WO2016117406A1 - Phase-separated glass - Google Patents

Phase-separated glass Download PDF

Info

Publication number
WO2016117406A1
WO2016117406A1 PCT/JP2016/050634 JP2016050634W WO2016117406A1 WO 2016117406 A1 WO2016117406 A1 WO 2016117406A1 JP 2016050634 W JP2016050634 W JP 2016050634W WO 2016117406 A1 WO2016117406 A1 WO 2016117406A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
phase
glass
refractive index
content
Prior art date
Application number
PCT/JP2016/050634
Other languages
French (fr)
Japanese (ja)
Inventor
篤 虫明
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2016117406A1 publication Critical patent/WO2016117406A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a phase-separated glass, and specifically relates to a phase-separated glass having a light scattering function.
  • the light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area.
  • LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb.
  • an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
  • the organic EL element includes a glass plate, a transparent conductive film as an anode, an organic EL layer including an organic compound exhibiting electroluminescence that emits light by current injection, and a cathode, and a cathode. It is an element.
  • As the organic EL layer used in the organic EL element a low molecular dye material, a conjugated polymer material or the like is used.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection A laminated structure with layers and the like is formed.
  • An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode The electrons recombine in the light emitting layer, and the emission center is excited by the recombination energy to emit light.
  • Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use.
  • An organic EL display using an organic EL element has a light emission efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
  • One cause of the decrease in luminance is that light is confined in the glass plate due to the difference in refractive index between the glass plate and air.
  • the critical angle is calculated to be 42 ° from Snell's law. Therefore, light having an incident angle greater than the critical angle causes total reflection, is confined in the glass plate, and is not extracted into the air.
  • Patent Document 1 a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass plate, and a scattering substance is dispersed in the light extraction layer, thereby reducing the light extraction efficiency. It is also described to increase.
  • the present invention has been made in view of the above circumstances, and the technical problem thereof is that the light extraction efficiency of the organic EL element can be increased without producing a light extraction layer made of a sintered body, and the production can be achieved.
  • the idea is to create an excellent glass.
  • phase-separated glass of the present invention i.e., phase-separated glass of the present invention has a phase separation structure comprising at least a first phase and a second phase, the refractive index n d be 1.51 or more
  • the liquid phase viscosity is 10 3.5 dPa ⁇ s or more.
  • “refractive index n d ” refers to the value of the d-line measured by a refractive index measuring device.
  • a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.). after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation.
  • “Liquid phase viscosity” refers to the viscosity of the glass at the liquidus temperature.
  • Liquid phase temperature is a glass powder that passes through 30 mesh (a sieve opening of 500 ⁇ m) and remains in a 50 mesh (a sieve opening of 300 ⁇ m) in a platinum boat and is kept in a temperature gradient furnace for 24 hours. The value which measured the temperature which precipitates. Note that the phase separation structure including at least the first phase and the second phase can be visually confirmed by light scattering on the surface.
  • the phase separation glass of the present invention has a phase separation structure including at least a first phase and a second phase.
  • the light incident on the glass plate from the organic EL layer is scattered at the interface between the first phase and the second phase, so that the light can be easily taken out to the outside.
  • the light extraction efficiency can be increased without forming a light extraction layer made of a sintered body.
  • the refractive index n d is 1.51 or more.
  • the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9.
  • the refractive index n d of the glass plate was typically about 1.50.
  • the refractive index nd is regulated as described above, so that the difference in refractive index between the glass plate and the transparent conductive film is reduced, so that light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film. Light extraction efficiency can be increased.
  • the phase separation glass of the present invention has a liquidus viscosity of 10 3.5 dPa ⁇ s or more. Since the conventional high refractive index phase-separated glass has a low liquidus viscosity, it has been difficult to produce a large number of glass plates. Therefore, if the liquidus viscosity is regulated as described above, the glass becomes difficult to devitrify at the time of molding, and in particular, it becomes easy to mass-produce a plate-shaped phase-separated glass. As a result, the manufacturing cost of the phase separation glass can be reduced.
  • phase-separated glass of the present invention preferably has a refractive index n d is less than 1.63.
  • the phase-separated glass of the present invention contains, as a glass composition, SiO 2 30 to 75%, Al 2 O 3 0 to 35%, and B 2 O 3 0.1 to 50% by mass. Is preferred. If it does in this way, phase separation property and devitrification resistance can be improved.
  • the phase-separated glass of the present invention preferably has a content of SiO 2 + Al 2 O 3 + B 2 O 3 in the glass composition of 55 to 80% by mass. If it does in this way, devitrification resistance can further be improved.
  • SiO 2 + Al 2 O 3 + B 2 O 3 refers to the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 .
  • the phase-separated glass of the present invention preferably has a content of MgO + CaO + SrO + BaO + ZnO in the glass composition of 15 to 35% by mass.
  • MgO + CaO + SrO + BaO + ZnO refers to the total amount of MgO, CaO, SrO, BaO and ZnO.
  • the phase-separated glass of the present invention preferably has a P 2 O 5 content of 0.001 to 20% by mass in the glass composition. In this way, it becomes easy to improve the phase separation.
  • the content of Li 2 O + Na 2 O + K 2 O in the glass composition is preferably 5% by mass or less.
  • Li 2 O + Na 2 O + K 2 O refers to the total amount of Li 2 O, Na 2 O and K 2 O.
  • the phase separation glass of the present invention has a flat plate shape.
  • the phase separation glass of the present invention is preferably formed by an overflow downdraw method.
  • the phase separation glass of the present invention is preferably used for illumination.
  • phase separation glass of the present invention is preferably used for organic EL lighting.
  • the organic EL device of the present invention includes the above phase separation glass.
  • Phase-separated glass of the present invention has a phase separation structure comprising at least a first phase and a second phase, the content of SiO 2 in the first phase, containing SiO 2 in the second phase More than the amount is preferred. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved. In addition, if the surface of the sample after being immersed in a 2% by volume hydrofluoric acid solution for 2 minutes is observed with a field emission scanning electron microscope, the details of each phase, particularly the content of SiO 2 in each phase can be confirmed. is there.
  • the average particle size of phase-separated particles of at least one phase is preferably 0.01 to 5 ⁇ m, particularly preferably 0.02 to 1 ⁇ m. If the average particle size of the phase-separated particles is small, the light emitted from the organic EL layer is difficult to scatter at the interface between the first phase and the second phase. On the other hand, if the average particle size of the phase-separated particles is large, the scattering intensity becomes too strong and the total light transmittance may be lowered.
  • the refractive index n d is 1.51 or more, preferably 1.52 or more, 1.53 or more, 1.54 or more, particularly 1.55 or more.
  • the refractive index n d is less than 1.51, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film.
  • the refractive index n d is too high, since the introduction of the components to improve the devitrification resistance is limited, it is difficult to increase the liquidus viscosity. Further, the reflectance at the interface between the glass plate and the air becomes high, and it becomes difficult to extract light to the outside.
  • the refractive index n d is preferably 2.30 or less, 2.00 or less, 1.80 or less, 1.70 or less, 1.65 or less, less than 1.63, 1.62 or less, 1.61 or less, 1.60 or less, 1.59 or less, particularly 1.58 or less.
  • the liquidus viscosity is 10 3.5 dPa ⁇ s or more, preferably 10 3.5 dPa ⁇ s or more, 10 3.8 dPa ⁇ s or more, 10 4.0 dPa ⁇ s.
  • Phase-separated glass of the present invention has a glass composition, in mass%, SiO 2 30 ⁇ 75% , Al 2 O 3 0 ⁇ 35%, preferably contains 2 O 3 0.1 ⁇ 50% B .
  • % display means the mass%.
  • the preferable upper limit range of SiO 2 is 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, and particularly 48% or less.
  • the preferable lower limit range of SiO 2 is 30% or more, 35% or more, 40% or more, 42% or more, 44% or more, particularly 46% or more.
  • Al 2 O 3 is a component that enhances devitrification resistance.
  • the preferable upper limit range of Al 2 O 3 is 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 12% or less, 10% or less, particularly 9% or less.
  • the range is 0.1% or more, 3% or more, 4% or more, particularly 5% or more.
  • B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease.
  • the acid resistance tends to decrease. Therefore, the preferable upper limit range of B 2 O 3 is 50% or less, 40% or less, 30% or less, 25% or less, 20% or less, 17% or less, particularly 15% or less. 1% or more, 0.5% or more, 1% or more, 4% or more, 7% or more, 9% or more, 10% or more, 11% or more, particularly 12% or more.
  • the content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 55 to 80%, 58 to 75%, 60 to 70%, particularly 64 to 68% from the viewpoint of refractive index and devitrification resistance. .
  • Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity while increasing the phase separation, but if the content of Li 2 O + Na 2 O + K 2 O is too large, the liquid phase viscosity decreases. It becomes easy and a strain point falls easily. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, a suitable upper limit range of Li 2 O + Na 2 O + K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
  • Li 2 O is a component that enhances phase separation. However, if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the preferable upper limit range of Li 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
  • Na 2 O is a component that lowers the high temperature viscosity.
  • a preferable upper limit range of Na 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
  • K 2 O is a component that enhances phase separation.
  • the preferable upper limit range of K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
  • MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity.
  • the preferable upper limit range of MgO is 30% or less, 20% or less, 10% or less, 5% or less, and particularly less than 1%.
  • a suitable lower limit range is 0% or more, 0.1% or more, 0.2% or more, especially 0.5% or more.
  • CaO is a component that lowers the high-temperature viscosity.
  • the preferable upper limit range of CaO is 30% or less, 20% or less, 10% or less, 8% or less, 5% or less, 3% or less, 2% or less, particularly 1% or less. % Or more, 0.1% or more, particularly 0.5% or more.
  • the preferred upper limit range of SrO is 30% or less, 25% or less, 20% or less, 15% or less, particularly 10% or less
  • the preferred lower limit range is 0% or more, 1% or more, 3% or more, 5% or less. % Or more, 7% or more, particularly 8% or more.
  • BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass. If the content of BaO increases, the refractive index tends to increase, and if the content of BaO is too large, the density tends to increase, and the balance of the components of the glass composition is impaired, resulting in a decrease in devitrification resistance. It becomes easy. Therefore, the preferable upper limit range of BaO is 40% or less, 30% or less, 26% or less, 24% or less, 22% or less, particularly 20% or less, and the preferable lower limit range is 0% or more, 1% or more, 5 % Or more, 7% or more, 10% or more, 12% or more, 14% or more, particularly 15% or more.
  • the preferable upper limit range of ZnO is 20% or less, 10% or less, 7% or less, 5% or less, particularly 4% or less, and the preferable lower limit range is 0% or more, 0.1% or more, 0.5% or less. % Or more, 1% or more, 1.5% or more, particularly 2% or more.
  • the content of MgO + CaO + SrO + BaO + ZnO is preferably 15 to 35%, 20 to 34%, 22 to 33%, 24 to 32%, particularly 26 to 31% from the viewpoint of achieving both refractive index and devitrification resistance.
  • the mass ratio (SiO 2 + Al 2 O 3 + B 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO) is preferably 1.8 to 4.0, 2.0 to 3.3 from the viewpoint of achieving both refractive index and devitrification resistance. 2, 2.1 to 3.0, 2.2 to 2.9, particularly 2.3 to 2.8.
  • (SiO 2 + Al 2 O 3 + B 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO) is a value obtained by dividing the content of SiO 2 + Al 2 O 3 + B 2 O 3 by the content of MgO + CaO + SrO + BaO + ZnO.
  • TiO 2 is a component that increases the refractive index. However, when the content of TiO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of TiO 2 is 20% or less, 15% or less, 10% or less, 5% or less, particularly 3% or less, and the preferable lower limit range is 0% or more, 0.001% or more, 0. 01% or more, 0.1% or more, 1% or more, 1.5% or more, particularly 2% or more.
  • ZrO 2 is a component that increases the refractive index. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of ZrO 2 is 20% or less, 10% or less, 6% or less, 4% or less, 3% or less, particularly 2% or less, and the preferable lower limit range is 0% or more and 0.001%. Above, 0.01% or more, 0.1% or more, 0.5% or more, particularly 1% or more.
  • P 2 O 5 is a component that improves phase separation.
  • a suitable upper limit range of P 2 O 5 is 20% or less, 15% or less, 10% or less, 7% or less, 4% or less, 3% or less, particularly 2.5% or less. It is 0% or more, 0.001% or more, 0.01% or more, 0.1% or more, 0.5% or more, 1% or more, 1.2% or more, particularly 1.4% or more.
  • La 2 O 3 is a component that increases the refractive index.
  • a suitable upper limit range of La 2 O 3 is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
  • Nb 2 O 5 is a component that increases the refractive index, but as the content of Nb 2 O 5 increases, the density tends to increase and the devitrification resistance tends to decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the preferable upper limit range of Nb 2 O 5 is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
  • Gd 2 O 3 is a component that increases the refractive index. However, if the content of Gd 2 O 3 increases, the density becomes too high, or the balance of the glass composition component is lost, resulting in a decrease in devitrification resistance. The high-temperature viscosity is too low, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, a suitable upper limit range of Gd 2 O 3 is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
  • Rare metal oxide is a component that increases the refractive index, but as the content of these components increases, the density and thermal expansion coefficient tend to increase, and devitrification resistance decreases, ensuring high liquid phase viscosity. It becomes difficult to do. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, a preferable upper limit range of the rare metal oxide is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
  • the “rare metal oxide” as used in the present invention is a rare earth oxide such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , CeO 2 , Y 2 O 3 , Nb 2 O 5 , Ta 2 O 5. Point to.
  • the following oxide conversion means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
  • the content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, particularly 0.01 to 0.5%.
  • the content of Fe 2 O 3 is preferably 0.05% or less, 0.04% or less, 0.03% or less, and particularly 0.001 to 0.02%.
  • the CeO 2 content is preferably 0 to 6%.
  • the preferable upper limit range of CeO 2 is 6% or less, 5% or less, 3% or less, 2% or less, 1% or less, particularly 0.1% or less.
  • a suitable lower limit range of CeO 2 is 0.001% or more, particularly 0.01% or more.
  • PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view.
  • the PbO content is preferably 0.5% or less, particularly preferably less than 0.1%.
  • other components may be introduced in a total amount of preferably 10% (desirably 5%, more desirably 2%).
  • the phase-separated glass of the present invention preferably has the following characteristics.
  • the strain point is preferably 450 ° C. or higher, 500 ° C. or higher, 550 ° C. or higher, particularly 600 ° C. or higher.
  • the higher the temperature of the transparent conductive film the higher the transparency and the lower the electrical resistance.
  • the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, if the strain point is in the above range, the heat resistance is improved, so that both transparency of the transparent conductive film and low electrical resistance can be achieved. Further, in the organic device manufacturing process, the glass plate is heated by heat treatment. It becomes difficult to shrink.
  • the temperature at 10 2.5 dPa ⁇ s is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1380 ° C. or lower, particularly 1360 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
  • the liquidus temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1100 ° C. or lower, particularly 1060 ° C. or lower. If it does in this way, it will become difficult to devitrify glass at the time of shaping
  • the phase separation temperature is preferably 800 ° C. or higher, 850 ° C. or higher, 900 ° C. or higher, 950 ° C. or higher, 1000 ° C. or higher, particularly 1100 ° C. or higher.
  • the phase separation viscosity is preferably 10 9.0 dPa ⁇ s or less, 10 8.0 dPa ⁇ s or less, 10 7.0 dPa ⁇ s or less, particularly 10 3.5 to 10 6.0 dPa ⁇ s. is there.
  • phase separation temperature indicates that clear cloudiness is observed when a glass piece is placed in a platinum boat and remelted at 1400 ° C., then the platinum boat is transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes. Temperature.
  • Phase separation viscosity refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method.
  • the glass is preferably phase-separated in the forming step and / or the slow cooling step, but the glass may be phase-separated other than these steps, for example, in the melting step.
  • the thickness (in the case of a flat plate) is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.7 mm or less, 0.5 mm or less, 0.3 mm or less, 0 .2 mm or less, particularly 0.1 mm or less.
  • the smaller the thickness the higher the flexibility and the easier it is to improve the design of organic EL lighting.
  • the thickness is preferably 10 ⁇ m or more, particularly 30 ⁇ m or more.
  • the phase-separated glass of the present invention preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device.
  • a flat plate shape it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface).
  • the theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
  • the surface roughness Ra of at least one surface is preferably 0.01 to 1 ⁇ m.
  • surface roughness Ra is large, when forming a transparent conductive film etc. on the surface, the quality of a transparent conductive film falls and it becomes difficult to obtain uniform light emission.
  • Suitable upper limit ranges of the surface roughness Ra are 1 ⁇ m or less, 0.8 ⁇ m or less, 0.5 ⁇ m or less, 0.3 ⁇ m or less, 0.1 ⁇ m or less, 0.07 ⁇ m or less, 0.05 ⁇ m or less, 0.03 ⁇ m or less, particularly 10 nm. It is as follows.
  • the phase-separated glass of the present invention is preferably formed by a downdraw method, particularly an overflow downdraw method.
  • a downdraw method particularly an overflow downdraw method.
  • the overflow down draw method the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state.
  • a slot downdraw method can be employed. If it does in this way, it will become easy to produce a thin glass plate.
  • a redraw method for example, a float method, a roll-out method, etc.
  • a redraw method for example, a float method, a roll-out method, etc.
  • a large glass plate can be efficiently formed.
  • the phase-separated glass of the present invention is preferably not subjected to a heat treatment step for phase-separating the glass after the cutting step, and the glass is phase-separated in the molding step, or a slow cooling (cooling) step immediately after molding. It is preferable that the glass is phase-separated.
  • a phase separation phenomenon may occur in the bowl-shaped structure, or a phase separation phenomenon may occur during stretch molding or slow cooling. If it does in this way, the number of manufacturing processes will decrease and the productivity of phase separation glass can be raised.
  • the phase separation phenomenon can be controlled by the glass composition, molding conditions, slow cooling conditions, and the like.
  • At least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased.
  • the surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • the roughened surface can be formed by HF etching, sandblasting, or the like.
  • the roughened surface can be formed by an atmospheric pressure plasma process. If it does in this way, while maintaining the smooth surface state of one surface of a glass plate, a roughening process can be uniformly performed with respect to the other surface. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
  • a gas containing F for example, SF 6 , CF 4
  • a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
  • the uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
  • Tables 1 to 3 show sample numbers. 1 to 32 are shown.
  • the obtained glass batch was supplied to a glass melting furnace and melted at 1400 ° C. for 7 hours.
  • a slow cooling treatment was performed from the strain point to room temperature over 10 hours.
  • the obtained glass plate was processed as necessary to evaluate various properties.
  • the obtained glass plate has a phase separation structure including at least a first phase and a second phase, that is, exhibits phase separation, and the sample surface after being immersed in a 2% by volume hydrofluoric acid solution for 2 minutes. was observed with a field emission scanning electron microscope.
  • the content of SiO 2 in the first phase was higher than the content of SiO 2 in the second phase.
  • the strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
  • the annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
  • the temperatures at high temperature viscosities of 10 4.0 dPa ⁇ s, 10 3.0 dPa ⁇ s, 10 2.5 dPa ⁇ s, and 10 2.0 dPa ⁇ s are values measured by the platinum ball pulling method. In addition, it is excellent in a meltability, so that high temperature viscosity is low.
  • the liquidus temperature passes through 30 mesh (500 ⁇ m sieve opening), and the glass powder remaining in 50 mesh (300 ⁇ m sieve opening) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours, followed by crystal precipitation. Measured temperature.
  • the liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
  • the phase separation temperature was measured at a temperature at which clear white turbidity was observed when a glass piece was put in a platinum boat and remelted at 1400 ° C., and then the platinum boat was transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes. Is.
  • the phase separation viscosity is a value obtained by measuring the viscosity of the glass at the phase separation temperature by a platinum ball pulling method.
  • Refractive index n d is the value of the d-line as determined by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Specifically, first, a rectangular parallelepiped sample of 25 mm ⁇ 25 mm ⁇ about 3 mm is prepared, and the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps ⁇ 50 ° C.) is set at a cooling rate of 0.1 ° C./min. It is a value measured by infiltrating an immersion liquid having a matching refractive index n d after annealing.
  • Sample No. 1 to 32 have a phase separation structure including at least a first phase and a second phase, a liquid phase viscosity of 10 3.5 dPa ⁇ s or more, and a refractive index nd of 1.550 or more. there were. Therefore, sample no. Nos. 1 to 32 can be suitably used as glass plates used for organic EL lighting.

Abstract

The present invention addresses the technical problem of providing a glass with which excellent productivity is achieved, and which is capable of improving light extraction efficiency of an organic EL element, even if a light extraction layer comprising a sintered body is not formed. This phase-separated glass is characterized by: being provided with a phase-separated structure including at least a first phase and a second phase; having a refractive index (nd) of at least 1.51; and having a liquid-phase viscosity of at least 103.5 dPa∙s.

Description

分相ガラスPhase separation glass
 本発明は、分相ガラスに関し、具体的には、光散乱機能を有する分相ガラスに関する。 The present invention relates to a phase-separated glass, and specifically relates to a phase-separated glass having a light scattering function.
 近年、家電製品の普及、大型化、多機能化等の理由から、家庭等の生活空間で消費されるエネルギーが増えている。特に、照明機器のエネルギー消費が多くなっている。このため、高効率の照明が活発に検討されている。 In recent years, the energy consumed in living spaces such as homes has increased due to the widespread use, increase in size, and multifunctionality of home appliances. In particular, the energy consumption of lighting equipment is increasing. For this reason, highly efficient illumination is actively studied.
 照明用光源は、限られた範囲を照らす「指向性光源」と、広範囲を照らす「拡散光源」とに分けられる。LED照明は、「指向性光源」に相当し、白熱球の代替として採用されつつある。その一方で、「拡散光源」に相当する蛍光灯の代替光源が望まれており、その候補として、有機EL(エレクトロルミネッセンス)照明が有力である。 The light source for illumination is divided into a “directional light source” that illuminates a limited area and a “diffuse light source” that illuminates a wide area. LED lighting corresponds to a “directional light source” and is being adopted as an alternative to an incandescent bulb. On the other hand, an alternative light source for a fluorescent lamp corresponding to a “diffusion light source” is desired, and organic EL (electroluminescence) illumination is a promising candidate.
 有機EL素子は、ガラス板と、陽極である透明導電膜と、電流の注入によって発光するエレクトロルミネッセンスを呈する有機化合物からなる一層又は複数層の発光層を含む有機EL層と、陰極とを備えた素子である。有機EL素子に用いられる有機EL層として、低分子色素系材料、共役高分子系材料等が用いられており、発光層を形成する場合、ホール注入層、ホール輸送層、電子輸送層、電子注入層等との積層構造が形成される。このような積層構造を有する有機EL層を、陽極と陰極の間に配置し、陽極と陰極に電界を印加することにより、陽極である透明電極から注入された正孔と、陰極から注入された電子とが、発光層内で再結合し、その再結合エネルギーによって発光中心が励起されて、発光する。 The organic EL element includes a glass plate, a transparent conductive film as an anode, an organic EL layer including an organic compound exhibiting electroluminescence that emits light by current injection, and a cathode, and a cathode. It is an element. As the organic EL layer used in the organic EL element, a low molecular dye material, a conjugated polymer material or the like is used. When forming a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection A laminated structure with layers and the like is formed. An organic EL layer having such a laminated structure is disposed between the anode and the cathode, and by applying an electric field to the anode and the cathode, holes injected from the transparent electrode that is the anode and those injected from the cathode The electrons recombine in the light emitting layer, and the emission center is excited by the recombination energy to emit light.
 有機EL素子は、携帯電話、ディスプレイ用途として検討が進められており、一部では既に実用化されている。また、有機EL素子を用いた有機ELディスプレイは、液晶ディスプレイ、プラズマディスプレイ等の薄型テレビと同等の発光効率を有している。 Organic EL elements are being studied for use in mobile phones and displays, and some have already been put into practical use. An organic EL display using an organic EL element has a light emission efficiency equivalent to that of a thin television such as a liquid crystal display or a plasma display.
 しかし、有機EL素子を照明用光源に適用するためには、輝度が未だ実用レベルに到達しておらず、更なる発光効率の改善が必要である。 However, in order to apply the organic EL element to the light source for illumination, the luminance has not yet reached the practical level, and further improvement of the luminous efficiency is necessary.
特開2012-25634号公報JP 2012-25634 A
 輝度低下の原因の一つは、ガラス板と空気の屈折率差に起因して、ガラス板内に光が閉じ込められることにある。例えば、屈折率n1.50のガラス板を用いた場合、空気の屈折率nは1.0であるため、臨界角はスネルの法則より42°と計算される。よって、この臨界角以上の入射角の光は、全反射を起こし、ガラス板内に閉じ込められて、空気中に取り出されないことになる。 One cause of the decrease in luminance is that light is confined in the glass plate due to the difference in refractive index between the glass plate and air. For example, when a glass plate having a refractive index n d of 1.50 is used, since the refractive index n d of air is 1.0, the critical angle is calculated to be 42 ° from Snell's law. Therefore, light having an incident angle greater than the critical angle causes total reflection, is confined in the glass plate, and is not extracted into the air.
 上記問題を解決するために、透明導電膜等とガラス板の間に、光取り出し層を形成することが検討されている。例えば、特許文献1には、ソーダガラス板の表面に、高屈折率のガラスフリットを焼結させた光取り出し層を形成すると共に、光取り出し層内に散乱物質を分散させることにより、光取り出し効率を高めることも記載されている。 In order to solve the above problems, it has been studied to form a light extraction layer between a transparent conductive film or the like and a glass plate. For example, in Patent Document 1, a light extraction layer in which a glass frit having a high refractive index is sintered is formed on the surface of a soda glass plate, and a scattering substance is dispersed in the light extraction layer, thereby reducing the light extraction efficiency. It is also described to increase.
 しかし、ガラス板の表面に光取り出し層を形成するためには、ガラス板の表面にガラスペーストを塗布する印刷工程が必要になり、この工程は生産コストの高騰を招く。更に、ガラスフリット中に散乱粒子を分散させる場合、散乱粒子自体の吸収により光取り出し層の透過率が低くなる。 However, in order to form the light extraction layer on the surface of the glass plate, a printing step of applying a glass paste to the surface of the glass plate is required, and this step causes an increase in production cost. Further, when the scattering particles are dispersed in the glass frit, the transmittance of the light extraction layer is lowered due to the absorption of the scattering particles themselves.
 本発明は、上記事情に鑑みなされたものであり、その技術的課題は、焼結体からなる光取り出し層を形成しなくても、有機EL素子の光取り出し効率を高めることができ、しかも生産性に優れるガラスを創案することである。 The present invention has been made in view of the above circumstances, and the technical problem thereof is that the light extraction efficiency of the organic EL element can be increased without producing a light extraction layer made of a sintered body, and the production can be achieved. The idea is to create an excellent glass.
 本発明者は、鋭意検討の結果、分相ガラスを用いると共に、その分相ガラスの屈折率と耐失透性を所定範囲に規制することにより、上記技術的課題を解決し得ることを見出し、本発明として提案するものである。すなわち、本発明の分相ガラスは、すなわち、本発明の分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有し、屈折率nが1.51以上であり、且つ液相粘度が103.5dPa・s以上であることを特徴とする。ここで、「屈折率n」は、屈折率測定器で測定したd線の値を指す。例えば、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させながら、島津製作所社製の屈折率測定器KPR-2000により測定可能である。「液相粘度」は、液相温度におけるガラスの粘度を指す。「液相温度」は、30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定した値を指す。なお、少なくとも第一の相と第二の相を含む分相構造は、表面の光散乱により目視確認が可能である。 As a result of intensive studies, the present inventors have found that the above technical problem can be solved by using a phase separation glass and regulating the refractive index and devitrification resistance of the phase separation glass within a predetermined range. It is proposed as the present invention. That is, phase-separated glass of the present invention, i.e., phase-separated glass of the present invention has a phase separation structure comprising at least a first phase and a second phase, the refractive index n d be 1.51 or more In addition, the liquid phase viscosity is 10 3.5 dPa · s or more. Here, “refractive index n d ” refers to the value of the d-line measured by a refractive index measuring device. For example, a rectangular parallelepiped sample of 25 mm × 25 mm × about 3 mm is first prepared, and is slowly cooled at a cooling rate of 0.1 ° C./min in the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps−50 ° C.). after, while penetration of immersion the refractive index n d are aligned, it can be measured by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. “Liquid phase viscosity” refers to the viscosity of the glass at the liquidus temperature. “Liquid phase temperature” is a glass powder that passes through 30 mesh (a sieve opening of 500 μm) and remains in a 50 mesh (a sieve opening of 300 μm) in a platinum boat and is kept in a temperature gradient furnace for 24 hours. The value which measured the temperature which precipitates. Note that the phase separation structure including at least the first phase and the second phase can be visually confirmed by light scattering on the surface.
 本発明の分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有する。このようにすれば、有機ELデバイスに適用した場合、有機EL層からガラス板へ入射した光が、第一の相と第二の相の界面で散乱するため、光を外部に取り出し易くなり、結果として、焼結体からなる光取り出し層を形成しなくても、光取り出し効率を高めることができる。 The phase separation glass of the present invention has a phase separation structure including at least a first phase and a second phase. In this way, when applied to an organic EL device, the light incident on the glass plate from the organic EL layer is scattered at the interface between the first phase and the second phase, so that the light can be easily taken out to the outside. As a result, the light extraction efficiency can be increased without forming a light extraction layer made of a sintered body.
 本発明の分相ガラスは、屈折率nが1.51以上である。従来の有機EL照明等の有機ELデバイスは、ガラス板と透明導電膜等の屈折率差が大きいことに起因して、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し、光取り出し効率が低下するという問題もあった。具体的には、透明導電膜の屈折率nは1.9~2.0であり、有機EL層の屈折率nは1.8~1.9であった。これに対して、ガラス板の屈折率nは、通常、1.50程度であった。そこで、上記のように屈折率nを規制すれば、ガラス板と透明導電膜等の屈折率差が小さくなるため、有機EL層から入射した光がガラス板と透明導電膜等の界面で反射し難くなり、光取り出し効率を高めることができる。 Phase-separated glass of the present invention, the refractive index n d is 1.51 or more. In conventional organic EL devices such as organic EL lighting, the light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film due to the large difference in refractive index between the glass plate and the transparent conductive film. However, there is also a problem that the light extraction efficiency is lowered. Specifically, the refractive index n d of the transparent conductive film is 1.9 to 2.0, and the refractive index n d of the organic EL layer was 1.8-1.9. In contrast, the refractive index n d of the glass plate was typically about 1.50. Therefore, if the refractive index nd is regulated as described above, the difference in refractive index between the glass plate and the transparent conductive film is reduced, so that light incident from the organic EL layer is reflected at the interface between the glass plate and the transparent conductive film. Light extraction efficiency can be increased.
 本発明の分相ガラスは、液相粘度が103.5dPa・s以上である。従来の高屈折率の分相ガラスは、液相粘度が低いため、大量のガラス板を作製することが困難であった。そこで、上記のように液相粘度を規制すれば、成形時にガラスが失透し難くなり、特に平板形状の分相ガラスを大量生産し易くなる。結果として、分相ガラスの製造コストを低減することができる。 The phase separation glass of the present invention has a liquidus viscosity of 10 3.5 dPa · s or more. Since the conventional high refractive index phase-separated glass has a low liquidus viscosity, it has been difficult to produce a large number of glass plates. Therefore, if the liquidus viscosity is regulated as described above, the glass becomes difficult to devitrify at the time of molding, and in particular, it becomes easy to mass-produce a plate-shaped phase-separated glass. As a result, the manufacturing cost of the phase separation glass can be reduced.
 第二に、本発明の分相ガラスは、屈折率nが1.63未満であることが好ましい。 Secondly, phase-separated glass of the present invention preferably has a refractive index n d is less than 1.63.
 第三に、本発明の分相ガラスは、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、B 0.1~50%を含有することが好ましい。このようにすれば、分相性と耐失透性を高めることができる。 Third, the phase-separated glass of the present invention contains, as a glass composition, SiO 2 30 to 75%, Al 2 O 3 0 to 35%, and B 2 O 3 0.1 to 50% by mass. Is preferred. If it does in this way, phase separation property and devitrification resistance can be improved.
 第四に、本発明の分相ガラスは、ガラス組成中のSiO+Al+Bの含有量が55~80質量%であることが好ましい。このようにすれば、耐失透性を更に高めることができる。ここで、「SiO+Al+B」は、SiO、Al及びBの合量を指す。 Fourth, the phase-separated glass of the present invention preferably has a content of SiO 2 + Al 2 O 3 + B 2 O 3 in the glass composition of 55 to 80% by mass. If it does in this way, devitrification resistance can further be improved. Here, “SiO 2 + Al 2 O 3 + B 2 O 3 ” refers to the total amount of SiO 2 , Al 2 O 3 and B 2 O 3 .
 第五に、本発明の分相ガラスは、ガラス組成中のMgO+CaO+SrO+BaO+ZnOの含有量が15~35質量%であることが好ましい。ここで、「MgO+CaO+SrO+BaO+ZnO」は、MgO、CaO、SrO、BaO及びZnOの合量を指す。 Fifth, the phase-separated glass of the present invention preferably has a content of MgO + CaO + SrO + BaO + ZnO in the glass composition of 15 to 35% by mass. Here, “MgO + CaO + SrO + BaO + ZnO” refers to the total amount of MgO, CaO, SrO, BaO and ZnO.
 第六に、本発明の分相ガラスは、ガラス組成中のPの含有量が0.001~20質量%であることが好ましい。このようにすれば、分相性を高め易くなる。 Sixth, the phase-separated glass of the present invention preferably has a P 2 O 5 content of 0.001 to 20% by mass in the glass composition. In this way, it becomes easy to improve the phase separation.
 第七に、本発明の分相ガラスは、ガラス組成中のLiO+NaO+KOの含有量が5質量%以下であることが好ましい。ここで、「LiO+NaO+KO」は、LiO、NaO及びKOの合量を指す。 Seventh, in the phase-separated glass of the present invention, the content of Li 2 O + Na 2 O + K 2 O in the glass composition is preferably 5% by mass or less. Here, “Li 2 O + Na 2 O + K 2 O” refers to the total amount of Li 2 O, Na 2 O and K 2 O.
 第八に、本発明の分相ガラスは、平板形状であることが好ましい。 Eighth, it is preferable that the phase separation glass of the present invention has a flat plate shape.
 第九に、本発明の分相ガラスは、オーバーフローダウンドロー法で成形されてなることが好ましい。 Ninth, the phase separation glass of the present invention is preferably formed by an overflow downdraw method.
 第十に、本発明の分相ガラスは、照明に用いることが好ましい。 Tenth, the phase separation glass of the present invention is preferably used for illumination.
 第十一に、本発明の分相ガラスは、有機EL照明に用いることが好ましい。 Eleventh, the phase separation glass of the present invention is preferably used for organic EL lighting.
 第十二に、本発明の有機ELデバイスは、上記の分相ガラスを備えてなることが好ましい。 Twelfth, it is preferable that the organic EL device of the present invention includes the above phase separation glass.
 本発明の分相ガラスは、少なくとも第一の相と第二の相を含む分相構造を有すると共に、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多いことが好ましい。このようにすれば、第一の相と第二の相の屈折率が相違し易くなり、ガラスの散乱機能を高めることができる。なお、2体積%のフッ酸溶液に2分間浸漬させた後の試料表面を電界放射型走査型電子顕微鏡で観察すれば、各相の詳細、特に各相のSiOの含有量を確認可能である。 Phase-separated glass of the present invention has a phase separation structure comprising at least a first phase and a second phase, the content of SiO 2 in the first phase, containing SiO 2 in the second phase More than the amount is preferred. If it does in this way, the refractive index of a 1st phase and a 2nd phase will become easy to differ, and the scattering function of glass can be improved. In addition, if the surface of the sample after being immersed in a 2% by volume hydrofluoric acid solution for 2 minutes is observed with a field emission scanning electron microscope, the details of each phase, particularly the content of SiO 2 in each phase can be confirmed. is there.
 本発明の分相ガラスにおいて、少なくとも一方の相(第一の相及び/又は第二の相)の分相粒子の平均粒子径は0.01~5μm、特に0.02~1μmが好ましい。分相粒子の平均粒子径が小さいと、有機EL層から放射した光が、第一の相と第二の相の界面で散乱し難くなる。一方、分相粒子の平均粒子径が大きいと、散乱強度が強くなり過ぎて、全光線透過率が低下する虞がある。 In the phase-separated glass of the present invention, the average particle size of phase-separated particles of at least one phase (first phase and / or second phase) is preferably 0.01 to 5 μm, particularly preferably 0.02 to 1 μm. If the average particle size of the phase-separated particles is small, the light emitted from the organic EL layer is difficult to scatter at the interface between the first phase and the second phase. On the other hand, if the average particle size of the phase-separated particles is large, the scattering intensity becomes too strong and the total light transmittance may be lowered.
 本発明の分相ガラスにおいて、屈折率nは1.51以上であり、好ましくは1.52以上、1.53以上、1.54以上、特に1.55以上である。屈折率nが1.51未満になると、ガラス板と透明導電膜等の界面の反射によって光を効率良く取り出すことが困難になる。一方、屈折率nが高過ぎると、耐失透性を高める成分の導入が制限されるため、液相粘度を高めることが困難になる。またガラス板と空気の界面での反射率が高くなり、光を外部に取り出し難くなる。よって、屈折率nは、好ましくは2.30以下、2.00以下、1.80以下、1.70以下、1.65以下、1.63未満、1.62以下、1.61以下、1.60以下、1.59以下、特に1.58以下である。 In phase-separated glass of the present invention, the refractive index n d is 1.51 or more, preferably 1.52 or more, 1.53 or more, 1.54 or more, particularly 1.55 or more. When the refractive index n d is less than 1.51, it becomes difficult to efficiently extract light by reflection at the interface, such as a glass plate and a transparent conductive film. On the other hand, if the refractive index n d is too high, since the introduction of the components to improve the devitrification resistance is limited, it is difficult to increase the liquidus viscosity. Further, the reflectance at the interface between the glass plate and the air becomes high, and it becomes difficult to extract light to the outside. Therefore, the refractive index n d is preferably 2.30 or less, 2.00 or less, 1.80 or less, 1.70 or less, 1.65 or less, less than 1.63, 1.62 or less, 1.61 or less, 1.60 or less, 1.59 or less, particularly 1.58 or less.
 本発明の分相ガラスにおいて、液相粘度は103.5dPa・s以上であり、好ましくは103.5dPa・s以上、103.8dPa・s以上、104.0dPa・s以上、104.2dPa・s以上、104.4dPa・s以上、104.6dPa・s以上、特に104.8dPa・s以上である。液相粘度が低いと、耐失透性が低下して、オーバーフローダウンドロー法、フロート法等により、ガラス板を成形し難くなる。 In the phase separation glass of the present invention, the liquidus viscosity is 10 3.5 dPa · s or more, preferably 10 3.5 dPa · s or more, 10 3.8 dPa · s or more, 10 4.0 dPa · s. Above, 10 4.2 dPa · s or more, 10 4.4 dPa · s or more, 10 4.6 dPa · s or more, particularly 10 4.8 dPa · s or more. When the liquidus viscosity is low, the devitrification resistance is lowered, and it becomes difficult to form a glass plate by an overflow down draw method, a float method or the like.
 本発明の分相ガラスは、ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、B 0.1~50%を含有することが好ましい。以下、上記のように各成分を限定した理由を説明する。なお、各成分の含有範囲の説明において、%表示は、質量%を意味する。 Phase-separated glass of the present invention has a glass composition, in mass%, SiO 2 30 ~ 75% , Al 2 O 3 0 ~ 35%, preferably contains 2 O 3 0.1 ~ 50% B . Hereinafter, the reason why each component is limited as described above will be described. In addition, in description of the containing range of each component,% display means the mass%.
 SiOの含有量が多くなると、溶融性、成形性が低下し易くなり、また屈折率が低下し易くなる。よって、SiOの好適な上限範囲は75%以下、70%以下、65%以下、60%以下、55%以下、50%以下、特に48%以下である。一方、SiOの含有量が少なくなると、ガラス網目構造を形成し難くなり、ガラス化が困難になる。またガラスの粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、SiOの好適な下限範囲は30%以上、35%以上、40%以上、42%以上、44%以上、特に46%以上である。 When the content of SiO 2 increases, the meltability and moldability tend to decrease, and the refractive index tends to decrease. Therefore, the preferable upper limit range of SiO 2 is 75% or less, 70% or less, 65% or less, 60% or less, 55% or less, 50% or less, and particularly 48% or less. On the other hand, when the content of SiO 2 decreases, it becomes difficult to form a glass network structure, and vitrification becomes difficult. Further, the viscosity of the glass is excessively lowered, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, the preferable lower limit range of SiO 2 is 30% or more, 35% or more, 40% or more, 42% or more, 44% or more, particularly 46% or more.
 Alは、耐失透性を高める成分であるが、Alの含有量が多過ぎると、分相性が低下し易くなることに加えて、ガラス組成の成分バランスが損なわれて、逆に耐失透性が低下し易くなる。また耐酸性が低下し易くなる。よって、Alの好適な上限範囲は35%以下、30%以下、25%以下、20%以下、15%以下、12%以下、10%以下、特に9%以下であり、好適な下限範囲は0.1%以上、3%以上、4%以上、特に5%以上である。 Al 2 O 3 is a component that enhances devitrification resistance. However, if the content of Al 2 O 3 is too large, the phase separation is liable to decrease, and the component balance of the glass composition is impaired. Conversely, devitrification resistance tends to decrease. Moreover, acid resistance tends to decrease. Therefore, the preferable upper limit range of Al 2 O 3 is 35% or less, 30% or less, 25% or less, 20% or less, 15% or less, 12% or less, 10% or less, particularly 9% or less. The range is 0.1% or more, 3% or more, 4% or more, particularly 5% or more.
 Bは、分相性を高める成分であるが、Bの含有量が多過ぎると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなることに加えて、耐酸性が低下し易くなる。よって、Bの好適な上限範囲は50%以下、40%以下、30%以下、25%以下、20%以下、17%以下、特に15%以下であり、好適な下限範囲は0.1%以上、0.5%以上、1%以上、4%以上、7%以上、9%以上、10%以上、11%以上、特に12%以上である。 B 2 O 3 is a component that enhances phase separation, but if the content of B 2 O 3 is too large, the component balance of the glass composition is impaired, and devitrification resistance is likely to decrease. The acid resistance tends to decrease. Therefore, the preferable upper limit range of B 2 O 3 is 50% or less, 40% or less, 30% or less, 25% or less, 20% or less, 17% or less, particularly 15% or less. 1% or more, 0.5% or more, 1% or more, 4% or more, 7% or more, 9% or more, 10% or more, 11% or more, particularly 12% or more.
 SiO+Al+Bの含有量は、屈折率と耐失透性の観点から、好ましくは55~80%、58~75%、60~70%、特に64~68%である。 The content of SiO 2 + Al 2 O 3 + B 2 O 3 is preferably 55 to 80%, 58 to 75%, 60 to 70%, particularly 64 to 68% from the viewpoint of refractive index and devitrification resistance. .
 上記成分以外にも、例えば、以下の成分を導入することができる。 In addition to the above components, for example, the following components can be introduced.
 LiO、NaO及びKOは、分相性を高めつつ、高温粘度を低下させる成分であるが、LiO+NaO+KOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、LiO+NaO+KOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、0.5%以下、特に0.1%未満である。 Li 2 O, Na 2 O, and K 2 O are components that lower the high-temperature viscosity while increasing the phase separation, but if the content of Li 2 O + Na 2 O + K 2 O is too large, the liquid phase viscosity decreases. It becomes easy and a strain point falls easily. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, a suitable upper limit range of Li 2 O + Na 2 O + K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
 LiOは、分相性を高める成分であるが、LiOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、LiOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、0.5%以下、特に0.1%未満である。 Li 2 O is a component that enhances phase separation. However, if the content of Li 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the preferable upper limit range of Li 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
 NaOは、高温粘度を低下させる成分であるが、NaOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、NaOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、0.5%以下、特に0.1%未満である。 Na 2 O is a component that lowers the high temperature viscosity. However, if the content of Na 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, a preferable upper limit range of Na 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
 KOは、分相性を高める成分であるが、KOの含有量が多過ぎると、液相粘度が低下し易くなり、また歪点が低下し易くなる。更に、酸によるエッチング工程において、アルカリ成分が溶出し易くなる。よって、KOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、1%未満、0.5%以下、特に0.1%未満である。 K 2 O is a component that enhances phase separation. However, if the content of K 2 O is too large, the liquid phase viscosity tends to decrease and the strain point tends to decrease. Furthermore, the alkali component is easily eluted in the acid etching step. Therefore, the preferable upper limit range of K 2 O is 30% or less, 20% or less, 10% or less, 5% or less, less than 1%, 0.5% or less, particularly less than 0.1%.
 MgOは、屈折率、ヤング率、歪点を高める成分であると共に、高温粘度を低下させる成分であるが、MgOを多量に含有させると、液相温度が上昇して、耐失透性が低下したり、密度が高くなり過ぎる虞がある。よって、MgOの好適な上限範囲は30%以下、20%以下、10%以下、5%以下、特に1%未満である。なお、MgOを導入する場合、好適な下限範囲は0%以上、0.1%以上、0.2%以上、特に0.5%以上である。 MgO is a component that raises the refractive index, Young's modulus, and strain point and lowers the high-temperature viscosity. However, when MgO is contained in a large amount, the liquidus temperature rises and devitrification resistance decreases. Or the density may become too high. Therefore, the preferable upper limit range of MgO is 30% or less, 20% or less, 10% or less, 5% or less, and particularly less than 1%. In addition, when introducing MgO, a suitable lower limit range is 0% or more, 0.1% or more, 0.2% or more, especially 0.5% or more.
 CaOは、高温粘度を低下させる成分であるが、CaOの含有量が多くなると、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、CaOの好適な上限範囲は30%以下、20%以下、10%以下、8%以下、5%以下、3%以下、2%以下、特に1%以下であり、好適な下限範囲は0%以上、0.1%以上、特に0.5%以上である。 CaO is a component that lowers the high-temperature viscosity. However, when the content of CaO increases, the density tends to increase, and the balance of the glass composition component is impaired, and the devitrification resistance tends to decrease. Therefore, the preferable upper limit range of CaO is 30% or less, 20% or less, 10% or less, 8% or less, 5% or less, 3% or less, 2% or less, particularly 1% or less. % Or more, 0.1% or more, particularly 0.5% or more.
 SrOの含有量が多くなると、屈折率、密度が高くなり易く、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、SrOの好適な上限範囲は30%以下、25%以下、20%以下、15%以下、特に10%以下であり、好適な下限範囲は0%以上、1%以上、3%以上、5%以上、7%以上、特に8%以上である。 When the content of SrO is increased, the refractive index and the density are likely to be increased, and the balance of components of the glass composition is impaired, and the devitrification resistance is likely to be lowered. Therefore, the preferred upper limit range of SrO is 30% or less, 25% or less, 20% or less, 15% or less, particularly 10% or less, and the preferred lower limit range is 0% or more, 1% or more, 3% or more, 5% or less. % Or more, 7% or more, particularly 8% or more.
 BaOは、アルカリ土類金属酸化物の中ではガラスの粘性を極端に低下させずに、屈折率を高める成分である。BaOの含有量が多くなると、屈折率が高くなり易く、またBaOの含有量が多過ぎると、密度が上昇し易くなり、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、BaOの好適な上限範囲は40%以下、30%以下、26%以下、24%以下、22%以下、特に20%以下であり、好適な下限範囲は0%以上、1%以上、5%以上、7%以上、10%以上、12%以上、14%以上、特に15%以上である。 BaO is a component that increases the refractive index of alkaline earth metal oxides without extremely reducing the viscosity of the glass. If the content of BaO increases, the refractive index tends to increase, and if the content of BaO is too large, the density tends to increase, and the balance of the components of the glass composition is impaired, resulting in a decrease in devitrification resistance. It becomes easy. Therefore, the preferable upper limit range of BaO is 40% or less, 30% or less, 26% or less, 24% or less, 22% or less, particularly 20% or less, and the preferable lower limit range is 0% or more, 1% or more, 5 % Or more, 7% or more, 10% or more, 12% or more, 14% or more, particularly 15% or more.
 ZnOの含有量が多くなると、屈折率が高くなり易いが、密度が上昇し易くなり、またガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZnOの好適な上限範囲は20%以下、10%以下、7%以下、5%以下、特に4%以下であり、好適な下限範囲は0%以上、0.1%以上、0.5%以上、1%以上、1.5%以上、特に2%以上である。 When the content of ZnO increases, the refractive index tends to increase, but the density tends to increase, and the balance of components of the glass composition is impaired, and the devitrification resistance tends to decrease. Therefore, the preferable upper limit range of ZnO is 20% or less, 10% or less, 7% or less, 5% or less, particularly 4% or less, and the preferable lower limit range is 0% or more, 0.1% or more, 0.5% or less. % Or more, 1% or more, 1.5% or more, particularly 2% or more.
 MgO+CaO+SrO+BaO+ZnOの含有量は、屈折率と耐失透性を両立させる観点から、好ましくは15~35%、20~34%、22~33%、24~32%、特に26~31%である。また質量比(SiO+Al+B)/(MgO+CaO+SrO+BaO+ZnO)は、屈折率と耐失透性を両立させる観点から、好ましくは1.8~4.0、2.0~3.2、2.1~3.0、2.2~2.9、特に2.3~2.8である。ここで、「(SiO+Al+B)/(MgO+CaO+SrO+BaO+ZnO)」は、SiO+Al+Bの含有量をMgO+CaO+SrO+BaO+ZnOの含有量で割った値である。 The content of MgO + CaO + SrO + BaO + ZnO is preferably 15 to 35%, 20 to 34%, 22 to 33%, 24 to 32%, particularly 26 to 31% from the viewpoint of achieving both refractive index and devitrification resistance. The mass ratio (SiO 2 + Al 2 O 3 + B 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO) is preferably 1.8 to 4.0, 2.0 to 3.3 from the viewpoint of achieving both refractive index and devitrification resistance. 2, 2.1 to 3.0, 2.2 to 2.9, particularly 2.3 to 2.8. Here, “(SiO 2 + Al 2 O 3 + B 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO)” is a value obtained by dividing the content of SiO 2 + Al 2 O 3 + B 2 O 3 by the content of MgO + CaO + SrO + BaO + ZnO.
 TiOは、屈折率を高める成分であるが、TiOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、TiOの好適な上限範囲は20%以下、15%以下、10%以下、5%以下、特に3%以下であり、好適な下限範囲は0%以上、0.001%以上、0.01%以上、0.1%以上、1%以上、1.5%以上、特に2%以上である。 TiO 2 is a component that increases the refractive index. However, when the content of TiO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of TiO 2 is 20% or less, 15% or less, 10% or less, 5% or less, particularly 3% or less, and the preferable lower limit range is 0% or more, 0.001% or more, 0. 01% or more, 0.1% or more, 1% or more, 1.5% or more, particularly 2% or more.
 ZrOは、屈折率を高める成分であるが、ZrOの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、ZrOの好適な上限範囲は20%以下、10%以下、6%以下、4%以下、3%以下、特に2%以下であり、好適な下限範囲は0%以上、0.001%以上、0.01%以上、0.1%以上、0.5%以上、特に1%以上である。 ZrO 2 is a component that increases the refractive index. However, when the content of ZrO 2 increases, the component balance of the glass composition is impaired, and the devitrification resistance is likely to decrease. Therefore, the preferable upper limit range of ZrO 2 is 20% or less, 10% or less, 6% or less, 4% or less, 3% or less, particularly 2% or less, and the preferable lower limit range is 0% or more and 0.001%. Above, 0.01% or more, 0.1% or more, 0.5% or more, particularly 1% or more.
 Pは、分相性を高める成分であるが、Pの含有量が多くなると、ガラス組成の成分バランスが損なわれて、耐失透性が低下し易くなる。よって、Pの好適な上限範囲は20%以下、15%以下、10%以下、7%以下、4%以下、3%以下、特に2.5%以下であり、好適な下限範囲は0%以上、0.001%以上、0.01%以上、0.1%以上、0.5%以上、1%以上、1.2%以上、特に1.4%以上である。 P 2 O 5 is a component that improves phase separation. However, when the content of P 2 O 5 is increased, the component balance of the glass composition is impaired, and devitrification resistance is likely to be reduced. Therefore, a suitable upper limit range of P 2 O 5 is 20% or less, 15% or less, 10% or less, 7% or less, 4% or less, 3% or less, particularly 2.5% or less. It is 0% or more, 0.001% or more, 0.01% or more, 0.1% or more, 0.5% or more, 1% or more, 1.2% or more, particularly 1.4% or more.
 Laは、屈折率を高める成分であるが、Laの含有量が多くなると、密度が高くなり易く、また耐失透性や耐酸性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Laの好適な上限範囲は10%以下、5%以下、3%以下、1%以下、0.5%以下、特に0.1%以下である。 La 2 O 3 is a component that increases the refractive index. However, when the content of La 2 O 3 increases, the density tends to increase, and devitrification resistance and acid resistance easily decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, a suitable upper limit range of La 2 O 3 is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
 Nbは、屈折率を高める成分であるが、Nbの含有量が多くなると、密度が高くなり易く、また耐失透性が低下し易くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、Nbの好適な上限範囲は10%以下、5%以下、3%以下、1%以下、0.5%以下、特に0.1%以下である。 Nb 2 O 5 is a component that increases the refractive index, but as the content of Nb 2 O 5 increases, the density tends to increase and the devitrification resistance tends to decrease. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, the preferable upper limit range of Nb 2 O 5 is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
 Gdは、屈折率を高める成分であるが、Gdの含有量が多くなると、密度が高くなり過ぎたり、ガラス組成の成分バランスを欠いて、耐失透性が低下したり、高温粘性が低下し過ぎて、高い液相粘度を確保し難くなる。よって、Gdの好適な上限範囲は10%以下、5%以下、3%以下、1%以下、0.5%以下、特に0.1%以下である。 Gd 2 O 3 is a component that increases the refractive index. However, if the content of Gd 2 O 3 increases, the density becomes too high, or the balance of the glass composition component is lost, resulting in a decrease in devitrification resistance. The high-temperature viscosity is too low, and it becomes difficult to ensure a high liquid phase viscosity. Therefore, a suitable upper limit range of Gd 2 O 3 is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less.
 レアメタル酸化物は、屈折率を高める成分であるが、これらの成分の含有量が多くなると、密度、熱膨張係数が高くなり易く、また耐失透性が低下して、高い液相粘度を確保し難くなる。更に原料コストが上昇して、ガラス板の製造コストが高騰し易くなる。よって、レアメタル酸化物の好適な上限範囲は10%以下、5%以下、3%以下、1%以下、0.5%以下、特に0.1%以下である。なお、本発明でいう「レアメタル酸化物」は、La、Nd、Gd、CeO等の希土類酸化物、Y、Nb、Taを指す。 Rare metal oxide is a component that increases the refractive index, but as the content of these components increases, the density and thermal expansion coefficient tend to increase, and devitrification resistance decreases, ensuring high liquid phase viscosity. It becomes difficult to do. Furthermore, the raw material cost rises, and the manufacturing cost of the glass plate is likely to rise. Therefore, a preferable upper limit range of the rare metal oxide is 10% or less, 5% or less, 3% or less, 1% or less, 0.5% or less, particularly 0.1% or less. The “rare metal oxide” as used in the present invention is a rare earth oxide such as La 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , CeO 2 , Y 2 O 3 , Nb 2 O 5 , Ta 2 O 5. Point to.
 清澄剤として、下記酸化物換算で、As、Sb、SnO、Fe、F、Cl、SO、CeOの群から選択された一種又は二種以上を0~3%導入することができる。特に、清澄剤として、SnO、Fe及びCeOが好ましい。一方、AsとSbは、環境的観点から、その使用を極力控えることが好ましく、各々の含有量は0.3%未満、特に0.1%未満が好ましい。ここで、「下記酸化物換算」は、表記の酸化物とは価数が異なる酸化物であっても、表記の酸化物に換算した上で取り扱うことを意味する。 As a refining agent, one or two or more selected from the group of As 2 O 3 , Sb 2 O 3 , SnO 2 , Fe 2 O 3 , F, Cl, SO 3 , and CeO 2 are converted into the following oxides. Up to 3% can be introduced. In particular, SnO 2 , Fe 2 O 3 and CeO 2 are preferable as the fining agent. On the other hand, it is preferable to refrain from using As 2 O 3 and Sb 2 O 3 as much as possible from an environmental viewpoint, and the content of each is preferably less than 0.3%, particularly preferably less than 0.1%. Here, “the following oxide conversion” means that an oxide having a valence different from the indicated oxide is handled after being converted to the indicated oxide.
 SnOの含有量は、好ましくは0~1%、0.001~1%、特に0.01~0.5%である。 The content of SnO 2 is preferably 0 to 1%, 0.001 to 1%, particularly 0.01 to 0.5%.
 Feの含有量は、好ましくは0.05%以下、0.04%以下、0.03%以下、特に0.001~0.02%である。 The content of Fe 2 O 3 is preferably 0.05% or less, 0.04% or less, 0.03% or less, and particularly 0.001 to 0.02%.
 CeOの含有量は0~6%が好ましい。CeOの含有量が多くなると、耐失透性が低下し易くなる。よって、CeOの好適な上限範囲は6%以下、5%以下、3%以下、2%以下、1%以下、特に0.1%以下である。一方、CeOを導入する場合、CeOの好適な下限範囲は0.001%以上、特に0.01%以上である。 The CeO 2 content is preferably 0 to 6%. When the content of CeO 2 is increased, the devitrification resistance is likely to be lowered. Therefore, the preferable upper limit range of CeO 2 is 6% or less, 5% or less, 3% or less, 2% or less, 1% or less, particularly 0.1% or less. On the other hand, when CeO 2 is introduced, a suitable lower limit range of CeO 2 is 0.001% or more, particularly 0.01% or more.
 PbOは、高温粘性を低下させる成分であるが、環境的観点から、その使用を極力控えることが好ましい。PbOの含有量は0.5%以下、特に0.1%未満が好ましい。 PbO is a component that lowers the high temperature viscosity, but it is preferable to refrain from using it as much as possible from an environmental point of view. The PbO content is preferably 0.5% or less, particularly preferably less than 0.1%.
 上記成分以外にも、他の成分を合量で好ましくは10%(望ましくは5%、より望ましくは2%)まで導入してもよい。 In addition to the above components, other components may be introduced in a total amount of preferably 10% (desirably 5%, more desirably 2%).
 本発明の分相ガラスは、以下の特性を有することが好ましい。 The phase-separated glass of the present invention preferably has the following characteristics.
 歪点は、好ましくは450℃以上、500℃以上、550℃以上、特に600℃以上である。透明導電膜を高温で形成する程、透明性が高く、電気抵抗が低くなり易い。しかし、従来のガラス板は、耐熱性が不十分であるため、透明導電膜を高温で成膜することが困難であった。そこで、歪点を上記範囲とすれば、耐熱性が向上するため、透明導電膜の透明性と低電気抵抗の両立が可能になり、更には有機デバイスの製造工程において、熱処理によりガラス板が熱収縮し難くなる。 The strain point is preferably 450 ° C. or higher, 500 ° C. or higher, 550 ° C. or higher, particularly 600 ° C. or higher. The higher the temperature of the transparent conductive film, the higher the transparency and the lower the electrical resistance. However, since the conventional glass plate has insufficient heat resistance, it has been difficult to form a transparent conductive film at a high temperature. Therefore, if the strain point is in the above range, the heat resistance is improved, so that both transparency of the transparent conductive film and low electrical resistance can be achieved. Further, in the organic device manufacturing process, the glass plate is heated by heat treatment. It becomes difficult to shrink.
 102.5dPa・sにおける温度は、好ましくは1450℃以下、1400℃以下、1380℃以下、特に1360℃以下である。このようにすれば、溶融性が向上するため、ガラス板の生産性が向上する。 The temperature at 10 2.5 dPa · s is preferably 1450 ° C. or lower, 1400 ° C. or lower, 1380 ° C. or lower, particularly 1360 ° C. or lower. If it does in this way, since a meltability will improve, productivity of a glass plate will improve.
 液相温度は、好ましくは1200℃以下、1150℃以下、1100℃以下、特に1060℃以下である。このようにすれば、成形時にガラスが失透し難くなり、例えば、オーバーフローダウンドロー法、フロート法等によりガラス板を成形し易くなる。 The liquidus temperature is preferably 1200 ° C. or lower, 1150 ° C. or lower, 1100 ° C. or lower, particularly 1060 ° C. or lower. If it does in this way, it will become difficult to devitrify glass at the time of shaping | molding, for example, will become easy to shape | mold a glass plate by the overflow downdraw method, the float glass method, etc.
 分相温度は、好ましくは800℃以上、850℃以上、900℃以上、950℃以上、1000℃以上、特に1100℃以上である。また、分相粘度は、好ましくは109.0dPa・s以下、108.0dPa・s以下、107.0dPa・s以下、特に103.5~106.0dPa・sである。このようにすれば、成形工程及び/又は徐冷工程でガラスが分相し易くなり、オーバーフローダウンドロー法、フロート法等により分相構造を有するガラス板を成形し易くなる。結果として、ガラス板を成形した後に、ガラスを分相させるための別途の熱処理工程が不要になり、ガラス板の製造コストを低減し易くなる。ここで、「分相温度」は、ガラス片を白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、明確な白濁が認められる温度を指す。「分相粘度」は、分相温度におけるガラスの粘度を白金引き上げ法で測定した値を指す。なお、本発明の分相ガラスは、成形工程及び/又は徐冷工程でガラスが分相することが好ましいが、これらの工程以外、例えば溶融工程でガラスが分相していてもよい。 The phase separation temperature is preferably 800 ° C. or higher, 850 ° C. or higher, 900 ° C. or higher, 950 ° C. or higher, 1000 ° C. or higher, particularly 1100 ° C. or higher. The phase separation viscosity is preferably 10 9.0 dPa · s or less, 10 8.0 dPa · s or less, 10 7.0 dPa · s or less, particularly 10 3.5 to 10 6.0 dPa · s. is there. If it does in this way, it will become easy to phase-separate glass by a formation process and / or a slow cooling process, and it will become easy to shape | mold a glass plate which has a phase-separation structure by the overflow downdraw method, the float glass method, etc. As a result, after forming the glass plate, a separate heat treatment step for phase separation of the glass becomes unnecessary, and the manufacturing cost of the glass plate can be easily reduced. Here, “phase separation temperature” indicates that clear cloudiness is observed when a glass piece is placed in a platinum boat and remelted at 1400 ° C., then the platinum boat is transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes. Temperature. “Phase separation viscosity” refers to a value obtained by measuring the viscosity of glass at the phase separation temperature by the platinum pulling method. In the phase-separated glass of the present invention, the glass is preferably phase-separated in the forming step and / or the slow cooling step, but the glass may be phase-separated other than these steps, for example, in the melting step.
 厚み(平板形状の場合、板厚)は、好ましくは1.5mm以下、1.3mm以下、1.1mm以下、0.8mm以下、0.7mm以下、0.5mm以下、0.3mm以下、0.2mm以下、特に0.1mm以下である。厚みが小さい程、可撓性が高まり、有機EL照明の意匠性を高め易くなるが、厚みが極端に小さくなると、ガラスが破損し易くなる。よって、厚みは、好ましくは10μm以上、特に30μm以上である。 The thickness (in the case of a flat plate) is preferably 1.5 mm or less, 1.3 mm or less, 1.1 mm or less, 0.8 mm or less, 0.7 mm or less, 0.5 mm or less, 0.3 mm or less, 0 .2 mm or less, particularly 0.1 mm or less. The smaller the thickness, the higher the flexibility and the easier it is to improve the design of organic EL lighting. However, when the thickness is extremely small, the glass tends to break. Therefore, the thickness is preferably 10 μm or more, particularly 30 μm or more.
 本発明の分相ガラスは、平板形状を有することが好ましく、つまりガラス板であることが好ましい。このようにすれば、有機ELデバイスに適用し易くなる。平板形状を有する場合、少なくとも一方の表面に未研磨面を有すること(特に、少なくとも一方の表面の有効面全体が未研磨面であること)が好ましい。ガラスの理論強度は、非常に高いが、理論強度よりも遥かに低い応力でも破壊に至ることが多い。これは、ガラス板の表面にグリフィスフローと呼ばれる小さな欠陥が成形後の工程、例えば研磨工程等で生じるからである。よって、ガラス板の表面を未研磨にすれば、本来の機械的強度を損ない難くなるため、ガラス板が破壊し難くなる。また、研磨工程を簡略化又は省略し得るため、ガラス板の製造コストを低廉化することができる。 The phase-separated glass of the present invention preferably has a flat plate shape, that is, a glass plate. If it does in this way, it will become easy to apply to an organic EL device. When it has a flat plate shape, it is preferable to have an unpolished surface on at least one surface (in particular, the entire effective surface of at least one surface is an unpolished surface). The theoretical strength of glass is very high, but breakage often occurs even at a stress much lower than the theoretical strength. This is because a small defect called Griffith flow occurs on the surface of the glass plate in a post-molding process such as a polishing process. Therefore, if the surface of the glass plate is unpolished, the original mechanical strength is hardly lost, and thus the glass plate is difficult to break. Further, since the polishing step can be simplified or omitted, the manufacturing cost of the glass plate can be reduced.
 平板形状を有する場合、少なくとも一方の表面(特に未研磨面)の表面粗さRaは0.01~1μmが好ましい。表面粗さRaが大きいと、その表面に透明導電膜等を形成する場合、透明導電膜の品位が低下して、均一な発光を得難くなる。表面粗さRaの好適な上限範囲は1μm以下、0.8μm以下、0.5μm以下、0.3μm以下、0.1μm以下、0.07μm以下、0.05μm以下、0.03μm以下、特に10nm以下である。 When it has a flat plate shape, the surface roughness Ra of at least one surface (especially an unpolished surface) is preferably 0.01 to 1 μm. When surface roughness Ra is large, when forming a transparent conductive film etc. on the surface, the quality of a transparent conductive film falls and it becomes difficult to obtain uniform light emission. Suitable upper limit ranges of the surface roughness Ra are 1 μm or less, 0.8 μm or less, 0.5 μm or less, 0.3 μm or less, 0.1 μm or less, 0.07 μm or less, 0.05 μm or less, 0.03 μm or less, particularly 10 nm. It is as follows.
 本発明の分相ガラスは、ダウンドロー法、特にオーバーフローダウンドロー法で成形されてなることが好ましい。このようにすれば、未研磨で表面品位が良好なガラス板を製造することができる。その理由は、オーバーフローダウンドロー法の場合、表面になるべき面は樋状耐火物に接触せず、自由表面の状態で成形されるからである。なお、オーバーフローダウンドロー法以外にも、スロットダウンドロー法を採用することができる。このようにすれば、薄肉のガラス板を作製し易くなる。 The phase-separated glass of the present invention is preferably formed by a downdraw method, particularly an overflow downdraw method. In this way, it is possible to produce a glass plate that is unpolished and has good surface quality. The reason is that, in the case of the overflow down draw method, the surface to be the surface is not in contact with the bowl-shaped refractory and is molded in a free surface state. In addition to the overflow downdraw method, a slot downdraw method can be employed. If it does in this way, it will become easy to produce a thin glass plate.
 上記成形方法以外にも、例えば、リドロー法、フロート法、ロールアウト法等を採用することができる。特に、フロート法では、大型のガラス板を効率良く成形することができる。 Other than the above molding method, for example, a redraw method, a float method, a roll-out method, etc. can be employed. In particular, in the float process, a large glass plate can be efficiently formed.
 本発明の分相ガラスは、切断工程後に、ガラスを分相させるための熱処理工程を経ていないことが好ましく、また成形工程でガラスが分相しているか、或いは成形直後の徐冷(冷却)工程でガラスが分相していることが好ましい。特に、オーバーフローダウンドロー法でガラス板を成形する場合、樋状構造物内で分相現象が生じていてもよく、延伸成形時や徐冷時に分相現象が生じていてもよい。このようにすれば、製造工程数が減少し、分相ガラスの生産性を高めることができる。なお、分相現象は、ガラス組成、成形条件、徐冷条件等により制御することができる。 The phase-separated glass of the present invention is preferably not subjected to a heat treatment step for phase-separating the glass after the cutting step, and the glass is phase-separated in the molding step, or a slow cooling (cooling) step immediately after molding. It is preferable that the glass is phase-separated. In particular, when a glass plate is formed by the overflow downdraw method, a phase separation phenomenon may occur in the bowl-shaped structure, or a phase separation phenomenon may occur during stretch molding or slow cooling. If it does in this way, the number of manufacturing processes will decrease and the productivity of phase separation glass can be raised. The phase separation phenomenon can be controlled by the glass composition, molding conditions, slow cooling conditions, and the like.
 本発明の分相ガラスは、平板形状を有する場合、少なくとも一方の表面を粗面化面としてもよい。粗面化面を有機EL照明等の空気と接する側に配置すれば、ガラス板の散乱効果に加えて、粗面化面の無反射構造により、有機EL層から放射した光が有機EL層内に戻り難くなり、結果として、光の取り出し効率を高めることができる。粗面化面の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。粗面化面は、HFエッチング、サンドブラスト等で形成することができる。また、リプレス等の熱加工により、ガラス板の表面に凹凸形状を形成してもよい。このようにすれば、ガラス表面に正確な無反射構造を形成することができる。凹凸形状は、屈折率nを考慮しながら、その間隔と深さを調整すればよい。 When the phase separation glass of the present invention has a flat plate shape, at least one surface may be a roughened surface. If the roughened surface is arranged on the side in contact with air such as organic EL lighting, in addition to the scattering effect of the glass plate, the non-reflective structure of the roughened surface allows light emitted from the organic EL layer to be within the organic EL layer. As a result, the light extraction efficiency can be increased. The surface roughness Ra of the roughened surface is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more. The roughened surface can be formed by HF etching, sandblasting, or the like. Moreover, you may form an uneven | corrugated shape in the surface of a glass plate by heat processing, such as a repress. In this way, an accurate non-reflective structure can be formed on the glass surface. Uneven shape, taking into account the refractive index n d, may be adjusted the spacing and depth.
 また、大気圧プラズマプロセスにより粗面化面を形成することもできる。このようにすれば、ガラス板の一方の表面の平滑な表面状態を維持した上で、他方の表面に対して、均一に粗面化処理を行うことができる。また、大気圧プラズマプロセスのソースとして、Fを含有するガス(例えば、SF、CF)を用いることが好ましい。このようにすれば、HF系ガスを含むプラズマが発生するため、粗面化面を効率良く形成することができる。 Further, the roughened surface can be formed by an atmospheric pressure plasma process. If it does in this way, while maintaining the smooth surface state of one surface of a glass plate, a roughening process can be uniformly performed with respect to the other surface. Moreover, it is preferable to use a gas containing F (for example, SF 6 , CF 4 ) as a source of the atmospheric pressure plasma process. In this way, since plasma containing HF gas is generated, the roughened surface can be formed efficiently.
 更に、ガラス板の成形時に、少なくとも一方の表面に粗面化面を形成することもできる。このようにすれば、別途独立した粗面化処理が不要になり、粗面化処理の効率が向上する。 Furthermore, a roughened surface can be formed on at least one surface during molding of the glass plate. This eliminates the need for a separate roughening process and improves the efficiency of the roughening process.
 なお、ガラス板に粗面化面を形成せずに、所定の凹凸形状を有する樹脂フィルムをガラス板の表面に貼り付けてもよい。なお、凹凸形状の表面粗さRaは、好ましくは10Å以上、20Å以上、30Å以上、特に50Å以上である。 In addition, you may affix the resin film which has a predetermined uneven | corrugated shape on the surface of a glass plate, without forming a roughening surface in a glass plate. The uneven surface roughness Ra is preferably 10 mm or more, 20 mm or more, 30 mm or more, particularly 50 mm or more.
 以下、実施例に基づいて、本発明を詳細に説明する。なお、以下の実施例は単なる例示である。本発明は、以下の実施例に何ら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The following examples are merely illustrative. The present invention is not limited to the following examples.
 表1~3は、試料No.1~32を示している。 Tables 1 to 3 show sample numbers. 1 to 32 are shown.
[規則26に基づく補充 01.02.2016] 
Figure WO-DOC-TABLE-1
 
[Supplement under rule 26 01.02.2016]
Figure WO-DOC-TABLE-1
[規則26に基づく補充 01.02.2016] 
Figure WO-DOC-TABLE-2
 
[Supplement under rule 26 01.02.2016]
Figure WO-DOC-TABLE-2
[規則26に基づく補充 01.02.2016] 
Figure WO-DOC-TABLE-3
 
[Supplement under rule 26 01.02.2016]
Figure WO-DOC-TABLE-3
 まず、表1~3に記載のガラス組成になるように、ガラス原料を調合した後、得られたガラスバッチをガラス溶融炉に供給して1400℃で7時間溶融した。次に、得られた溶融ガラスをカーボン板の上に流し出し、平板形状に成形した後、歪点より室温まで10時間かけて徐冷処理を行った。最後に、得られたガラス板について、必要に応じて加工を行い、種々の特性を評価した。なお、得られたガラス板は少なくとも第一の相と第二の相を含む分相構造を有し、つまり分相性を示し、2体積%のフッ酸溶液に2分間浸漬させた後の試料表面を電界放射型走査型電子顕微鏡で観察したところ、第一の相中のSiOの含有量が、第二の相中のSiOの含有量よりも多かった。 First, after preparing glass raw materials so as to have the glass compositions shown in Tables 1 to 3, the obtained glass batch was supplied to a glass melting furnace and melted at 1400 ° C. for 7 hours. Next, after the obtained molten glass was poured on a carbon plate and formed into a flat plate shape, a slow cooling treatment was performed from the strain point to room temperature over 10 hours. Finally, the obtained glass plate was processed as necessary to evaluate various properties. The obtained glass plate has a phase separation structure including at least a first phase and a second phase, that is, exhibits phase separation, and the sample surface after being immersed in a 2% by volume hydrofluoric acid solution for 2 minutes. Was observed with a field emission scanning electron microscope. As a result, the content of SiO 2 in the first phase was higher than the content of SiO 2 in the second phase.
 歪点Psは、ASTM C336-71に記載の方法で測定した値である。なお、歪点Psが高い程、耐熱性が高くなる。 The strain point Ps is a value measured by the method described in ASTM C336-71. In addition, heat resistance becomes high, so that the strain point Ps is high.
 徐冷点Ta、軟化点Tsは ASTM C338-93に記載の方法で測定した値である。 The annealing point Ta and the softening point Ts are values measured by the method described in ASTM C338-93.
 高温粘度104.0dPa・s、103.0dPa・s、102.5dPa・s及び102.0dPa・sにおける温度は、白金球引き上げ法で測定した値である。なお、高温粘度が低い程、溶融性に優れる。 The temperatures at high temperature viscosities of 10 4.0 dPa · s, 10 3.0 dPa · s, 10 2.5 dPa · s, and 10 2.0 dPa · s are values measured by the platinum ball pulling method. In addition, it is excellent in a meltability, so that high temperature viscosity is low.
 液相温度は、30メッシュ(篩目開き500μm)を通過し、50メッシュ(篩目開き300μm)に残るガラス粉末を白金ボートに入れて、温度勾配炉中に24時間保持した後、結晶の析出する温度を測定したものである。液相粘度は、液相温度におけるガラスの粘度を白金球引き上げ法により測定した値である。 The liquidus temperature passes through 30 mesh (500 μm sieve opening), and the glass powder remaining in 50 mesh (300 μm sieve opening) is placed in a platinum boat and held in a temperature gradient furnace for 24 hours, followed by crystal precipitation. Measured temperature. The liquid phase viscosity is a value obtained by measuring the viscosity of glass at the liquid phase temperature by a platinum ball pulling method.
 分相温度は、ガラス片を白金ボートに入れ、1400℃でリメルトした後、白金ボートを温度勾配炉に移し、温度勾配炉中で30分間保持した時に、明確な白濁が認められる温度を測定したものである。分相粘度は、分相温度におけるガラスの粘度を白金球引き上げ法により測定した値である。 The phase separation temperature was measured at a temperature at which clear white turbidity was observed when a glass piece was put in a platinum boat and remelted at 1400 ° C., and then the platinum boat was transferred to a temperature gradient furnace and held in the temperature gradient furnace for 30 minutes. Is. The phase separation viscosity is a value obtained by measuring the viscosity of the glass at the phase separation temperature by a platinum ball pulling method.
 屈折率nは、島津製作所社製の屈折率測定器KPR-2000により測定したd線の値である。具体的には、まず25mm×25mm×約3mmの直方体試料を作製し、(徐冷点Ta+30℃)から(歪点Ps-50℃)までの温度域を0.1℃/分の冷却速度で徐冷処理した後、屈折率nが整合する浸液を浸透させて測定した値である。 Refractive index n d is the value of the d-line as determined by the refractive index measuring instrument KPR-2000 manufactured by Shimadzu Corporation. Specifically, first, a rectangular parallelepiped sample of 25 mm × 25 mm × about 3 mm is prepared, and the temperature range from (annealing point Ta + 30 ° C.) to (strain point Ps−50 ° C.) is set at a cooling rate of 0.1 ° C./min. It is a value measured by infiltrating an immersion liquid having a matching refractive index n d after annealing.
 表1~3から分かるように、試料No.1~32は、少なくとも第一の相と第二の相を含む分相構造を有しており、液相粘度が103.5dPa・s以上であり、屈折率ndが1.550以上であった。よって、試料No.1~32は、有機EL照明に用いるガラス板として好適に使用可能であると考えられる。 As can be seen from Tables 1 to 3, Sample No. 1 to 32 have a phase separation structure including at least a first phase and a second phase, a liquid phase viscosity of 10 3.5 dPa · s or more, and a refractive index nd of 1.550 or more. there were. Therefore, sample no. Nos. 1 to 32 can be suitably used as glass plates used for organic EL lighting.

Claims (12)

  1.  少なくとも第一の相と第二の相を含む分相構造を有し、
     屈折率nが1.51以上であり、
     且つ液相粘度が103.5dPa・s以上であることを特徴とする分相ガラス。
    Having a phase separation structure including at least a first phase and a second phase;
    Refractive index n d is not less 1.51 or more,
    And a liquid phase viscosity of 10 3.5 dPa · s or more.
  2.  屈折率nが1.63未満であることを特徴とする請求項1に記載の分相ガラス。 Phase-separated glass of claim 1 having a refractive index n d is equal to or less than 1.63.
  3.  ガラス組成として、質量%で、SiO 30~75%、Al 0~35%、B 0.1~50%を含有することを特徴とする請求項1又は2の何れかに記載の分相ガラス。 3. The glass composition according to claim 1, wherein the glass composition contains SiO 2 30 to 75%, Al 2 O 3 0 to 35%, and B 2 O 3 0.1 to 50% by mass. The phase separation glass described in 1.
  4.  ガラス組成中のSiO+Al+Bの含有量が55~80質量%であることを特徴とする請求項1~3の何れかに記載の分相ガラス。 4. The phase-separated glass according to claim 1, wherein the content of SiO 2 + Al 2 O 3 + B 2 O 3 in the glass composition is 55 to 80% by mass.
  5.  ガラス組成中のMgO+CaO+SrO+BaO+ZnOの含有量が15~35質量%であることを特徴とする請求項1~4の何れかに記載の分相ガラス。 5. The phase-separated glass according to claim 1, wherein the content of MgO + CaO + SrO + BaO + ZnO in the glass composition is 15 to 35% by mass.
  6.  ガラス組成中のPの含有量が0.001~20質量%であることを特徴とする請求項1~5の何れかに記載の分相ガラス。 6. The phase-separated glass according to claim 1, wherein the content of P 2 O 5 in the glass composition is 0.001 to 20% by mass.
  7.  ガラス組成中のLiO+NaO+KOの含有量が5質量%以下であることを特徴とする請求項1~6の何れかに記載の分相ガラス。 7. The phase-separated glass according to claim 1, wherein the content of Li 2 O + Na 2 O + K 2 O in the glass composition is 5% by mass or less.
  8.  平板形状であることを特徴とする請求項1~7の何れかに記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 7, which has a flat plate shape.
  9.  オーバーフローダウンドロー法で成形されてなることを特徴とする請求項1~8の何れかに記載の分相ガラス。 The phase-separated glass according to any one of claims 1 to 8, which is formed by an overflow downdraw method.
  10.  照明に用いることを特徴とする請求項1~9の何れかに記載の分相ガラス。 10. The phase separation glass according to claim 1, which is used for illumination.
  11.  有機EL照明に用いることを特徴とする請求項1~10の何れかに記載の分相ガラス。 11. The phase separation glass according to claim 1, which is used for organic EL lighting.
  12.  請求項1~11の何れかに記載の分相ガラスを備えてなることを特徴とする有機ELデバイス。 An organic EL device comprising the phase-separated glass according to any one of claims 1 to 11.
PCT/JP2016/050634 2015-01-21 2016-01-12 Phase-separated glass WO2016117406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-009079 2015-01-21
JP2015009079A JP2016132601A (en) 2015-01-21 2015-01-21 Phase-split glass

Publications (1)

Publication Number Publication Date
WO2016117406A1 true WO2016117406A1 (en) 2016-07-28

Family

ID=56416953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050634 WO2016117406A1 (en) 2015-01-21 2016-01-12 Phase-separated glass

Country Status (2)

Country Link
JP (1) JP2016132601A (en)
WO (1) WO2016117406A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298528B (en) * 2017-06-30 2019-08-30 东旭科技集团有限公司 Aluminium borosilicate glass and its preparation method and application

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075494A (en) * 2002-08-22 2004-03-11 Nippon Electric Glass Co Ltd Glass substrate and its manufacturing method
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
WO2015034030A1 (en) * 2013-09-03 2015-03-12 日本電気硝子株式会社 Glass and method for producing same
WO2015186606A1 (en) * 2014-06-02 2015-12-10 日本電気硝子株式会社 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075494A (en) * 2002-08-22 2004-03-11 Nippon Electric Glass Co Ltd Glass substrate and its manufacturing method
JP2014144907A (en) * 2013-01-04 2014-08-14 Nippon Electric Glass Co Ltd Glass plate
WO2015034030A1 (en) * 2013-09-03 2015-03-12 日本電気硝子株式会社 Glass and method for producing same
WO2015186606A1 (en) * 2014-06-02 2015-12-10 日本電気硝子株式会社 Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass

Also Published As

Publication number Publication date
JP2016132601A (en) 2016-07-25

Similar Documents

Publication Publication Date Title
JP6269933B2 (en) Glass plate
WO2014112552A1 (en) Crystalline glass substrate, crystallized glass substrate, diffusion plate, and illumination device provided with same
WO2012157695A1 (en) High-refractive-index glass
JP6066060B2 (en) Crystallized glass substrate and method for producing the same
WO2015186606A1 (en) Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass
WO2016013612A1 (en) Glass with high refractive index
US20160200624A1 (en) Glass and method for producing same
WO2015186584A1 (en) Phase-separated glass, method for producing phase-separated glass and composite substrate using phase-separated glass
JP2016098118A (en) Phase-separated glass
JP6249218B2 (en) Glass manufacturing method and glass
JP2015027927A (en) High refractive index glass
WO2015034030A1 (en) Glass and method for producing same
JP2016028996A (en) Glass with high refractive index
WO2014175418A1 (en) High refractive index glass
JP2016064970A (en) Phase splitting glass
WO2016117406A1 (en) Phase-separated glass
JP6406571B2 (en) Glass
JP6331076B2 (en) Glass film and composite substrate using the same
JP6331077B2 (en) Phase separation glass and composite substrate using the same
JP6435610B2 (en) High refractive index glass
JP2016011245A (en) Phase-separated glass
JP2015227272A (en) Phase-split glass and composite substrate using the same
JP2015105218A (en) Glass substrate and production method thereof
JP5812241B2 (en) High refractive index glass
JP5812242B2 (en) High refractive index glass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16740013

Country of ref document: EP

Kind code of ref document: A1