JP4168320B2 - Manufacturing method of glass substrate - Google Patents

Manufacturing method of glass substrate Download PDF

Info

Publication number
JP4168320B2
JP4168320B2 JP2002241449A JP2002241449A JP4168320B2 JP 4168320 B2 JP4168320 B2 JP 4168320B2 JP 2002241449 A JP2002241449 A JP 2002241449A JP 2002241449 A JP2002241449 A JP 2002241449A JP 4168320 B2 JP4168320 B2 JP 4168320B2
Authority
JP
Japan
Prior art keywords
glass substrate
glass
phase separation
heat treatment
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002241449A
Other languages
Japanese (ja)
Other versions
JP2004075494A (en
Inventor
嘉成 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2002241449A priority Critical patent/JP4168320B2/en
Publication of JP2004075494A publication Critical patent/JP2004075494A/en
Application granted granted Critical
Publication of JP4168320B2 publication Critical patent/JP4168320B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、液晶ディスプレイ、エレクトロルミネッセンスディスプレイ、フィールドエミッションディスプレイ等のフラットパネルディスプレイ基板及びハードディスク基板等に用いられるガラス基板の製造方法に関するものである。
【0002】
【従来の技術】
従来より、フラットパネルディスプレイ基板やハードディスク基板としては、ガラス基板が広く使用されている。
【0003】
特に、フラットパネルディスプレイに用いられるガラス基板の表面には、透明導電膜、絶縁膜、半導体膜、金属膜等が成膜され、しかもフォトリソグラフィーエッチング(フォトエッチング)によって種々の回路やパターンが形成される。これらの成膜、フォトエッチング工程において、ガラス基板には、種々の熱処理や薬品処理が施される。
【0004】
従って、フラットパネルディスプレイに使用されるガラス基板には、以下のような特性が要求される。
(1)ガラス中にアルカリ金属酸化物が含有されていると、熱処理中にアルカリイオンが成膜された半導体物質中に拡散し、膜特性の劣化を招くため、実質的にアルカリ金属酸化物を含有しないこと。
(2)フォトエッチング工程において使用される種々の酸、アルカリ等の薬品によって劣化しないような耐薬品性を有すること。
(3)ガラスの歪点が低いと、成膜等の熱処理工程でガラス基板が熱収縮してパターンずれを起こすため、高い歪点を有すること。
(4)製造工程において、自重によってガラス基板がたわみ、装置と接触してガラス基板が破損するのを防止するために、高い比ヤング率(ヤング率/密度)を有すること。
【0005】
また、フラットパネルディスプレイは、モバイル分野への応用が進められており、機器の軽量化が要求されている。これに伴ってガラス基板にも軽量化が要求されている。
【0006】
【発明が解決しようとする課題】
ガラス基板の軽量化のために、ガラス基板の薄肉化が検討されている。
【0007】
しかしながら、ガラス基板の肉厚が薄くなる程、ガラス基板の強度が低下するため割れやすくなるといった問題が生じる。
【0008】
本発明の目的は、ガラス基板を薄肉化しても、割れ難いガラス基板の製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明者は、種々の実験を繰り返した結果、ガラス基板に微小な分相構造を意図的に導入することで、ガラス基板の強度が向上することを見いだし、本発明として提案するものである。
【0011】
すなわち、本発明のガラス基板の製造方法は、質量百分率で、SiO2 50〜70%、Al23 10〜20%、B23 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%の組成を有するアルミノシリケートガラスを、2〜100nmの粒子サイズの分相構造が得られるように、熱処理を行うことを特徴とする。
【0012】
【作用】
ガラス基板の割れは、ガラス基板の表面に傷が付き、それが伸展することにより発生する。従って、ガラス基板の耐クラック性を向上させてクラックの発生を抑制すればガラス基板の強度は飛躍的に向上することになる。
【0013】
そこで、本発明のガラス基板の製造方法では、粒子サイズが2〜100nmである分相構造をガラス基板に意図的に導入して、クラックの発生を抑制してガラス基板の強度を飛躍的に向上させている。
【0014】
ガラス基板中に2〜100nmの微小な分相構造を導入することで、クラックが分相粒子の界面で停止する、または、クラックが界面で停止しない場合でも、粒子を迂回するのに余分なエネルギーが必要となるため、クラックが伸展しにくくなり割れを抑えることができると考えられる。
【0015】
尚、分相の粒子サイズが2nmより小さいと、クラックの発生を抑制する効果が得られないため好ましくない。一方、分相の粒子サイズが100nmより大きくなると、熱処理に時間が掛かり生産性が悪化するため好ましくない。好ましくは2〜90nmであり、更に好ましくは、5〜80nmである。
【0016】
また、分相の粒子サイズが50nmより大きくなると、光の散乱により、ガラス基板が白濁する傾向にあり、ガラス基板の透過率が低下する可能性がある。このため、ガラス基板をフラットパネルディスプレイ基板に用いる場合、分相の粒子サイズは50nm以下であることが望ましい。
【0017】
また、ガラス基板に粒子サイズが2〜100nmのサイズの分相構造を導入するには、ガラス基板を500℃〜ガラスの徐冷点+60℃の温度で0.5〜300時間保持するような熱処理を行えばよい。尚、熱処理は、溶融ガラスの冷却工程で行ってもよいし、溶融ガラスを一旦冷却し、ガラス基板に加工成形した後に行っても良い。また、熱処理温度を高くすれば、熱処理時間を短縮することもできる。
【0018】
更に、本発明のガラス基板の好適な組成範囲は、質量百分率で、SiO2 50〜70%、Al23 10〜20%、B23 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%である。
【0019】
尚、本発明においてガラスの組成を上記のように限定した理由は、ガラスの分相傾向、密度、耐薬品性、熱収縮性、ヤング率等を考慮したものであり、各成分の限定理由は、次のとおりである。
【0020】
SiO2は、ガラスのネットワークフォーマーとなる成分であり、ガラスの耐酸性を向上させたり、ガラスの歪点を上昇させてガラス基板の熱収縮を小さくする効果がある。含有量が多くなると、ガラスの高温粘度が高くなり、溶融性が悪化する傾向にあるが、含有量が50〜70%であれば、ガラスの溶融性を悪化させることなく、耐酸性が高く、熱収縮の小さいガラス基板を得ることができる。好ましい範囲は、58〜67%である。
【0021】
Al23は、ガラスのネットワークフォーマーとなる成分であると共に、ガラスのヤング率を高める成分であり、ガラス基板がたわむのを抑制する効果がある。含有量が多くなると、液相温度が上昇して成形しにくくなる傾向にあるが、含有量が10〜20%であれば、液相温度が低く、たわみの小さいガラス基板を得ることができる。好ましい範囲は、12〜18%である。
【0022】
23は、融剤として作用し、ガラスの粘性を下げ、溶融性を改善する成分であり、且つガラスの密度を下げる成分である。含有量が多くなると、ガラスの歪点が低下する傾向にあるが、含有量が7〜15%であれば、ガラスの歪点を低下させることなく、上記効果を得ることができる。好ましい範囲は、7〜13%である。
【0023】
MgOとCaOは、高温粘度を下げる成分であり、ガラスの溶融性を改善する効果がある。含有量が多くなると、ガラスの耐薬品性、特に耐バッファードフッ酸性が悪化する傾向にあるが、MgOとCaOが合量で15%以下であれば、耐バッファードフッ酸性を特に悪化させることはない。好ましい範囲は、合量で0〜10%である。
【0024】
SrOとBaOは、ガラスの耐薬品性を向上させる成分であるが、これら成分が多くなると、ガラスの分相傾向が小さくなり、短時間の熱処理で分相を形成することができなくなる。このため、合量で6.5%より多く含有させるべきではない。好ましい範囲は、合量で0〜5%である。
【0025】
尚、本発明においては、上記の成分以外にも、特性を損なわない範囲で他の成分、例えば、清澄剤としてAs23、Sb23、SnO2、Cl2、SO3等をそれぞれ3%まで、ガラスの耐薬品性、耐失透性を向上させるために、ZrO2、TiO2、Y23、La23、P25をそれぞれ5%まで添加しても良い。
【0026】
更に、前記した理由から、アルカリ金属酸化物(Na2O、K2O、Li2O)の添加も避けるべきである。また、一般に融剤として使用されるPbOもガラスの耐薬品性を著しく低下させたり、ガラス溶融時に融液の表面から揮発し、環境を汚染する虞れもあるため好ましくない。
【0027】
また、本発明に係るガラス基板は、板ガラスの成形方法として知られているスロットダウンドロー法、オーバーフローダウンドロー法、フロート法、ロールアウト法等の方法によって製造できる。
【0028】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
【0029】
表1〜6は本発明の実施例(試料No.1〜27)を、表7は比較例(試料No.28及び29)をそれぞれ示している。
【0030】
【表1】

Figure 0004168320
【0031】
【表2】
Figure 0004168320
【0032】
【表3】
Figure 0004168320
【0033】
【表4】
Figure 0004168320
【0034】
【表5】
Figure 0004168320
【0035】
【表6】
Figure 0004168320
【0036】
【表7】
Figure 0004168320
【0037】
表中の各試料は、次のようにして作製した。
【0038】
まず、表の組成となるようにガラス原料を調合し、白金ポットで1600℃で24時間溶融した。続いて、溶融ガラスをカーボン板上に流し出して板状に成形し、徐冷後、板厚が0.7mmになるように両面研磨して、得られた板ガラスを200mm角の大きさに切断加工した。その後、表中の条件で熱処理を施し分相させることで試料を作製した。
【0039】
このようにして作製した各試料について、各種の特性を評価した。結果を表に示す。
【0040】
表1〜表7から明らかなように、試料No.1〜27は、粒子サイズが2nm以上の分相構造を有しているため、クラック抵抗が8.8N以上と高かった。また、密度は2.466g/cm3以下であり、熱膨張係数は30.0〜36.5×10-7/℃で耐熱衝撃性に優れ、歪点は656℃以上で熱収縮は小さく、比ヤング率は27.5GPa/g・cm-3以上でたわみ量は小さくなることが予想される。更に耐酸性、耐BHF性にも優れていた。
【0041】
これに対し、比較例である試料No.28、29は、熱処理を行ったものの、分相しなかったため、クラック抵抗が7.4Nと低かった。
【0042】
次に、No.1のガラス組成を用い、熱処理条件を変えて、様々な大きさの粒子を有するガラス基板を作製し、分相の粒子サイズと耐クラック性の関係について調査した。結果を表8及び図1に示す。尚、図1において、縦軸はガラス基板の耐クラック性を表すクラックの発生率、横軸はダイヤモンド圧子に加える荷重を示している。図中、Aは分相構造を有していないガラス基板、Bは粒子サイズが2nmの分相構造を有するガラス基板(試料No.1)、Cは粒子サイズが10nmの分相構造を有するガラス基板、Dは粒子サイズが20nmの分相構造を有するガラス基板、Eは粒子サイズが50nmの分相構造を有するガラス基板、Fは粒子サイズが100nmの分相構造を有するガラス基板、Gは粒子サイズが110nmの分相構造を有するガラス基板を表している。
【0043】
【表8】
Figure 0004168320
【0044】
表8及び図1から明らかなように、分相構造を有していないガラス基板(試料A)と、分相構造を有するガラス基板(試料B〜G)のクラック発生率を比較すると、分相構造を有するガラス基板の方が、クラックは発生しにくくなり耐クラック性が向上することが判る。また、粒子サイズが100nmまでは、粒子サイズが大きくなる程、クラックは発生しにくくなり耐クラック性は向上するが、100nmより大きくなると、徐々に耐クラック性は低下する傾向にあることが判る。
【0045】
尚、分相の粒子サイズはTEM(透過型電子顕微鏡)で観察することによって測定した。
【0046】
また、ガラスの耐クラック性の評価は、和田らが提案した方法(M.Wadaet al. Proc., the Xth ICG, vol.11, Ceram. Soc., Japan, Kyoto, 1974, p39)を用いた。この方法は、ビッカース硬度計のステージに試料ガラスを置き、試料ガラスの表面に菱形状のダイヤモンド圧子を種々の荷重で15秒間押し付ける。そして、除荷後15秒までに圧痕の四隅から発生するクラック数をカウントし、最大発生しうるクラック数(4ヶ)に対する割合を求め、クラック発生率とした。また、クラック発生率が50%になるときの荷重を「クラック抵抗」とした。クラック抵抗が大きいということは、高い荷重でもクラックが発生しにくい、つまり、耐クラック性に優れているということである。尚、クラック発生率の測定は、同一荷重で20回測定し、その平均値を求めた。また、測定条件は、気温25℃、湿度30%の条件で行った。
【0047】
密度は、周知のアルキメデス法によって測定し、熱膨張係数は、ディラトメーターを用いて、30〜380℃における平均熱膨張係数を測定したものである。
【0048】
歪点及び徐冷点は、ASTM C336−71の方法に基づいて、軟化点は、ASTM C338−73の方法に基づいて測定した。104.0〜102.5dPa・sの粘度は、白金球引き上げ法により測定した。
【0049】
ヤング率は、曲げ共振法により測定し、比ヤング率は、ヤング率と密度の測定値から算出した。
【0050】
耐塩酸性は、各試料を80℃に保持された10重量%塩酸水溶液に24時間浸漬した後、それらの表面状態を目視で観察することによって評価した。耐BHF性は、各試料を20℃に保持された30質量%弗化アンモニウム、6質量%フッ酸からなるバッファードフッ酸に30分間浸漬した後、それらの表面状態を目視で観察することによって評価した。ガラス基板の表面が白濁したものは×、全く変化のないものは○で示した。
【0051】
液相温度の測定は、ガラスを粉砕し、標準篩30メッシュ(500nm)を通過し、50メッシュ(300nm)に残るガラス粉末を白金ボートに入れ、温度勾配炉中に24時間保持して、結晶の析出する温度を測定したものである。
【0052】
以上のように本発明のガラス基板の製造方法、耐クラック性を高めることができるため、薄型、軽量化が要求されているフラットパネルディスプレイ基板及びハードディスク基板等に用いられるガラス基板の製造方法として好適である。
【図面の簡単な説明】
【図1】分相の粒子サイズとクラック発生率の関係を示すグラフである。[0001]
[Industrial application fields]
The present invention relates to a method for producing a glass substrate used for flat panel display substrates such as liquid crystal displays, electroluminescence displays, field emission displays, and hard disk substrates.
[0002]
[Prior art]
Conventionally, glass substrates have been widely used as flat panel display substrates and hard disk substrates.
[0003]
In particular, a transparent conductive film, an insulating film, a semiconductor film, a metal film, etc. are formed on the surface of a glass substrate used for a flat panel display, and various circuits and patterns are formed by photolithography etching (photoetching). The In these film formation and photoetching steps, the glass substrate is subjected to various heat treatments and chemical treatments.
[0004]
Therefore, the following characteristics are required for a glass substrate used in a flat panel display.
(1) If an alkali metal oxide is contained in the glass, alkali ions diffuse into the semiconductor material on which the film is formed during the heat treatment, resulting in deterioration of the film characteristics. Do not contain.
(2) To have chemical resistance that does not deteriorate due to various acids, alkalis, and other chemicals used in the photoetching process.
(3) If the strain point of the glass is low, the glass substrate is thermally shrunk in a heat treatment step such as film formation to cause a pattern shift, and thus has a high strain point.
(4) In the manufacturing process, in order to prevent the glass substrate from being bent by its own weight and coming into contact with the apparatus and damaging the glass substrate, it has a high specific Young's modulus (Young's modulus / density).
[0005]
Further, flat panel displays are being applied to the mobile field, and there is a demand for weight reduction of devices. In connection with this, the glass substrate is also required to be reduced in weight.
[0006]
[Problems to be solved by the invention]
In order to reduce the weight of the glass substrate, it has been studied to reduce the thickness of the glass substrate.
[0007]
However, as the thickness of the glass substrate is reduced, the strength of the glass substrate is lowered, and thus a problem that the glass substrate is easily broken occurs.
[0008]
An object of the present invention is that the glass substrate be thinned to provide a method for producing a crack hardly glass board.
[0009]
[Means for Solving the Problems]
As a result of repeating various experiments, the present inventor has found that the strength of the glass substrate is improved by intentionally introducing a minute phase separation structure into the glass substrate, and proposes the present invention.
[0011]
That is, the manufacturing method of a glass substrate of the present invention, by mass percentage, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 7~15%, MgO + CaO 0~20%, SrO + BaO 0~ Aluminosilicate glass having a composition of 6.5% is heat-treated so as to obtain a phase separation structure having a particle size of 2 to 100 nm.
[0012]
[Action]
The crack of the glass substrate occurs when the surface of the glass substrate is scratched and extended. Therefore, if the crack resistance of the glass substrate is improved to suppress the generation of cracks, the strength of the glass substrate will be dramatically improved.
[0013]
Therefore, in the method for producing a glass substrate of the present invention, a phase separation structure having a particle size of 2 to 100 nm is intentionally introduced into the glass substrate, thereby suppressing the occurrence of cracks and dramatically improving the strength of the glass substrate. I am letting.
[0014]
By introducing a minute phase separation structure of 2 to 100 nm in the glass substrate, even if the crack stops at the interface of the phase-separated particles, or even if the crack does not stop at the interface, excess energy is used to bypass the particles Therefore, it is considered that cracks are difficult to extend and cracks can be suppressed.
[0015]
If the particle size of the phase separation is smaller than 2 nm, it is not preferable because the effect of suppressing the generation of cracks cannot be obtained. On the other hand, if the particle size of the phase separation is larger than 100 nm, it takes time for the heat treatment and the productivity is deteriorated, which is not preferable. Preferably it is 2-90 nm, More preferably, it is 5-80 nm.
[0016]
Further, when the particle size of the phase separation is larger than 50 nm, the glass substrate tends to become cloudy due to light scattering, and the transmittance of the glass substrate may be lowered. For this reason, when using a glass substrate for a flat panel display substrate, the phase separation particle size is desirably 50 nm or less.
[0017]
Moreover, in order to introduce a phase separation structure having a particle size of 2 to 100 nm into a glass substrate, heat treatment is performed such that the glass substrate is held at a temperature of 500 ° C. to a glass annealing point + 60 ° C. for 0.5 to 300 hours. Can be done. The heat treatment may be performed in a molten glass cooling step, or may be performed after the molten glass is once cooled and processed into a glass substrate. Further, if the heat treatment temperature is raised, the heat treatment time can be shortened.
[0018]
Furthermore, the preferred composition range of the glass substrate of the present invention, by mass percentage, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 7~15%, MgO + CaO 0~20%, SrO + BaO 0 to 6.5%.
[0019]
The reason why the composition of the glass is limited as described above in the present invention is that the phase separation tendency, density, chemical resistance, heat shrinkability, Young's modulus, etc. of the glass are taken into account. ,It is as follows.
[0020]
SiO 2 is a component that becomes a glass network former, and has the effect of improving the acid resistance of the glass and increasing the strain point of the glass to reduce the thermal shrinkage of the glass substrate. When the content increases, the high-temperature viscosity of the glass tends to increase and the meltability tends to deteriorate, but if the content is 50 to 70%, the acid resistance is high without deteriorating the meltability of the glass, A glass substrate with small heat shrinkage can be obtained. A preferred range is 58-67%.
[0021]
Al 2 O 3 is a component that becomes a glass network former and a component that increases the Young's modulus of the glass, and has an effect of suppressing the deflection of the glass substrate. If the content increases, the liquidus temperature tends to increase and it becomes difficult to mold, but if the content is 10 to 20%, a glass substrate having a low liquidus temperature and low deflection can be obtained. A preferred range is 12-18%.
[0022]
B 2 O 3 is a component that acts as a flux, lowers the viscosity of the glass, improves the meltability, and lowers the density of the glass. When the content increases, the strain point of the glass tends to decrease. However, when the content is 7 to 15%, the above-described effect can be obtained without decreasing the strain point of the glass. A preferable range is 7 to 13%.
[0023]
MgO and CaO are components that lower the high temperature viscosity and have the effect of improving the meltability of the glass. If the content increases, the chemical resistance of the glass, particularly the buffered hydrofluoric acid resistance, tends to deteriorate, but if the total amount of MgO and CaO is 15% or less, the buffered hydrofluoric acid resistance is particularly deteriorated. There is no. A preferred range is 0 to 10% in total.
[0024]
SrO and BaO are components that improve the chemical resistance of the glass. However, when these components increase, the phase separation tendency of the glass decreases, and it becomes impossible to form a phase separation by a short heat treatment. For this reason, the total amount should not be more than 6.5%. A preferable range is 0 to 5% in total.
[0025]
In the present invention, in addition to the above-described components, other components within the range that does not impair the properties, for example, As 2 O 3 , Sb 2 O 3 , SnO 2 , Cl 2 , SO 3, etc., are used as fining agents. Up to 3%, ZrO 2 , TiO 2 , Y 2 O 3 , La 2 O 3 and P 2 O 5 may be added up to 5% in order to improve the chemical resistance and devitrification resistance of the glass. .
[0026]
Furthermore, addition of alkali metal oxides (Na 2 O, K 2 O, Li 2 O) should be avoided for the reasons described above. Also, PbO, which is generally used as a flux, is not preferable because it may significantly reduce the chemical resistance of the glass or volatilize from the surface of the melt when the glass is melted to contaminate the environment.
[0027]
The glass substrate according to the present invention can be produced by a method such as a slot down draw method, an overflow down draw method, a float method, or a roll out method, which is known as a plate glass forming method.
[0028]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0029]
Tables 1 to 6 show examples of the present invention (sample Nos. 1 to 27), and Table 7 shows comparative examples (samples No. 28 and 29).
[0030]
[Table 1]
Figure 0004168320
[0031]
[Table 2]
Figure 0004168320
[0032]
[Table 3]
Figure 0004168320
[0033]
[Table 4]
Figure 0004168320
[0034]
[Table 5]
Figure 0004168320
[0035]
[Table 6]
Figure 0004168320
[0036]
[Table 7]
Figure 0004168320
[0037]
Each sample in the table was prepared as follows.
[0038]
First, the glass raw material was prepared so that it might become the composition of a table | surface, and it melted at 1600 degreeC for 24 hours with the platinum pot. Subsequently, the molten glass is poured onto a carbon plate, formed into a plate shape, and after slow cooling, double-side polished so that the plate thickness becomes 0.7 mm, and the obtained plate glass is cut into a size of 200 mm square. processed. Then, the sample was produced by performing heat processing on the conditions in a table | surface, and phase-separating.
[0039]
Various characteristics were evaluated for each sample thus prepared. The results are shown in the table.
[0040]
As is apparent from Tables 1 to 7, sample No. Since Nos. 1 to 27 have a phase separation structure with a particle size of 2 nm or more, the crack resistance was as high as 8.8 N or more. Further, the density is 2.466 g / cm 3 or less, the thermal expansion coefficient is 30.0 to 36.5 × 10 −7 / ° C. and the thermal shock resistance is excellent, the strain point is 656 ° C. or more and the thermal shrinkage is small, When the specific Young's modulus is 27.5 GPa / g · cm −3 or more, the amount of deflection is expected to be small. Furthermore, the acid resistance and BHF resistance were also excellent.
[0041]
On the other hand, sample No. which is a comparative example. Nos. 28 and 29 were heat-treated, but were not phase-separated, so the crack resistance was as low as 7.4 N.
[0042]
Next, no. Glass substrates having various sizes of particles were prepared using the glass composition No. 1 and the heat treatment conditions were changed, and the relationship between the phase separation particle size and crack resistance was investigated. The results are shown in Table 8 and FIG. In FIG. 1, the vertical axis represents the crack generation rate representing the crack resistance of the glass substrate, and the horizontal axis represents the load applied to the diamond indenter. In the figure, A is a glass substrate not having a phase separation structure, B is a glass substrate having a phase separation structure with a particle size of 2 nm (sample No. 1), and C is a glass having a phase separation structure with a particle size of 10 nm. Substrate, D is a glass substrate having a phase separation structure with a particle size of 20 nm, E is a glass substrate having a phase separation structure with a particle size of 50 nm, F is a glass substrate having a phase separation structure with a particle size of 100 nm, and G is a particle It represents a glass substrate having a phase separation structure with a size of 110 nm.
[0043]
[Table 8]
Figure 0004168320
[0044]
As is clear from Table 8 and FIG. 1, when the crack occurrence rates of the glass substrate (sample A) not having a phase separation structure and the glass substrates having a phase separation structure (samples B to G) are compared, It can be seen that the glass substrate having the structure is less likely to generate cracks and the crack resistance is improved. In addition, it can be seen that, when the particle size is up to 100 nm, cracks are less likely to occur and the crack resistance is improved as the particle size is larger, but when the particle size is larger than 100 nm, the crack resistance tends to gradually decrease.
[0045]
The particle size of the phase separation was measured by observing with a TEM (transmission electron microscope).
[0046]
In addition, the evaluation of the crack resistance of the glass used the method proposed by Wada et al. (M. Wadaet al. Proc., The Xth ICG, vol. 11, Ceram. Soc., Japan, Kyoto, 1974, p39). . In this method, a sample glass is placed on the stage of a Vickers hardness tester, and a diamond-shaped diamond indenter is pressed against the surface of the sample glass with various loads for 15 seconds. Then, the number of cracks generated from the four corners of the indentation was counted up to 15 seconds after unloading, and the ratio to the maximum number of cracks (4) that could be generated was determined to obtain the crack generation rate. Further, the load when the crack occurrence rate was 50% was defined as “crack resistance”. A large crack resistance means that cracks are unlikely to occur even under high loads, that is, excellent crack resistance. The crack occurrence rate was measured 20 times with the same load, and the average value was obtained. The measurement conditions were a temperature of 25 ° C. and a humidity of 30%.
[0047]
The density is measured by a known Archimedes method, and the thermal expansion coefficient is an average thermal expansion coefficient measured at 30 to 380 ° C. using a dilatometer.
[0048]
The strain point and annealing point were measured based on the method of ASTM C336-71, and the softening point was measured based on the method of ASTM C338-73. The viscosity of 10 4.0 to 10 2.5 dPa · s was measured by a platinum ball pulling method.
[0049]
The Young's modulus was measured by a bending resonance method, and the specific Young's modulus was calculated from measured values of Young's modulus and density.
[0050]
Hydrochloric acid resistance was evaluated by immersing each sample in a 10 wt% aqueous hydrochloric acid solution maintained at 80 ° C. for 24 hours, and then visually observing the surface state thereof. BHF resistance is determined by immersing each sample in buffered hydrofluoric acid consisting of 30% by mass ammonium fluoride and 6% by mass hydrofluoric acid maintained at 20 ° C. for 30 minutes, and then observing the surface condition visually. evaluated. When the surface of the glass substrate is cloudy, it is indicated by “x”, and when the surface of the glass substrate is not changed, it is indicated by “◯”.
[0051]
The liquid phase temperature is measured by pulverizing glass, passing through a standard sieve 30 mesh (500 nm), putting the glass powder remaining on 50 mesh (300 nm) into a platinum boat, holding it in a temperature gradient furnace for 24 hours, The temperature at which precipitation occurs is measured.
[0052]
Method of manufacturing a glass substrate of the present invention as described above, it is possible to increase the crack resistance, thin, as a manufacturing method of a glass substrate used in flat panel display substrate, and a hard disk substrate or the like and weight are required Is preferred.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between phase separation particle size and crack generation rate.

Claims (6)

質量百分率で、SiO2 50〜70%、Al23 10〜20%、B23 7〜15%、MgO+CaO 0〜20%、SrO+BaO 0〜6.5%の組成を有するアルミノシリケートガラスを、2〜100nmの粒子サイズの分相構造が得られるように、熱処理を行うことを特徴とするガラス基板の製造方法。By mass percentage, SiO 2 50~70%, Al 2 O 3 10~20%, B 2 O 3 7~15%, MgO + CaO 0~20%, aluminosilicate glass having a composition of SrO + BaO 0~6.5% A method for producing a glass substrate, comprising performing a heat treatment so as to obtain a phase separation structure having a particle size of 2 to 100 nm. 500℃〜ガラスの徐冷点+60℃の温度で、0.5〜300時間保持する熱処理を行うことを特徴とする請求項に記載のガラス基板の製造方法。The method for producing a glass substrate according to claim 1 , wherein a heat treatment is performed at a temperature of 500 ° C to a glass annealing point + 60 ° C for 0.5 to 300 hours. ガラス基板の製造工程で熱処理を行うことを特徴とする請求項1または2に記載のガラス基板の製造方法。The method for producing a glass substrate according to claim 1, wherein heat treatment is performed in the production process of the glass substrate. 溶融ガラスの冷却工程で熱処理を行うことを特徴とする請求項1〜3のいずれかに記載のガラス基板の製造方法。The method for producing a glass substrate according to any one of claims 1 to 3, wherein a heat treatment is performed in a cooling step of the molten glass. ガラス基板に加工成形した後に熱処理を行うことを特徴とする請求項1〜4のいずれかに記載のガラス基板の製造方法。The method for producing a glass substrate according to any one of claims 1 to 4, wherein heat treatment is performed after the glass substrate is processed and molded. ガラス基板の成形をオーバーフローダウンドロー法で行うことを特徴とする請求項1〜5のいずれかに記載のガラス基板の製造方法。The method for producing a glass substrate according to claim 1, wherein the glass substrate is formed by an overflow downdraw method.
JP2002241449A 2002-08-22 2002-08-22 Manufacturing method of glass substrate Expired - Fee Related JP4168320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002241449A JP4168320B2 (en) 2002-08-22 2002-08-22 Manufacturing method of glass substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002241449A JP4168320B2 (en) 2002-08-22 2002-08-22 Manufacturing method of glass substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008124418A Division JP4862859B2 (en) 2008-05-12 2008-05-12 Glass substrate

Publications (2)

Publication Number Publication Date
JP2004075494A JP2004075494A (en) 2004-03-11
JP4168320B2 true JP4168320B2 (en) 2008-10-22

Family

ID=32023928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002241449A Expired - Fee Related JP4168320B2 (en) 2002-08-22 2002-08-22 Manufacturing method of glass substrate

Country Status (1)

Country Link
JP (1) JP4168320B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006269261A (en) * 2005-03-24 2006-10-05 Lintec Corp Composition for forming dielectric layer or insulator layer, green sheet, and flat panel display substrate
JP4803643B2 (en) * 2005-06-15 2011-10-26 Hoya株式会社 Glass member, product using the same, and manufacturing method thereof
JP5252771B2 (en) * 2005-06-15 2013-07-31 Hoya株式会社 Alkali-free glass, manufacturing method thereof, and glass substrate for TFT formation of liquid crystal display device
JP5013308B2 (en) * 2005-06-27 2012-08-29 日本電気硝子株式会社 Glass substrate for display
JP5435394B2 (en) * 2007-06-08 2014-03-05 日本電気硝子株式会社 Tempered glass substrate and manufacturing method thereof
US7709406B2 (en) * 2007-07-31 2010-05-04 Corning Incorporation Glass compositions compatible with downdraw processing and methods of making and using thereof
JP5223594B2 (en) * 2008-10-29 2013-06-26 旭硝子株式会社 Manufacturing method of flat display panel
JP5491567B2 (en) * 2012-04-23 2014-05-14 Hoya株式会社 Alkali-free glass, manufacturing method thereof, and glass substrate for TFT formation of liquid crystal display device
CN104837783A (en) * 2012-10-12 2015-08-12 旭硝子株式会社 Manufacturing method for phase-separated glass, and phase-separated glass
WO2015023525A1 (en) * 2013-08-15 2015-02-19 Corning Incorporated Alkali-doped and alkali-free boroaluminosilicate glass
CN105980147B (en) 2013-08-15 2020-07-24 康宁公司 Medium to high CTE glasses and glass articles comprising the same
JP2015227272A (en) * 2014-06-02 2015-12-17 日本電気硝子株式会社 Phase-split glass and composite substrate using the same
WO2015186606A1 (en) * 2014-06-02 2015-12-10 日本電気硝子株式会社 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass
JP6469390B2 (en) * 2014-09-01 2019-02-13 国立大学法人 東京大学 Glass material and manufacturing method thereof
JP2016132601A (en) * 2015-01-21 2016-07-25 日本電気硝子株式会社 Phase-split glass
CN108423985B (en) * 2018-04-25 2022-01-25 成都光明光电股份有限公司 Glass composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858293B2 (en) * 1995-12-11 2006-12-13 日本電気硝子株式会社 Alkali-free glass substrate
JP4547093B2 (en) * 1998-11-30 2010-09-22 コーニング インコーポレイテッド Glass for flat panel display
DE10000837C1 (en) * 2000-01-12 2001-05-31 Schott Glas Alkali-free alumino-borosilicate glass used as substrate glass in thin film transistor displays and thin layer solar cells contains oxides of silicon, boron, aluminum, magnesium, strontium, and barium
JP2001348247A (en) * 2000-05-31 2001-12-18 Asahi Glass Co Ltd Alkaline-free glass

Also Published As

Publication number Publication date
JP2004075494A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
JP4168320B2 (en) Manufacturing method of glass substrate
JP3858293B2 (en) Alkali-free glass substrate
JP3666608B2 (en) Alkali-free glass substrate
JP3144823B2 (en) Alkali-free glass
JP3666610B2 (en) Alkali-free glass substrate
JP5429684B2 (en) Tempered glass substrate and manufacturing method thereof
JP2990379B2 (en) Alkali-free glass substrate
TW555715B (en) Alkali-free glass and glass plate for a display
US20120052275A1 (en) Glass substrate, chemically strengthened glass substrate and cover glass, and method for manufactruing the same
JP6256744B2 (en) Alkali-free glass plate
JP3800657B2 (en) Alkali-free glass and flat display panel
JPS6374935A (en) Glass composition for substrate, having improved chemical resistance
JP4305817B2 (en) Alkali-free glass substrate
WO2013099855A1 (en) Alkali-free glass
JP2002003240A (en) Glass substrate for liquid crystal display
JP4862859B2 (en) Glass substrate
JP2001151534A (en) Glass substrate for liquid crystal display
JP2000044278A (en) Glass substrate for display
JP2003335548A (en) Alkalifree glass, and glass substrate for display using the same
JP2013043783A (en) Method for manufacturing tempered glass plate
JP2007008812A (en) Alkali free glass substrate
JP2001348247A (en) Alkaline-free glass
JP4686858B2 (en) Glass substrate for flat panel display
JP2002029776A (en) Nonalkali glass excellent in crack resistance
JP2001122637A (en) Glass substrate for display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees