JP4305817B2 - Alkali-free glass substrate - Google Patents

Alkali-free glass substrate Download PDF

Info

Publication number
JP4305817B2
JP4305817B2 JP2002359046A JP2002359046A JP4305817B2 JP 4305817 B2 JP4305817 B2 JP 4305817B2 JP 2002359046 A JP2002359046 A JP 2002359046A JP 2002359046 A JP2002359046 A JP 2002359046A JP 4305817 B2 JP4305817 B2 JP 4305817B2
Authority
JP
Japan
Prior art keywords
glass
glass substrate
alkali
transmittance
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002359046A
Other languages
Japanese (ja)
Other versions
JP2004189535A (en
Inventor
晋吉 三和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002359046A priority Critical patent/JP4305817B2/en
Publication of JP2004189535A publication Critical patent/JP2004189535A/en
Application granted granted Critical
Publication of JP4305817B2 publication Critical patent/JP4305817B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/004Refining agents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイやセンサー等の基板、固体撮像素子のカバーガラスに用いられる無アルカリガラス基板に関するものである。
【0002】
【従来の技術】
従来より、フラットパネルディスプレイやセンサー等の基板、固体撮像素子のカバーガラスとしては、矩形状のガラス基板が広く使用されている。
【0003】
この種のガラス基板の表面には、透明導電膜、絶縁膜、半導体膜、金属膜等が成膜され、しかもフォトリソグラフィーエッチング(フォトエッチング)によって種々の回路やパターンが形成される。これらの成膜、フォトエッチング工程において、ガラス基板は、数百度の熱処理を受けると共に、硫酸、塩酸、アルカリ溶液、フッ酸、バッファードフッ酸等の種々の薬品による処理を受ける。
【0004】
この種のガラス基板には、以下のような特性が要求される。
(1)ガラス中にアルカリ金属酸化物が含有されていると、熱処理時に成膜された半導体物質中にアルカリイオンが拡散し、膜特性の劣化を招くため、実質的にアルカリ金属酸化物を含有しないこと。
(2)フォトエッチング工程において使用される種々の酸、アルカリ等の薬品によって劣化しないような耐薬品性を有すること。
(3)成膜等のTFT(薄膜トランジスタ)素子製造工程でガラス基板が熱収縮してパターンずれを起こさないように、高い歪点、具体的には、640℃以上の歪点を有すること。例えば多結晶シリコンTFT−LCDの場合、その工程温度が600℃以上であるため、このような用途のガラス基板には、歪点が640℃以上であることが要求される。
【0005】
また、これ以外にも、次のような特性が要求される。
(4)ガラス中に基板として好ましくない溶融欠陥が発生しないよう溶融性に優れていること。
(5)耐熱衝撃性を向上させて、熱処理工程中での破損を低減させるために、熱膨張係数が小さいこと。
【0006】
更に、これらのデバイスではガラス基板の透過率はきわめて重要であり、紫外域から可視域において、高い透過率を有するガラス基板が望まれている。
【0007】
例えば、液晶ディスプレイの場合、非発光型ディスプレイであり、光の利用効率が悪いため、可視域におけるガラス基板の透過率は高い方が良い。また、TFT(薄膜トランジスタ)素子は、ガラス基板上に透明導電膜、絶縁膜、半導体膜、金属膜等を成膜した後、ガラス基板の裏面より波長300nm付近の紫外線を照射する背面露光法によるフォトリソグラフィによって形成される。そのため、紫外域におけるガラス基板の透過率も高い方が良い。
【0008】
また、近年、注目されている有機エレクトロルミネッセンスディスプレイの場合、赤、緑、青の有機蛍光体を発光させて表示を行うが、青色の光を発する蛍光体の発光効率が他の蛍光体に比べて低い。そのため、青色の光に対応する波長域におけるガラスの透過率は高い方が良い。
【0009】
【特許文献1】
特開平7−202208号公報
【特許文献2】
特開2001−261366号公報
【0010】
【発明が解決しようとする課題】
Fe23は、ガラス中でFe3+又はFe2+の状態で存在し、特に、Fe3+は、380nm付近に吸収ピークを持ち、紫外域、短波長側の可視域における透過率を低下させる。一般に、安価で大量生産されるガラスは、ガラス原料や製造工程中から多量のFe23がガラス中に混入している。そのため、このようなガラスをディスプレイやセンサーの基板として用いると、紫外域、短波長側の可視域における透過率が低いため、ディスプレイやセンサーとしての性能の低下が懸念されている。
【0011】
ガラス中へのFe23の混入を完全に排除するには、高純度ガラス原料を用い、且つ、原料調合設備等から原料へFe23が混入しないような特別に設計された製造設備を使用する必要があり、製造コストが非常に高くなるため、現実的ではない。
【0012】
本発明の目的は、上記した要求特性項目(1)〜(5)の全てを満足し、しかも、コストを上げることなく、透過率の高い無アルカリガラス基板を提供することである。
【0013】
【課題を解決するための手段】
本発明者は、種々の実験を繰り返した結果、ガラス中にSnO2を添加することで所望の透過率が得られることを見いだし本発明として提案するものである。
【0014】
即ち、本発明の無アルカリガラス基板は、実質的にアルカリ金属酸化物を含まず、質量%で、SnO2 0.01〜0.3%、As23 0〜0.1%、Sb23 0〜1.0%であり、且つ、ガラス中のFeの含有量が、Fe23に換算して、質量%で0.005〜0.03%であることを特徴とする。
【0015】
【作用】
一般に、ガラス基板上のTFTを作製する際に用いられる紫外線は、主として300nmを中心とした波長の紫外線が使用される。このため、波長300nmにおけるガラス基板の透過率は、できるだけ高い方が良く、少なくとも50%以上(好ましくは60%以上)であることが重要である。この透過率が50%未満であると背面露光を行ってTFTを形成する際に時間がかかり、生産性に支障をきたす虞がある。
【0016】
また、液晶ディスプレイは非発光型ディスプレイであるため、光の利用効率の損失は少ないほうが良い。このため、液晶ディスプレイ用ガラス基板の可視域における透過率はできるだけ高い方が良く、板厚0.7mmで波長400〜800nmにおける透過率は89%以上(好ましくは90%以上)であることが重要である。この透過率が89%未満であるとディスプレイの性能が低下する虞がある。
【0017】
そこで、本発明の無アルカリガラス基板においては、ガラス中のAsを0.1%以下に制限し、SnOを0.01〜0.3%添加する。これによりFeの価数を3価(Fe3+)から2価(Fe2+)へ変化させて、板厚0.7mmで波長300nmにおける透過率を50%以上に保ち、且つ、波長400〜800nmにおける透過率を89%以上にしている。
【0018】
ガラス中にSnO2を0.01〜0.3%含有させると、Sn2++2Fe3+→Sn4++2Fe2+の反応が起こり、Feの価数が変化して、Fe2+が増加し、Fe3+が減少すると考えられ、紫外域や短波長側の可視域の透過率が上昇する。SnO2の含有量が0.01%より少ないと、価数変化するFeの量が少なくなり、紫外域や短波長側の可視域の透過率が低くなるため好ましくない。一方、0.3%より多いとSnO2の結晶が析出しやすくなるため好ましくない。SnO2の好ましい範囲は0.05〜0.3%である。尚、Snと同様にFeの価数変化を起こすものとして、CeやTi等が存在するが、これらは、紫外域に吸収を持つため、好ましくない。
【0019】
また、清澄剤として広く使用されているAs23は紫外域に吸収ピークを持つ。更に、SnO2によるFe2+への価数変化を阻害する働きがある。このため、As23の含有量は0.1%以下に制限される。As23の含有量が0.1%より多いと、紫外域の透過率が低下するため好ましくない。好ましくは0.05%以下である。尚、無アルカリガラスにおいて、清澄剤として用いられているAs23の含有量を減らすと、泡のないガラスを得ることは難しくなるが、透過率を高めるために添加しているSnO2が清澄剤としても働くため、Sb23やClを適宜組み合せることで泡のないガラスを得ることができる。但し、Sb23もAs23と同様に紫外域に吸収ピークを持つため、その含有量は1.0%以下に抑えるべきである。
【0020】
また、SnO2の添加によって、Fe2+が増加しすぎると、Fe2+は1080nm付近に吸収ピークを持つため、長波長側の可視透過率が低下し、波長400〜800nmにおける透過率を89%以上に保つことができなくなる虞がある。これを防止するには、全Fe量を調整する必要があり、Fe23に換算して0.005〜0.03%の範囲内に入るようにすることが重要である。Fe23の含有量が0.03%より多くなると、長波長側の可視透過率が低下するため好ましくない。一方、0.005%より少なくしようとすると、コストが高くなりすぎるため好ましくない。Fe23の好ましい範囲は、0.007〜0.03%である。
【0021】
本発明において使用するガラスは無アルカリガラスである。その理由は、ガラス中にアルカリ金属酸化物(Na2O、K2O、Li2O)を含有すると、ガラス中のアルカリ成分が、ガラス基板上に形成された各種の膜やTFT素子の特性を劣化させるばかりか、アルカリ成分と各種の膜が反応することで白濁し、基板の透過率を低下させる虞があるからである。
【0022】
また、本発明のガラス基板の具体的な組成は、耐薬品性、熱収縮性、溶融性、成形性、熱膨張係数等を考慮して、用途に応じて適宜決定すればよい。好適な組成例として、質量百分率で、SiO2 55〜70%、Al23 12〜20%、B23 5〜15%、MgO 0〜5%、CaO 0〜12%、SrO 0〜10%、BaO 0〜10%、ZnO 0〜5%、ZrO2 0〜5%、Cl 0〜0.5%の無アルカリガラスがあげられる。
【0023】
このようにガラス組成を限定した理由は、次のとおりである。
【0024】
SiO2は、ガラスのネットワークフォーマーとなる成分であり、ガラスの耐酸性を向上させたり、ガラスの歪点を上昇させてガラス基板の熱収縮を小さくする効果がある。含有量が55〜70%であれば、耐酸性が高く、熱収縮の小さいガラス基板を得ることができる。好ましい範囲は、57〜67%である。尚、SiO2の含有量が多くなると、ガラスの高温粘度が高くなり、溶融性が悪化すると共にクリストバライトの失透ブツが析出しやすくなる傾向にある。また、含有量が少なくなると、ガラスの耐酸性や歪点が低下する傾向にある。
【0025】
Al23は、ガラスの歪点を上昇させたり、クリストバライトの失透ブツの析出を抑える成分である。含有量が12〜20%であれば、液相温度が低いガラス基板を得ることができる。好ましい範囲は、13〜18%である。尚、Al23の含有量が多くなると、ガラスの耐バッファードフッ酸性が悪化したり、液相温度が上昇して成形しにくくなる傾向にある。また、含有量が少なくなると、ガラスの歪点が低下する傾向にある。
【0026】
23は、融剤として作用し、ガラスの粘性を下げ、溶融性を改善する成分である。含有量が5〜15%であれば、上記効果を得ることができる。好ましい範囲は、7〜14%である。尚、B23の含有量が多くなると、ガラスの歪点が低下したり、耐酸性が悪化する傾向にある。また、含有量が少なくなると、融剤として十分に作用せず溶融性が低下する傾向にある。
【0027】
MgOは、ガラスの歪点を低下させずに高温粘性のみを低下させて、ガラスの溶融性を改善する成分である。含有量が5%以下であれば、ガラスの溶融性を改善することができる。好ましい範囲は、0〜3%である。尚、MgOの含有量が多くなると、エンステタイトの失透ブツが析出しやすくなる。また、耐バッファードフッ酸性が低下し、フォトエッチング工程において、ガラス基板表面が侵食されて、反応生成物がガラス基板表面に付着し、ガラス基板が白濁し易くなる。
【0028】
CaOは、ガラスの歪点を低下させずに高温粘性のみを低下させて、ガラスの溶融性を著しく改善する成分である。含有量が12%以下であれば、ガラスの溶融性を改善することができる。好ましい範囲は、3〜10%である。尚、CaOの含有量が多くなると、耐バッファードフッ酸性が悪化する傾向にある。
【0029】
SrOは、ガラスの耐薬品性と耐失透性を向上させる成分である。含有量が10%以下であれば、上記効果を得ることができる。好ましい範囲は0〜7%である。尚、SrOの含有量が多くなると、ガラスの密度や熱膨張係数が大きくなったり、溶融性が悪化する傾向にある。
【0030】
BaOは、SrOと同様にガラスの耐薬品性と耐失透性を向上させる成分である。含有量が10%以下であれば、上記効果を得ることができる。好ましい範囲は0〜5%である。尚、BaOの含有量が多くなると、ガラスの密度や熱膨張係数が大きくなったり、溶融性が著しく悪化する傾向にある。
【0031】
ZnOは、ガラスの耐バッファードフッ酸性や溶融性を改善する成分である。含有量が3%以下であれば、上記効果を得ることができる。好ましい範囲は、0〜2.5%である。尚、ZnOの含有量が多くなると、ガラスの耐失透性や歪点が低下する傾向にある。
【0032】
尚、MgO、CaO、SrO、BaOのアルカリ土類金属酸化物は、混合して含有させることで、ガラスの溶融性と耐失透性を向上させることができるが、これら成分の合量が多くなると、ガラスの密度が上昇する傾向にあり、ガラス基板の軽量化が困難となるため、合量で11%未満にすることが望ましい。
【0033】
ZrO2は、ガラスの耐酸性を改善する成分である。含有量が1%以下であれば、ガラスの耐酸性を向上させることができる。好ましい範囲は、0〜0.7%である。尚、ZrO2の含有量が多くなると、ジルコンの失透ブツが析出する傾向にある。
【0034】
Clは、ガラスの清澄剤として働く成分である。含有量が多くなると、ガラス融液からの揮発が多くなり、脈理が発生しやすくなるが、含有量が0.5%以下であれば、問題なく上記効果が得られる。好ましい範囲は、0〜0.4%である。
【0035】
次に、本発明の無アルカリガラス基板を製造する方法を説明する。
【0036】
まず、不純物として含まれるFeの量を考慮しながら、無アルカリガラスの原料を選択し、その原料を用いて上記のガラス組成範囲となるように調合する。続いて、調合した原料を連続溶融炉で1520〜1680℃の温度で溶融する。その後、溶融ガラスをスロットダウンドロー法、オーバーフローダウンドロー法、フロート法、ロールアウト法等の方法で板状に成形し徐冷することで無アルカリガラス基板を得ることができる。
【0037】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
【0038】
表1〜4は、本発明の実施例(試料No.1〜20)を、表5は、比較例(試料No.21、22)をそれぞれ示している。
【0039】
【表1】

Figure 0004305817
【0040】
【表2】
Figure 0004305817
【0041】
【表3】
Figure 0004305817
【0042】
【表4】
Figure 0004305817
【0043】
【表5】
Figure 0004305817
【0044】
表中の各試料は、次のようにして作製した。
【0045】
まず表の組成となるようにガラス原料を調合し、白金ポットで1600℃で24時間溶融した後、カーボン板上に流し出し、板状に成形した。次いでこれらの板状ガラスの両面を光学研磨することによって、縦寸法が300mm、横寸法が300mm、厚みが0.7mmの大型で薄肉のガラス基板を作製した。
【0046】
このようにして作製した各試料について、各種の特性を評価した。結果を表に示す。
【0047】
表から明らかなように、実施例である試料No.1〜20はいずれも波長300nmにおける透過率が55%以上と高く、波長400〜800nmにおける透過率も90%以上と高かった。密度は2.43g/cm3以下と低く、基板の軽量化を図ることができる。熱膨張係数は30〜34×10-7/℃であった。歪点は665℃以上と高いため、熱収縮の小さいガラス基板が得られる。また、102.5ポイズに相当する温度は1610℃以下、液相温度は、1120℃以下であるため、溶融性、成形性にも優れていた。更に、耐酸性、耐BHFにも優れていた。
【0048】
一方、比較例である試料No.21及び22は、波長300nmにおける透過率が40%以下と低かった。
【0049】
透過率については、分光光度計にて波長300nm、400nm、600nm、800nmにおける試料の透過率を測定した。
【0050】
密度については、周知のアルキメデス法によって測定した。
【0051】
熱膨張係数は、ディラトメーターを用いて、30〜380℃における平均熱膨張係数を測定したものである。
【0052】
歪点は、ASTM C336−71の方法に基づいて測定し、この値が高いほど、ガラスの熱収縮は小さくなる。logη at 102.5は、高温粘度である102.5ポイズの粘度に相当する温度を示すものであり、この温度が低いほど、溶融性に優れていることになる。
【0053】
液相温度については、以下の要領で行った。まず、各試料をそれぞれ300〜500μmの大きさに粉砕、洗浄し、これを白金製のボートに入れて1000〜1300℃の温度勾配炉に移して24時間保持し、温度勾配炉より白金製のボートを取り出した。その後、白金製のボートからガラスを取り出した。このようにして得られたサンプルを偏光顕微鏡で観察し、結晶の析出点を測定し、これを液相温度とした。
【0054】
耐HCl性は、各試料を80℃に保持された10質量%塩酸水溶液に3時間浸漬した後、それらの表面状態を目視で観察することによって評価した。また、耐バッファードフッ酸性は、各試料を20℃に保持された30質量%弗化アンモニウム、6質量%フッ酸からなるバッファードフッ酸に30分間浸漬した後、それらの表面状態を目視で観察することによって評価した。ガラス基板の表面に全く変化のないものは○、変色したものは×で示した。
【0055】
【発明の効果】
以上のように、本発明の無アルカリガラス基板は、可視域全体に亘って透過率が高いため、フラットパネルディスプレイやセンサー等の基板、固体撮像素子のカバーガラスに用いられるガラス基板として好適である。また、紫外域における透過率も高いため、特に、背面露光によってTFT素子を製作するTFT型アクティブマトリックス液晶ディスプレイに使用される無アルカリガラス基板として好適である。[0001]
[Industrial application fields]
The present invention relates to a flat panel display such as a liquid crystal display, an electroluminescence display, and a field emission display, a substrate such as a sensor, and a non-alkali glass substrate used for a cover glass of a solid-state imaging device.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, rectangular glass substrates have been widely used as substrates for flat panel displays and sensors, and cover glasses for solid-state imaging devices.
[0003]
A transparent conductive film, an insulating film, a semiconductor film, a metal film, and the like are formed on the surface of this type of glass substrate, and various circuits and patterns are formed by photolithography etching (photoetching). In these film forming and photoetching steps, the glass substrate is subjected to heat treatment of several hundred degrees and various treatments such as sulfuric acid, hydrochloric acid, alkaline solution, hydrofluoric acid, and buffered hydrofluoric acid.
[0004]
This type of glass substrate is required to have the following characteristics.
(1) If an alkali metal oxide is contained in the glass, alkali ions diffuse into the semiconductor material formed during the heat treatment, resulting in deterioration of the film characteristics. Don't do it.
(2) To have chemical resistance that does not deteriorate due to various acids, alkalis, and other chemicals used in the photoetching process.
(3) It has a high strain point, specifically, a strain point of 640 ° C. or higher so that the glass substrate does not shrink due to heat shrinkage in the TFT (thin film transistor) element manufacturing process such as film formation. For example, in the case of a polycrystalline silicon TFT-LCD, since the process temperature is 600 ° C. or higher, the glass substrate for such use is required to have a strain point of 640 ° C. or higher.
[0005]
In addition, the following characteristics are required.
(4) The glass has excellent meltability so as not to cause undesirable melting defects as a substrate in the glass.
(5) The coefficient of thermal expansion is small in order to improve the thermal shock resistance and reduce breakage during the heat treatment process.
[0006]
Further, in these devices, the transmittance of the glass substrate is extremely important, and a glass substrate having a high transmittance from the ultraviolet region to the visible region is desired.
[0007]
For example, in the case of a liquid crystal display, since it is a non-light-emitting display and the light use efficiency is poor, the transmittance of the glass substrate in the visible region is preferably high. A TFT (Thin Film Transistor) element is a photo by back exposure method in which a transparent conductive film, an insulating film, a semiconductor film, a metal film, etc. are formed on a glass substrate and then irradiated with ultraviolet rays having a wavelength of about 300 nm from the back surface of the glass substrate. Formed by lithography. Therefore, it is better that the transmittance of the glass substrate in the ultraviolet region is also high.
[0008]
In recent years, in the case of organic electroluminescence displays that have been attracting attention, display is performed by emitting red, green, and blue organic phosphors, but the luminous efficiency of phosphors that emit blue light is higher than that of other phosphors. Low. Therefore, it is better that the transmittance of the glass in the wavelength region corresponding to blue light is high.
[0009]
[Patent Document 1]
JP-A-7-202208 [Patent Document 2]
JP 2001-261366 A
[Problems to be solved by the invention]
Fe 2 O 3 exists in glass in the state of Fe 3+ or Fe 2+ , and in particular, Fe 3+ has an absorption peak in the vicinity of 380 nm and has a transmittance in the visible region in the ultraviolet region and short wavelength side. Reduce. In general, a glass that is inexpensive and mass-produced contains a large amount of Fe 2 O 3 in the glass from the glass raw material and the manufacturing process. Therefore, when such glass is used as a substrate for a display or a sensor, there is a concern that the performance as a display or a sensor is lowered because the transmittance in the visible region on the ultraviolet or short wavelength side is low.
[0011]
Specially designed production equipment that uses high-purity glass raw material and does not mix Fe 2 O 3 into the raw material from raw material preparation equipment, etc., to completely eliminate the mixing of Fe 2 O 3 into the glass This is not practical because the manufacturing cost becomes very high.
[0012]
An object of the present invention is to provide an alkali-free glass substrate that satisfies all of the above-described required characteristic items (1) to (5) and has high transmittance without increasing the cost.
[0013]
[Means for Solving the Problems]
As a result of repeating various experiments, the present inventor has found that a desired transmittance can be obtained by adding SnO 2 into glass, and proposes the present invention.
[0014]
That is, the alkali-free glass substrate of the present invention contains substantially no alkali metal oxide, and is in mass%, SnO 2 0.01 to 0.3%, As 2 O 3 0 to 0.1%, Sb 2. O 3 is 0 to 1.0%, and the Fe content in the glass is 0.005 to 0.03% by mass in terms of Fe 2 O 3 .
[0015]
[Action]
In general, ultraviolet rays having a wavelength centered at 300 nm are mainly used for producing TFTs on a glass substrate. For this reason, the transmittance of the glass substrate at a wavelength of 300 nm should be as high as possible, and it is important that it is at least 50% or more (preferably 60% or more). If the transmittance is less than 50%, it takes time to form a TFT by performing back exposure, which may impair productivity.
[0016]
Further, since the liquid crystal display is a non-luminous display, it is better that the loss of light use efficiency is small. For this reason, the transmittance in the visible region of the glass substrate for liquid crystal display should be as high as possible. It is important that the transmittance at a wavelength of 400 to 800 nm is 89% or more (preferably 90% or more) with a plate thickness of 0.7 mm. It is. If the transmittance is less than 89%, the display performance may be degraded.
[0017]
Therefore, in the alkali-free glass substrate of the present invention, As 2 O 3 in the glass is limited to 0.1% or less, and SnO 2 is added in an amount of 0.01 to 0.3%. As a result, the valence of Fe is changed from trivalent (Fe 3+ ) to divalent (Fe 2+ ), the transmittance at a wavelength of 300 nm is maintained at 50% or more with a plate thickness of 0.7 mm , and at a wavelength of 400 to 800 nm. The transmittance is 89% or more.
[0018]
When 0.01 to 0.3% of SnO 2 is contained in the glass, the reaction of Sn 2+ + 2Fe 3+ → Sn 4+ + 2Fe 2+ occurs, the valence of Fe changes, and Fe 2+ increases. was believed to Fe 3+ is reduced, the transmittance in the visible range of ultraviolet or short wavelength side is increased. When the content of SnO 2 is less than 0.01%, the amount of Fe that changes in valence decreases, and the transmittance in the ultraviolet region and the visible region on the short wavelength side is lowered, which is not preferable. On the other hand, if it exceeds 0.3%, SnO 2 crystals tend to precipitate, which is not preferable. A preferable range of SnO 2 is 0.05 to 0.3%. In addition, Ce, Ti, etc. exist as the thing which causes the valence change of Fe like Sn, However, Since these have absorption in an ultraviolet region, they are not preferable.
[0019]
Further, As 2 O 3 widely used as a fining agent has an absorption peak in the ultraviolet region. Furthermore, it functions to inhibit the valence change to Fe 2+ by SnO 2 . For this reason, the content of As 2 O 3 is limited to 0.1% or less. When the content of As 2 O 3 is more than 0.1%, the transmittance in the ultraviolet region is lowered, which is not preferable. Preferably it is 0.05% or less. In addition, in the alkali-free glass, when the content of As 2 O 3 used as a fining agent is reduced, it becomes difficult to obtain a glass free from bubbles, but SnO 2 added to increase the transmittance is reduced. Since it also acts as a fining agent, a glass free from bubbles can be obtained by appropriately combining Sb 2 O 3 and Cl. However, to have an absorption peak in the ultraviolet region as well as Sb 2 O 3 also As 2 O 3, the content thereof should be kept below 1.0%.
[0020]
Further, the addition of SnO 2, the Fe 2+ increases too much, because Fe 2+ is having an absorption peak around 1080 nm, the visible transmittance is reduced on the long wavelength side, the transmittance at a wavelength of 400 to 800 nm 89 There is a risk that it may not be possible to keep the ratio at more than%. In order to prevent this, it is necessary to adjust the total amount of Fe, and it is important to make it fall within the range of 0.005 to 0.03% in terms of Fe 2 O 3 . If the content of Fe 2 O 3 is more than 0.03%, the visible transmittance on the long wavelength side is lowered, which is not preferable. On the other hand, if the content is less than 0.005%, the cost becomes too high, which is not preferable. A preferable range of Fe 2 O 3 is 0.007 to 0.03%.
[0021]
The glass used in the present invention is alkali-free glass. The reason is that when an alkali metal oxide (Na 2 O, K 2 O, Li 2 O) is contained in the glass, the alkali components in the glass are characteristics of various films and TFT elements formed on the glass substrate. This is because the alkali component and various films react with each other to cause white turbidity and reduce the transmittance of the substrate.
[0022]
In addition, the specific composition of the glass substrate of the present invention may be appropriately determined depending on the application in consideration of chemical resistance, heat shrinkability, meltability, moldability, thermal expansion coefficient, and the like. Preferred compositions embodiment, by mass percentage, SiO 2 55~70%, Al 2 O 3 12~20%, B 2 O 3 5~15%, 0~5% MgO, CaO 0~12%, SrO 0~ Examples include alkali-free glass of 10%, BaO 0 to 10%, ZnO 0 to 5%, ZrO 2 0 to 5%, and Cl 0 to 0.5%.
[0023]
The reason for limiting the glass composition in this way is as follows.
[0024]
SiO 2 is a component that becomes a glass network former, and has the effect of improving the acid resistance of the glass and increasing the strain point of the glass to reduce the thermal shrinkage of the glass substrate. When the content is 55 to 70%, a glass substrate having high acid resistance and low thermal shrinkage can be obtained. A preferred range is 57-67%. In addition, when the content of SiO 2 increases, the high temperature viscosity of the glass increases, the meltability deteriorates, and the devitrification bristles of cristobalite tend to precipitate. Moreover, when the content decreases, the acid resistance and strain point of the glass tend to decrease.
[0025]
Al 2 O 3 is or increase the strain point of glass and is a component for suppressing the precipitation of cristobalite devitrification stones. When the content is 12 to 20%, a glass substrate having a low liquidus temperature can be obtained. A preferred range is 13-18%. In addition, when the content of Al 2 O 3 increases, the buffered hydrofluoric acid resistance of the glass tends to deteriorate, or the liquidus temperature tends to increase, making it difficult to form. Moreover, when the content decreases, the strain point of the glass tends to decrease.
[0026]
B 2 O 3 is a component that acts as a flux, lowers the viscosity of the glass, and improves the meltability. If content is 5 to 15%, the said effect can be acquired. A preferable range is 7 to 14%. In addition, when the content of B 2 O 3 increases, the strain point of the glass tends to decrease or the acid resistance tends to deteriorate. On the other hand, when the content is reduced, it does not sufficiently act as a flux and the meltability tends to decrease.
[0027]
MgO is a component that improves the meltability of glass by lowering only the high temperature viscosity without lowering the strain point of the glass. If content is 5% or less, the meltability of glass can be improved. A preferable range is 0 to 3%. In addition, when the content of MgO increases, the devitrification bumps of enstatite are likely to precipitate. In addition, the resistance to buffered hydrofluoric acid is lowered, and in the photoetching process, the glass substrate surface is eroded, the reaction product adheres to the glass substrate surface, and the glass substrate is likely to become cloudy.
[0028]
CaO is a component that remarkably improves the meltability of the glass by reducing only the high temperature viscosity without reducing the strain point of the glass. If content is 12% or less, the meltability of glass can be improved. A preferred range is 3 to 10%. In addition, when content of CaO increases, there exists a tendency for buffered hydrofluoric acid resistance to deteriorate.
[0029]
SrO is a component that improves the chemical resistance and devitrification resistance of glass. If the content is 10% or less, the above effect can be obtained. A preferable range is 0 to 7%. In addition, when the SrO content increases, the density and thermal expansion coefficient of the glass tend to increase or the meltability tends to deteriorate.
[0030]
BaO, like SrO, is a component that improves the chemical resistance and devitrification resistance of glass. If the content is 10% or less, the above effect can be obtained. A preferable range is 0 to 5%. In addition, when the content of BaO increases, the density and thermal expansion coefficient of the glass tend to increase, and the meltability tends to deteriorate significantly.
[0031]
ZnO is a component that improves the buffered hydrofluoric acid resistance and meltability of glass. If the content is 3% or less, the above effect can be obtained. A preferable range is 0 to 2.5%. In addition, when content of ZnO increases, it exists in the tendency for the devitrification resistance and strain point of glass to fall.
[0032]
The alkaline earth metal oxides of MgO, CaO, SrO, and BaO can improve the meltability and devitrification resistance of the glass by mixing them, but the total amount of these components is large. Then, the density of the glass tends to increase, and it becomes difficult to reduce the weight of the glass substrate. Therefore, the total amount is preferably less than 11%.
[0033]
ZrO 2 is a component that improves the acid resistance of the glass. If content is 1% or less, the acid resistance of glass can be improved. A preferable range is 0 to 0.7%. In addition, when the content of ZrO 2 increases, the devitrification of zircon tends to precipitate.
[0034]
Cl is a component that acts as a glass refining agent. If the content increases, volatilization from the glass melt increases and striae are likely to occur. However, if the content is 0.5% or less, the above effect can be obtained without problems. A preferable range is 0 to 0.4%.
[0035]
Next, a method for producing the alkali-free glass substrate of the present invention will be described.
[0036]
First, while considering the amount of Fe contained as impurities, a non-alkali glass raw material is selected, and the raw material is used to prepare the glass composition range described above. Subsequently, the prepared raw materials are melted at a temperature of 1520 to 1680 ° C. in a continuous melting furnace. Thereafter, the alkali-free glass substrate can be obtained by forming the molten glass into a plate shape by a method such as a slot down draw method, an overflow down draw method, a float method, or a roll-out method and gradually cooling it.
[0037]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0038]
Tables 1 to 4 show examples of the present invention (sample Nos. 1 to 20), and Table 5 shows comparative examples (samples No. 21 and 22), respectively.
[0039]
[Table 1]
Figure 0004305817
[0040]
[Table 2]
Figure 0004305817
[0041]
[Table 3]
Figure 0004305817
[0042]
[Table 4]
Figure 0004305817
[0043]
[Table 5]
Figure 0004305817
[0044]
Each sample in the table was prepared as follows.
[0045]
First, glass raw materials were prepared so as to have the composition shown in the table, melted in a platinum pot at 1600 ° C. for 24 hours, poured out on a carbon plate, and formed into a plate shape. Subsequently, both sides of these plate-like glasses were optically polished to produce a large and thin glass substrate having a longitudinal dimension of 300 mm, a transverse dimension of 300 mm, and a thickness of 0.7 mm.
[0046]
Various characteristics were evaluated for each sample thus prepared. The results are shown in the table.
[0047]
As can be seen from the table, the sample No. 1 to 20 all had a high transmittance of 55% or more at a wavelength of 300 nm, and a high transmittance of 90% or more at a wavelength of 400 to 800 nm. The density is as low as 2.43 g / cm 3 or less, and the weight of the substrate can be reduced. The thermal expansion coefficient was 30 to 34 × 10 −7 / ° C. Since the strain point is as high as 665 ° C. or higher, a glass substrate with small thermal shrinkage can be obtained. Further, since the temperature corresponding to 10 2.5 poise was 1610 ° C. or lower and the liquidus temperature was 1120 ° C. or lower, the meltability and moldability were also excellent. Furthermore, it was excellent in acid resistance and BHF resistance.
[0048]
On the other hand, sample No. which is a comparative example. 21 and 22 had a low transmittance of 40% or less at a wavelength of 300 nm.
[0049]
About the transmittance | permeability, the transmittance | permeability of the sample in wavelength 300nm, 400nm, 600nm, 800nm was measured with the spectrophotometer.
[0050]
The density was measured by the well-known Archimedes method.
[0051]
The thermal expansion coefficient is obtained by measuring an average thermal expansion coefficient at 30 to 380 ° C. using a dilatometer.
[0052]
The strain point is measured based on the method of ASTM C336-71, and the higher this value, the smaller the thermal shrinkage of the glass. log [eta at 10 2.5 is indicative of a temperature corresponding to a viscosity of 10 2.5 poise at a high temperature viscosity, the higher the temperature is lower, so that excellent in meltability.
[0053]
About liquid phase temperature, it carried out in the following ways. First, each sample was pulverized and washed to a size of 300 to 500 μm, put into a platinum boat, transferred to a temperature gradient furnace at 1000 to 1300 ° C. and held for 24 hours. I took out the boat. Thereafter, the glass was taken out from the platinum boat. The sample thus obtained was observed with a polarizing microscope, the crystal precipitation point was measured, and this was taken as the liquidus temperature.
[0054]
The HCl resistance was evaluated by immersing each sample in a 10% by mass hydrochloric acid aqueous solution maintained at 80 ° C. for 3 hours and then visually observing the surface state thereof. Buffered hydrofluoric acid resistance is determined by immersing each sample in buffered hydrofluoric acid composed of 30% by mass ammonium fluoride and 6% by mass hydrofluoric acid maintained at 20 ° C. for 30 minutes, and then visually checking the surface condition of each sample. Evaluation was made by observation. The case where there was no change on the surface of the glass substrate was indicated by ○, and the case where the color changed was indicated by ×.
[0055]
【The invention's effect】
As described above, the alkali-free glass substrate of the present invention has a high transmittance over the entire visible range, and thus is suitable as a glass substrate used for substrates such as flat panel displays and sensors, and cover glasses for solid-state imaging devices. . Moreover, since the transmittance in the ultraviolet region is high, it is particularly suitable as a non-alkali glass substrate used for a TFT type active matrix liquid crystal display in which a TFT element is produced by back exposure.

Claims (7)

実質的にアルカリ金属酸化物を含まず、質量%で、SnO 0.01〜0.3%、As 0〜0.1%、Sb 0〜1.0%であり、且つ、ガラス中のFeの含有量が、Feに換算して、質量%で0.005〜0.03%であることを特徴とする無アルカリガラス基板。Substantially free of alkali metal oxides, in mass%, SnO 2 0.01~0.3%, As 2 O 3 0~0.1%, a Sb 2 O 3 0~1.0%, and the content of Fe in the glass, in terms of Fe 2 O 3, the alkali-free glass substrate, which is a from 0.005 to 0.03% in mass%. 質量%で、Sb 0〜0.25%、B 5〜15%、MgO 0〜3%であることを特徴とする請求項1に記載の無アルカリガラス基板。 2. The alkali-free glass substrate according to claim 1, wherein the alkali-free glass substrate is Sb 2 O 3 0 to 0.25%, B 2 O 3 5 to 15%, and MgO 0 to 3% by mass%. ガラス基板の透過率が、板厚0.7mmで波長300nmにおいて50%以上、波長400〜800nmにおいて89%以上であることを特徴とする請求項1または2に記載の無アルカリガラス基板。  The alkali-free glass substrate according to claim 1 or 2, wherein the transmittance of the glass substrate is 50% or more at a wavelength of 300 nm and 89% or more at a wavelength of 400 to 800 nm with a thickness of 0.7 mm. 質量%で、SiO 55〜70%、Al 12〜20%、B 5〜15%、MgO 0〜5%、CaO 0〜12%、SrO 0〜10%、BaO 0〜10%、ZnO 0〜5%、ZrO 0〜5%、Cl 0〜0.5%有することを特徴とする請求項1〜3のいずれかに記載の無アルカリガラス基板。By mass%, SiO 2 55~70%, Al 2 O 3 12~20%, B 2 O 3 5~15%, 0~5% MgO, CaO 0~12%, SrO 0~10%, BaO 0~ 10%, 0~5% ZnO, ZrO 2 0~5%, the alkali-free glass substrate according to claim 1, characterized in that it comprises containing Cl 0 to 0.5%. Ti成分およびCe成分を含有しないことを特徴とする請求項1〜4のいずれかに記載の無アルカリガラス基板。The alkali-free glass substrate according to claim 1, which does not contain a Ti component and a Ce component. オーバーフローダウンドロー法またはフロート法で成形されてなることを特徴とする請求項1〜5のいずれかに記載の無アルカリガラス基板。The alkali-free glass substrate according to any one of claims 1 to 5, which is formed by an overflow downdraw method or a float method. フラットパネルディスプレイに用いることを特徴とする請求項1〜6のいずれかに記載の無アルカリガラス基板。It uses for a flat panel display, The alkali free glass substrate in any one of Claims 1-6 characterized by the above-mentioned.
JP2002359046A 2002-12-11 2002-12-11 Alkali-free glass substrate Expired - Lifetime JP4305817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002359046A JP4305817B2 (en) 2002-12-11 2002-12-11 Alkali-free glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002359046A JP4305817B2 (en) 2002-12-11 2002-12-11 Alkali-free glass substrate

Publications (2)

Publication Number Publication Date
JP2004189535A JP2004189535A (en) 2004-07-08
JP4305817B2 true JP4305817B2 (en) 2009-07-29

Family

ID=32758550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002359046A Expired - Lifetime JP4305817B2 (en) 2002-12-11 2002-12-11 Alkali-free glass substrate

Country Status (1)

Country Link
JP (1) JP4305817B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5201519B2 (en) * 2004-10-01 2013-06-05 日本電気硝子株式会社 Display board
JP5013308B2 (en) * 2005-06-27 2012-08-29 日本電気硝子株式会社 Glass substrate for display
CN102603183B (en) * 2005-06-28 2015-04-15 康宁股份有限公司 Alkali-free glass and its manufacture method
DE102005039377A1 (en) * 2005-08-19 2007-02-22 Schott Ag Production of aluminosilicate float glass for flat display screens, especially TFT displays, involves purifying the melt before floating, using a combination of arsenic-III oxide and tin-IV oxide
DE102005039378A1 (en) * 2005-08-19 2007-02-22 Schott Ag Method for avoiding surface defects in floated flat glass
EP1996525B1 (en) * 2006-02-10 2019-05-22 Corning Incorporated Glass compositions having high thermal and chemical stability and methods of making thereof
JP5703535B2 (en) * 2006-05-23 2015-04-22 日本電気硝子株式会社 Alkali-free glass substrate
JP2013173670A (en) * 2006-05-23 2013-09-05 Nippon Electric Glass Co Ltd Alkali-free glass and alkali-free glass substrate
JP5071878B2 (en) * 2006-09-12 2012-11-14 日本電気硝子株式会社 Alkali-free glass and alkali-free glass substrate using the same
US7534734B2 (en) 2006-11-13 2009-05-19 Corning Incorporated Alkali-free glasses containing iron and tin as fining agents
JP5808069B2 (en) * 2007-02-16 2015-11-10 日本電気硝子株式会社 Glass substrate for solar cell
JP5435394B2 (en) * 2007-06-08 2014-03-05 日本電気硝子株式会社 Tempered glass substrate and manufacturing method thereof
JP5234387B2 (en) * 2007-06-12 2013-07-10 日本電気硝子株式会社 Alkali-free glass, alkali-free glass substrate and method for producing the same
US7709406B2 (en) * 2007-07-31 2010-05-04 Corning Incorporation Glass compositions compatible with downdraw processing and methods of making and using thereof
DE102008005857A1 (en) * 2008-01-17 2009-07-23 Schott Ag Alkali-free glass
TWI494286B (en) 2009-03-19 2015-08-01 Nippon Electric Glass Co Alkali-free glass
JP5874304B2 (en) * 2010-11-02 2016-03-02 日本電気硝子株式会社 Alkali-free glass
WO2012132449A1 (en) * 2011-03-31 2012-10-04 AvanStrate株式会社 Method for producing glass substrate
KR101528396B1 (en) * 2011-07-01 2015-06-11 아반스트레이트 가부시키가이샤 Glass substrate for flat pannel display
JP5201542B2 (en) * 2011-08-24 2013-06-05 日本電気硝子株式会社 Display board
EP3444229A1 (en) 2012-12-21 2019-02-20 Corning Incorporated Glass with improved total pitch stability
US20140309099A1 (en) * 2013-04-15 2014-10-16 Ppg Industries Ohio, Inc. Low iron, high redox ratio, and high iron, high redox ratio, soda-lime-silica glasses and methods of making same
CN113060935A (en) 2013-08-15 2021-07-02 康宁股份有限公司 Alkali-doped and alkali-free boroaluminosilicate glasses
JP6584013B2 (en) 2013-08-15 2019-10-02 コーニング インコーポレイテッド Glass with medium to high CTE and glass article provided with the same
WO2016115685A1 (en) * 2015-01-20 2016-07-28 Schott Glass Technologies (Suzhou) Co. Ltd. Low cte glass with high uv-transmittance and solarization resistance
CN106746601B (en) 2016-12-30 2019-06-04 东旭集团有限公司 It is used to prepare the composition, glassware and purposes of glass
TWI809029B (en) 2018-01-15 2023-07-21 美商康寧公司 Dimensionally stable fast etching glasses
TWI814817B (en) 2018-05-01 2023-09-11 美商康寧公司 Low alkali high transmission glasses

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3897194B2 (en) * 1997-07-24 2007-03-22 日本電気硝子株式会社 Alkali-free glass and method for producing the same
WO1999033759A1 (en) * 1997-12-26 1999-07-08 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent glass, ultraviolet/infrared absorbent glass plate, ultraviolet/infrared absorbent glass plate coated with colored film, and window glass for vehicle
JP2000103625A (en) * 1998-07-31 2000-04-11 Hoya Corp Production of glass material and production of glass fiber
DE19934072C2 (en) * 1999-07-23 2001-06-13 Schott Glas Alkali-free aluminoborosilicate glass, its uses and processes for its manufacture
JP2001151534A (en) * 1999-11-25 2001-06-05 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display
JP2001261366A (en) * 2000-03-22 2001-09-26 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display, and liquid crystal display
DE10034985C1 (en) * 2000-07-19 2001-09-06 Schott Glas Production of an alkali-free aluminosilicate glass used as a substrate glass for displays comprises adding tin oxide as refining agent to the starting materials, melting the glass and hot molding the glass
JP2002308643A (en) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd Alkali-free glass and glass substrate for display
JP2002293571A (en) * 2001-03-30 2002-10-09 Nippon Electric Glass Co Ltd Glass for illumination

Also Published As

Publication number Publication date
JP2004189535A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4305817B2 (en) Alkali-free glass substrate
JP4789059B2 (en) Alkali-free glass substrate
JP2990379B2 (en) Alkali-free glass substrate
US6881692B2 (en) Alkali-free glass and glass plate for a display
JP3988456B2 (en) Glass and glass substrate for display
JP4453240B2 (en) Non-alkali glass and glass substrate for display using the same
JP3800657B2 (en) Alkali-free glass and flat display panel
JP3666610B2 (en) Alkali-free glass substrate
JP6801651B2 (en) Glass
KR101329633B1 (en) Method for producing glass substrate
JP4603702B2 (en) Aluminoborosilicate glass free of alkali metals and use thereof
JP3666608B2 (en) Alkali-free glass substrate
JP5397593B2 (en) Glass substrate
JP4789058B2 (en) Alkali-free glass substrate
WO2007138832A1 (en) Nonalkaline glass and nonalkaline glass substrates
JP2004091244A (en) Alkali-free glass substrate and method for manufacturing the same
JP3901757B2 (en) Alkali-free glass, liquid crystal display panel and glass plate
JP7486446B2 (en) Glass
JP5234387B2 (en) Alkali-free glass, alkali-free glass substrate and method for producing the same
JP2001348247A (en) Alkaline-free glass
JP5071878B2 (en) Alkali-free glass and alkali-free glass substrate using the same
KR102229428B1 (en) Alkali-free glass
JP5246605B2 (en) Glass substrate for liquid crystal display and liquid crystal display
JP5446030B2 (en) Glass substrate
JP2008001588A (en) Alkali-free glass and alkali-free glass substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090423

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4305817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120515

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130515

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140515

Year of fee payment: 5

EXPY Cancellation because of completion of term