WO2015186576A1 - 圧力センサ及びそれを備えた血圧測定システム、又は車載システム - Google Patents

圧力センサ及びそれを備えた血圧測定システム、又は車載システム Download PDF

Info

Publication number
WO2015186576A1
WO2015186576A1 PCT/JP2015/065163 JP2015065163W WO2015186576A1 WO 2015186576 A1 WO2015186576 A1 WO 2015186576A1 JP 2015065163 W JP2015065163 W JP 2015065163W WO 2015186576 A1 WO2015186576 A1 WO 2015186576A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure sensor
tube
strain gauge
pressure
semiconductor strain
Prior art date
Application number
PCT/JP2015/065163
Other languages
English (en)
French (fr)
Inventor
竹中 啓
風間 敦
富樫 盛典
太田 裕之
健太郎 宮嶋
敬 長野
Original Assignee
株式会社日立製作所
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所, 日立オートモティブシステムズ株式会社 filed Critical 株式会社日立製作所
Publication of WO2015186576A1 publication Critical patent/WO2015186576A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/0215Measuring pressure in heart or blood vessels by means inserted into the body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure

Definitions

  • the present invention relates to a pressure sensor for measuring an internal pressure of a flow path, a blood pressure measurement system including the pressure sensor, or an in-vehicle system.
  • a heart-lung machine is a device that includes an oxygenator for exchanging gas in blood taken from a patient, and a blood pump for feeding blood through a blood circuit that connects the device and the patient.
  • a pressure sensor is used at the location.
  • a pressure sensor for a blood circuit a pressure sensor having a structure having a semiconductor strain gauge at the end of a long tube is generally used.
  • This pressure sensor needs to be filled with physiological saline after connecting one end of the tube to a blood circuit before use.
  • the tube filled with physiological saline functions as a pressure conduit, and the pressure of the blood circuit to which the tube is connected is transmitted to the semiconductor strain gauge via the tube by the Pascal principle.
  • This pressure sensor can measure the pressure with high accuracy, but it requires complicated preparation as described above before use.
  • piezoelectric electric transducer showing a structure in which a semiconductor strain gauge is combined with a tube functioning as a pressure conduit as a pressure sensor.
  • This piezoelectric-electrical converter has a structure in which a semiconductor strain gauge is connected to one end of a tube functioning as a pressure conduit, and the other end is covered with a porous film of tetrafluoroethylene resin having air permeability and water repellency. It is a pressure sensor. Since the porous film of ethylene tetrafluoride is breathable, the amount of gas in the tube changes according to the pressure change of the external gas, and the pressure in the tube also changes according to the change in the amount of gas in the tube. It is possible to measure the pressure of external gas.
  • a conventional pressure sensor for a blood circuit requires a complicated operation such as pre-filling a thin tube with physiological saline before use.
  • the liquid in the tube tends to stay in this pressure sensor, blood staying in the tube may coagulate when used for a long time, and blood clots may block the tube, resulting in inaccurate measurement. There is.
  • the shape of the tube has a male taper shape, and the tip is covered with a water-repellent porous film, so blood does not enter the tube, Blood does not stay in the tube and clot.
  • the shape of the water-repellent porous film is almost the same regardless of the pressure of the external liquid, so the volume of the air trapped in the tube is hardly changed and the pressure is not changed. Therefore, it is difficult to accurately measure the pressure of the liquid with the pressure sensor described in (Patent Document 1).
  • this pressure sensor does not completely solve the following problems when connecting to a female taper conventionally used for measuring blood pressure. Since this pressure sensor has a structure in which a semiconductor strain gauge is connected to the end of a male tapered tube, structural deformation occurs in the tube due to the stress generated when the male tapered tube is connected to the female taper. The strain may be generated in the semiconductor strain gauge and the pressure measurement may become inaccurate.
  • the present invention has been achieved in view of the above-described problems of the prior art, and the object thereof is easy to connect to a three-way stopcock used in a blood circuit and minimizes the influence of structural changes due to the connection.
  • An object of the present invention is to provide a suppressed pressure sensor.
  • the present invention provides a diaphragm type semiconductor strain gauge, an electric circuit board to which the semiconductor strain gauge is fixed, a wiring connecting the semiconductor strain gauge and the electric circuit board, and the semiconductor strain gauge.
  • a pressure sensor comprising a male taper tube for transmitting pressure to the housing and holding the electric circuit board therein, wherein the male taper tube has a convex elastic thin film at its end. It is characterized by being covered.
  • the present invention provides a diaphragm type semiconductor strain gauge, an electric circuit board to which the semiconductor strain gauge is fixed, a wiring connecting the semiconductor strain gauge and the electric circuit board, and the semiconductor
  • a pressure sensor comprising a male taper tube for transmitting pressure to a strain gauge and configured to hold the electric circuit board inside, the inner diameter of the male taper tube at the end side is equal, or It is characterized in that it is formed smaller toward the end side, and the end of the male taper tube is covered with an elastic thin film.
  • the present invention is a pressure sensor, wherein the thin film of the elastic body has a convex shape.
  • the present invention is characterized in that, in the pressure sensor, the end face of the male taper tube has a concave shape.
  • the present invention is characterized in that in the pressure sensor, the male tapered tube has a double tube structure in which the end side is joined.
  • the electric circuit board is fixed in contact with an inner tube of the male tube having the double tube structure, and is not in contact with an outer tube of the male tube having the double tube structure. It is characterized by being.
  • a buffer material is filled between the inner tube and the outer tube of the male taper tube having the double tube structure and between the outer tube of the male taper tube and the electric circuit board. It is characterized by being.
  • the present invention is characterized in that in the pressure sensor, the male taper tube has a through-hole on a side surface and a removable plug.
  • the present invention is characterized by a blood pressure measurement system including the above-described pressure sensor.
  • the present invention is characterized by an in-vehicle system provided with the above-described pressure sensor.
  • a pressure sensor that can be easily connected to a female taper of a three-way cock and that is less affected by the connection.
  • the blood pressure measurement system equipped with the pressure sensor of the present invention has an extremely excellent effect that it becomes easy to monitor the pressure of the blood circuit, and it is easy to detect an abnormal situation of the blood circuit and to understand the cause thereof. can get.
  • the in-vehicle system equipped with the pressure sensor of the present invention makes it very easy to monitor the pressure of various containers and pipes, and makes it easy to detect abnormal situations of various containers and pipes and to understand their causes. Effects can be obtained.
  • FIG. 1 is a cross-sectional view of the pressure sensor 1
  • FIG. 2 is a top view of the pressure sensor 1
  • FIG. 3 is a side view of the pressure sensor 1
  • FIG. 4 is a bottom view of the pressure sensor 1.
  • the pressure sensor 1 includes a lid 10 provided with an air vent 100 at the top, a diaphragm type semiconductor strain gauge 11 that outputs pressure as an electrical signal, and a base 12 that is an electric circuit board having the semiconductor strain gauge 11 fixed to the upper surface.
  • a connection terminal 120 provided at an end of the electric circuit of the base 12 for supplying an electric signal to the outside, a case 13 with the base 12 fixed inside, and an elastic membrane connected to the cap-side end 133 of the case 13
  • a cap 15 an upper gel 121 that is insulated and protected by covering the semiconductor strain gauge 11 and the sensor-base connection wiring 110, a lower gel 122 that fills a space formed by the semiconductor strain gauge 11 and the base 12, and a female
  • the nut 14 is provided with a mold screw structure.
  • the case 13 has a double tube structure including an inner tube 131 having a male tapered outer tube 130 and a through tube 132.
  • the outer tube 130 and the inner tube 131 are integrated on the cap-side end 133 side, but the gap is maintained on the base 12 side.
  • the cap-side end 133 of the case 13 is a hemispherical concave surface and is connected to the cap 15 to form a spherical space 151 inside. Further, the spherical space 151 and the lower surface of the lower gel 122 are directly connected by the through pipe 132.
  • a space formed by the spherical space 151 and the through pipe 132 has a sealed structure in which gas is sealed.
  • the end surface of the inner tube 131 of the case 13 serves as a contact surface for fixing the base 12, and the base 12 has a structure that does not contact other surfaces of the case 13.
  • the upper portion of the case 13 is covered with a lid 10, and a nut 14 is held around the outer tube 130 of the case 13 as a central axis. The nut 14 does not come out of the outer tube 130 due to the protruding structure of the outer tube 130, but can rotate around the outer tube 130.
  • the outer tube 130 of the case 13 is preferably tapered and has a length of 3 to 30 mm, a tip diameter (a diameter of the cap side end 133) of 1 to 10 mm, and a taper angle of 0.1 to 10 °.
  • the cap 15 also has the same tapered shape as the outer tube 130, and preferably has a length of 1 to 10 mm, a tip diameter of 1 to 10 mm, a taper angle of 0.1 to 10 °, and a minimum film thickness of 0.005 to 1 mm.
  • connection terminal of the external output device 191 (FIG. 7) and the connection terminal 120 of the pressure sensor 1 are connected by the cable 192 (FIG. 7). Since the electrical circuit of the semiconductor strain gauge 11 and the base 12 is electrically connected by the sensor base wiring 110 and the end of the electrical circuit of the base 12 is connected to the connection terminal 120, it is output from the semiconductor strain gauge 11. The electrical signal is output to an external output device via the electrical circuit of the base 12 and the connection terminal 120, and the output device can display the pressure detected by the semiconductor strain gauge 11.
  • FIG. 5 is a set view of the pressure sensor 1.
  • the assembly method of the pressure sensor 1 and the material of each component will be described with reference to FIG. (1) Fixing of the base 12 and the semiconductor strain gauge 11
  • the semiconductor strain gauge 11 is aligned so as to cover the through-hole 123 at the center of the base 12, and fixed with an adhesive (not shown).
  • the electric circuit of the semiconductor strain gauge 11 and the base 12 is wired by the sensor-base connection wiring 110 as shown in FIG.
  • wire bonding is used for the wiring.
  • the semiconductor strain gauge 11 and the sensor-base connection wiring 110 are covered with an insulating upper gel 121, and the gel is cured by thermal curing.
  • the through-hole 123 of the base 12 is filled with the lower gel 122 and cured in the same manner as the upper gel 121.
  • the upper gel 121 and the lower gel 122 it is preferable to use a soft thermosetting gel that does not hinder the structural deformation of the semiconductor strain gauge 11.
  • the base 12 is fixed only at the end face of the inner tube 131, a hard substrate such as a glass epoxy substrate and a small structural change is preferable to a soft substrate such as a flexible printed circuit board.
  • the case 13 and the lid 10 are made of a material softer than a hard metal material because, for the reason described later, the function to absorb the stress received by the case 13 when the pressure sensor 1 is connected to the three-way cock is required. Certain resin materials are preferred. In general, a resin such as polycarbonate, polypropylene, or polyethylene can be used.
  • (3) Fixing of cap 15 and nut 14 The cap 15 is placed on the cap-side end 133 of the case 13 and fixed with an adhesive. At this time, the space formed by the cap-side end 133 of the case 13 and the spherical space 151 constituted by the cap 15 and the through-tube 132 has a sealed structure, and outside air is enclosed unless a special gas is enclosed.
  • the cap 15 is preferably a rubber material that is elastic and impermeable to liquids, and more preferably a silicone rubber that is excellent in biocompatibility because it is in direct contact with blood. If the object to be measured is only liquid, the cap 15 may have some air permeability as long as waterproofness is guaranteed.
  • the nut 14 is preferably made of a resin material.
  • FIG. 6 shows a blood pressure measurement system using the pressure sensor 1, and an apparatus configuration for measuring the pressure of the blood circuit 193 of the heart-lung machine 190 will be described.
  • the oxygenator 190 is a device composed of components (not shown) such as an oxygenator, a blood pressure pump, and a heat exchanger, and a blood circuit 193 that connects the components, and blood taken from the patient 194 is stored in the oxygenator 190.
  • the blood is again sent to the body of the patient 194 via each part.
  • a plurality of three-way stopcocks 16 are connected to the blood circuit 193, and the pressure sensor 1 is connected to these three-way stopcocks 16.
  • the pressure sensor 1 is electrically connected to the output device 191 through the cable 192.
  • the output device 191 controls the pressure sensor 1 and reads out the measurement data of the pressure sensor, and performs measurement with each three-way stopcock of the blood circuit. The pressure is displayed on the monitor of the output device 191.
  • Measurer can measure the pressure of blood flow flowing through the connected three-way stopcock 16 simply by connecting the pressure sensor 1 to an arbitrary three-way stopcock 16.
  • FIG. 7 is a cross-sectional view when the pressure sensor 1 is connected to the female taper 160 of the three-way stopcock 16. At this time, the nut 14 can be fixed in a state where the pressure sensor 1 is connected to the female taper 160 by engaging the female taper 160 with the internal screw structure.
  • the male tapered case 13 receives a stress 170 in the direction perpendicular to the contact surface from the female taper 160.
  • the case 13 has a double tube structure composed of an outer tube 130 and an inner tube 131. Since the inner tube 131 does not directly contact the female taper 160, the structural deformation of the inner tube 130 caused by the stress 170 is very small. Further, since the base 12 to which the semiconductor strain gauge 11 is fixed is contacted and fixed only to the end face of the inner tube 131 and is not in contact with the outer tube 130, the structural deformation of the base 12 caused by the stress 170 is very small.
  • FIG. 8 is a cross-sectional view when the pressure sensor 1 is connected to the female taper 160 of the three-way stopcock 16 and shows a change in the shape of the cap 15 when blood is flowing inside the three-way stopcock 16.
  • the blood pressure 171 is applied to the blood flow contact surface of the cap 15.
  • the cap 15 is a soft elastic thin film, and if the stress generated with the change in the shape of the cap 15 is very small compared to the pressure 171 of the blood flow 172, the pressure 171 of the blood flow 172, the cap side end 133, and the cap The cap 15 is pushed in until the pressure of the gas confined in the space 151 constituted by 15 and the through pipe 132 is balanced, and the volume of the space 151 constituted by the cap side end 133 and the cap 15 is reduced.
  • the enclosed gas applies the pressure P to the lower surface of the semiconductor strain gauge 11 through the through pipe 132 and the lower gel 122.
  • the upper surface of the semiconductor strain gauge 11 is the vent hole 1 of the lid 10. Since the atmospheric pressure P 0 is applied through 00, the semiconductor strain gauge 11 is caused by the differential pressure P ⁇ P 0. The diaphragm is distorted. Therefore, by measuring this strain, the differential pressure between the pressure 171 of the blood flow 172 and the atmospheric pressure can be measured.
  • the volume of the through tube 132 in the pressure sensor 1 before the measurement (state of FIG. 1) is V p
  • the volume of the space 151 formed by the cap side end 133 and the cap 15 is V b .
  • the pressure in the sealed space is equal to the atmospheric pressure P 0 .
  • the state where the pressure sensor 1 is connected to the female taper 160 of the three-way stopcock 16 and the blood flow 172 flows at the pressure P inside the three-way stopcock (state shown in FIG. 6) will be considered.
  • the volume of the through tube 132 does not change with V p , but the space 151 constituted by the cap-side end 133 and the cap 15 becomes small, and the volume of this space 151 is V b ′.
  • the relationship among P, P 0 , V p , V b , and V b ′ is expressed by Equation (1) from Boyle's law (the temperature is constant and the product of the volume and pressure of a certain amount of gas is constant).
  • P / P 0 (V p + V b ) / (V p + V b ') (1)
  • Equation (1) the upper limit P limit of measurable blood pressure.
  • the pressure of the blood flow is more volume of constituted space 151 in the cap side end 133 and the cap 15 is smaller high, measurable upper limit P limit pressure of the blood flow is constituted by a cap-side end 133 and the cap 15 Space 1
  • P limit / P 0 1 + V b / V p (2)
  • a condition necessary for measuring a blood pressure more than twice the atmospheric pressure is the following equation (3).
  • P limit ⁇ 2 P 0 (3) Equation (4) is obtained from Equation (2) and Equation (3).
  • FIGS. 9) to 11 are cross-sectional views showing an example of the shape of the space 151 formed by the cap-side end 133 and the cap 15.
  • the shape of the space 151 formed by the cap-side end 133 and the cap 15 is spherical.
  • the volume of the space 151 is changed by the pressure applied to the cap 15, the shape is not largely limited. No. Therefore, it is preferable to design an optimal shape from the ease of manufacture and the pressure measurement range shown by the equation (2).
  • FIG. 9 shows a configuration in which the cap-side end 133 is a flat surface without forming a concave surface on the cap-side end 133.
  • the cap 15 is formed of an elastic film having a flat surface without forming the cap 15 with a hemispherical elastic film in FIG.
  • the cap-side end 133 is formed in a triangular tapered shape.
  • FIG. 12 is a cross-sectional view showing another structure of the pressure sensor.
  • the case 13 a double tube structure composed of the outer tube 130 and the inner tube 131, the stress 170 received by the case 13 when the pressure sensor 1 and the female taper 160 are connected is absorbed. Although the strain generated in the semiconductor strain gauge 11 is suppressed, the same effect can be obtained with the structure shown in FIG.
  • the pressure sensor 2 in FIG. 13 has a structure in which a cushioning material 135 made of a material softer than the material of the case 13 is provided inside the case 13, and between the outer tube 130 and the inner tube 131 of the pressure sensor 1 in FIG. A space between the case 13 and the base 12 is filled with a cushioning material 135.
  • the buffer material 135 absorbs the stress received by the case 13 when the pressure sensor 1 and the female taper 160 are connected, the strain generated in the semiconductor strain gauge 11 can be suppressed.
  • the pressure sensor 1 of the previous embodiment shown in FIG. 1 has a double-pipe structure, so that it may be thin and easily damaged.
  • the pressure sensor 2 of FIG. Since it also functions as a reinforcing material, the possibility of breakage is lower than that of the pressure sensor 1 of FIG.
  • FIGS. 13 and 14 are sectional views of a configuration including a mechanism capable of performing zero point adjustment after connecting to the female taper as the pressure sensor 3.
  • the pressure sensor 3 has a structure in which the side through-hole 180 is provided on the side surfaces of the outer tube 130 and the inner tube 131 of the case 13, and the pressure in the through-tube 132 of the inner tube 131 is atmospheric pressure when the side through-hole 180 is not blocked. Is equal to In use, the case 13 of the pressure sensor 3 is connected to the female taper 160 of the three-way cock 16 as shown in FIG. 13, and then the side through-hole 180 is sealed with a sealing valve 181 as shown in FIG. It is a thing.
  • the pressure inside the through-pipe 132 is equal to the atmospheric pressure and the output of the semiconductor strain gauge 11 is “0”. It becomes a state equal to that.
  • the through-tube 132 of the inner tube 131 is sealed, so that the blood flowing through the three-way cock 16 on the same measurement principle as the pressure sensor described in FIGS. 1 and 8 It becomes possible to measure the pressure of the flow.
  • the pressure sensor of the present invention can measure the internal pressure of a pipe through which a liquid flows and the internal pressure of a container storing the liquid, the pressure sensor can be applied not only for medical use but also for a wide range of uses.
  • another embodiment of the present invention as a pressure sensor of an in-vehicle system is shown below.
  • FIG. 15 is a schematic diagram inside the engine room of a car. Inside the engine room, there are containers and pipes for various liquids such as engine oil, brake fluid, battery fluid, cooling water, window washer fluid, etc. This is very important for ensuring safety. However, depending on the driver, inspection may not be performed for a long period of time, so it is preferable to provide means for automatically checking the amount of liquid and the state of the liquid.
  • various liquids such as engine oil, brake fluid, battery fluid, cooling water, window washer fluid, etc.
  • the amount of engine oil in the engine 30, brake fluid in the brake fluid reservoir tank 31, battery fluid in the battery 32, coolant in the coolant reservoir 34, and washer fluid in the window washer tank 36 are automatically set.
  • the aforementioned pressure sensor 1 of the present invention is installed in various containers and pipes. For example, by installing the pressure sensor 1 on the bottom of the battery 32 or the pipe 35 connecting the radiator 33 and the coolant reservoir 34, the amount of liquid can be measured based on the pressure value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Cardiology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Vascular Medicine (AREA)
  • Physiology (AREA)
  • Ceramic Engineering (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Pressure Sensors (AREA)

Abstract

血液回路に使用される三方活栓への接続が容易で、かつ接続による構造変化の影響を最小限に抑えた圧力センサを提供する。 本発明の圧力センサでは、ダイヤフラム型の半導体ストレインゲージと、半導体ストレインゲージを固定した電気回路基板と、半導体ストレインゲージと電気回路基板を接続する配線と、半導体ストレインゲージに圧力を伝達するためのオス型のテーパ管を備え、かつ電気回路基板を内部に保持するケースで構成される圧力センサであり、オス型テーパ管は二重管構造であり、その凹面状の末端が凸面状の弾性体の薄膜で覆われていることを特徴とする。

Description

圧力センサ及びそれを備えた血圧測定システム、又は車載システム
 本発明は、流路の内圧を計測するための圧力センサ及びそれを備えた血圧測定システム
、又は車載システムに関する。
 心疾患の手術では心臓を停止させ心臓への血流を遮断した状態で行う必要があるため、心肺機能を代用する人工心肺が使用される。人工心肺は、患者から取り出した血液中のガスを交換するための人工肺と、装置と患者を連結する血液回路を介し血液を送液させるための血液ポンプを備える装置である。
 人工心肺の動作不良は患者の生命維持に関わるため、血液回路を流動する血液の圧力、流量、温度などを常時監視する必要がある。特に圧力を常時監視することは、血液回路への空気の混入や血液回路の破壊などの異常事態の検知とそれらの原因把握のために非常に重要であり、手術の際には血液回路のあらゆる箇所に圧力センサが使用されている。
 現在、血液回路用の圧力センサとしては、長いチューブの末端に半導体ストレインゲージ備えた構造をもつ圧力センサが一般的に使用されている。この圧力センサは、使用前にチューブの片端を血液回路に接続したのち、チューブ内を生理食塩水で満たす必要がある
。生理食塩水で満たされたチューブは圧力導管として機能し、チューブの接続先である血液回路の圧力はパスカルの原理によりチューブを経由し半導体ストレインゲージまで伝達される。この圧力センサは高精度に圧力を測定することができるが、使用前に上記のような煩雑な準備が必要になる。
 また、圧力センサとして半導体ストレインゲージに圧力導管として機能する管が組み合わさった構造が示された圧力電気変換器があげられる。この圧力電気変換機は、圧力導管として機能する管の片端に半導体ストレインゲージが接続され、もう一方の片端が通気性かつ撥水性を有する四弗化エチレン樹脂の多孔質膜で覆われた構造の圧力センサである。四弗化エチレンの多孔質膜は通気性のため、外部の気体の圧力変化に応じて管内の気体の量が変化し、管内の気体の量の変化に応じて管内の圧力も変化するため、外部の気体の圧力を測定することを実現している。
特開昭59-224534号公報
 従来の血液回路用の圧力センサは、使用前に細い管内を生理食塩水であらかじめ満たすなどの煩雑な作業を必要とする。またこの圧力センサでは管内の液体が滞留しやすいため
、長時間の使用では管内で滞留した血液が凝固する可能性があり、血液の凝固物が管を閉塞させ、測定が不正確になる可能性がある。
 次に(特許文献1)の圧力変換器では、管の形状がオス型テーパ形状を有しており、先端が撥水性の多孔膜で覆われているため管の中に血液は混入せず、血液が管内で滞留し凝固することは無い。しかし、外部の液体の圧力の大小に関わらず、撥水性の多孔膜の形状はほとんど変わらないため、管内に閉じ込められた空気の体積はほとんど変わらず圧力も変わらない。したがって、(特許文献1)に記載されている圧力センサで液体の圧力を正
確に測定することは難しい。
 また、この圧力センサは、従来血液の圧力を測定するために使用されるメス型テーパに接続する際の下記の課題を完全に解決していない。この圧力センサは、オス型テーパの管の末端に半導体ストレインゲージを接続した構造をもつため、オス型テーパの管をメス型テーパに接続した際に発生する応力で管に構造変形が生じると、半導体ストレインゲージに歪が発生し圧力測定が不正確になる可能性がある。
 本発明は、上述した従来技術の課題に鑑みて達成されたものであり、その目的は、血液回路に使用される三方活栓への接続が容易で、かつ接続による構造変化の影響を最小限に抑えた圧力センサを提供することにある。
 上記の目的を達成するため、本発明はダイヤフラム型の半導体ストレインゲージと、前記半導体ストレインゲージを固定した電気回路基板と、前記半導体ストレインゲージと前記電気回路基板を接続する配線と、前記半導体ストレインゲージに圧力を伝達するためのオス型のテーパ管を備え、かつ前記電気回路基板を内部に保持するケースで構成される圧力センサにおいて、前記オス型テーパ管の末端が凸面状の弾性体の薄膜で覆われていることを特徴とするものである。
 また、上記の目的を達成するため、本発明はダイヤフラム型の半導体ストレインゲージと、前記半導体ストレインゲージを固定した電気回路基板と、前記半導体ストレインゲージと前記電気回路基板を接続する配線と、前記半導体ストレインゲージに圧力を伝達するためのオス型のテーパ管を備え、かつ前記電気回路基板を内部に保持するケースで構成される圧力センサにおいて、前記オス型テーパ管の末端側の内径が等しく、又は末端側ほど小さく形成され、かつ、前記オス型テーパ管の末端が弾性体の薄膜で覆われていることを特徴とするものである。
 更に、本発明は圧力センサにおいて、前記弾性体の薄膜は凸面形状であることを特徴とするものである。
 更に、本発明は圧力センサにおいて、前記オス型テーパ管の端面が凹面形状であることを特徴とするものである。
 更に、本発明は圧力センサにおいて、前記オス型のテーパ管は末端側が接合された二重管構造であることを特徴とするものである。
 更に、本発明は圧力センサにおいて、前記電気回路基板は前記二重管構造のオス型テーパ管の内管に接触固定され、前記前記二重管構造のオス型テーパ管の外管とは非接触であることを特徴とするものである。
 更に、本発明は圧力センサにおいて、前記二重管構造のオス型テーパ管の内管と外管の間、および、前記オス型テーパの外管と前記電気回路基板の間には緩衝材が充填されていることを特徴とするものである。
 更に、本発明は圧力センサにおいて、前記オス型のテーパ管は側面に貫通口を備え、脱着可能な栓を備えたことを特徴とするものである。
 更に、本発明は前述の圧力センサを備えた血圧測定システムを特徴とする。
 更に、本発明は前述の圧力センサを備えた車載システムこを特徴とする。
 本発明によれば、三方活栓のメス型のテーパに簡便に接続可能で、かつ接続に伴う影響が小さい圧力センサを提供することが実現できる。
 また、本発明の圧力センサを備えた血圧測定システムでは、血液回路の圧力モニタリングが容易になり、血液回路の異常事態の検知とそれらの原因の把握することが容易になるという極めて優れた効果を得られる。
 また、本発明の圧力センサを備えた車載システムでは、各種容器や配管の圧力モニタリングが容易になり、各種容器や配管の異常事態の検知とそれらの原因の把握することが容易になるという極めて優れた効果を得られる。
本発明の実施例1になる圧力センサの基本構成を示すための図である。 本発明の実施例1になる圧力センサの基本構成を示すための図である。 本発明の実施例1になる圧力センサの基本構成を示すための図である。 本発明の実施例1になる圧力センサの基本構成を示すための図である。 本発明の実施例1になる圧力センサの基本構成を示すための組図である。 本発明の実施例1になる圧力センサのシステム図である。 本発明の実施例1になる圧力センサの効果を示すための図である。 本発明の実施例1になる圧力センサの効果を示すための図である。 本発明の実施例1になる圧力センサの別形状を示すための図である。 本発明の実施例1になる圧力センサの別形状を示すための図である。 本発明の実施例1になる圧力センサの別形状を示すための図である。 本発明の実施例1になる圧力センサの別形状を示すための図である。 本発明の実施例1になる圧力センサの効果を示すための図である。 本発明の実施例1になる圧力センサの効果を示すための図である。 本発明の実施例2になる圧力センサのシステム図である。
 以下、図面を参照して、本発明の実施例を説明する。なお、後述する実施の形態は一例であって、各実施例同士の組み合わせ、公知又は周知の技術との組み合わせや置換による他の態様も可能であることは言うまでもない。
 まず、図1~図4を用い、本発明における圧力センサ1の基本構成について説明する。
 図1は、圧力センサ1の断面図であり、図2は圧力センサ1の上面図、図3は圧力センサ1の側面図、図4は圧力センサ1の底面図である。
 圧力センサ1は、上部に通気孔100を備えたふた10と、圧力を電気信号として出力するダイヤフラム式の半導体ストレインゲージ11と、半導体ストレインゲージ11を上面に固定した電気回路基板であるベース12と、ベース12の電気回路の端部に設けられ外部に電気信号を供給する接続端子120と、ベース12を内部に固定したケース13と
、ケース13のキャップ側末端133に接続された弾性体の膜であるキャップ15と、半導体ストレインゲージ11とセンサ-ベース間接続配線110覆うことで絶縁及び保護する上部ゲル121と、半導体ストレインゲージ11とベース12で構成される空間を埋める下部ゲル122と、メス型のネジ構造を内部に備えたナット14で構成される。
 次に、圧力センサ1の各構成要素の構造や位置関係についてケース13を中心に説明する。ケース13はオス型テーパ状の外管130と貫通管132を備えた内管131から成る二重管構造である。外管130と内管131は、キャップ側末端133側で一体になっているが、ベース12側では隙間を保つ構造になっている。ケース13のキャップ側末端133は半球状の凹面で、キャップ15と接続することで内部に球状の空間151を構成する。また、貫通管132により球状の空間151と下部ゲル122の下面は直結される
。球状の空間151と貫通管132からなる空間は気体が封入された密閉構造である。また、ケース13の内管131の端面はベース12を固定する接触面となり、ベース12は
、ケース13のその他の面には接触しない構造になっている。さらにケース13の上部はふた10で覆われ、ケース13の外管130を中心軸としてナット14が保持されている
。ナット14は外管130の出っ張り構造により、外管130から抜けることは無いが、外管130を軸として回転することができる。
 ケース13の外管130は先細りのテーパ形状で、長さ3~30mm、先端径(キャップ側末端133の直径)1~10mm、テーパ角0.1~10゜の範囲とすることが好ましい。キャップ15も外管130と同じ先細りテーパ形状で、長さ1~10mm、先端径1~10mm、テーパ角0.1~10゜、最小膜厚0.005~1mmの範囲となることが好ましい。
 次に、圧力センサ1の各構成要素の電気的な接続関係について説明する。圧力センサ1の使用時には外部の出力装置191(図7)の接続端子と圧力センサ1の接続端子120をケーブル192(図7)で接続する。半導体ストレインゲージ11とベース12の電気回路はセンサーベース間配線110により電気的に接続されており、ベース12の電気回路の端部は接続端子120につながっているため、半導体ストレインゲージ11から出力された電気信号は、ベース12の電気回路と接続端子120を経由し外部の出力装置に出力され、出力装置は半導体ストレインゲージ11が検知した圧力を表示することができる
 図5は圧力センサ1の組図である。図5を用い圧力センサ1の組立方法と各構成要素の材質について説明する。
(1)ベース12と半導体ストレインゲージ11の固定
   ベース12の中心にある貫通口123を覆うように半導体ストレインゲージ11の位置合わせをし、接着材(図示せず)で固定する。固定後、半導体ストレインゲージ11とベース12の電気回路を図1に示したようにセンサ-ベース接続配線110で配線する。配線には例えばワイヤボンディングを用いる。配線後、半導体ストレインゲージ11とセンサ-ベース接続配線110を絶縁性の上部ゲル121で覆い、熱硬化によりゲルを硬化させる。上部ゲル121の硬化後、ベース12の貫通口123を下部ゲル122で埋め、上部ゲル121と同様に硬化させる。
   上部ゲル121や下部ゲル122には半導体ストレインゲージ11の構造変形を阻害しない柔らかい熱硬化性のゲルを使用することが好ましい。
(2)ケース13、ベース12、ふた10の固定
   ベース12の貫通口123の中心とケース13の貫通管132の中心が重なるように位置合わせをしたのち、ケース12の内管131とベース12を接着材で固定する。固定後、ふた10をケース13にかぶせ、ケース12とふた10を固定する。ふた10には接続端子120が通るための穴が設けてある。
   ベース12は内管131の端面のみで固定されているため、フレキシブルプリント基板のような柔らかい基板より、ガラスエポキシ基板のような硬く構造変化が小さい基板が好ましい。またケース13及びふた10の材質には、後述する理由により、三方活栓に圧力センサ1を接続した際にケース13が受ける応力を吸収する機能が必要になるため、硬い金属材料よりは柔らかい材料である樹脂材料が好ましい。一般的にはポリカーボネイト、ポリプロピレン、ポリエチレンなどの樹脂を用いることができる。
(3)キャップ15、ナット14の固定
   キャップ15をケース13のキャップ側末端133にかぶせ、接着材で固定する。このときケース13のキャップ側末端133とキャップ15で構成される球状の空間151と貫通管132からなる空間は密閉構造となり、特別な気体を封入しない限りは外気が封入される。
   キャップ15を固定した後、ナット14をケース13に押し込み、圧力センサ1は完成する。
   キャップ15は弾性体で液体を通さないゴム材料が好ましく、さらには血液に直接接触することから、生体適合性に優れているシリコーン系のゴムが好ましい。測定対象が液体のみであれば、防水性が保証されている限りキャップ15は多少の通気性があってもよい。ナット14はケース13と同様に樹脂材料が好ましい。
  
 図6は、圧力センサ1を用いた血圧測定システムを示し、人工心肺190の血液回路193の圧力を測定するための装置構成について説明する。
 人工心肺190は人工肺、血圧ポンプ、熱交換器などの部品(図示せず)と、各部品を連結する血液回路193で構成された装置であり、患者194から取り出した血液は人工心肺190の各部品を経由し患者194の体内に再び送血される。血液回路193には複数の三方活栓16が接続され、これらの三方活栓16には圧力センサ1が接続されている
。圧力センサ1はケーブル192を介して出力装置191と電気的に接続されており、出力装置191は圧力センサ1の制御や圧力センサの測定データの読み出しを行い、血液回路の各三方活栓で測定した圧力を出力装置191のモニタに表示する。
 測定者は任意の三方活栓16に圧力センサ1を接続するだけで、接続した三方活栓16を流れる血流の圧力を測定することができる。
 図7は、圧力センサ1を三方活栓16のメス型テーパ160に接続したときの断面図である。このとき、ナット14は内部のネジ構造によりメス型テーパ160とかみ合うことで圧力センサ1をメス型テーパ160に接続した状態で固定することができる。
 図7を用いて圧力センサ1とメス型テーパ160の接続時に、ケース13がメス型テーパ160から受ける応力170を吸収し、半導体ストレインゲージ11に発生する歪を抑える仕組みについて説明する。
 圧力センサ1をメス型テーパ160に固定したとき、オス型テーパ状のケース13は接触面に対し垂直方向の応力170をメス型テーパ160から受ける。ケース13は外管130と内管131から成る二重管構造で、内管131はメス型テーパ160に直接接触しないため、応力170が引き起こす内管130の構造変形は非常に小さい。また、半導体ストレインゲージ11が固定されているベース12は内管131の端面のみに接触固定され、外管130と接触していないため、応力170が引き起こすベース12の構造変形も非常に小さい。結果として、圧力センサ1とメス型テーパ160の接続による応力170が引き起こす内管130とベース12の構造変形は非常に小さくなるため、ベース12に固定されている半導体ストレインゲージ11に発生する歪も非常に小さくなる。
 図8は、圧力センサ1を三方活栓16のメス型テーパ160に接続したときの断面図で
、三方活栓16内部に血液が流動しているときのキャップ15の形状変化を示す。
 図8を用いて圧力センサ1の圧力測定原理について説明する。
 圧力センサ1を三方活栓16のメス型テーパ160に接続した状態で三方活栓16内部に血流172が流動すると、キャップ15の血流の接触面には血流の圧力171がかかる
。キャップ15はやわらかい弾性体の薄膜であり、キャップ15の形状の変化に伴い発生する応力は血流172の圧力171に比べ非常に小さいとすると、血流172の圧力171とキャップ側末端133とキャップ15で構成される空間151と貫通管132に閉じ込められた気体の圧力が釣り合うまでキャップ15は押し込められ、キャップ側末端133とキャップ15で構成される空間151の体積が小さくなる。このときの圧力をPとす
ると、封入された気体は貫通管132と下部ゲル122を介して半導体ストレインゲージ11の下面に圧力Pをかける。半導体ストレインゲージ11の上面はふた10の通気孔1
00を介し大気圧P0がかかっているため、差圧P-P0により半導体ストレインゲージ11
のダイヤフラムに歪が生じる。従ってこの歪を測定することで血流172の圧力171と大気圧の差圧を測定することができる。
 また図6では、圧力センサ1の先端であるキャップ15は三方活栓16のメス型テーパ160の中間付近に位置しているため、キャップ15の直下付近で三方活栓16を流れる血流のよどみ点が生じ、血栓が生じる可能性がある。血栓防止のためには、ケース13の先端径をより細くし、キャップ15の位置を三方活栓16の壁面の位置161まで下げることでよどみ点を解消する構成が採用できる。
 次に圧力の測定範囲と上記の密閉空間の体積の関係について説明する。測定前(図1の状態)の圧力センサ1における貫通管132の体積をVp、キャップ側末端133とキャップ15で構成される空間151の体積をVbとする。このとき密閉空間の圧力は大気圧P0と等しい。次に圧力センサ1を三方活栓16のメス型テーパ160に接続し、三方活栓内部に血流172が圧力Pで流動する状態(図6の状態)を考える。貫通管132の体積はVpで変わらないが、キャップ側末端133とキャップ15で構成される空間151は小さくなり、この空間151の体積をVb’とする。P、P0、Vp、Vb、Vb’の関係は、ボイルの法
則(温度一定で、一定量の気体の体積と圧力の積は一定)より式(1)となる。
P/P0= (Vp+Vb)/(Vp+Vb’)    (1)
 次に血流の圧力の測定可能な上限Plimitを考える。血流の圧力が高くなるほどキャップ
側末端133とキャップ15で構成される空間151の体積は小さくなるため、血流の圧力の測定可能な上限Plimitは、キャップ側末端133とキャップ15で構成される空間1
51の体積が0(Vb’=0)になるときであり、式(1)から式(2)が得られる。
Plimit/P0= 1+Vb/Vp        (2)
 例えば大気圧の2倍以上の血流の圧力を測定するのに必要な条件は、次の式(3)である。
 Plimit ≧ 2 P0          (3)
 式(2)と式(3)から、式(4)が得られる。
 Vp ≦ Vb            (4)
 従って、キャップ側末端133とキャップ15で構成される空間151の体積Vbが貫通管132の体積Vpと等しいもしくは大きくなるように設計すればいいことがわかる。
 図9)~図11は、キャップ側末端133とキャップ15で構成される空間151の形
状の一例を示した断面図である。
 先の実施例では、キャップ側末端133とキャップ15で構成される空間151の形状は球状だったが、キャップ15にかかる圧力により空間151の体積が変わる構造であれば、その形状に大きな制限は無い。よって製作の容易さや式(2)で示される圧力の測定範
囲から最適な形状を設計することが好ましい。図9はキャップ側末端133に凹面状の面を作製せずに、キャップ側末端133を平面とした構成を示している。また、図10半球状の弾性膜でキャップ15を作製せずに、平面を形成した弾性膜でキャップ15を形成したものである。更に、図11はキャップ側末端133の形状を三角形のテーパー形状に形成したものである。
 図12は、圧力センサの別の構造を示した断面図である。
 先の実施例では、ケース13を外管130と内管131で構成される二重管構造にすることで、圧力センサ1とメス型テーパ160の接続時にケース13が受ける応力170を吸収し、半導体ストレインゲージ11に発生する歪を抑えたが、図13に示す構造でも同様の効果を得ることができる。図13の圧力センサ2は、ケース13の材料より柔らかい材料でできた緩衝材135をケース13の内部に設けた構造であり、図1の圧力センサ1の外管130と内管131の間やケース13とベース12の間を緩衝材135で満たしている。
 緩衝材135が圧力センサ1とメス型テーパ160の接続時にケース13が受ける応力を吸収するため、半導体ストレインゲージ11に発生する歪を抑えることができる。先の実施例の図1の圧力センサ1は、二重管構造であるため肉厚が薄くなり破損しやすい可能性があるが、一方、図13の圧力センサ2は緩衝材135がケース13の補強材としても機能するため、破損の可能性が前述の実施例の図1の圧力センサ1よりも低くなる。
 図13及び図14は圧力センサ3として、メス型テーパに接続した後で零点調整を実施することができる機構を備えた構成の断面図を示す。圧力センサ3はケース13の外管130と内管131の側面に側面貫通口180を備えた構造で、側面貫通口180を塞がない状態では内管131の貫通管132内の圧力は大気圧と等しい。使用時には図13に示すように圧力センサ3のケース13を三方活栓16のメス型テーパ160に接続したのち
、図14に示すように封止弁181で側面貫通口180を封止する構成を備えたものである。
 封止弁181で側面貫通口180を封止しない状態では、貫通管132内部の圧力は大気圧と等しく半導体ストレインゲージ11の出力は「0」となるため、圧力センサ3の零点調整を行ったことと等しい状態となる。封止弁181で側面貫通口180を封止すると内管131の貫通管132は密閉されるため、図1や図8に記載されている圧力センサと同様の測定原理で三方活栓16を流れる血流の圧力を測定することが可能になる。
 
 本発明の圧力センサは、液体が流れる配管の内圧や液体を保管する容器の内圧を測定することができるため、医療用に限らず幅広い使用用途に適用することができる。医療用以外の使用用途の一例として、車載システムの圧力センサとしての本発明の他の実施例を以下に示す。
 図15は車のエンジンルーム内の模式図である。エンジンルーム内では、エンジンオイル、ブレーキ液、バッテリ液、冷却水、ウインドウォッシャ液などの各種液体用の容器および配管があり、それぞれの液量や液の状態を定期的に点検することは車の安全性を確保する上では非常に重要である。しかし、運転者のよっては長期間点検を実施しない場合もあるため、液量や液の状態を自動的に点検する手段を提供することが好ましい。
 そこで、エンジン30内のエンジンオイル、ブレーキ液リザーバタンク31内のブレーキ液、バッテリ32内のバッテリ液、冷却液リザーバ34内の冷却液、ウインドウォッシャタンク36内のウォッシャ液の液量を自動的に点検するために、各種容器や配管に前述の本発明の圧力センサ1を設置する。例えば、バッテリ32の底部やラジェータ33と冷却液リザーバ34を連結する配管35に圧力センサ1を設置することで圧力の値により液量を計測することが可能になる。
 圧力センサ1による自動的な計測を実施することで、運転者による定期的な点検を省略することができる。また、圧力センサ1による計測は運転中の実施も可能なため、運転中に各種液体用の容器に液漏れなどの不具合が発生した場合でも即座に対応することが可能になり、これらの不具合により起こりうるより重大な故障や事故を未然に防止することができる。
1…圧力センサ、11…半導体ストレインゲージ、12…ベース、13…ケース、15…キャップ、120…接続端子、130…外管、131…内管、132…貫通管、32…バッテリ、30…エンジン、33…ラジェータ、34…冷却液リザーバ、35…配管

Claims (10)

  1.  ダイヤフラム型の半導体ストレインゲージと、
    前記半導体ストレインゲージを固定した電気回路基板と、
    前記半導体ストレインゲージと前記電気回路基板を接続する配線と、
    前記半導体ストレインゲージに圧力を伝達するためのオス型のテーパ管を備え、
    かつ前記電気回路基板を内部に保持するケースで構成される圧力センサにおいて、
    前記オス型テーパ管の末端が凸面状の弾性体の薄膜で覆われていることを特徴とする圧力センサ。
  2.  ダイヤフラム型の半導体ストレインゲージと、
    前記半導体ストレインゲージを固定した電気回路基板と、
    前記半導体ストレインゲージと前記電気回路基板を接続する配線と、
    前記半導体ストレインゲージに圧力を伝達するためのオス型のテーパ管を備え、
    かつ前記電気回路基板を内部に保持するケースで構成される圧力センサにおいて、
    前記オス型テーパ管の末端側の内径が等しく、又は末端側ほど小さく形成され、かつ、
    前記オス型テーパ管の末端が弾性体の薄膜で覆われていることを特徴とする圧力センサ。
  3.  請求項2の圧力センサにおいて、前記弾性体の薄膜は凸面形状であることを特徴とする圧力センサ。
  4.  請求項1~請求項3のいずれかの圧力センサにおいて、前記オス型テーパ管の端面が凹面形状であることを特徴とする圧力センサ。
  5.  請求項1~請求項4のいずれかの圧力センサにおいて、前記オス型のテーパ管は末端側が接合された二重管構造であることを特徴とする圧力センサ。
  6.  請求項5の圧力センサにおいて、前記電気回路基板は前記二重管構造のオス型テーパ管の内管に接触固定され、前記前記二重管構造のオス型テーパ管の外管とは非接触であることを特徴とする圧力センサ。
  7.  請求項6の圧力センサにおいて、前記二重管構造のオス型テーパ管の内管と外管の間、および、前記オス型テーパの外管と前記電気回路基板の間には緩衝材が充填されていることを特徴とする圧力センサ。
  8.  請求項1~請求項7のいずれかの圧力センサにおいて、前記オス型のテーパ管は側面に貫通口を備え、脱着可能な栓を備えたことを特徴とする圧力センサ。
  9.  請求項1~請求項8のいずれかの圧力センサを備えたことを特徴とする血圧測定システム。
  10.  請求項1~請求項8のいずれかの圧力センサを備えたことを特徴とする車載システム。
PCT/JP2015/065163 2014-06-03 2015-05-27 圧力センサ及びそれを備えた血圧測定システム、又は車載システム WO2015186576A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-114500 2014-06-03
JP2014114500A JP6277067B2 (ja) 2014-06-03 2014-06-03 圧力センサ及びそれを備えた血圧測定システム、又は車載システム

Publications (1)

Publication Number Publication Date
WO2015186576A1 true WO2015186576A1 (ja) 2015-12-10

Family

ID=54766649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/065163 WO2015186576A1 (ja) 2014-06-03 2015-05-27 圧力センサ及びそれを備えた血圧測定システム、又は車載システム

Country Status (2)

Country Link
JP (1) JP6277067B2 (ja)
WO (1) WO2015186576A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289630A (zh) * 2016-09-30 2017-01-04 四川南格尔生物科技有限公司 一种管路压力采集装置及采集方法
WO2020108718A1 (en) * 2018-11-27 2020-06-04 Grundfos Holding A/S A cover for a pressure sensor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6832525B2 (ja) * 2017-01-27 2021-02-24 パナソニックIpマネジメント株式会社 圧力式調理器及び圧力センサユニット
BR102017003716A2 (pt) * 2017-02-22 2018-10-30 Zammi Instrumental Ltda sistema para monitoramento de parâmetros fisiológicos em circulação extracorpórea

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346736A (ja) * 1999-06-02 2000-12-15 Saginomiya Seisakusho Inc 半導体式圧力センサ
JP2001523998A (ja) * 1997-04-18 2001-11-27 サンスコープ インターナショナル インコーポレイテッド 使い捨てドームを備えた圧力変換器装置
JP2004150949A (ja) * 2002-10-30 2004-05-27 Denso Corp センサ取付け用弾性部材、及びそれを用いたセンサ装置
JP2007121196A (ja) * 2005-10-31 2007-05-17 Denso Corp 圧力センサ
JP2007513349A (ja) * 2003-12-03 2007-05-24 ハネウェル・インターナショナル・インコーポレーテッド 絶縁圧力変換器
JP2009174888A (ja) * 2008-01-22 2009-08-06 Alto Associates:Kk 隔膜式圧力センサ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072056A (en) * 1976-06-28 1978-02-07 Varian Associates, Inc. Fluid containment structure for transducer system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001523998A (ja) * 1997-04-18 2001-11-27 サンスコープ インターナショナル インコーポレイテッド 使い捨てドームを備えた圧力変換器装置
JP2000346736A (ja) * 1999-06-02 2000-12-15 Saginomiya Seisakusho Inc 半導体式圧力センサ
JP2004150949A (ja) * 2002-10-30 2004-05-27 Denso Corp センサ取付け用弾性部材、及びそれを用いたセンサ装置
JP2007513349A (ja) * 2003-12-03 2007-05-24 ハネウェル・インターナショナル・インコーポレーテッド 絶縁圧力変換器
JP2007121196A (ja) * 2005-10-31 2007-05-17 Denso Corp 圧力センサ
JP2009174888A (ja) * 2008-01-22 2009-08-06 Alto Associates:Kk 隔膜式圧力センサ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289630A (zh) * 2016-09-30 2017-01-04 四川南格尔生物科技有限公司 一种管路压力采集装置及采集方法
WO2020108718A1 (en) * 2018-11-27 2020-06-04 Grundfos Holding A/S A cover for a pressure sensor
CN113167675A (zh) * 2018-11-27 2021-07-23 格兰富控股联合股份公司 用于压力传感器的盖
US12013298B2 (en) 2018-11-27 2024-06-18 Grundfos Holding A/S Protective cover for a pressure sensor

Also Published As

Publication number Publication date
JP6277067B2 (ja) 2018-02-07
JP2015227856A (ja) 2015-12-17

Similar Documents

Publication Publication Date Title
WO2015186576A1 (ja) 圧力センサ及びそれを備えた血圧測定システム、又は車載システム
US9671264B2 (en) Ultrasonic flow switch
KR101943811B1 (ko) 유체 계측용 센서의 설치 구조
US9052245B2 (en) Differential pressure/pressure transmitting device
JPWO2005119194A1 (ja) 圧力センサモジュール、および圧力検出装置
BR102017008642A2 (pt) Differential pressure sensor, and, method for limiting absorbing of adhesive material
KR102617189B1 (ko) 센서 조립체
JP6666736B2 (ja) 圧力検出装置
BR102014032849A2 (pt) conjunto de sensor de pressão
TWI653433B (zh) 超音波式流量計
CN203348657U (zh) 一种用于真空压力表的正负压限压保护装置
JP4468996B2 (ja) 隔膜式圧力センサ
JP2014095558A (ja) 接続パーツおよび差圧/圧力発信器
JP4146775B2 (ja) イオン濃度測定用比較電極およびイオン濃度計
JP3118624B2 (ja) 有害化学成分含有液体用の水位計
JP3544602B2 (ja) 隔膜型圧力センサ
CN213022957U (zh) 一种超纯水型在线pH电极
JP2011021941A (ja) 圧力センサー
US20230096042A1 (en) Molded sensor assembly
CN216524223U (zh) 隔膜型差压液位变送器
JP7169260B2 (ja) 物理量測定装置
JP2760924B2 (ja) 流体圧測定器
US20230400373A1 (en) Pre-formed solid as coupling mechanism in media-isolated pressure sensors
SU761861A1 (ru) Преобразователь давления жидкости
RU2010123704A (ru) Термоманометрическая система с расходомером и влагомером

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15802660

Country of ref document: EP

Kind code of ref document: A1