WO2016115685A1 - Low cte glass with high uv-transmittance and solarization resistance - Google Patents

Low cte glass with high uv-transmittance and solarization resistance Download PDF

Info

Publication number
WO2016115685A1
WO2016115685A1 PCT/CN2015/071159 CN2015071159W WO2016115685A1 WO 2016115685 A1 WO2016115685 A1 WO 2016115685A1 CN 2015071159 W CN2015071159 W CN 2015071159W WO 2016115685 A1 WO2016115685 A1 WO 2016115685A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
mol
transmittance
low cte
nbo
Prior art date
Application number
PCT/CN2015/071159
Other languages
French (fr)
Inventor
Junming Xue
Wenliang PING
Huiyan Fan
Jose Zimmer
Hiroshi Kuroki
Original Assignee
Schott Glass Technologies (Suzhou) Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott Glass Technologies (Suzhou) Co. Ltd. filed Critical Schott Glass Technologies (Suzhou) Co. Ltd.
Priority to JP2017538431A priority Critical patent/JP6827934B2/en
Priority to CN201580068003.1A priority patent/CN107108333B/en
Priority to PCT/CN2015/071159 priority patent/WO2016115685A1/en
Priority to TW105101696A priority patent/TWI667214B/en
Publication of WO2016115685A1 publication Critical patent/WO2016115685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass

Definitions

  • the present application relates to a low CTE glass with high UV-transmittance and solarization resistance for the use as glass carrier wafer.
  • the invention also concerns a glass carrier wafer made from the low CTE glass and a use thereof as carrier wafer for the processing of a silicon substrate.
  • Thinning silicon substrates in order to account for the continuous demand for size reduction of e.g. integrated circuits has become a common process in semiconductor industries.
  • Silicon carrier wafers have been widely used as mechanical carriers for the thinning and back grinding of the silicon substrates in order to facilitate handling of the fragile thinned substrates.
  • the silicon substrate is thereby generally bonded to the carrier wafer by an adhesive. De-bonding of the silicon substrate after processing from the carrier wafer can be achieved by e.g. solvent-release or thermal-release, dependent on the adhesive.
  • glass carrier wafer material Due to its advantageous properties as e.g. optical transparency for visual inspection and other electro-magnetic radiation based processing technologies, glass has been used as carrier wafer material.
  • glass carrier wafers allow for a de-bonding method by irradiation with electro-magnetic radiation.
  • the bonding adhesive in this case is sensitive to a certain kind of electro-magnetic radiation and can be irradiated through the transparent wafer in order to reduce or eliminate the adhesive effect (deactivation) .
  • Commonly used adhesives can be typically deactivated by irradiation with UV laser radiation (laser-release) .
  • the UV-laser radiation is usually at wavelengths of 248 nm or 308 nm, but can also be at other wavelengths dependent on the adhesive. In order to achieve a sufficient de-bonding effect, it is generally required that the UV-transmittance at the corresponding wavelength is higher than 20%e.g. at a carrier wafer thickness of 0.5 mm.
  • a general problem arising during UV laser-release is solarization of the glass carrier wafer i.e. degeneration in transmittance due to the irradiation by the laser radiation. This becomes a particular problem if a glass carrier wafer is repeatedly exposed to the laser radiation. Solarization can thus significantly limit the recycling lifetime of a glass carrier wafer.
  • the use of glass carrier wafers in semiconductor industries therefore also requires glasses with high solarization resistance in order to yield a long recycling lifetime and ultimately reduce processing cost.
  • a known method for improving the solarization resistance is adding controlled amounts of CeO 2 , Fe 2 O 3 , TiO 2 , SnO 2 , As 2 O 3 , MnO 2 and V 2 O 5 , but this will block (cut off) the UV-transmittance at a wavelength range of less than 300 nm.
  • Another method of improving the solarization resistance is not using any UV sensitive agent as mentioned above or increasing the content of BO 3 in the borosilicate glass (see e.g. US 5,547,904 A, Schott AG; US 5,599,753 A, Jenaer Glaswerk GmbH; US 5,610,108 A, Schott Glaswerke) .
  • the borosilicate glass can have as high a UV-transmittance at the wavelength of 248 nm as possible, i.e. much higher than 20%.
  • the borosilicate glasses disclosed in these documents are not suitable to be used as carrier glass wafer for silicon back grinding and thinning processes for several reasons.
  • Low CTE glass generally refers to a glass with a CTE equal or smaller than 4.0 ppm/K.
  • a low CTE glass with a high UV-transmittance and high solarization resistance comprises an alkaline metal oxide free composition as follows (in percentage of mole) :
  • MgO+CaO+SrO+BaO amounts to 3 to 25 mol-%and the average number of non-bridging oxygen per polyhedron (NBO) is equal or larger than-0.08 and equal or smaller than-0.38.
  • NBO Non-Bridging Oxygen
  • the structure of the network structure can be characterized with four parameters X, Y, Z and R, defined as follows:
  • X average number of non-bridging oxygen per polyhedron, i.e. NBO;
  • Y average number of bridging oxygen per polyhedron
  • R ratio of total number of oxygen to total number of network formers.
  • R can be deduced from the molar composition of the low CTE glass.
  • the four parameters X, Y, Z and R can be calculated according the following formulas:
  • the alkaline metal oxide free low CTE glass with NBO equal or larger than-0.08 and equal or smaller than-0.38 can achieve a UV-transmittance higher than 20%at the wavelength of 248 nm, rendering the glass particularly useful in applications as carrier wafers in semiconductor industry.
  • the alkaline metal oxide free composition comprises SiO 2 in the range from 55 to 70 mol-%, and B 2 O 3 in the range from 14-20 mol-%, where preferably the NBO is equal or smaller than-0.38.
  • the alkaline metal oxide free composition comprises SiO 2 in the range from 65 to 75 mol-%, and B 2 O 3 in the range from 5-10 mol-%, where preferably the NBO is equal or larger than-0.08.
  • the alkaline metal oxide free composition comprises MgO in the range from 2-15 mol-%and/or CaO in the range from 0-10 mol-%, in particular 0-5 mol-%, and/or BaO in the range from 0-10 mol-%, in particular 0-5 mol-%.
  • the present invention alternatively provides a low CTE glass comprising an alkaline earth metal oxide free composition as follows (in percentage of mole) :
  • the NBO of the alkaline earth metal oxide free composition is equal or larger than-0.25 and equal or smaller than-0.10.
  • the alkaline earth metal oxide free low CTE glass can achieve a UV-transmittance higher than 25%at the wavelength of 248 nm, rendering the glass particularly useful in applications as carrier wafers in semiconductor industry.
  • the UV-transmittance can be further increased by adjusting the NBO to a range equal or larger than-0.25 and equal or smaller than-0.10.
  • the low CTE glass comprising an alkaline earth metal oxide free composition comprises K 2 O in the range from 0 to 3 mol-%.
  • the alkaline earth metal oxide free composition comprises Na 2 O in the range from 0-6 mol-%and more preferably in the range from 1 to 5.5 mol-%.
  • the low CTE glass is preferably essentially free of Li 2 O in order to prevent contamination of a silicon substrate by lithium ions.
  • “Essentially free” hereby refers to a content of less than 0.01 mol-%.
  • the low CTE glass of the invention has a UV-transmittance at a wavelength of 248 nm that is equal or larger than 20%, preferably equal or larger than 22%and, in the case of the alkaline earth metal oxide free low CTE glass, equal or larger than 25%.
  • the UV-transmittance at wavelengths larger than 248 nm and smaller than 780 nm thereby is preferably equal or higher than the UV-transmittance at 248 nm.
  • the low CTE glass also has a solarization resistance of lower than 1%loss in transmittance after 100’000 mJ/cm 2 UV energy dosage at a wavelength of 248 nm irradiated by laser.
  • the UV-transmittance at a wavelength of 248 nm can be further improved if the low CTE glass has a content of Fe 2 O 3 of less than 0.01 mol-%.
  • Such high purity glasses are expensive but can nevertheless be preferred for a given requirement.
  • the low CTE glass has a transition temperature T g higher than 550°C, preferably higher than 650°Cand further preferably higher than 700°C.
  • the low CTE glass has a coefficient of thermal expansion (CTE) equal or larger than 2.0 ppm/K and equal or less than 4.0 ppm/K.
  • CTE coefficient of thermal expansion
  • the CTE of the glass is close to the CTE of the silicon substrate (about 3 ppm/K) in order to avoid warps or cracks that can occur due to a mismatch of CTE between glass carrier wafer and silicon substrate.
  • the low CTE glass of the present invention is provided as a glass wafer, in particular with a thickness in the range from 0.05 mm to 1.2 mm, preferably in the range from 0.1 mm to 0.7 mm.
  • the thicknesses can in particular be equal or smaller than 1.2 mm, equal or smaller than 0.7 mm, equal or smaller than 0.5 mm, equal or smaller than 0.25 mm, equal or smaller than 0.1 mm, or equal or smaller than 0.05 mm.
  • Other preferred selected thicknesses are 100 ⁇ m, 200 ⁇ m, 250 ⁇ m, 400 ⁇ m, 500 ⁇ m, 550 ⁇ m, 700 ⁇ m or 1000 ⁇ m.
  • the surface dimensions of the glass wafer preferably are approximately 15 cm, 20 cm or 30 cm, or preferably approximately 6” , 8” or 12” .
  • the shape of the glass wafer can be rectangular or circular as well as elliptical. Other shapes and dimensions can also be applied if the specific application so requires.
  • the glass carrier wafer made of the present low CTE glass can have a high UV-transmittance at a wavelength of 248 nm, i.e. a UV-transmittance larger than 20%, a good solarization resistance, i.e. less than 1%loss in transmittance after 100’000 mJ/cm 2 UV energy dosage by laser irradiation at 248 nm wavelength, and a long recycling lifetime, i.e. at least 500 cycles without significant degradation.
  • the invention further concerns a bonded article, including a glass carrier wafer made form a low CTE glass according to the invention and a silicon substrate bonded thereto.
  • the silicon substrate is preferably bonded to the glass carrier wafer by an adhesive, which can preferentially be deactivated by irradiation with UV-radiation, in particular by laser-radiation at a wavelength of preferably 248 nm or alternatively 308 nm. Deactivation hereby means that the adhesive force of the adhesive layer can be sufficiently reduced or eliminated by irradiation with UV-radiation for the de-bonding of the silicon substrate from the glass carrier wafer.
  • the glass carrier wafer according to the invention is preferably used as a carrier wafer for the processing of a silicon substrate, in particular during thinning and/or back grinding of the silicon substrate.
  • the silicon substrate preferably adheres to the glass carrier wafer, in particular by means of an adhesive layer, and is handled via the glass carrier wafer during processing.
  • the person skilled in the art can immediately gather from the present disclosure how, starting from a given low CTE glass composition, a high UV-transmittance can be achieved with limited effort by adjusting the NBO number.
  • Fig. 1 a sectional view of a bonded article with a glass carrier waver processed by laser irradiation during a de-bonding process
  • Fig. 2 UV transmittance at a wavelength of 248 nm in relation to the NBO for exemplary embodiments
  • Fig. 3 a diagram of spectral transmittance for several glass compositions
  • Fig. 4 a comparative example of the UV-transmittance between high purity (low Fe 2 O 3 content) glass according to a preferred embodiment of the invention and a commercial grade glass.
  • FIG. 1 schematically shows a bonded article including a glass carrier wafer 2 during a de-bonding process by laser-release.
  • a bonded article 1 comprises a glass carrier wafer 2 made from a glass according to the invention and a silicon substrate 3 which are bonded together by an adhesive layer 4 that can be deactivated by irradiation of electro-magnetic radiation.
  • the adhesive layer 4 can be deactivated by UV-radiation at a wavelength of 248 nm such that the adhesive force is reduced or eliminated allowing for the de-bonding of the silicon substrate 3.
  • the de-bonding (laser-release) is accomplished by irradiating the adhesive layer 4 by a laser 5 through the glass carrier wafer 2.
  • the wafer is mounted on a computer numerical control (CNC) controlled stage (not shown) and is moved beneath the stationary laser beam 5.
  • CNC computer numerical control
  • the process details depend on the capabilities of laser and of the moving stage.
  • the 248 nm laser 5 with maximum pulse energy of 800 mJ is run at 30 Hz pulse repetition rate and is defocused to deliver 200 mJ/cm 2 over a target area 6 with size 1.01 mm x 1.01 mm.
  • the low CTE glass/silicon bonded article 1 is moved beneath the pulsed beam 5 at 30 mm/sec, so that pulses overlap by 10 ⁇ m. Under these conditions, the glass carrier wafer 2 was cleanly de-bonded from the silicon substrate 3 at a rate of 20 cm 2 /min.
  • Table 1 below shows some general parameters of the de-bonding process. From table 1, it can be seen that the glass carrier wafer 2 can bear at least 500 recycles without significant loss in UV-transmittance i.e. has a high solarization resistance.
  • the glass carrier wafer 2 according to the invention can bear at least 100’000 mJ/cm 2 irradiation at wavelength of 248 nm from UV laser with a degradation of the transmittance at this wavelength of much less than 1%.
  • Parameter Value Focus point 1.01mm x 1.01mm Moving speed 30 mm/sec Defocused UV energy dosage 200 mJ/cm 2 UV energy dosage after 10 recycles 2000 mJ/cm 2 UV energy dosage after 20 recycles 4000 mJ/cm 2 UV energy dosage after 50 recycles 10000 mJ/cm 2 UV energy dosage after 100 recycles 20000 mJ/cm 2 UV energy dosage after 500 recycles 100000 mJ/cm 2
  • the present application provides a low CTE glass with a high UV-transmittance and high solarization resistance, which comprises an alkaline metal oxide free composition as follows (in mol-%) :
  • MgO+CaO+SrO+BaO amounts to 3 to 25 mol-%and the average number of NBO is equal or larger than-0.08 and equal or smaller than-0.38.
  • Table 2 listed below shows eight samples according to this aspect of the invention (No. 1-5, 13-15) and seven comparative samples (No. 6-12) of alkaline metal oxide free low CTE glasses (examples A) .
  • the NBO number is equal or larger than-0.08 or equal or smaller than-0.38, have a UV-transmittance at a wavelength of 248 nm that is higher than 20%.
  • the exceptionally high UV-transmittance of sample No. 4 is due to an abnormal effect of the specific BaO content.
  • Figure 3 shows a diagram of the spectral transmittance of several glass compositions according to the first aspect of the invention in the wavelength range from 200 nm to 350 nm.
  • the fine dotted line corresponds to sample No. 11 and serves as a benchmark for the glass compositions according to the invention.
  • the dash-dotted line corresponds to sample No. 13 having an NBO number of-0.08.
  • the continuous line corresponds to sample No. 15 having an NBO number of 0.01 (see table 2) .
  • the glass compositions No. 13 and 15 according to the invention have an enhanced UV-transmittance as compared to the glass sample No. 11.
  • the transmittance at the wavelengths 248 nm and also 308 nm are enhanced, rendering the glass composition particularly suited for the application as glass carrier wafer.
  • the dashed line shows a glass sample with the same composition as sample No. 11 where high purity raw materials, i.e. low Fe 2 O 3 contents, are used (see also Fig. 4) . It becomes immediately obvious that the use of such high purity materials strongly enhances the UV-transmittance which, in particular but not only in addition to the enhancement resulting from the adjusted NBO number, renders the glass suitable for application as glass carrier wafer.
  • the present invention alternatively provides a low CTE glass comprising an alkaline earth metal oxide free composition as follows (in mol-%) :
  • the NBO is preferably equal or larger than-0.25 and equal or smaller than-0.10.
  • Table 3 listed below shows parameters of five samples (No. 16-20) of an alkaline earth metal oxide free glass according to this aspect of the invention (examples B) .
  • the number of NBO for alkaline earth metal oxide free glasses according to table 3 lies in the range from-0.25 to-0.10 for all samples (i.e. samples No. 16-20) .
  • the corresponding UV-transmittance at a wavelength of 248 nm is significantly higher than 20%for all samples.
  • All samples of examples A and B have been prepared with a thickness of 0.5 mm. All samples according to the invention (No. 1-5 and 13-20) have a coefficient of thermal expansion (CTE) larger than 2.0 ppm/K and less than 4.0 ppm/K, which is sufficiently close to the CTE of silicon (about 3 ppm/K) for general purposes.
  • the low CTE glass is preferably essentially free of Li 2 O.
  • the UV-transmittance at 248 nm for samples No. 1-5 and 13-20 is larger than 20%.
  • the UV-transmittance for samples No. 16-20 is even larger than 27%.
  • the low CTE glasses according to the invention have a high solarization resistance resulting in a loss in transmittance after 100’000 mJ/cm 2 UV energy dosage at 248 nm laser of much less than 1%.
  • the loss in transmittance at 248 nm after 500 cycles of laser irradiation with an energy dosage of 200 mJ/cm 2 per cycle is much less than 1%for all samples according to the invention (i.e. No. 1-5 and 13-20) . Therefore, the low CTE glass according to the invention has an excellent solarization resistance which extends recycling lifetime and reduces processing cost.
  • Figure 4 shows a comparison of spectral transmittance between high purity and commercially available versions of the same glass composition.
  • the glass used in figure 4 is the glass corresponding to sample No. 11.
  • “high purity” refers to a very low content of Fe 2 O 3 as compared to the generally available comparable commercial glasses.
  • high purity glasses have a Fe 2 O 3 content of less than 0.01 mol-%.
  • the experimental data in Fig. 4 shows that the UV-transmittance is approx. 51%for the high purity composition and only approx. 10%for the commercial grade composition (see Fig. 4) .
  • the UV-transmittance at a wavelength of 308 nm is 88%for the high purity composition and only 61%for the commercial grade composition.
  • UV-transmittance of commercial grade glasses can therefore be significantly improved by using high purity raw materials.
  • the use of high purity materials generally significantly improves the UV-transmittance of glasses, even glasses that do not form part of the invention. It is of course evident that corresponding improvements will be achieved with the glasses of the invention when using high purity raw materials.
  • the carrier glass wafer made thereof can achieve a high UV-transmittance at wavelength of 248 nm and/or 308 nm, good solarization resistance, long recycling lifetime and, hence, reduced processing cost.

Abstract

A low CTE glass with a high UV-transmittance and high solarization resistance, a glass carrier wafer made of the low CTE glass and the use of such a glass carrier wafer. The glass comprises an alkaline metal oxide free composition of 50-75 mol%SiO2, 3-20 mol%Al2O3, 5-20 mol%B2O3, 0-15 mol%MgO, 0-15 mol%CaO, 0-15 mol%SrO, and 0-15 mol%BaO, where MgO+CaO+SrO+BaO amounts to 3 to 25 mol%and the average number of non-bridging oxygen per polyhedron (NBO) is equal or larger than -0.08 and equal or smaller than-0.38, or comprises an alkaline earth metal oxide free composition of 78-85 mol%SiO2, 0-7 mol%Al2O3, 8-15 mol%B2O3, 0-8 mol%Na2O, and 0-5 mol%K2O, where the NBO is equal or larger than -0.25 and equal or smaller than -0.10. The glass carrier wafer has a high UV-transmittance at a wavelength of 248 nm and/or 308 nm, good solarization resistance, a long recycling lifetime and reduced processing cost.

Description

Low CTE glass with high UV-transmittance and solarization resistance Field of the invention
The present application relates to a low CTE glass with high UV-transmittance and solarization resistance for the use as glass carrier wafer. The invention also concerns a glass carrier wafer made from the low CTE glass and a use thereof as carrier wafer for the processing of a silicon substrate.
Background of the invention
Thinning silicon substrates in order to account for the continuous demand for size reduction of e.g. integrated circuits has become a common process in semiconductor industries. Silicon carrier wafers have been widely used as mechanical carriers for the thinning and back grinding of the silicon substrates in order to facilitate handling of the fragile thinned substrates. The silicon substrate is thereby generally bonded to the carrier wafer by an adhesive. De-bonding of the silicon substrate after processing from the carrier wafer can be achieved by e.g. solvent-release or thermal-release, dependent on the adhesive.
Due to its advantageous properties as e.g. optical transparency for visual inspection and other electro-magnetic radiation based processing technologies, glass has been used as carrier wafer material. In particular, glass carrier wafers allow for a de-bonding method by irradiation with electro-magnetic radiation. The bonding adhesive in this case is sensitive to a certain kind of electro-magnetic radiation and can be irradiated through the transparent wafer in order to reduce or eliminate the adhesive effect (deactivation) . Commonly used adhesives can be typically deactivated by irradiation with UV laser radiation (laser-release) . The UV-laser radiation is usually at wavelengths of 248 nm or 308 nm, but can also be at other wavelengths dependent on the adhesive. In order to achieve a sufficient de-bonding effect, it is generally required that the UV-transmittance at the  corresponding wavelength is higher than 20%e.g. at a carrier wafer thickness of 0.5 mm.
A general problem arising during UV laser-release is solarization of the glass carrier wafer i.e. degeneration in transmittance due to the irradiation by the laser radiation. This becomes a particular problem if a glass carrier wafer is repeatedly exposed to the laser radiation. Solarization can thus significantly limit the recycling lifetime of a glass carrier wafer. The use of glass carrier wafers in semiconductor industries therefore also requires glasses with high solarization resistance in order to yield a long recycling lifetime and ultimately reduce processing cost.
A known method for improving the solarization resistance is adding controlled amounts of CeO2, Fe2O3, TiO2, SnO2, As2O3, MnO2 and V2O5, but this will block (cut off) the UV-transmittance at a wavelength range of less than 300 nm. For example, the patents or applications, such as EP 0 735 007 B1 (Osram Sylvania Inc.) , US 5,528,107 A (Richard et al.) , US 7,217,673 B2 (Schott AG) , US 7,517,822 B2 (Schott AG) , US 2014/0117294 A (Schott AG) , US 2013/0207058 A (Schott AG) , US 7,951,312 B2 (Schott AG) , US 8,283,269 B2 (Schott AG) , and US 7,535,179 B2 (Schott AG) disclose the above solution. Obviously, glass prepared by this method cannot be used for carrier glass wafer applications due to the low UV-transmittance at a wavelength of 248 nm of less than 10%.
Another method of improving the solarization resistance is not using any UV sensitive agent as mentioned above or increasing the content of BO3 in the borosilicate glass (see e.g. US 5,547,904 A, Schott AG; US 5,599,753 A, Jenaer Glaswerk GmbH; US 5,610,108 A, Schott Glaswerke) . Thus, in these patents or applications, the borosilicate glass can have as high a UV-transmittance at the wavelength of 248 nm as possible, i.e. much higher than 20%. However, the borosilicate glasses disclosed in these documents are not suitable to be used as carrier glass wafer for silicon back grinding and thinning processes for several reasons. For example, one problem of US 5,547,904 A (Schott AG) is that Li2O is used in the borosilicate glass, which is not preferred in semiconductor industries since the silicon substrate can be contaminated  by lithium ions. The glasses described in US 5,599,753 A (Jenaer Glaswerk GmbH) and US 5,610,108 A (Schott Glaswerke) have a coefficient of thermal expansion (CTE) of 4-6 ppm/K and are therefore not suitable as glass carrier wafers for silicon substrates since the glass used as carrier wafer needs to have a CTE that is sufficiently close to the CTE of silicon in order to avoid cracks or warping during the processing due to unbalanced thermal expansion between carrier wafer and silicon substrate.
Summary of the invention
It is therefore an object of the invention to provide a glass which overcomes the disadvantages of the prior art. In particular, it is an object of the invention to provide a glass with a high UV-transmittance and high solarization resistance, in particular at a wavelength of 248 nm and/or 308 nm, preferably for the use as a glass carrier wafer for silicon substrates in semiconductor industry. It is a further object of the invention to provide a glass that allows for reusable glass carrier wafers in semiconductor industries with a long recycle lifetime and low processing cost. It is a further object of the invention to provide a glass that has a low CTE, in particular a CTE that is close to the CTE of silicon. Moreover, it is an object of the invention to provide a glass carrier wafer and a use thereof in semiconductor industry.
This object is solved by a low CTE glass, a glass carrier wafer, a use and a method as defined in the independent claims. Preferred embodiments are defined in the dependent claims. “Low CTE glass” herein generally refers to a glass with a CTE equal or smaller than 4.0 ppm/K.
In accordance with one aspect of the present invention, a low CTE glass with a high UV-transmittance and high solarization resistance comprises an alkaline metal oxide free composition as follows (in percentage of mole) :
Figure PCTCN2015071159-appb-000001
Figure PCTCN2015071159-appb-000002
where MgO+CaO+SrO+BaO amounts to 3 to 25 mol-%and the average number of non-bridging oxygen per polyhedron (NBO) is equal or larger than-0.08 and equal or smaller than-0.38.
Considering the structure of glass, the concept of NBO (Non-Bridging Oxygen) is widely used. NBO can be regarded as a parameter reflecting the network structure of a glass resulting from the specific chemical composition. It has surprisingly been found that the network structure indicated by the NBO of the low CTE glasses as described herein influences the optical property, in particular the UV-transmittance. In other words, the UV-transmittance of the low CTE glasses as described herein can be significantly improved by adjusting the NBO content inside the glass.
The structure of the network structure can be characterized with four parameters X, Y, Z and R, defined as follows:
X = average number of non-bridging oxygen per polyhedron, i.e. NBO;
Y = average number of bridging oxygen per polyhedron;
Z = total average number of oxygen per polyhedron; and
R = ratio of total number of oxygen to total number of network formers.
R can be deduced from the molar composition of the low CTE glass. The four parameters X, Y, Z and R can be calculated according the following formulas:
R = Omol/ (Simol+Almol+Bmol)    (1)
Y = 2Z-2R    (2)
X = 2R–Z.    (3)
For silicates:
Z = 4.    (4)
From the formulas (1) , (3) and (4) , it can be concluded that,
X = 2 x Omol/ (Simol+Almol+Bmol) -4    (5)
According to this aspect of the invention, the alkaline metal oxide free low CTE glass with NBO equal or larger than-0.08 and equal or smaller than-0.38 can achieve a UV-transmittance higher than 20%at the wavelength of 248 nm, rendering the glass particularly useful in applications as carrier wafers in semiconductor industry.
In a preferred embodiment of this aspect, the alkaline metal oxide free composition comprises SiO2 in the range from 55 to 70 mol-%, and B2O3 in the range from 14-20 mol-%, where preferably the NBO is equal or smaller than-0.38.
In another preferred embodiment of this aspect, the alkaline metal oxide free composition comprises SiO2 in the range from 65 to 75 mol-%, and B2O3 in the range from 5-10 mol-%, where preferably the NBO is equal or larger than-0.08.
In a further preferred embodiment, the alkaline metal oxide free composition comprises MgO in the range from 2-15 mol-%and/or CaO in the range from 0-10 mol-%, in particular 0-5 mol-%, and/or BaO in the range from 0-10 mol-%, in particular 0-5 mol-%.
In accordance with another aspect, the present invention alternatively provides a low CTE glass comprising an alkaline earth metal oxide free composition as follows (in percentage of mole) :
Figure PCTCN2015071159-appb-000003
Preferably, the NBO of the alkaline earth metal oxide free composition is equal or larger than-0.25 and equal or smaller than-0.10.
It has surprisingly been found that, according to this aspect of the invention, the alkaline earth metal oxide free low CTE glass can achieve a UV-transmittance higher than 25%at the wavelength of 248 nm, rendering the glass particularly useful in applications as carrier wafers in semiconductor industry. The UV-transmittance can be further increased by adjusting the NBO to a range equal or larger than-0.25 and equal or smaller than-0.10.
In a preferred embodiment of this aspect, the low CTE glass comprising an alkaline earth metal oxide free composition comprises K2O in the range from 0 to 3 mol-%. In a further preferred embodiment, the alkaline earth metal oxide free composition comprises Na2O in the range from 0-6 mol-%and more preferably in the range from 1 to 5.5 mol-%.
For the use of the low CTE glass according to present invention in semiconductor industry, the low CTE glass is preferably essentially free of Li2O in order to prevent contamination of a silicon substrate by lithium ions. “Essentially free” hereby refers to a content of less than 0.01 mol-%.
The low CTE glass of the invention has a UV-transmittance at a wavelength of 248 nm that is equal or larger than 20%, preferably equal or larger than 22%and, in the case of the alkaline earth metal oxide free low CTE glass, equal or larger than 25%. The UV-transmittance at wavelengths larger than 248 nm and smaller than 780 nm thereby is preferably equal or higher than the UV-transmittance at 248 nm. The low CTE glass also has a solarization resistance of lower than 1%loss in transmittance after 100’000 mJ/cm2 UV energy dosage at a wavelength of 248 nm irradiated by laser.
In a preferred embodiment, the UV-transmittance at a wavelength of 248 nm can be further improved if the low CTE glass has a content of Fe2O3 of less than 0.01 mol-%. Such high purity glasses, however, are expensive but can nevertheless be preferred for a given requirement.
In a preferred embodiment, the low CTE glass has a transition temperature Tg higher than 550℃, preferably higher than 650℃and further preferably higher than 700℃.
In a further preferred embodiment, the low CTE glass has a coefficient of thermal expansion (CTE) equal or larger than 2.0 ppm/K and equal or less than 4.0 ppm/K. Preferably, the CTE of the glass is close to the CTE of the silicon substrate (about 3 ppm/K) in order to avoid warps or cracks that can occur due to a mismatch of CTE between glass carrier wafer and silicon substrate.
In a preferred embodiment, the low CTE glass of the present invention is provided as a glass wafer, in particular with a thickness in the range from 0.05 mm to 1.2 mm, preferably in the range from 0.1 mm to 0.7 mm. The thicknesses can in particular be equal or smaller than 1.2 mm, equal or smaller than 0.7 mm, equal or smaller than 0.5 mm, equal or smaller than 0.25 mm, equal or smaller than 0.1 mm, or equal or smaller than 0.05 mm. Other preferred selected thicknesses are 100 μm, 200 μm, 250 μm, 400 μm, 500 μm, 550 μm, 700 μm or 1000 μm. Surface dimensions of the glass wafer preferably are approximately 15 cm, 20 cm or 30 cm, or preferably approximately 6” , 8” or 12” . The shape of the glass wafer can be rectangular or circular as well as elliptical. Other shapes and dimensions can also be applied if the specific application so requires.
Based on the above description, the glass carrier wafer made of the present low CTE glass can have a high UV-transmittance at a wavelength of 248 nm, i.e. a UV-transmittance larger than 20%, a good solarization resistance, i.e. less than 1%loss in transmittance after 100’000 mJ/cm2 UV energy dosage by laser irradiation at 248 nm wavelength, and a long recycling lifetime, i.e. at least 500 cycles without significant degradation.
The invention further concerns a bonded article, including a glass carrier wafer made form a low CTE glass according to the invention and a silicon substrate bonded thereto. The silicon substrate is preferably bonded to the glass carrier wafer by an adhesive, which can preferentially be deactivated by  irradiation with UV-radiation, in particular by laser-radiation at a wavelength of preferably 248 nm or alternatively 308 nm. Deactivation hereby means that the adhesive force of the adhesive layer can be sufficiently reduced or eliminated by irradiation with UV-radiation for the de-bonding of the silicon substrate from the glass carrier wafer.
The glass carrier wafer according to the invention is preferably used as a carrier wafer for the processing of a silicon substrate, in particular during thinning and/or back grinding of the silicon substrate. During the use, the silicon substrate preferably adheres to the glass carrier wafer, in particular by means of an adhesive layer, and is handled via the glass carrier wafer during processing.
The present low CTE glass shows that, in a further aspect of the invention, a method for providing a low CTE glass including SiO2, Al2O3, and B2O3 with a high UV-transmittance and high solarization resistance is provided, comprising altering a given low CTE glass composition by adjusting the NBO number in order to increase a UV-transmittance, in particular increase a UV-transmittance to more than 20%, at a given wavelength, in particular at a wavelength of 248 nm and/or 308 nm, wherein the NBO number is defined as NBO = 2 x Omol/ (Simol+Almol+Bmol) –4. The person skilled in the art can immediately gather from the present disclosure how, starting from a given low CTE glass composition, a high UV-transmittance can be achieved with limited effort by adjusting the NBO number.
Brief description of the drawings
The invention is described in more detail in the following by way of exemplary embodiments and with reference to the accompanying drawings. The same reference numerals are used to designate the same or corresponding elements in the drawings. The drawings show:
Fig. 1: a sectional view of a bonded article with a glass carrier waver processed by laser irradiation during a de-bonding process;
Fig. 2: UV transmittance at a wavelength of 248 nm in relation to the NBO for exemplary embodiments;
Fig. 3: a diagram of spectral transmittance for several glass compositions;
Fig. 4: a comparative example of the UV-transmittance between high purity (low Fe2O3 content) glass according to a preferred embodiment of the invention and a commercial grade glass.
Detailed description
The objects, features and advantages of the invention are illustrated in more detail by the examples and embodiments as described in the following with reference to the accompanying drawings.
Figure 1 schematically shows a bonded article including a glass carrier wafer 2 during a de-bonding process by laser-release. A bonded article 1 comprises a glass carrier wafer 2 made from a glass according to the invention and a silicon substrate 3 which are bonded together by an adhesive layer 4 that can be deactivated by irradiation of electro-magnetic radiation. In the present example, the adhesive layer 4 can be deactivated by UV-radiation at a wavelength of 248 nm such that the adhesive force is reduced or eliminated allowing for the de-bonding of the silicon substrate 3. The de-bonding (laser-release) is accomplished by irradiating the adhesive layer 4 by a laser 5 through the glass carrier wafer 2. In a typical process, the wafer is mounted on a computer numerical control (CNC) controlled stage (not shown) and is moved beneath the stationary laser beam 5. The process details depend on the capabilities of laser and of the moving stage. As an example, the 248 nm laser 5 with maximum pulse energy of 800 mJ is run at 30 Hz pulse repetition rate and is defocused to deliver 200 mJ/cm2 over a target area 6 with size 1.01 mm x 1.01 mm. The low CTE glass/silicon bonded article 1 is moved beneath the pulsed beam 5 at 30 mm/sec, so that pulses overlap by 10 μm. Under these conditions, the glass carrier wafer 2 was cleanly de-bonded from the silicon substrate 3 at a rate of 20 cm2/min.
Table 1 below shows some general parameters of the de-bonding process. From table 1, it can be seen that the glass carrier wafer 2 can bear at least 500 recycles without significant loss in UV-transmittance i.e. has a high solarization resistance. The glass carrier wafer 2 according to the invention can bear at least 100’000 mJ/cm2 irradiation at wavelength of 248 nm from UV laser with a degradation of the transmittance at this wavelength of much less than 1%.
Parameter Value
Focus point: 1.01mm x 1.01mm
Moving speed
30 mm/sec
Defocused UV energy dosage 200 mJ/cm2
UV energy dosage after 10 recycles 2000 mJ/cm2
UV energy dosage after 20 recycles 4000 mJ/cm2
UV energy dosage after 50 recycles 10000 mJ/cm2
UV energy dosage after 100 recycles 20000 mJ/cm2
UV energy dosage after 500 recycles 100000 mJ/cm2
Table 1: General parameters of the de-bonding process
Examples A
In one aspect, the present application provides a low CTE glass with a high UV-transmittance and high solarization resistance, which comprises an alkaline metal oxide free composition as follows (in mol-%) :
Figure PCTCN2015071159-appb-000004
where MgO+CaO+SrO+BaO amounts to 3 to 25 mol-%and the average number of NBO is equal or larger than-0.08 and equal or smaller than-0.38.
Table 2 listed below shows eight samples according to this aspect of the invention (No. 1-5, 13-15) and seven comparative samples (No. 6-12) of alkaline metal oxide free low CTE glasses (examples A) .
Figure PCTCN2015071159-appb-000005
Table 2: Parameters of 15 samples of a low CTE glass (examples A)
From table 2, it can be seen that an NBO number in the range from-0.38 to-0.08 (samples No. 6-12) results in a UV-transmittance at the wavelength of 248 nm lower than 20% (see also Fig. 2) . The low CTE glasses of the comparative samples are therefore not suitable as carrier glasses due to the low UV-transmittance at a wavelength of 248 nm. However, samples No. 1-5 in the NBO range from (rounded) -0.53 to-0.38 and samples No. 13-15 in the NBO range from (rounded) -0.08 to 0.02, i.e. the NBO number is equal or larger than-0.08 or equal or smaller than-0.38, have a UV-transmittance at a wavelength of 248 nm that is higher than 20%. The exceptionally high UV-transmittance of sample No. 4 is due to an abnormal effect of the specific BaO content.
Figure 3 shows a diagram of the spectral transmittance of several glass compositions according to the first aspect of the invention in the wavelength range from 200 nm to 350 nm. The fine dotted line corresponds to sample No. 11 and serves as a benchmark for the glass compositions according to the invention. The dash-dotted line corresponds to sample No. 13 having an NBO number of-0.08. The continuous line corresponds to sample No. 15 having an NBO number of 0.01 (see table 2) . As becomes obvious from the diagram, the glass compositions No. 13 and 15 according to the invention have an  enhanced UV-transmittance as compared to the glass sample No. 11. In particular, the transmittance at the wavelengths 248 nm and also 308 nm are enhanced, rendering the glass composition particularly suited for the application as glass carrier wafer.
The dashed line shows a glass sample with the same composition as sample No. 11 where high purity raw materials, i.e. low Fe2O3 contents, are used (see also Fig. 4) . It becomes immediately obvious that the use of such high purity materials strongly enhances the UV-transmittance which, in particular but not only in addition to the enhancement resulting from the adjusted NBO number, renders the glass suitable for application as glass carrier wafer.
Examples B
In another aspect, the present invention alternatively provides a low CTE glass comprising an alkaline earth metal oxide free composition as follows (in mol-%) :
Figure PCTCN2015071159-appb-000006
The NBO is preferably equal or larger than-0.25 and equal or smaller than-0.10.
Table 3 listed below shows parameters of five samples (No. 16-20) of an alkaline earth metal oxide free glass according to this aspect of the invention (examples B) .
Figure PCTCN2015071159-appb-000007
Table 3: Parameters of 5 samples of a low CTE glass (examples B)
The number of NBO for alkaline earth metal oxide free glasses according to table 3 lies in the range from-0.25 to-0.10 for all samples (i.e. samples No. 16-20) . The corresponding UV-transmittance at a wavelength of 248 nm is significantly higher than 20%for all samples.
All samples of examples A and B have been prepared with a thickness of 0.5 mm. All samples according to the invention (No. 1-5 and 13-20) have a coefficient of thermal expansion (CTE) larger than 2.0 ppm/K and less than 4.0 ppm/K, which is sufficiently close to the CTE of silicon (about 3 ppm/K) for general purposes. The low CTE glass is preferably essentially free of Li2O.
From tables 2 and 3, the UV-transmittance at 248 nm for samples No. 1-5 and 13-20 is larger than 20%. The UV-transmittance for samples No. 16-20 is even larger than 27%.
The low CTE glasses according to the invention have a high solarization resistance resulting in a loss in transmittance after 100’000 mJ/cm2 UV energy dosage at 248 nm laser of much less than 1%. As can be gathered from table 2 and 3, the loss in transmittance at 248 nm after 500 cycles of laser irradiation with an energy dosage of 200 mJ/cm2 per cycle (corresponding to an UV energy dosage of 100’000 mJ/cm2 in total) is much less than 1%for all samples according to the invention (i.e. No. 1-5 and 13-20) . Therefore, the low CTE glass according to the invention has an excellent solarization resistance which extends recycling lifetime and reduces processing cost.
Figure 4 shows a comparison of spectral transmittance between high purity and commercially available versions of the same glass composition. The glass  used in figure 4 is the glass corresponding to sample No. 11. Herein, “high purity” refers to a very low content of Fe2O3 as compared to the generally available comparable commercial glasses. In the present invention, high purity glasses have a Fe2O3 content of less than 0.01 mol-%.
The experimental data in Fig. 4 shows that the UV-transmittance is approx. 51%for the high purity composition and only approx. 10%for the commercial grade composition (see Fig. 4) . Similarly, the UV-transmittance at a wavelength of 308 nm is 88%for the high purity composition and only 61%for the commercial grade composition. UV-transmittance of commercial grade glasses can therefore be significantly improved by using high purity raw materials. As the example of Fig. 4 shows, the use of high purity materials generally significantly improves the UV-transmittance of glasses, even glasses that do not form part of the invention. It is of course evident that corresponding improvements will be achieved with the glasses of the invention when using high purity raw materials.
Due the excellent properties of the low CTE glasses according to the invention, the carrier glass wafer made thereof can achieve a high UV-transmittance at wavelength of 248 nm and/or 308 nm, good solarization resistance, long recycling lifetime and, hence, reduced processing cost.
The terminology used herein for the disclosure and description of the invention is for the purpose of describing particular aspects only and does not limit the invention in any way. Moreover, throughout the description and claims of the present invention, the word “comprise” and other forms of the word, such as “comprising” and “comprises” , means including but not limited to and is not intended to exclude, for example, other additives, or components, unless explicitly declared otherwise.

Claims (13)

  1. A low CTE glass with a high UV-transmittance and high solarization resistance comprising an alkaline metal oxide free composition in percentage of mole:
    SiO2 50-75,
    Al2O3 3-20,
    B2O3 5-20,
    MgO 0-15,
    CaO 0-15,
    SrO 0-15,
    BaO 0-15,
    where MgO+CaO+SrO+BaO amounts to 3 to 25 mol-% and the average number of non-bridging oxygen per polyhedron (NBO) is equal or larger than-0.08 or equal or smaller than -0.38; or
    an alkaline earth metal oxide free composition in percentage of mole:
    SiO2 78-85,
    Al2O3 0-7,
    B2O3 8-15,
    Na2O 0-8,
    K2O 0-5,
    where preferably the NBO is equal or larger than -0.25 and equal or smaller than -0.10;
    wherein the NBO is defined as NBO = 2 x Omol/ (Simol+Almol+Bmol) -4.
  2. The low CTE glass according to Claim 1, wherein the glass is essentially free of Li2O.
  3. The low CTE glass according to any one of Claims 1 or 2, wherein the UV-transmittance at 248 nm is larger than 20%, preferably larger than 22%.
  4. The low CTE glass according to any one of Claims 1-3, wherein the glass has a solarization resistance which is lower than 1% loss in transmittance after 100’ 000 mJ/cm2 UV energy dosage irradiated by a laser at 248 nm wavelength.
  5. The low CTE glass according to any one of Claims 1-4, wherein the content of Fe2O3 is less than 0.01 mol-%
  6. The low CTE glass according to any one of Claims 1-5, wherein the glass has a transition temperature Tg higher than 550℃, preferably higher than 650℃, further preferably higher than 700℃.
  7. The low CTE glass according to any one of Claims 1-6, wherein the coefficient of thermal expansion (CTE) is larger than 2.0 ppm/K and less than 4.0 ppm/K.
  8. The low CTE glass according to any one of Claims 1-7, wherein the glass has a thickness in the range from 0.05 mm to 1.2 mm, preferably from 0.1 mm to 0.7 mm.
  9. A glass carrier wafer made of the low CTE glass according to any one of Claims 1-8.
  10. Bonded article including a glass carrier wafer according to Claim 9 and a silicon substrate bonded thereto, in particular by an adhesive, wherein preferably the adhesive can be deactivated by irradiation with UV-radiation, in particular by laser-radiation at a wavelength of 248 nm.
  11. Use of a glass carrier wafer according to Claim 9 as a carrier wafer for the processing of a silicon substrate, in particular during thinning and/or back grinding of the silicon substrate.
  12. Use according to Claim 11, wherein the silicon substrate adheres to the glass carrier wafer, in particular by means of an adhesive layer, and is handled via the glass carrier wafer during processing.
  13. Method for providing a low CTE glass including at least SiO2, Al2O3, and B2O3 with a high UV-transmittance and high solarization resistance comprising altering a given low CTE glass composition by adjusting the NBO number in order to increase a UV-transmittance, in particular increase a UV-transmittance to more than 20%, at a given wavelength, in particular at a wavelength of 248 nm and/or 308 nm, wherein the NBO number is defined as NBO = 2 x Omol/ (Simol+Almol+Bmol) –4.
PCT/CN2015/071159 2015-01-20 2015-01-20 Low cte glass with high uv-transmittance and solarization resistance WO2016115685A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017538431A JP6827934B2 (en) 2015-01-20 2015-01-20 Low CTE glass with high UV transmission and solarization resistance
CN201580068003.1A CN107108333B (en) 2015-01-20 2015-01-20 Low CTE glass with high UV transmission and lightfastness
PCT/CN2015/071159 WO2016115685A1 (en) 2015-01-20 2015-01-20 Low cte glass with high uv-transmittance and solarization resistance
TW105101696A TWI667214B (en) 2015-01-20 2016-01-20 Low cte glass with high uv-transmittance and solarization resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/071159 WO2016115685A1 (en) 2015-01-20 2015-01-20 Low cte glass with high uv-transmittance and solarization resistance

Publications (1)

Publication Number Publication Date
WO2016115685A1 true WO2016115685A1 (en) 2016-07-28

Family

ID=56416270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071159 WO2016115685A1 (en) 2015-01-20 2015-01-20 Low cte glass with high uv-transmittance and solarization resistance

Country Status (4)

Country Link
JP (1) JP6827934B2 (en)
CN (1) CN107108333B (en)
TW (1) TWI667214B (en)
WO (1) WO2016115685A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156894A1 (en) * 2017-02-24 2018-08-30 Corning Incorporated High aspect ratio glass wafer
CN108689598A (en) * 2017-04-05 2018-10-23 肖特玻璃科技(苏州)有限公司 Alumina silicate glass with low bulk after chemical tempering
WO2019119341A1 (en) * 2017-12-21 2019-06-27 Schott Glass Technologies (Suzhou) Co. Ltd. Bondable glass and low auto-fluorescence article and method of mak-ing it
EP3569577A1 (en) 2018-05-18 2019-11-20 Schott Ag Flat glass, method for producing same and its use
EP3569578A1 (en) 2018-05-18 2019-11-20 Schott Ag Use of flat glass in electronic components
DE202022104982U1 (en) 2022-09-05 2023-02-01 Schott Ag Non flat shape glass

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108602713B (en) 2016-02-02 2022-05-17 肖特玻璃科技(苏州)有限公司 Low CTE boroaluminosilicate glasses for glass carrier wafers
TW202124324A (en) 2019-11-21 2021-07-01 美商康寧公司 Recycled glass and glass-ceramic carrier sustrates
WO2021192700A1 (en) * 2020-03-23 2021-09-30 Agc株式会社 Joined structure
CN113277730B (en) * 2021-06-21 2022-04-15 成都光明光电有限责任公司 Low dielectric constant glass composition
WO2023026770A1 (en) * 2021-08-24 2023-03-02 日本電気硝子株式会社 Support glass substrate, multi-layer body, method for producing multi-layer body, and method for producing semiconductor package
DE102022125004A1 (en) 2022-09-28 2024-03-28 Schott Ag Glass composition for producing structured glass elements from alkali-free glasses and structured, alkali-free glass elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215547A (en) * 1984-04-09 1985-10-28 Nippon Electric Glass Co Ltd Ultraviolet transmitting glass
JPH04342437A (en) * 1991-05-17 1992-11-27 Iwaki Glass Kk Ultraviolet ray transmitting glass
US5599753A (en) * 1994-08-30 1997-02-04 Jenaer Glaswerck Gmbh Borosilicate glass weak in boric acid
WO1998027019A1 (en) * 1996-12-17 1998-06-25 Corning Incorporated Glasses for display panels and photovoltaic devices

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1496546A1 (en) * 1965-01-27 1969-05-14 Jenaer Glaswerk Schott & Gen Process to increase the strength of objects made of glass, enamel and ceramics
JPS6044149A (en) * 1983-08-23 1985-03-09 Toshiba Corp Glass mold for vacuum suction casting
FR2695634B1 (en) * 1992-09-14 1994-11-25 Corning Inc Glasses of borosilicate pink color, their manufacture and articles in such glasses.
US5342426A (en) * 1993-07-16 1994-08-30 Corning Incorporated Making glass sheet with defect-free surfaces and alkali metal-free soluble glasses therefor
JP3153710B2 (en) * 1994-01-21 2001-04-09 ホーヤ株式会社 Glass for silicon pedestal and silicon substrate type sensor
JP2000044278A (en) * 1998-05-20 2000-02-15 Nippon Electric Glass Co Ltd Glass substrate for display
JP2001151534A (en) * 1999-11-25 2001-06-05 Nippon Electric Glass Co Ltd Glass substrate for liquid crystal display
DE10000839C1 (en) * 2000-01-12 2001-05-10 Schott Glas Alkali-free aluminoborosilicate glass used as substrate glass in displays and in thin layer photovoltaics contains oxides of silicon, boron, aluminum, magnesium, calcium, strontium, barium and zinc
DE10000836B4 (en) * 2000-01-12 2005-03-17 Schott Ag Alkali-free aluminoborosilicate glass and its uses
DE10000838B4 (en) * 2000-01-12 2005-03-17 Schott Ag Alkali-free aluminoborosilicate glass and its uses
DE10000837C1 (en) * 2000-01-12 2001-05-31 Schott Glas Alkali-free alumino-borosilicate glass used as substrate glass in thin film transistor displays and thin layer solar cells contains oxides of silicon, boron, aluminum, magnesium, strontium, and barium
DE10064804C2 (en) * 2000-12-22 2003-03-20 Schott Glas Alkali-free aluminoborosilicate glasses and their use
JP4305817B2 (en) * 2002-12-11 2009-07-29 日本電気硝子株式会社 Alkali-free glass substrate
JP4756856B2 (en) * 2004-12-15 2011-08-24 AvanStrate株式会社 Glass composition and method for producing the same
DE102006016257B4 (en) * 2006-03-31 2014-04-30 Schott Ag Aluminoborosilicate glass and its use
JP5410655B2 (en) * 2007-04-10 2014-02-05 AvanStrate株式会社 Glass composition, glass plate using the same, and method for producing the same
CN101050057A (en) * 2007-05-09 2007-10-10 盐城市华鸥实业有限公司 Borosillicate glass apparatus
TWI494286B (en) * 2009-03-19 2015-08-01 Nippon Electric Glass Co Alkali-free glass
TWI614227B (en) * 2012-02-29 2018-02-11 康寧公司 Low cte alkali-free boroaluminosilcate glass compositions and glass articles comprising the same
JP6213127B2 (en) * 2012-10-25 2017-10-18 セントラル硝子株式会社 Adhesive composition, adhesion method thereof, and peeling method after adhesion
CN103058518B (en) * 2013-01-06 2014-07-16 浙江长兴诺万特克玻璃有限公司 Dark grey borosilicate glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60215547A (en) * 1984-04-09 1985-10-28 Nippon Electric Glass Co Ltd Ultraviolet transmitting glass
JPH04342437A (en) * 1991-05-17 1992-11-27 Iwaki Glass Kk Ultraviolet ray transmitting glass
US5599753A (en) * 1994-08-30 1997-02-04 Jenaer Glaswerck Gmbh Borosilicate glass weak in boric acid
WO1998027019A1 (en) * 1996-12-17 1998-06-25 Corning Incorporated Glasses for display panels and photovoltaic devices

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10935698B2 (en) 2017-02-24 2021-03-02 Corning Incorporated High aspect ratio glass wafer
WO2018156894A1 (en) * 2017-02-24 2018-08-30 Corning Incorporated High aspect ratio glass wafer
CN108689598A (en) * 2017-04-05 2018-10-23 肖特玻璃科技(苏州)有限公司 Alumina silicate glass with low bulk after chemical tempering
JP2021511273A (en) * 2017-12-21 2021-05-06 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッドSchott Glass Technologies (Suzhou) Co., Ltd. Bondable glass, low autofluorescent articles, and their manufacturing methods
CN111542503A (en) * 2017-12-21 2020-08-14 肖特玻璃科技(苏州)有限公司 Bondable glass and low autofluorescence articles and methods of making same
KR20200101371A (en) * 2017-12-21 2020-08-27 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. Bondable glass, low autofluorescence, and manufacturing method thereof
US20200317559A1 (en) * 2017-12-21 2020-10-08 Schott Glass Technologies (Suzhou) Co. Ltd. Bondable glass and low auto-fluorescence article and method of making it
WO2019119341A1 (en) * 2017-12-21 2019-06-27 Schott Glass Technologies (Suzhou) Co. Ltd. Bondable glass and low auto-fluorescence article and method of mak-ing it
JP7216102B2 (en) 2017-12-21 2023-01-31 ショット グラス テクノロジーズ (スゾウ) カンパニー リミテッド Bondable glass, low autofluorescence article, and manufacturing method thereof
KR102552470B1 (en) 2017-12-21 2023-07-05 쇼오트 글라스 테크놀로지스 (쑤저우) 코퍼레이션 리미티드. Laminated glass and article with low autofluorescence and method for producing the same
US11827562B2 (en) 2017-12-21 2023-11-28 Schott Glass Technologies (Suzhou) Co. Ltd Bondable glass and low auto-fluorescence article and method of making it
EP3569578A1 (en) 2018-05-18 2019-11-20 Schott Ag Use of flat glass in electronic components
EP3569577A1 (en) 2018-05-18 2019-11-20 Schott Ag Flat glass, method for producing same and its use
US11465929B2 (en) 2018-05-18 2022-10-11 Schott Ag Flat glass, method for producing same, and use thereof
DE202022104982U1 (en) 2022-09-05 2023-02-01 Schott Ag Non flat shape glass

Also Published As

Publication number Publication date
JP6827934B2 (en) 2021-02-10
CN107108333A (en) 2017-08-29
JP2018504356A (en) 2018-02-15
TWI667214B (en) 2019-08-01
CN107108333B (en) 2021-09-21
TW201634418A (en) 2016-10-01

Similar Documents

Publication Publication Date Title
WO2016115685A1 (en) Low cte glass with high uv-transmittance and solarization resistance
US20200156986A1 (en) Methods of cutting glass using a laser
US11715673B2 (en) Glass substrate and laminated substrate
KR102538464B1 (en) Glass substrate, laminated substrate, and manufacturing method of glass substrate
JP2021098652A (en) Ultraviolet transmitting glass
KR102144324B1 (en) Method for cutting glass substrate, glass substrate, near infrared ray cut filter glass and method for manufacturing glass substrate
US11059738B2 (en) Low CTE boro-aluminosilicate glass for glass carrier wafers
JP2017518946A (en) Laser welding of high thermal expansion glass and glass-ceramic
KR20170095283A (en) X-Ray Induced Coloration In Glass Or Glass-Ceramic Articles
KR20170121148A (en) Method for producing hermetic package
JP6907941B2 (en) UV transmissive glass
TW201802050A (en) UV-transmitting glass, UV irradiation device, and UV sterilization device
US20230187227A1 (en) Laminate and method for producing laminate
US7399721B2 (en) Glass for laser processing
WO2019044563A1 (en) Glass
JP7184845B2 (en) Low CTE boro-aluminosilicate glass for glass carrier wafer
JP2023042316A (en) Optical filter, optical filter component, sterilization device and manufacturing method for optical filter
JP2011213569A (en) Light emitting glass, light emitting element coated with glass, and light emitting device
WO2024085083A1 (en) Glass substrate
WO2023189779A1 (en) Glass block, method for producing same, and plasma-resistant member
JP2024501225A (en) Substrate cutting separation system and method
JP2021080126A (en) Supporting glass substrate and laminated body
TW202231144A (en) Joined body, and method and apparatus for manufacturing joined body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538431

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15878363

Country of ref document: EP

Kind code of ref document: A1