takes time and productivity is deteriorated, which is not preferable. Preferably it is 2-90 nm, More preferably, it is 5-80 nm.
[0016]
When the particle size of the phase separation is larger than 50 nm, the glass substrate tends to become cloudy due to light scattering, and the transmittance of the glass substrate may be reduced. Therefore, when a glass substrate is used for a flat panel display substrate, the particle size of the phase separation is desirably 50 nm or less.
[0017]
In order to introduce a phase-separated structure having a particle size of 2 to 100 nm into the glass substrate, a heat treatment in which the glass substrate is kept at a temperature of 500 ° C. to the annealing point of glass + 60 ° C. for 0.5 to 300 hours. Should be performed. The heat treatment may be performed in a cooling step of the molten glass, or may be performed after the molten glass is once cooled and formed into a glass substrate. In addition, if the heat treatment temperature is increased, the heat treatment time can be shortened.
[0018]
Further, a preferable composition range of the glass substrate of the present invention is, in terms of mass percentage, 50 to 70% of SiO 2 , 10 to 20% of Al 2 O 3 , 7 to 15% of B 2 O 3 , 0 to 20% of MgO + CaO, and SrO + BaO. 0 to 6.5%.
[0019]
The reason for limiting the composition of the glass as described above in the present invention is to take into account the phase separation tendency of glass, density, chemical resistance, heat shrinkage, Young's modulus, and the like. ,It is as follows.
[0020]
SiO 2 is a component that serves as a network former of glass, and has an effect of improving the acid resistance of glass and increasing the strain point of glass to reduce the thermal shrinkage of the glass substrate. When the content increases, the high-temperature viscosity of the glass increases, and the meltability tends to deteriorate. However, when the content is 50 to 70%, the acid resistance is high without deteriorating the meltability of the glass, A glass substrate with small heat shrinkage can be obtained. The preferred range is 58-67%.
[0021]
Al 2 O 3 is a component that serves as a network former of glass and is a component that increases the Young's modulus of the glass, and has an effect of suppressing bending of the glass substrate. When the content increases, the liquidus temperature rises and molding tends to be difficult. However, when the content is 10 to 20%, a glass substrate having a low liquidus temperature and small deflection can be obtained. The preferred range is 12-18%.
[0022]
B 2 O 3 is a component that acts as a flux, lowers the viscosity of the glass, improves the meltability, and lowers the density of the glass. When the content increases, the strain point of the glass tends to decrease, but when the content is 7 to 15%, the above effect can be obtained without lowering the strain point of the glass. The preferred range is 7-13%.
[0023]
MgO and CaO are components that lower the high-temperature viscosity and have an effect of improving the melting property of glass. When the content increases, the chemical resistance of the glass, particularly the buffered hydrofluoric acid resistance, tends to deteriorate. However, if the total amount of MgO and CaO is 15% or less, the buffered hydrofluoric acid resistance is particularly deteriorated. There is no. A preferred range is 0 to 10% in total.
[0024]
SrO and BaO are components that improve the chemical resistance of glass. However, when these components are increased, the tendency of phase separation of the glass decreases, and it becomes impossible to form a phase separation by short-time heat treatment. For this reason, it should not be contained more than 6.5% in total. A preferred range is 0 to 5% in total.
[0025]
In the present invention, in addition to the above-mentioned components, other components such as As 2 O 3 , Sb 2 O 3 , SnO 2 , Cl 2 , SO 3 and the like are used as long as the properties are not impaired. Up to 3%, ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 , P 2 O 5 may be added up to 5% in order to improve the chemical resistance and devitrification resistance of the glass. .
[0026]
Furthermore, for the reasons described above, the addition of alkali metal oxides (Na 2 O, K 2 O, Li 2 O) should be avoided. In addition, PbO, which is generally used as a flux, is also not preferred because it may significantly lower the chemical resistance of the glass and may volatilize from the surface of the melt when the glass is melted, thus polluting the environment.
[0027]
Further, the glass substrate of the present invention can be manufactured by a method such as a slot down draw method, an overflow down draw method, a float method, or a roll out method which is known as a method for forming a sheet glass.
[0028]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0029]
Tables 1 to 6 show examples of the present invention (samples Nos. 1 to 27), and Table 7 shows comparative examples (samples Nos. 28 and 29).
[0030]
[Table 1]
Figure 2004075494
[0031]
[Table 2]
Figure 2004075494
[0032]
[Table 3]
Figure 2004075494
[0033]
[Table 4]
Figure 2004075494
[0034]
[Table 5]
Figure 2004075494
[0035]
[Table 6]
Figure 2004075494
[0036]
[Table 7]
Figure 2004075494
[0037]
Each sample in the table was prepared as follows.
[0038]
First, a glass raw material was prepared so as to have the composition shown in the table, and was melted in a platinum pot at 1600 ° C. for 24 hours. Subsequently, the molten glass was poured onto a carbon plate, formed into a plate shape, cooled slowly, and polished on both sides so that the plate thickness became 0.7 mm, and the obtained plate glass was cut into a size of 200 mm square. processed. Thereafter, heat treatment was performed under the conditions shown in the table to separate the phases, thereby preparing a sample.
[0039]
Various characteristics were evaluated for each sample thus manufactured. The results are shown in the table.
[0040]
As is clear from Tables 1 to 7, the sample No. Nos. 1 to 27 had a phase separation structure with a particle size of 2 nm or more, and thus had a high crack resistance of 8.8 N or more. Further, the density is 2.466 g / cm 3 or less, the coefficient of thermal expansion is 30.0 to 36.5 × 10 −7 / ° C., which is excellent in thermal shock resistance, the strain point is 656 ° C. or more, and the thermal shrinkage is small, If the specific Young's modulus is 27.5 GPa / g · cm −3 or more, the amount of deflection is expected to be small. Furthermore, it was also excellent in acid resistance and BHF resistance.
[0041]
On the other hand, the sample No. In Nos. 28 and 29, although heat treatment was performed, no phase separation occurred, so that the crack resistance was as low as 7.4 N.
[0042]
Next, No. Using the glass composition of No. 1 and changing the heat treatment conditions, glass substrates having particles of various sizes were produced, and the relationship between the particle size of the phase separation and crack resistance was investigated. The results are shown in Table 8 and FIG. In FIG. 1, the vertical axis indicates the crack generation rate indicating the crack resistance of the glass substrate, and the horizontal axis indicates the load applied to the diamond indenter. In the figure, A is a glass substrate having no phase separation structure, B is a glass substrate having a phase separation structure with a particle size of 2 nm (sample No. 1), and C is a glass substrate having a phase separation structure with a particle size of 10 nm. Substrate, D is a glass substrate having a phase separation structure with a particle size of 20 nm, E is a glass substrate having a phase separation structure with a particle size of 50 nm, F is a glass substrate having a phase separation structure with a particle size of 100 nm, and G is a particle. The figure shows a glass substrate having a phase separation structure with a size of 110 nm.
[0043]
[Table 8]
Figure 2004075494
[0044]
As is clear from Table 8 and FIG. 1, when the crack generation rates of the glass substrate having no phase-separated structure (Sample A) and the glass substrate having the phase-separated structure (Samples BG) are compared. It can be seen that the glass substrate having the structure is less prone to cracks and has improved crack resistance. In addition, it is found that, as the particle size increases up to 100 nm, cracks are less likely to occur and the crack resistance improves as the particle size increases. However, when the particle size exceeds 100 nm, the crack resistance tends to gradually decrease.
[0045]
The particle size of the phase separation was measured by observation with a TEM (transmission electron microscope).
[0046]
The crack resistance of the glass was evaluated by the method proposed by Wada et al. (M. Wada et al. Proc., The Xth ICG, vol. 11, Ceram. Soc., Japan, Kyoto, 1974, p39). . In this method, a sample glass is placed on a stage of a Vickers hardness tester, and a diamond-shaped diamond indenter is pressed against the surface of the sample glass with various loads for 15 seconds. Then, the number of cracks generated from the four corners of the indentation by 15 seconds after unloading was counted, and the ratio to the maximum number of possible cracks (four) was determined to be the crack occurrence rate. The load at which the crack occurrence rate became 50% was defined as "crack resistance". The fact that the crack resistance is large means that a crack is hardly generated even under a high load, that is, the crack resistance is excellent. The crack occurrence rate was measured 20 times with the same load, and the average value was obtained. The measurement was performed at a temperature of 25 ° C. and a humidity of 30%.
[0047]
The density was measured by the well-known Archimedes method, and the coefficient of thermal expansion was obtained by measuring the average coefficient of thermal expansion at 30 to 380 ° C. using a dilatometer.
[0048]
The strain point and the annealing point were measured based on the method of ASTM C336-71, and the softening point was measured based on the method of ASTM C338-73. The viscosity of 10 4.0 ~10 2.5 dPa · s were measured by a platinum ball pulling method.
[0049]
The Young's modulus was measured by a bending resonance method, and the specific Young's modulus was calculated from the measured values of the Young's modulus and the density.
[0050]
Hydrochloric acid resistance was evaluated by immersing each sample in a 10% by weight aqueous hydrochloric acid solution maintained at 80 ° C. for 24 hours, and then visually observing the surface state thereof. The BHF resistance was determined by immersing each sample in buffered hydrofluoric acid composed of 30% by mass of ammonium fluoride and 6% by mass of hydrofluoric acid kept at 20 ° C. for 30 minutes, and then visually observing the surface condition thereof. evaluated. When the surface of the glass substrate became turbid, x was shown, and when there was no change, o was shown.
[0051]
The liquidus temperature was measured by crushing the glass, passing through a standard sieve 30 mesh (500 nm), placing the glass powder remaining on the 50 mesh (300 nm) in a platinum boat, and holding the glass powder in a temperature gradient furnace for 24 hours. Was measured at the temperature at which the precipitates formed.
[0052]
【The invention's effect】
As described above, since the glass substrate of the present invention has excellent crack resistance, it is suitable as a glass substrate used for a flat panel display substrate, a hard disk substrate, and the like, which are required to be thin and lightweight.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a particle size of a phase separation and a crack generation rate.

Claims (5)

質量百分率で、SrO+BaO 0〜6.5%の組成を有するアルミノシリケートガラスであって、且つ、2〜100nmの粒子サイズの分相構造を有することを特徴とするガラス基板。What is claimed is: 1. A glass substrate, which is aluminosilicate glass having a composition of SrO + BaO 0 to 6.5% by mass, and having a phase separation structure with a particle size of 2 to 100 nm. アルミノシリケートガラスが、質量百分率で、SiO 50〜70%、Al 10〜20%、B 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%であることを特徴とする請求項1記載のガラス基板。Aluminosilicate glass is, by mass percentage, 50 to 70% of SiO 2 , 10 to 20% of Al 2 O 3 , 7 to 15% of B 2 O 3 , 0 to 20% of MgO + CaO, and 0 to 6.5% of SrO + BaO. The glass substrate according to claim 1, wherein: 2〜50nmの粒子サイズの分相構造を有し、且つ、ディスプレイ用途に用いられることを特徴とする請求項1または2に記載のガラス基板。The glass substrate according to claim 1, having a phase separation structure having a particle size of 2 to 50 nm, and being used for a display. 質量百分率で、SiO 50〜70%、Al 10〜20%、B 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%の組成を有するアルミノシリケートガラスを、2〜50nmの粒子サイズの分相構造が得られるように、熱処理を行うことを特徴とするガラス基板の製造方法。By mass percentage, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 7~15%, MgO + CaO 0~20%, aluminosilicate glass having a composition of SrO + BaO from 0 to 6.5% A heat treatment is performed so as to obtain a phase-separated structure having a particle size of 2 to 50 nm. 500℃〜ガラスの徐冷点+60℃の温度で、0.5〜300時間保持する熱処理を行うことを特徴とする請求項4に記載のガラス基板の製造方法。The method for producing a glass substrate according to claim 4, wherein a heat treatment is performed at a temperature of 500 ° C. to the annealing point of the glass + 60 ° C. for 0.5 to 300 hours.
JP2002241449A 2002-08-22 2002-08-22 Manufacturing method of glass substrate Expired - Fee Related JP4168320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241449A JP4168320B2 (en) 2002-08-22 2002-08-22 Manufacturing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241449A JP4168320B2 (en) 2002-08-22 2002-08-22 Manufacturing method of glass substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008124418A Division JP4862859B2 (en) 2008-05-12 2008-05-12 Glass substrate

Publications (2)

Publication Number Publication Date
JP2004075494A true JP2004075494A (en) 2004-03-11
JP4168320B2 JP4168320B2 (en) 2008-10-22

Family

ID=32023928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241449A Expired - Fee Related JP4168320B2 (en) 2002-08-22 2002-08-22 Manufacturing method of glass substrate

Country Status (1)

Country Link
JP (1) JP4168320B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269261A (en) * 2005-03-24 2006-10-05 Lintec Corp Composition for forming dielectric layer or insulator layer, green sheet, and flat panel display substrate
JP2006347795A (en) * 2005-06-15 2006-12-28 Hoya Corp Non-alkali glass, its production method, and glass substrate for forming tft (thin film transistor) of liquid crystal display
JP2006347796A (en) * 2005-06-15 2006-12-28 Hoya Corp Glass member, product using the same, and method for production of the product
JP2007039316A (en) * 2005-06-27 2007-02-15 Nippon Electric Glass Co Ltd Glass substrate for display
WO2008149888A1 (en) * 2007-06-08 2008-12-11 Nippon Electric Glass Co., Ltd. Alkali-free glass and alkali-free glass substrate
JP2010105841A (en) * 2008-10-29 2010-05-13 Asahi Glass Co Ltd Method for manufacturing flat display panel
JP2010535146A (en) * 2007-07-31 2010-11-18 コーニング インコーポレイテッド Glass composition suitable for downdraw process and method for producing and using the same
JP2012176887A (en) * 2012-04-23 2012-09-13 Hoya Corp Non-alkali glass, its production method, and glass substrate for forming tft (thin film transistor) of liquid crystal display
WO2015186606A1 (en) * 2014-06-02 2015-12-10 日本電気硝子株式会社 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass
JP2015227272A (en) * 2014-06-02 2015-12-17 日本電気硝子株式会社 Phase-split glass and composite substrate using the same
JP2016050155A (en) * 2014-09-01 2016-04-11 国立大学法人 東京大学 Glass material and method for producing the same
WO2016117406A1 (en) * 2015-01-21 2016-07-28 日本電気硝子株式会社 Phase-separated glass
JPWO2014058054A1 (en) * 2012-10-12 2016-09-05 旭硝子株式会社 Method for producing phase-separated glass and phase-separated glass
JP2016528152A (en) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド Alkali-doped and alkali-free boroaluminosilicate glass
CN108423985A (en) * 2018-04-25 2018-08-21 成都光明光电股份有限公司 Glass composition
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156953A (en) * 1995-12-11 1997-06-17 Nippon Electric Glass Co Ltd Non-alkali glass base plate
WO2000032528A1 (en) * 1998-11-30 2000-06-08 Corning Incorporated Glasses for flat panel displays
JP2001220173A (en) * 2000-01-12 2001-08-14 Carl Zeiss:Fa Aluminoborosilicate glass containing no alkali metal and its use method
JP2001348247A (en) * 2000-05-31 2001-12-18 Asahi Glass Co Ltd Alkaline-free glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156953A (en) * 1995-12-11 1997-06-17 Nippon Electric Glass Co Ltd Non-alkali glass base plate
WO2000032528A1 (en) * 1998-11-30 2000-06-08 Corning Incorporated Glasses for flat panel displays
JP2001220173A (en) * 2000-01-12 2001-08-14 Carl Zeiss:Fa Aluminoborosilicate glass containing no alkali metal and its use method
JP2001348247A (en) * 2000-05-31 2001-12-18 Asahi Glass Co Ltd Alkaline-free glass

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269261A (en) * 2005-03-24 2006-10-05 Lintec Corp Composition for forming dielectric layer or insulator layer, green sheet, and flat panel display substrate
JP2006347795A (en) * 2005-06-15 2006-12-28 Hoya Corp Non-alkali glass, its production method, and glass substrate for forming tft (thin film transistor) of liquid crystal display
JP2006347796A (en) * 2005-06-15 2006-12-28 Hoya Corp Glass member, product using the same, and method for production of the product
JP2007039316A (en) * 2005-06-27 2007-02-15 Nippon Electric Glass Co Ltd Glass substrate for display
KR101210330B1 (en) 2007-06-08 2012-12-10 니폰 덴키 가라스 가부시키가이샤 Alkali-free glass and alkali-free glass substrate
WO2008149888A1 (en) * 2007-06-08 2008-12-11 Nippon Electric Glass Co., Ltd. Alkali-free glass and alkali-free glass substrate
CN102653449A (en) * 2007-06-08 2012-09-05 日本电气硝子株式会社 Alkali-free glass and alkali-free glass substrate
US8455378B2 (en) 2007-06-08 2013-06-04 Nippon Electric Glass Co., Ltd. Alkali-free glass and alkali-free glass substrate
JP2010535146A (en) * 2007-07-31 2010-11-18 コーニング インコーポレイテッド Glass composition suitable for downdraw process and method for producing and using the same
JP2010105841A (en) * 2008-10-29 2010-05-13 Asahi Glass Co Ltd Method for manufacturing flat display panel
JP2012176887A (en) * 2012-04-23 2012-09-13 Hoya Corp Non-alkali glass, its production method, and glass substrate for forming tft (thin film transistor) of liquid crystal display
JPWO2014058054A1 (en) * 2012-10-12 2016-09-05 旭硝子株式会社 Method for producing phase-separated glass and phase-separated glass
JP2016528152A (en) * 2013-08-15 2016-09-15 コーニング インコーポレイテッド Alkali-doped and alkali-free boroaluminosilicate glass
US11168018B2 (en) 2013-08-15 2021-11-09 Corning Incorporated Aluminoborosilicate glass substantially free of alkali oxides
USRE49307E1 (en) 2013-08-15 2022-11-22 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass
WO2015186606A1 (en) * 2014-06-02 2015-12-10 日本電気硝子株式会社 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass
JP2015227272A (en) * 2014-06-02 2015-12-17 日本電気硝子株式会社 Phase-split glass and composite substrate using the same
JP2016050155A (en) * 2014-09-01 2016-04-11 国立大学法人 東京大学 Glass material and method for producing the same
WO2016117406A1 (en) * 2015-01-21 2016-07-28 日本電気硝子株式会社 Phase-separated glass
CN108423985A (en) * 2018-04-25 2018-08-21 成都光明光电股份有限公司 Glass composition

Also Published As

Publication number Publication date
JP4168320B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
JP3858293B2 (en) Alkali-free glass substrate
JP6202353B2 (en) Alkali-free glass
JP3144823B2 (en) Alkali-free glass
JP3666608B2 (en) Alkali-free glass substrate
JP4168320B2 (en) Manufacturing method of glass substrate
JP5429684B2 (en) Tempered glass substrate and manufacturing method thereof
JP5831838B2 (en) Alkali-free glass
JP6256744B2 (en) Alkali-free glass plate
JP3666610B2 (en) Alkali-free glass substrate
JP4305817B2 (en) Alkali-free glass substrate
JP5874316B2 (en) Alkali-free glass
US20120052275A1 (en) Glass substrate, chemically strengthened glass substrate and cover glass, and method for manufactruing the same
JP2002003240A (en) Glass substrate for liquid crystal display
JPS6374935A (en) Glass composition for substrate, having improved chemical resistance
WO1997011920A1 (en) Alkali-free glass substrate
JP2001151534A (en) Glass substrate for liquid crystal display
JP4862859B2 (en) Glass substrate
JPH09263421A (en) Alkali-free glass and flat display panel
JP2013043783A (en) Method for manufacturing tempered glass plate
JP2000044278A (en) Glass substrate for display
JP4686858B2 (en) Glass substrate for flat panel display
JP2002029776A (en) Nonalkali glass excellent in crack resistance
JP2707625B2 (en) Alkali-free glass for display substrates
JP2001122637A (en) Glass substrate for display
JP2008013434A (en) Nonalkali glass excellent in crack resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees