JP2004051473A - Glass substrate for flat panel display device - Google Patents

Glass substrate for flat panel display device Download PDF

Info

Publication number
JP2004051473A
JP2004051473A JP2003083325A JP2003083325A JP2004051473A JP 2004051473 A JP2004051473 A JP 2004051473A JP 2003083325 A JP2003083325 A JP 2003083325A JP 2003083325 A JP2003083325 A JP 2003083325A JP 2004051473 A JP2004051473 A JP 2004051473A
Authority
JP
Japan
Prior art keywords
glass substrate
display device
glass
flat panel
panel display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003083325A
Other languages
Japanese (ja)
Inventor
Ken Choju
長寿 研
Hiroki Yamazaki
山崎 博樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2003083325A priority Critical patent/JP2004051473A/en
Publication of JP2004051473A publication Critical patent/JP2004051473A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glass substrate for a flat panel display device, which exhibits high transmittance to blue color light and enhances brightness of image display when it is used as a front glass substrate of the plasma display device especially. <P>SOLUTION: The glass substrate for the flat panel display device is formed by a float process and has a strain point of ≥570°C, and when the glass substrate is heated at 650°C in air for 5 h, the transmittance at a wavelength of 400 nm and a thickness of 2.8 mm is ≥86%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は、各種フラットパネルディスプレイ装置に用いられるガラス基板に関し、特にプラズマディスプレイ装置の前面ガラス基板として好適なガラス基板に関するものである。
【0002】
【従来の技術】
一般にプラズマディスプレイ装置を製造する場合、まず前面ガラス基板と背面ガラス基板を準備し、これらのガラス基板上に金属ペーストや絶縁ペーストを塗布・焼成することによって、金属膜、ITO膜、ネサ膜等からなる透明電極、誘電体層、隔壁、蛍光体等を形成する。次いで前面ガラス基板と背面ガラス基板を約100μmの間隔を保つように対向させてから、その周囲に低融点ガラスフリットを塗布・焼成することによってシールし、さらに内部に希ガスを封入し、気密封止する方法が採られる。尚、上記の金属ペースト、絶縁ペースト及び低融点ガラスフリットの焼成は、600℃近い温度で行われる。
【0003】
従来より、この種のガラス基板としては、建築窓や自動車窓として広く用いられているソーダ石灰ガラス(熱膨張係数:約84×10−7/℃)が使用されてきた。
【0004】
ところが、ソーダ石灰ガラスは、歪点が約500℃と低いため、600℃付近の高温で何度も熱処理すると、熱変形や熱収縮により、その寸法が著しく変化するため、前面ガラス基板と背面ガラス基板を対向させる際、電極の位置合わせを精度良く行うことが困難となる。この問題は、特に大型高精細のプラズマディスプレイ装置を作製する際に顕著である。
【0005】
またソーダ石灰ガラスは、150℃での体積電気抵抗率(logρ)が8.4Ω・cmと低く、ガラス中のアルカリ成分の移動度が大きいため、このアルカリ成分がITO膜やネサ膜等の薄膜電極と反応し、電極材料の電気抵抗値を変化させるという問題も有している。
【0006】
これらの事情から、ガラス基板の熱変形や熱収縮が少なく、高い体積電気抵抗率を有する高歪点ガラス基板が、プラズマディスプレイ装置のガラス基板として提案されている(例えば特許文献1、2参照)。
【0007】
【特許文献1】
特開平3−40933号公報
【特許文献2】
特開平8−290938号公報
【0008】
【発明が解決しようとする課題】
プラズマディスプレイ装置は、特許文献1、2に記載されているようなガラス基板を前面基板及び背面基板として使用するものであり、その発光原理は、次の通りである。プラズマディスプレイ装置を起動させると、電極間に放電が起こり、希ガスから紫外線が放出され、この紫外線が背面ガラス基板上に形成された蛍光体に当たることにより、赤色、緑色、青色が発光する。
【0009】
このような原理で発光するプラズマディスプレイ装置は、ブラウン管では達成することのできない大画面化、薄型化が可能であり、画像表示のちらつきも少ないという長所がある。
【0010】
しかしながらプラズマディスプレイ装置は、自己発光型表示装置であるため、バックライトと呼ばれる発光体を備えた液晶ディスプレイ装置に比べて、画像表示の輝度が低く、画面が暗いという短所がある。
【0011】
そのため従来から、プラズマディスプレイ装置に使用する蛍光体の発光効率を高める開発が行われているが、赤色光や緑色光を発光する蛍光体に比べて、青色光(波長350〜500nm)を発光する蛍光体の発光効率が特に低く、画像表示の輝度を向上させることが困難となっている。
【0012】
本発明は、上記事情に鑑みなされたものであり、特にプラズマディスプレイ装置の前面ガラス基板として用いた時、青色光の透過率が高くなり、画像表示の輝度の向上を図ることが可能なフラットパネルディスプレイ装置用ガラス基板を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者等は、プラズマディスプレイ装置に用いられるガラス基板について考察を繰り返した結果、この種のガラス基板は、600℃近くの温度で約30分間保持する加熱処理が10回以上、つまりトータル5時間以上に亘って施されるが、この加熱処理工程においてガラス基板の青色光の透過率が低下することを見いだし、本発明を提案するに至った。
【0014】
すなわち本発明のフラットパネルディスプレイ装置用ガラス基板は、フロート法で成形され、歪点が570℃以上のフラットパネルディスプレイ装置用ガラス基板であって、空気中で650℃、5時間の条件で加熱した時、肉厚2.8mmでの波長400nmにおける透過率が86%以上であることを特徴とする。
【0015】
また本発明のフラットパネルディスプレイ装置用ガラス基板は、質量%で、SiO 55〜74%、Al 0〜14%、MgO 0〜15%、CaO 0〜10%、SrO 0〜18%、BaO 0〜10%、MgO+CaO+SrO+BaO 7〜28%、NaO 0〜8%、KO 2〜18%、NaO+KO 6〜20%、ZrO 0〜7%であり、これらの成分の合計が90%以上の組成を有することを特徴とする。
【0016】
さらに本発明のフラットパネルディスプレイ装置用ガラス基板は、溶融錫と接触していない上表面(トップ面)の表面変質層(酸素が少ない層)が除去されてなることを特徴とする。
【0017】
【発明の実施の形態】
本発明のフラットパネルディスプレイ装置用ガラス基板は、歪点が570℃以上のガラスからなるため、プラズマディスプレイパネルの製造工程で600℃近い温度で加熱処理しても、熱変形や熱収縮が小さく、問題となるような寸法変化が発生し難い。より耐熱性を向上させるためには、歪点を580℃以上、より好ましくは、600℃以上とすることが望ましい。
【0018】
また一般に、プラズマディスプレイ装置に用いられるガラス基板は、フロート法で成形されるが、本発明者等の知見によると、この種のガラス基板は、肉厚が約2.8mmであり、成形直後の波長400nmにおける透過率は88〜90%程度であるが、このガラス基板に600℃付近の温度でトータル5時間の加熱処理を施すと、その表面が着色する。この着色は、特に一方の面(片面)で強く起こり、上記波長における透過率は2〜10%程度低下する。その結果、プラズマディスプレイ装置の青色光がますます弱くなる。このガラス基板の強い着色は、フロート成形時に溶融錫と接触していない上表面(トップ面)で発生する。その理由は、フロート設備である錫浴槽中に存在する水素とガラスが接触することによって、特にガラス基板のトップ面の酸素が減少し、深さ数μm〜数十μmの範囲で表面変質層(酸素の少ない層)が形成され、この表面変質層(酸素の少ない層)が加熱によって着色するためであると推測される。
【0019】
ところが本発明のフラットパネルディスプレイ装置用ガラス基板は、空気中で650℃、5時間の条件で加熱した後でも、肉厚2.8mmでの波長400nmにおける透過率が86%以上の特性を有するため、プラズマディスプレイ装置の製造工程で、ガラス基板が600℃近くの温度で10回以上の長時間(例えば5時間)に亘る加熱処理が施されても、青色光の透過率が低下することがない。その結果、プラズマディスプレイ装置の発光バランスが向上し、輝度を向上させることができる。尚、空気中で650℃、5時間の条件で加熱するとは、上記の透過率を求めるための条件を示すものであり、成膜工程やフリットシール工程における熱処理条件を限定している訳ではない。例えばプラズマディスプレイ装置を生産する際の加熱処理は、空気中や窒素中において400〜650℃程度の温度で行えば良い。
【0020】
本発明のような、空気中で650℃、5時間の条件で加熱した後でも、肉厚2.8mmでの波長400nmにおける透過率が86%以上の特性を有するガラス基板を得るためには、そのトップ面の表面変質層(酸素の少ない層)を1μm未満に抑えたり、ガラス基板を加熱処理する前に、そのトップ面の表面変質層(酸素の少ない層)を除去すれば良い。トップ面の表面変質層(酸素の少ない層)を1μm未満に抑えるためには、フロート成形において錫浴槽に注入する水素の量を少なくしたり、錫浴槽に入れる溶融ガラスの温度を低くすれば良い。また表面変質層(酸素の少ない層)を除去する方法としては、研磨処理や薬品によるエッチング処理が適当であり、その除去量は、ガラスの組成や成形条件によって表面変質層(酸素の少ない層)の厚みが変動するため、ガラス基板の表面変質層(酸素の少ない層)を確実に除去できるように適宜決定すれば良い。通常、高歪点ガラス基板の表面変質層(酸素の少ない層)の厚みは、1〜50μm程度である。ガラス基板を加熱した後の波長400nmにおける透過率は高いほど好ましいが、ガラス材質、製造条件、表面層の除去条件等を厳密に規制することによって、この透過率を87%以上、さらには88%以上とすることも可能である。尚、ガラス基板の表面を非常に小さな厚み(例えば1μm未満)で研磨したり、エッチングすることによって除去し、しかも平滑面を得ることは、非常に困難であり、逆に55μmを超えるような厚みでガラス基板の表面を除去することは生産性が悪く、コスト高となるため好ましくない。またコスト高となるが、必要に応じてトップ面の反対面(ボトム面)を研磨又はエッチングしても差し支えない。
【0021】
また本発明のガラス基板は、30〜380℃における平均線熱膨張係数が、65〜90×10−7/℃のガラスからなると、プラズマディスプレイ装置の周辺部材である低融点ガラスフリットや誘電体材料等の熱膨張係数と整合し、プラズマディスプレイ装置を製造する際に変形等の不具合が発生し難いため好ましい。平均線熱膨張係数の好ましい範囲は、65〜88×10−7/℃である。
【0022】
さらに本発明のガラス基板は、厚みが小さくなるほど、従来のプラズマディスプレイ装置用ガラス基板(厚み:2.8mm)に比べて、分光透過率が高く、これをプラズマディスプレイ装置の前面ガラス基板として使用すると、画像表示の輝度をさらに向上させることができるため好ましい。よってこの観点から、ガラス基板の好ましい厚みは2.5mm以下、より好ましくは2.3mm以下、さらに好ましくは1.8mm以下である。尚、本発明における、肉厚2.8mmの波長400nmにおける透過率が86%以上とは、ガラス基板を650℃、5時間の条件で加熱した後の波長400nmにおける透過率を、肉厚2.8mmに換算した場合の透過率が86%以上であることを意味している。つまりガラス基板の肉厚が2.8mmより小さい場合には、透過率を換算して求める必要がある。
【0023】
また一般にガラス基板を薄肉化すると、たわみ量が増大するが、本発明のガラス基板は、比ヤング率(ヤング率/密度)が27.0GPa/(g・cm−3)以上のガラスからなると、ガラス基板のたわみが小さくなり、その厚みを小さくしても、プラズマディスプレイ装置の製造工程において、ガラス基板のたわみに起因する破損を抑えることが可能となるため好ましい。ただしガラス基板の厚みがあまり小さくなりすぎると、たわみが大きく、作業性が悪くなるため、この観点から、ガラス基板の好ましい厚みは1.0mm以上、好ましくは1.1mm以上、より好ましくは1.5mm以上である。また比ヤング率は、より好ましくは27.5GPa/(g・cm−3)以上、さらに好ましくは28.0GPa/(g・cm−3)以上である。
【0024】
また本発明のガラス基板は、青色蛍光体の塗布面積を、赤色蛍光体及び緑色蛍光体の各塗布面積より広くすることによって、青色蛍光体の発光効率を改善し、発光バランスを向上させたプラズマディスプレイ装置の前面ガラス基板として使用すると、より高い輝度が得られるため好ましい。具体的には、青色蛍光体の塗布面積が、赤色蛍光体及び緑色蛍光体の各塗布面積の1.2倍以上、好ましくは1.5倍以上のプラズマディスプレイ装置に好適である。
【0025】
また本発明のフラットパネルディスプレイ装置用ガラス基板は、質量%で、SiO 55〜74%、Al 0〜14%、MgO 0〜15%、CaO 0〜10%、SrO 0〜18%、BaO 0〜10%、MgO+CaO+SrO+BaO 7〜28%、NaO 0〜8%、KO 2〜18%、NaO+KO 6〜20%、ZrO 0〜7%であり、これらの成分の合計が90%以上の組成を有することが好ましい。
【0026】
このように各ガラス成分の割合を限定した理由は以下のとおりである。
【0027】
SiOは、ガラスのネットワークフォーマーであるが、55%より少ないと、ガラスの歪点が低下し、熱変形や熱収縮が大きくなる。一方、74%より多いと、ガラスの溶融性が低下する。SiOの含有量は、好ましくは55〜70%、より好ましくは55〜69%である。
【0028】
Alは、ガラスの歪点を高める成分であるが、14%より多いと、ガラスの高温粘度が高くなり、失透傾向が増大し、成形が困難となる。Alの含有量は、好ましくは0〜12%、より好ましくは0〜11%である。
【0029】
MgO、CaO、SrO、BaOは、いずれもガラスの高温粘度を低下させてガラスの成形性や溶融性を高めると共に、ガラスの歪点とヤング率を高める成分である。しかしながらMgOが15%より多くなったり、CaOが10%より多くなると、ガラスが失透したり、ガラスが割れやすくなる。またSrOが18%より多くなったり、BaOが10%より多くなると、ガラスが割れやすくなる。MgOの含有量は、好ましくは2〜13%、より好ましくは2〜12%である。CaOの含有量は、好ましくは、0〜9%、より好ましくは0〜8%である。SrOの含有量は、好ましくは0〜16%、より好ましくは0〜15%である。BaOの含有量は、好ましくは0〜9%である。
【0030】
尚、SrOとBaOは、最もガラスの密度を高くする成分であるため、比ヤング率を27.0GPa/(g・cm−3)以上にするには、これらの成分を極力抑えることが望ましい。またBaOは、環境負荷物質であるため、環境上もできるだけ含有しないことが望ましい。
【0031】
またMgO、CaO、SrO、BaOの合量が7%より少ないと、ガラスの溶融性が低下し、28%より多いと、ガラスの密度が高くなり、比ヤング率を27.0GPa/(g・cm−3)以上にすることが困難となる。MgO、CaO、SrO、BaOの合量は、好ましくは8〜23%である。
【0032】
NaOは、ガラスの線熱膨張係数を制御すると共に、溶融性を向上する成分であるが、8%より多いと、ガラスの歪点が低下する。NaOの含有量は、好ましくは0〜6%、より好ましくは0〜5%である。
【0033】
Oも、NaOと同様、ガラスの線熱膨張係数を制御すると共に、溶融性を向上する成分であるが、2%より少ないと、ガラスの溶融性が損なわれる。一方、18%より多いと、ガラスの歪点が低下する。KOの含有量は、好ましくは4〜17%、より好ましくは5〜17%である。
【0034】
またNaO、KOの合量が6%より少ないと、ガラスの溶融性が低下し、20%より多いと、線熱膨張係数が大きくなりすぎる。NaO、KOの合量は、好ましくは7〜18%、より好ましくは9〜18%である。
【0035】
ZrOは、ガラスの歪点を高める成分であるが、7%より多くなると、失透傾向が増大すると共にガラスが割れやすくなる。ZrOの含有量は好ましくは0〜6%、より好ましくは0〜5%である。
【0036】
また本発明のガラス基板は、上記成分の合計が90%以上の組成を有し、特性を損なわない範囲で、その他の成分を10%まで含有させることができる。例えば紫外線によるガラスの着色を防止する目的でTiOを5%まで含有できる。またガラスの液相温度を下げ、成形性を向上させる目的でY、La、Nbを各々3%まで、割れやすさを改善する目的でB、Pを各々4%まで含有できる。さらにAs、Sb、SO、Cl、SnO等の清澄剤を合量で2%まで含有したり、Fe、CoO、NiO、Cr、CeO等の着色剤を各々1%まで含有できる。
【0037】
また本発明のガラス基板は、厚みが2.5mm以下であると、400〜700nmにおける分光透過率を86%以上とすることができ、さらには87%以上とすることも可能である。このような分光透過率を有するガラス基板をプラズマディスプレイ装置の前面基板として用いると、画像表示の輝度を大幅に向上させることが可能となる。
【0038】
さらに本発明のガラス基板は、ガラス中に不純物として混入する鉄酸化物の量が多くなるほど着色し、分光透過率が低下するため、Fe換算で0.5質量%以下(好ましくは0.2質量%以下)に規制することが望ましい。
【0039】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
【0040】
表1、2は、本発明の実施例(試料No.1〜7)及び比較例(試料No.8〜10)を示すものである。
【0041】
【表1】

Figure 2004051473
【0042】
【表2】
Figure 2004051473
【0043】
表1、2の各ガラス試料は、各ガラス組成となるように調合した原料を調合し、溶融した後、フロート法で2.8mm厚に成形した板状ガラスを200mm角の大きさに切断加工したものであり、これらの各ガラス試料について、線熱膨張係数、歪点、密度、比ヤング率を測定し、表に示した。
【0044】
また各ガラス試料を30×50mmの大きさに切断加工し、No.1〜7のガラス試料については、溶融錫面に接触していない側の表面(トップ面)を鏡面研磨した。この研磨は、酸化セリウム研磨材を使用し、表面変質層(酸素の少ない層)を除去する目的で表に示した研磨量(厚み)となるように行った。一方、No.8〜10のガラス試料については、両面とも研磨を行わなかった。
【0045】
その後、各ガラス試料の波長300〜700nmにおける透過率を分光光度計(島津製作所製分光光度計UV−2500PC)を用いて測定した。次に、各ガラス試料を電気炉に入れ、空気中で室温から10℃/分の速度で650℃まで昇温し、その温度で5時間保持した後、2℃/分の速度で室温まで降温し、波長300〜700nmにおける透過率を測定した。表には、代表値として熱処理前後の400nmにおける透過率を示した。
【0046】
表から明らかなように、実施例である試料No.1〜7は、線熱膨張係数が73〜83×10−7/℃、歪点が580℃以上、密度が2.82g/cm以下、比ヤング率が27.0GPa/(g・cm−3)以上であった。また熱処理後も外観の変化は殆どなく、波長400nmにおける透過率が88%以上であった。一方、比較例である試料No.8〜10は、熱処理後の波長400nmにおける透過率が85.5%以下と低く、若干の着色が見受けられた。
【0047】
尚、表中の線熱膨張係数は、ディラトメーターで30〜380℃における平均線熱膨張係数を測定したものであり、歪点は、ASTM C336−71に準じて測定した。また密度は、周知のアルキメデス法で測定し、比ヤング率は、鐘紡株式会社製破壊弾性率測定装置(KI−11)を使用し、曲げ共振法によって測定したヤング率と密度から算出した。因みに表面変質層(酸素の少ない層)の厚みは、カソードルミネッセンスによって測定することが可能である。
【0048】
【発明の効果】
以上のように本発明のフラットパネルディスプレイ装置は、空気中で650℃、5時間の条件で加熱した時、肉厚2.8mmでの波長400nmにおける透過率が86%以上の特性を有するため、これをプラズマディスプレイ装置の前面ガラス基板として使用すると、加熱処理によって着色することがなく、青色光の透過率が低下することがないため、発光バランスが良くなり、輝度の向上を図ることができる。
【0049】
また本発明のガラス基板は、歪点が570℃以上であるため、プラズマディスプレイ装置のガラス基板として好適であるが、その他のフラットパネルディスプレイ、例えば自己発光型表示装置である有機ELや無機EL(エレクトロ・ルミネッセンス)、FED(フィールド・エミッション・ディスプレイ)等に用いられるガラス基板としても適している。[0001]
[Industrial applications]
The present invention relates to a glass substrate used for various flat panel display devices, and particularly to a glass substrate suitable as a front glass substrate of a plasma display device.
[0002]
[Prior art]
Generally, when manufacturing a plasma display device, a front glass substrate and a rear glass substrate are first prepared, and a metal paste or an insulating paste is applied and baked on these glass substrates to form a metal film, an ITO film, a Nesa film, and the like. Transparent electrodes, dielectric layers, partitions, phosphors, and the like. Next, the front glass substrate and the back glass substrate are opposed to each other with a distance of about 100 μm, and the surroundings are sealed by applying and firing a low melting point glass frit. A method of stopping is adopted. The firing of the metal paste, the insulating paste, and the low-melting glass frit is performed at a temperature close to 600 ° C.
[0003]
Conventionally, soda lime glass (coefficient of thermal expansion: about 84 × 10 −7 / ° C.), which is widely used as an architectural window or an automobile window, has been used as a glass substrate of this type.
[0004]
However, since the soda-lime glass has a low strain point of about 500 ° C., if it is heat-treated many times at a high temperature of around 600 ° C., its dimensions are remarkably changed due to thermal deformation and thermal shrinkage. When the substrates are opposed to each other, it is difficult to accurately position the electrodes. This problem is remarkable especially when a large-sized high-definition plasma display device is manufactured.
[0005]
Soda-lime glass has a low volume electrical resistivity (log ρ) at 150 ° C. of 8.4 Ω · cm and has a high mobility of alkali components in the glass. Therefore, the alkali components are thin films such as ITO films and Nesa films. There is also a problem that it reacts with the electrode and changes the electric resistance value of the electrode material.
[0006]
Under these circumstances, a glass substrate with a high strain point, which has a small thermal deformation and a small thermal contraction and a high volume resistivity, has been proposed as a glass substrate for a plasma display device (for example, see Patent Documents 1 and 2). .
[0007]
[Patent Document 1]
JP-A-3-40933 [Patent Document 2]
JP-A-8-290938
[Problems to be solved by the invention]
The plasma display device uses a glass substrate as described in Patent Documents 1 and 2 as a front substrate and a back substrate, and the principle of light emission is as follows. When the plasma display apparatus is started, discharge occurs between the electrodes, and ultraviolet rays are emitted from the rare gas. The ultraviolet rays impinge on the phosphor formed on the rear glass substrate, thereby emitting red, green, and blue light.
[0009]
A plasma display device that emits light based on such a principle has advantages in that it can have a large screen and a thickness that cannot be achieved with a cathode ray tube, and that there is little flickering of image display.
[0010]
However, since the plasma display device is a self-luminous display device, it has disadvantages in that the brightness of image display is lower and the screen is darker than a liquid crystal display device having a light-emitting body called a backlight.
[0011]
For this reason, developments have conventionally been made to increase the luminous efficiency of phosphors used in plasma display devices, but they emit blue light (wavelength 350 to 500 nm) as compared to phosphors that emit red light or green light. The luminous efficiency of the phosphor is particularly low, and it is difficult to improve the brightness of image display.
[0012]
The present invention has been made in view of the above circumstances, and particularly when used as a front glass substrate of a plasma display device, a flat panel capable of increasing transmittance of blue light and improving luminance of image display. It is an object to provide a glass substrate for a display device.
[0013]
[Means for Solving the Problems]
The present inventors have repeatedly studied a glass substrate used for a plasma display device. As a result, this type of glass substrate has been subjected to heat treatment at a temperature of about 600 ° C. for about 30 minutes for 10 times or more, that is, for a total of 5 hours. Although the heat treatment is performed as described above, it has been found that the transmittance of blue light of the glass substrate is reduced in this heat treatment step, and the present invention has been proposed.
[0014]
That is, the glass substrate for a flat panel display device of the present invention is a glass substrate for a flat panel display device having a strain point of 570 ° C. or more, which is formed by a float method, and heated in air at 650 ° C. for 5 hours. In this case, the transmittance at a wavelength of 400 nm at a thickness of 2.8 mm is 86% or more.
[0015]
In addition, the glass substrate for a flat panel display device of the present invention is 55 to 74% of SiO 2 , 0 to 14% of Al 2 O 3, 0 to 15% of MgO, 0 to 10% of CaO, and 0 to 18% of SrO by mass%. , BaO 0-10%, MgO + CaO + SrO + BaO 7-28%, Na 2 O 0-8%, K 2 O 2-18%, Na 2 O + K 2 O 6-20%, ZrO 2 0-7%. The composition is characterized in that the total of the components has a composition of 90% or more.
[0016]
Further, the glass substrate for a flat panel display device of the present invention is characterized in that a surface altered layer (a layer containing less oxygen) on an upper surface (top surface) not in contact with molten tin is removed.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Since the glass substrate for a flat panel display device of the present invention is made of glass having a strain point of 570 ° C. or more, even when subjected to a heat treatment at a temperature close to 600 ° C. in a plasma display panel manufacturing process, thermal deformation and thermal shrinkage are small, Dimensional changes that cause problems are unlikely to occur. In order to further improve the heat resistance, the strain point is desirably 580 ° C or higher, more desirably 600 ° C or higher.
[0018]
Generally, a glass substrate used for a plasma display device is formed by a float method. According to the knowledge of the present inventors, this type of glass substrate has a thickness of about 2.8 mm, The transmittance at a wavelength of 400 nm is about 88 to 90%, but when this glass substrate is subjected to a heat treatment at a temperature of about 600 ° C. for a total of 5 hours, the surface is colored. This coloring occurs particularly strongly on one side (one side), and the transmittance at the above wavelength is reduced by about 2 to 10%. As a result, the blue light of the plasma display device becomes increasingly weak. This strong coloring of the glass substrate occurs on the upper surface (top surface) that is not in contact with the molten tin during float molding. The reason is that hydrogen and glass present in a tin bath as a float facility come into contact with the glass, thereby reducing oxygen particularly on the top surface of the glass substrate, and changing the surface altered layer (depth from several μm to several tens μm). This is presumed to be due to the formation of a layer with a small amount of oxygen and the surface altered layer (the layer with a small amount of oxygen) being colored by heating.
[0019]
However, the glass substrate for a flat panel display device of the present invention has a characteristic of having a transmittance of 86% or more at a wavelength of 400 nm at a thickness of 2.8 mm even after heating at 650 ° C. for 5 hours in air. In the manufacturing process of a plasma display device, even if a glass substrate is subjected to a heat treatment at a temperature close to 600 ° C. for 10 times or more for a long time (for example, 5 hours), the transmittance of blue light is not reduced. . As a result, the light emission balance of the plasma display device is improved, and the luminance can be improved. Note that heating at 650 ° C. for 5 hours in air indicates a condition for obtaining the above-described transmittance, and does not limit heat treatment conditions in the film forming step or the frit sealing step. . For example, heat treatment for producing a plasma display device may be performed at a temperature of about 400 to 650 ° C. in air or nitrogen.
[0020]
In order to obtain a glass substrate having a transmittance of 86% or more at a wavelength of 400 nm with a thickness of 2.8 mm even after heating in air at 650 ° C. for 5 hours as in the present invention, The surface altered layer (the layer containing less oxygen) on the top surface may be suppressed to less than 1 μm, or the surface altered layer (the layer containing less oxygen) on the top surface may be removed before heat treatment of the glass substrate. In order to suppress the surface altered layer (a layer containing less oxygen) on the top surface to less than 1 μm, the amount of hydrogen injected into the tin bath in the float molding or the temperature of the molten glass put in the tin bath may be lowered. . As a method for removing the surface-altered layer (a layer with a small amount of oxygen), a polishing treatment or an etching treatment with a chemical is appropriate, and the amount of removal is determined by the composition of the glass and the molding conditions. Since the thickness of the glass substrate fluctuates, the thickness may be appropriately determined so that the surface altered layer (a layer containing less oxygen) of the glass substrate can be reliably removed. Usually, the thickness of the surface altered layer (the layer containing less oxygen) of the high strain point glass substrate is about 1 to 50 μm. The higher the transmittance at a wavelength of 400 nm after heating the glass substrate, the more preferable. However, by strictly regulating the glass material, the manufacturing conditions, the conditions for removing the surface layer, and the like, the transmittance can be increased to 87% or more, further 88%. The above is also possible. In addition, it is very difficult to remove the surface of the glass substrate by polishing or etching with a very small thickness (for example, less than 1 μm) and obtain a smooth surface. It is not preferable to remove the surface of the glass substrate by the method because the productivity is low and the cost is high. Although the cost increases, the surface opposite to the top surface (bottom surface) may be polished or etched as necessary.
[0021]
Further, when the glass substrate of the present invention is made of glass having an average linear thermal expansion coefficient at 30 to 380 ° C. of 65 to 90 × 10 −7 / ° C., a low melting point glass frit or a dielectric material which is a peripheral member of the plasma display device is used. This is preferable because it is consistent with the coefficient of thermal expansion such as the above, and is unlikely to cause problems such as deformation when manufacturing the plasma display device. A preferable range of the average linear thermal expansion coefficient is 65 to 88 × 10 −7 / ° C.
[0022]
Further, as the thickness of the glass substrate of the present invention becomes smaller, the spectral transmittance is higher than that of a conventional glass substrate for a plasma display device (thickness: 2.8 mm). This is preferable because the luminance of image display can be further improved. Therefore, from this viewpoint, the preferred thickness of the glass substrate is 2.5 mm or less, more preferably 2.3 mm or less, and still more preferably 1.8 mm or less. In the present invention, the phrase “the transmittance at a wavelength of 400 nm with a thickness of 2.8 mm is 86% or more” means that the transmittance at a wavelength of 400 nm after heating a glass substrate at 650 ° C. for 5 hours is defined as the thickness of 2. This means that the transmittance when converted to 8 mm is 86% or more. That is, when the thickness of the glass substrate is smaller than 2.8 mm, it is necessary to calculate the transmittance.
[0023]
In general, when the glass substrate is thinned, the amount of deflection increases. However, when the glass substrate of the present invention is made of glass having a specific Young's modulus (Young's modulus / density) of 27.0 GPa / (g · cm −3 ) or more, Even if the deflection of the glass substrate is reduced and the thickness thereof is reduced, it is preferable because breakage due to the deflection of the glass substrate can be suppressed in the manufacturing process of the plasma display device. However, if the thickness of the glass substrate is too small, the deflection is large and workability deteriorates. Therefore, from this viewpoint, the preferable thickness of the glass substrate is 1.0 mm or more, preferably 1.1 mm or more, more preferably 1. 5 mm or more. Further, the specific Young's modulus is more preferably 27.5 GPa / (g · cm −3 ) or more, further preferably 28.0 GPa / (g · cm −3 ) or more.
[0024]
In addition, the glass substrate of the present invention improves the luminous efficiency of the blue phosphor by increasing the application area of the blue phosphor over each of the application areas of the red phosphor and the green phosphor, thereby improving the plasma emission balance. Use as a front glass substrate of a display device is preferable because higher luminance can be obtained. Specifically, the present invention is suitable for a plasma display device in which the application area of the blue phosphor is 1.2 times or more, preferably 1.5 times or more of each application area of the red phosphor and the green phosphor.
[0025]
In addition, the glass substrate for a flat panel display device of the present invention is 55 to 74% of SiO 2 , 0 to 14% of Al 2 O 3, 0 to 15% of MgO, 0 to 10% of CaO, and 0 to 18% of SrO by mass%. , BaO 0-10%, MgO + CaO + SrO + BaO 7-28%, Na 2 O 0-8%, K 2 O 2-18%, Na 2 O + K 2 O 6-20%, ZrO 2 0-7%. It is preferable that the total of the components has a composition of 90% or more.
[0026]
The reasons for limiting the proportion of each glass component in this way are as follows.
[0027]
SiO 2 is a glass network former, but if it is less than 55%, the strain point of the glass decreases, and thermal deformation and thermal shrinkage increase. On the other hand, when it is more than 74%, the melting property of the glass is reduced. The content of SiO 2 is preferably 55 to 70%, more preferably 55 to 69%.
[0028]
Al 2 O 3 is a component that increases the strain point of the glass, but if it exceeds 14%, the high-temperature viscosity of the glass increases, the tendency to devitrify increases, and molding becomes difficult. The content of Al 2 O 3 is preferably 0 to 12%, more preferably 0 to 11%.
[0029]
MgO, CaO, SrO, and BaO are all components that lower the high-temperature viscosity of the glass to increase the moldability and melting property of the glass, and also increase the strain point and Young's modulus of the glass. However, when the content of MgO is more than 15% or the content of CaO is more than 10%, the glass is devitrified or the glass is easily broken. When SrO is more than 18% or BaO is more than 10%, the glass is easily broken. The content of MgO is preferably 2 to 13%, more preferably 2 to 12%. The content of CaO is preferably 0 to 9%, more preferably 0 to 8%. The content of SrO is preferably 0 to 16%, more preferably 0 to 15%. The content of BaO is preferably 0 to 9%.
[0030]
Since SrO and BaO are components that increase the density of the glass most, it is desirable to suppress these components as much as possible in order to make the specific Young's modulus 27.0 GPa / (g · cm −3 ) or more. Since BaO is an environmentally hazardous substance, it is desirable that BaO is not contained as much as possible in the environment.
[0031]
When the total amount of MgO, CaO, SrO, and BaO is less than 7%, the melting property of the glass decreases. When the total amount is more than 28%, the density of the glass increases, and the specific Young's modulus becomes 27.0 GPa / (g · cm −3 ) or more. The total amount of MgO, CaO, SrO, and BaO is preferably 8 to 23%.
[0032]
Na 2 O is a component that controls the coefficient of linear thermal expansion of the glass and improves the melting property. However, if it is more than 8%, the strain point of the glass decreases. The content of Na 2 O is preferably 0 to 6%, more preferably 0 to 5%.
[0033]
K 2 O, like Na 2 O, is a component that controls the linear thermal expansion coefficient of the glass and improves the melting property. However, if it is less than 2%, the melting property of the glass is impaired. On the other hand, if it is more than 18%, the strain point of the glass decreases. The content of K 2 O is preferably 4 to 17%, more preferably 5 to 17%.
[0034]
When the total amount of Na 2 O and K 2 O is less than 6%, the meltability of the glass decreases, and when it exceeds 20%, the linear thermal expansion coefficient becomes too large. The total amount of Na 2 O and K 2 O is preferably 7 to 18%, more preferably 9 to 18%.
[0035]
ZrO 2 is a component that increases the strain point of glass. However, if it exceeds 7%, the tendency of devitrification increases and the glass is easily broken. The content of ZrO 2 is preferably 6%, more preferably 0-5%.
[0036]
Further, the glass substrate of the present invention has a composition in which the total of the above components is 90% or more, and can contain other components up to 10% as long as the properties are not impaired. For example, TiO 2 can be contained up to 5% for the purpose of preventing coloring of the glass by ultraviolet rays. Further, Y 2 O 3 , La 2 O 3 , and Nb 2 O 3 are each reduced to 3% for the purpose of lowering the liquidus temperature of the glass and improving formability, and B 2 O 3 , P for improving the easiness of cracking. 2 O 5 can be contained up to 4% each. Further, fining agents such as As 2 O 3 , Sb 2 O 3 , SO 3 , Cl, and SnO 2 may be contained up to 2% in total, or Fe 2 O 3 , CoO, NiO, Cr 2 O 3 , CeO 2, etc. Can be contained up to 1% in each case.
[0037]
Further, when the thickness of the glass substrate of the present invention is 2.5 mm or less, the spectral transmittance at 400 to 700 nm can be 86% or more, and can be 87% or more. When a glass substrate having such a spectral transmittance is used as a front substrate of a plasma display device, it is possible to greatly improve the brightness of image display.
[0038]
Further, the glass substrate of the present invention is colored and the spectral transmittance is reduced as the amount of iron oxide mixed as an impurity into the glass is increased, so that the glass substrate is 0.5% by mass or less (preferably 0% by mass) in terms of Fe 2 O 3. .2% by mass or less).
[0039]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0040]
Tables 1 and 2 show Examples (Samples Nos. 1 to 7) and Comparative Examples (Samples Nos. 8 to 10) of the present invention.
[0041]
[Table 1]
Figure 2004051473
[0042]
[Table 2]
Figure 2004051473
[0043]
Each glass sample in Tables 1 and 2 was prepared by mixing and melting raw materials prepared to have each glass composition, and then cutting a 2.8 mm thick sheet glass into 200 mm square by the float method. The coefficient of linear thermal expansion, strain point, density, and specific Young's modulus of each of these glass samples were measured and are shown in the table.
[0044]
Further, each glass sample was cut into a size of 30 × 50 mm. For the glass samples 1 to 7, the surface (top surface) on the side not in contact with the molten tin surface was mirror-polished. This polishing was performed using a cerium oxide abrasive so as to have the polishing amount (thickness) shown in the table for the purpose of removing the surface altered layer (the layer containing less oxygen). On the other hand, No. Polishing was not performed on both surfaces of the glass samples 8 to 10.
[0045]
Thereafter, the transmittance of each glass sample at a wavelength of 300 to 700 nm was measured using a spectrophotometer (Spectrophotometer UV-2500PC manufactured by Shimadzu Corporation). Next, each glass sample was placed in an electric furnace, and the temperature was raised from room temperature to 650 ° C. at a rate of 10 ° C./min in air, maintained at that temperature for 5 hours, and then lowered to a room temperature at a rate of 2 ° C./min. Then, the transmittance at a wavelength of 300 to 700 nm was measured. In the table, the transmittance at 400 nm before and after the heat treatment is shown as a representative value.
[0046]
As is clear from the table, the sample No. 1 to 7 have a linear thermal expansion coefficient of 73 to 83 × 10 −7 / ° C., a strain point of 580 ° C. or more, a density of 2.82 g / cm 3 or less, and a specific Young's modulus of 27.0 GPa / (g · cm − 3 ) It was above. Further, even after the heat treatment, there was almost no change in appearance, and the transmittance at a wavelength of 400 nm was 88% or more. On the other hand, the sample No. Samples 8 to 10 had a low transmittance of 85.5% or less at a wavelength of 400 nm after the heat treatment, and some coloring was observed.
[0047]
The coefficient of linear thermal expansion in the table is obtained by measuring the average coefficient of linear thermal expansion at 30 to 380 ° C. with a dilatometer, and the strain point is measured according to ASTM C336-71. The density was measured by a well-known Archimedes method, and the specific Young's modulus was calculated from the Young's modulus and the density measured by a bending resonance method using a fracture elasticity measuring device (KI-11) manufactured by Kanebo Co., Ltd. Incidentally, the thickness of the surface altered layer (the layer with less oxygen) can be measured by cathodoluminescence.
[0048]
【The invention's effect】
As described above, the flat panel display device of the present invention has a characteristic of having a transmittance of 86% or more at a wavelength of 400 nm at a thickness of 2.8 mm when heated in air at 650 ° C. for 5 hours. When this is used as a front glass substrate of a plasma display device, it is not colored by a heat treatment and the transmittance of blue light is not reduced, so that the emission balance is improved and the luminance can be improved.
[0049]
Further, the glass substrate of the present invention has a strain point of 570 ° C. or higher and is therefore suitable as a glass substrate for a plasma display device. However, other flat panel displays, for example, organic EL and inorganic EL (self-luminous display devices) It is also suitable as a glass substrate used for electroluminescence), FED (field emission display) and the like.

Claims (3)

フロート法で成形され、歪点が570℃以上のフラットパネルディスプレイ装置用ガラス基板であって、空気中で650℃、5時間の条件で加熱した時、肉厚2.8mmでの波長400nmにおける透過率が86%以上であることを特徴とするフラットパネルディスプレイ装置用ガラス基板。A glass substrate for a flat panel display device formed by a float method and having a strain point of 570 ° C. or higher and transmitted at a wavelength of 400 nm at a thickness of 2.8 mm when heated in air at 650 ° C. for 5 hours. A glass substrate for a flat panel display device, wherein the ratio is 86% or more. 質量%で、SiO 55〜74%、Al 0〜14%、MgO 0〜15%、CaO 0〜10%、SrO 0〜18%、BaO 0〜10%、MgO+CaO+SrO+BaO 7〜28%、NaO 0〜8%、KO 2〜18%、NaO+KO 6〜20%、ZrO 0〜7%であり、これらの成分の合計が90%以上の組成を有することを特徴とする請求項1記載のフラットパネルディスプレイ装置用ガラス基板。By mass%, SiO 2 55~74%, Al 2 O 3 0~14%, 0~15% MgO, CaO 0~10%, SrO 0~18%, BaO 0~10%, MgO + CaO + SrO + BaO 7~28%, Na 2 O 0~8%, K 2 O 2~18%, Na 2 O + K 2 O 6~20%, a ZrO 2 0 to 7%, that the sum of the components has a composition of 90% The glass substrate for a flat panel display device according to claim 1, wherein: 溶融錫と接触していない上表面(トップ面)の表面変質層(酸素が少ない層)が除去されてなることを特徴とする請求項1又は2記載のフラットパネルディスプレイ装置用ガラス基板。The glass substrate for a flat panel display device according to claim 1 or 2, wherein a surface altered layer (a layer containing less oxygen) on an upper surface (top surface) not in contact with the molten tin is removed.
JP2003083325A 2002-05-29 2003-03-25 Glass substrate for flat panel display device Pending JP2004051473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003083325A JP2004051473A (en) 2002-05-29 2003-03-25 Glass substrate for flat panel display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002155801 2002-05-29
JP2003083325A JP2004051473A (en) 2002-05-29 2003-03-25 Glass substrate for flat panel display device

Publications (1)

Publication Number Publication Date
JP2004051473A true JP2004051473A (en) 2004-02-19

Family

ID=31949030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003083325A Pending JP2004051473A (en) 2002-05-29 2003-03-25 Glass substrate for flat panel display device

Country Status (1)

Country Link
JP (1) JP2004051473A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162536A (en) * 2003-12-03 2005-06-23 Nippon Electric Glass Co Ltd Glass substrate for flat panel display device
WO2005118499A1 (en) * 2004-06-02 2005-12-15 Central Glass Company, Limited Substrate glass for display device
JP2006096594A (en) * 2004-09-29 2006-04-13 Central Glass Co Ltd Substrate glass for display device
JP2006252828A (en) * 2005-03-09 2006-09-21 Nippon Electric Glass Co Ltd Glass substrate for plasma display panel
WO2007129744A1 (en) * 2006-05-10 2007-11-15 Asahi Glass Company, Limited Float glass for display substrate and process for producing the same
JP2007308329A (en) * 2006-05-18 2007-11-29 Nippon Electric Glass Co Ltd Glass for flat image display device, glass substrate using the same, and method for manufacturing the glass substrate
JP2008214166A (en) * 2007-03-07 2008-09-18 Central Glass Co Ltd Substrate glass for display device
WO2009096611A1 (en) * 2008-02-27 2009-08-06 Asahi Glass Company, Limited Glass composition for substrate
US8071494B2 (en) 2006-11-10 2011-12-06 Asahi Glass Company, Limited Glass substrate for flat panel display, process for producing the same, and display panel employing the same
CN102351421A (en) * 2011-07-19 2012-02-15 彩虹集团公司 Preparation method of alkali aluminosilicate glass used for protective cover plates for display parts
CN102718404A (en) * 2012-02-24 2012-10-10 河南安彩高科股份有限公司 Silicate glass with high strain point and application thereof
JP2014037346A (en) * 2013-09-13 2014-02-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162536A (en) * 2003-12-03 2005-06-23 Nippon Electric Glass Co Ltd Glass substrate for flat panel display device
KR100802521B1 (en) * 2004-06-02 2008-02-12 샌트랄 글래스 컴퍼니 리미티드 Substrate glass for display device
WO2005118499A1 (en) * 2004-06-02 2005-12-15 Central Glass Company, Limited Substrate glass for display device
JP2006096594A (en) * 2004-09-29 2006-04-13 Central Glass Co Ltd Substrate glass for display device
JP2006252828A (en) * 2005-03-09 2006-09-21 Nippon Electric Glass Co Ltd Glass substrate for plasma display panel
JP5131190B2 (en) * 2006-05-10 2013-01-30 旭硝子株式会社 Float glass for display substrate and manufacturing method thereof
WO2007129744A1 (en) * 2006-05-10 2007-11-15 Asahi Glass Company, Limited Float glass for display substrate and process for producing the same
US7892999B2 (en) 2006-05-10 2011-02-22 Asahi Glass Company, Limited Float glass for display substrate and method for producing it
JP2007308329A (en) * 2006-05-18 2007-11-29 Nippon Electric Glass Co Ltd Glass for flat image display device, glass substrate using the same, and method for manufacturing the glass substrate
US8071494B2 (en) 2006-11-10 2011-12-06 Asahi Glass Company, Limited Glass substrate for flat panel display, process for producing the same, and display panel employing the same
JP2008214166A (en) * 2007-03-07 2008-09-18 Central Glass Co Ltd Substrate glass for display device
US8349751B2 (en) 2008-02-27 2013-01-08 Asahi Glass Company, Limited Glass composition for substrates
CN101959819A (en) * 2008-02-27 2011-01-26 旭硝子株式会社 Glass composition for substrate
WO2009096611A1 (en) * 2008-02-27 2009-08-06 Asahi Glass Company, Limited Glass composition for substrate
KR101273782B1 (en) * 2008-02-27 2013-06-12 아사히 가라스 가부시키가이샤 Glass composition for substrate
TWI404693B (en) * 2008-02-27 2013-08-11 Asahi Glass Co Ltd Glass composition for substrate
JP5392096B2 (en) * 2008-02-27 2014-01-22 旭硝子株式会社 Substrate glass composition
CN102351421A (en) * 2011-07-19 2012-02-15 彩虹集团公司 Preparation method of alkali aluminosilicate glass used for protective cover plates for display parts
CN102718404A (en) * 2012-02-24 2012-10-10 河南安彩高科股份有限公司 Silicate glass with high strain point and application thereof
CN102718404B (en) * 2012-02-24 2014-12-10 河南安彩高科股份有限公司 Silicate glass with high strain point and application thereof
JP2014037346A (en) * 2013-09-13 2014-02-27 Nippon Electric Glass Co Ltd Glass substrate for solar cell
US11951713B2 (en) 2020-12-10 2024-04-09 Corning Incorporated Glass with unique fracture behavior for vehicle windshield

Similar Documents

Publication Publication Date Title
EP0782552B1 (en) Substrate glasses for plasma displays
JP2004051473A (en) Glass substrate for flat panel display device
JP4692915B2 (en) Front glass substrate for plasma display devices.
WO2015186606A1 (en) Phase-separated glass, phase-separable glass, organic el device, and method for producing phase-separated glass
US20160200624A1 (en) Glass and method for producing same
JP2005089286A (en) Glass base plate for flat panel display device
EP0729922B1 (en) Glasses for display panels
JP2007246365A (en) Glass substrate for display
US20060068209A1 (en) Glass plate for display substrate
JP2002053341A (en) Glass substrate of inorganic el display
WO2015186584A1 (en) Phase-separated glass, method for producing phase-separated glass and composite substrate using phase-separated glass
JP2001226138A (en) Glass substrate for flat panel display device
JP2008056508A (en) Glass substrate for flat panel display
JP2002053340A (en) Glass substrate of inorganic el display
JP2016098118A (en) Phase-separated glass
WO2015034030A1 (en) Glass and method for producing same
JP6249218B2 (en) Glass manufacturing method and glass
JP2003335547A (en) Glass substrate for flat panel display equipment
JP2006252828A (en) Glass substrate for plasma display panel
JP2016064970A (en) Phase splitting glass
JP6331077B2 (en) Phase separation glass and composite substrate using the same
JP6406571B2 (en) Glass
JP4924974B2 (en) Glass substrate for flat panel display
JP2001060439A (en) Front glass substrate for plasma display
JP6331076B2 (en) Glass film and composite substrate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303