WO2015186197A1 - 制御装置 - Google Patents
制御装置 Download PDFInfo
- Publication number
- WO2015186197A1 WO2015186197A1 PCT/JP2014/064765 JP2014064765W WO2015186197A1 WO 2015186197 A1 WO2015186197 A1 WO 2015186197A1 JP 2014064765 W JP2014064765 W JP 2014064765W WO 2015186197 A1 WO2015186197 A1 WO 2015186197A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fan
- voltage
- converter
- power supply
- switch
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
Definitions
- This invention relates to a control device provided with a capacitor.
- Patent Document 1 describes a control device used in an elevator.
- a motor is used as a generator to drive a fan.
- the wind from the fan is applied to the resistance to cool the resistance.
- Patent Document 2 describes a control device used in an elevator.
- heat radiation fins are arranged between the fans. Two fans are rotated in the same direction to cool the radiation fins. When removing dust adhering to the heat radiating fins, one fan is rotated in the opposite direction. Apply wind from both fans to the heat dissipation fins.
- Patent Document 3 describes a control device that controls a fan.
- the exhaust or cooling fan is reversely rotated for a short time. Remove dust from the filter by rotating the fan in reverse.
- escalator control devices are maintained by specialized engineers.
- the engineer cuts off the voltage supply from the power source when performing maintenance.
- the engineer also cleans the inside of the housing as necessary when performing maintenance.
- An object of the present invention is to provide a control device that can perform efficient cleaning using a fan.
- the control device includes a converter that converts an AC voltage supplied from an AC power source into a DC voltage, an inverter connected to the converter by a bus, a capacitor connected between the buses, and a voltage from the AC power source.
- a fan power supply unit that converts the DC voltage into a DC voltage and supplies the fan to the fan, and a control unit that drives the fan with the energy stored in the capacitor when the voltage supply from the AC power supply to the converter is interrupted.
- control device includes a converter that converts an AC voltage supplied from an AC power source into a DC voltage, an inverter connected to the converter by a bus, a capacitor connected between the buses, and an AC power source.
- a first fan that stops when the voltage is supplied to the converter; and a controller that drives the first fan with energy stored in the capacitor when the voltage supply from the AC power supply to the converter is interrupted.
- the control device according to the present invention can perform efficient cleaning using a fan.
- FIG. 1 is a diagram showing an example of a configuration of a control device according to Embodiment 1 of the present invention.
- Converter 1 is connected to AC power supply 3 via main breaker 2.
- Converter 1 converts an AC voltage supplied from AC power supply 3 into a DC voltage.
- Inverter 4 is connected to converter 1 by bus 5.
- An electrolytic capacitor 6 is connected between the bus bars 5.
- the electrolytic capacitor 6 smoothes the output voltage from the converter 1.
- Other types of capacitors may be connected between the buses 5 as necessary.
- the inverter 4 converts the DC voltage supplied from the bus 5 into an AC voltage.
- a motor 7 is connected to the inverter 4. The motor 7 is driven by the inverter 4.
- Resistance 8, resistance 9 and switch 10 are connected in series between bus 5. Resistor 8, resistor 9, and switch 10 are connected between bus 5 in parallel with electrolytic capacitor 6. Resistor 8 and resistor 9 change the energy stored in electrolytic capacitor 6 into heat when the voltage supply from AC power supply 3 to converter 1 is interrupted. That is, the resistor 8 and the resistor 9 function as discharge resistors.
- the switch 10 connects the resistor 8 and the resistor 9 between the buses 5 when the voltage supply from the AC power source 3 to the converter 1 is cut off.
- the switch 10 is normally in an OFF state.
- the resistors 8 and 9 are not electrically connected between the buses 5.
- the switch 10 becomes ON when the main breaker 2 is switched from ON to OFF.
- the main breaker 2 is turned off, the voltage supply from the AC power source 3 to the converter 1 is cut off.
- the switch 10 is turned on, the resistors 8 and 9 are electrically connected between the buses 5. Thereby, it shifts from normal operation to discharge operation.
- the normal operation is an operation for driving the motor 7.
- the discharge operation is an operation for discharging the electrolytic capacitor 6.
- the switch 10 functions as a switch for switching the operation mode.
- the fan 11 cools the inside of the housing containing the converter 1 and the like.
- the fan 11 is used for generating an air flow inside the housing.
- the fan 11 is used to cool a specific part.
- a voltage is supplied from the fan power supply unit 12 to the fan 11.
- the fan power supply unit 12 receives the voltage from the AC power supply 3, converts it into a DC voltage, and supplies it to the fan 11.
- the fan power supply unit 12 is connected to the fan 11 via the switch 13 on the plus side. No switch or the like is provided between the negative side of the fan power supply unit 12 and the fan 11.
- the switch 13 constitutes means for switching a device that supplies a voltage to the fan 11. In normal operation, the plus side of the fan power supply unit 12 is electrically connected to the fan 11 via the switch 13. In normal operation, the fan 11 is driven by the fan power supply unit 12.
- the switch 13 switches one connection destination of the fan 11 from the plus side of the fan power supply unit 12 to the minus side of the electrolytic capacitor 6 when the main breaker 2 is switched from the ON state to the OFF state.
- a connection point P1 between the resistor 8 and the resistor 9 is connected to a connection point P2 to which the minus side of the fan power supply unit 12 is connected.
- the plus side of the fan power supply unit 12 is disconnected from the fan 11 by the switch 13.
- the negative side of the electrolytic capacitor 6 is electrically connected to the fan 11 via the switch 13.
- the fan 11 is driven by the energy stored in the electrolytic capacitor 6.
- a Zener diode 14 is connected between the connection point P1 and the negative side of the electrolytic capacitor 6.
- the Zener diode 14 is connected in parallel to the resistor 9 and the switch 10 connected in series.
- FIG. 2 is a timing chart showing an example of the operation of the control device according to Embodiment 1 of the present invention.
- the main breaker 2 is in the ON state and normal operation is performed.
- normal operation AC voltage is supplied from the AC power source 3 to the converter 1.
- the voltage between the bus bars 5 is kept constant, and energy is stored in the electrolytic capacitor 6.
- the motor 7 is driven by the inverter 4.
- both the switch 10 and the switch 13 are in the OFF state. Therefore, the plus side of the fan power supply unit 12 is electrically connected to the fan 11 via the switch 13. A voltage is supplied from the fan power supply unit 12 to the fan 11.
- the fan 11 is driven by the fan power supply unit 12 and rotates in a certain direction. In the following description, the direction in which the fan 11 rotates during normal operation is referred to as the first direction. As the fan 11 rotates in the first direction, an air flow is generated inside the housing. Alternatively, the specific component is cooled by rotating the fan 11 in the first direction. At time t0, the resistor 9 and the negative side of the electrolytic capacitor 6 are not electrically connected. Further, the fan 11 and the negative side of the electrolytic capacitor 6 are not electrically connected.
- the main breaker 2 is switched to the OFF state.
- the main breaker 2 is manually switched to an OFF state for maintenance.
- the converter 1, the inverter 4 and the motor 7 are stopped.
- the fan power supply unit 12 stops the supply of voltage.
- the switch 10 and the switch 13 are switched to the ON state.
- the switch 10 is turned on, the resistors 8 and 9 are electrically connected to the electrolytic capacitor 6. Thereby, the voltage of the electrolytic capacitor 6 is divided into the resistor 8 and the resistor 9.
- the switch 13 When the switch 13 is turned on, the negative side of the electrolytic capacitor 6 is electrically connected to the fan 11 via the switch 13. As a result, a voltage corresponding to the voltage of the resistor 9 is supplied to the fan 11. That is, the device that supplies the voltage to the fan 11 is switched from the fan power supply unit 12 to the electrolytic capacitor 6.
- the Zener diode 14 is provided to supply a stable voltage to the fan 11.
- the fan 11 can be used for cleaning immediately after the voltage supply from the AC power supply 3 to the converter 1 is cut off. When performing maintenance, there is no need to bring a cleaning fan from the outside. Further, it is not necessary to bring in a power source for driving the cleaning fan from the outside.
- the fan 11 When the discharge operation is started, the fan 11 is driven for a certain time. Before starting the maintenance, the dust adhering to the device can be efficiently removed.
- the time during which current is supplied to the Zener diode 14 can be changed by changing the voltage dividing ratio of the resistors 8 and 9. That is, by changing the resistance values of the resistors 8 and 9, the time for driving the fan 11 in the discharge operation can be adjusted.
- connection point P1 is connected to the connection point P2.
- one connection destination of the fan 11 is switched from the plus side of the fan power supply unit 12 to the minus side of the electrolytic capacitor 6. For this reason, in the discharge operation, the fan 11 rotates in the direction opposite to the first direction.
- the wind from the fan 11 can be applied to the place where the wind is not hit in the normal operation in the discharge operation.
- connection destination of the fan 11 is switched from the minus side of the fan power supply unit 12 to the plus side (connection point P1) of the electrolytic capacitor 6 by the switch 13.
- no switch or the like is provided between the plus side of the fan power supply unit 12 and the fan 11.
- the negative side of the electrolytic capacitor 6 is connected to a connection point to which the positive side of the fan power supply unit 12 is connected.
- the fan 11 is disposed so as to face a switch such as a contactor, for example.
- This switch has, for example, a contact that opens when the main breaker 2 is in an OFF state.
- This switch may be the main breaker 2. Even if the wind is applied to such a switch when the main breaker 2 is in the ON state, the dust accumulated at the contact cannot be removed.
- the fan 11 is arranged so that wind hits the contact of the switch when rotating in the second direction. With such a configuration, dust can be removed by applying wind to the contact when the contact is open. It is possible to prevent contact failure from occurring.
- the arrangement of the fans 11 is not limited to this.
- the control unit that drives the fan 11 in the discharge operation includes a resistor 8, a resistor 9, a switch 10, a Zener diode 14, and a switch 13.
- FIG. FIG. 3 is a diagram showing an example of the configuration of the control device according to Embodiment 2 of the present invention.
- the case where the fan 11 is used for cooling and cleaning has been described.
- the case where both the cooling fan 15 and the cleaning fan 16 are provided will be described.
- the fan 15 cools the inside of the housing containing the converter 1 and the like.
- the fan 15 is used to generate an airflow inside the housing.
- the fan 15 is used to cool certain components.
- the fan 15 is connected to the fan power supply unit 12.
- the fan power supply unit 12 receives the voltage from the AC power supply 3, converts it to a DC voltage, and supplies it to the fan 15.
- the fan 15 is driven by the fan power supply unit 12.
- the fan 16 is connected between the connection point P1 and the negative side of the electrolytic capacitor 6.
- the connection point P1 is connected to the fan 16 via the switch 17.
- the switch 17 is normally OFF. When the switch 17 is in the OFF state, the fan 16 is not electrically connected between the buses 5.
- the switch 17 becomes ON when the main breaker 2 is switched from ON to OFF.
- the switch 17 is turned on, the fan 16 is electrically connected between the buses 5. That is, the fan 16 is stopped when a voltage is supplied from the AC power source 3 to the converter 1.
- the fan 16 is driven by the energy stored in the electrolytic capacitor 6 when the voltage supply from the AC power supply 3 to the converter 1 is cut off.
- control device shown in FIG. 3 are the same as those disclosed in the first embodiment.
- FIG. 4 is a timing chart showing an example of the operation of the control device according to Embodiment 2 of the present invention.
- the main breaker 2 is in the ON state and normal operation is performed.
- normal operation AC voltage is supplied from the AC power source 3 to the converter 1.
- the voltage between the bus bars 5 is kept constant, and energy is stored in the electrolytic capacitor 6.
- the motor 7 is driven by the inverter 4.
- both the switch 10 and the switch 17 are OFF. Accordingly, a voltage is supplied from the fan power supply unit 12 to the fan 15.
- the fan 15 is driven by the fan power supply unit 12 and rotates in the first direction. As the fan 15 rotates in the first direction, an air flow is generated inside the housing. Alternatively, the specific component is cooled by rotating the fan 15 in the first direction.
- the resistor 9 and the negative side of the electrolytic capacitor 6 are not electrically connected.
- the fan 16 is not electrically connected between the bus bars 5. In normal operation, the fan 16 is stopped.
- the main breaker 2 is switched to the OFF state.
- the main breaker 2 is manually switched to an OFF state for maintenance.
- the converter 1, the inverter 4 and the motor 7 are stopped.
- the fan power supply unit 12 stops the supply of voltage. For this reason, the fan 15 stops.
- the switch 10 and the switch 17 are switched to the ON state.
- the switch 10 is turned on, the resistors 8 and 9 are electrically connected to the electrolytic capacitor 6. Thereby, the voltage of the electrolytic capacitor 6 is divided into the resistor 8 and the resistor 9.
- the fan 16 When the switch 17 is turned on, the fan 16 is electrically connected between the buses 5. As a result, a voltage corresponding to the voltage of the resistor 9 is supplied to the fan 16. That is, the fan 16 is driven by the energy stored in the electrolytic capacitor 6.
- the Zener diode 14 is provided to supply a stable voltage to the fan 16.
- control device having the above-described configuration can exhibit the same effects as the control device disclosed in the first embodiment. Moreover, if it is a control apparatus which has the said structure, the fan 16 can be arrange
- the time for driving the fan 16 in the discharge operation can be adjusted by changing the resistance values of the resistors 8 and 9.
- the fan 16 is disposed to face a switch such as a contactor, for example.
- This switch has, for example, a contact that opens when the main breaker 2 is in an OFF state.
- This switch may be the main breaker 2.
- the fan 16 is arranged so that the wind hits the contact of the switch. With such a configuration, dust can be removed by applying wind to the contact when the contact is open. It is possible to prevent contact failure from occurring.
- the arrangement of the fans 16 is not limited to this.
- the control unit that drives the fan 16 includes a resistor 8, a resistor 9, a switch 10, a Zener diode 14, and a switch 17.
- the control device disclosed in the first and second embodiments is applied to a device that controls an escalator, for example.
- the application example is not limited to this.
- the motor 7 is used to drive the steps of the escalator.
- a control device is installed in a machine room inside the truss. The engineer must perform maintenance and cleaning of the control device in a narrow or unstable place. If the control device disclosed in the first and second embodiments is provided in an escalator, dust attached to the device immediately before maintenance of the control device can be easily removed.
- the control device according to the present invention can be applied to a device provided with a capacitor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Inverter Devices (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
- Patch Boards (AREA)
Abstract
制御装置は、コンバータ(1)とインバータ(4)と電解コンデンサ(6)とファン電源部(12)と制御部とを備える。コンバータ(1)は、交流電源(3)から供給される交流電圧を直流電圧に変換する。インバータ(4)は、母線(5)によってコンバータ(1)に接続される。電解コンデンサ(6)は、母線(5)間に接続される。制御部は、交流電源(3)からコンバータ(1)への電圧供給が遮断されると、電解コンデンサ(6)に蓄えられたエネルギーによってファン(11)を駆動する。
Description
この発明は、コンデンサを備えた制御装置に関する。
特許文献1に、エレベータで使用される制御装置が記載されている。特許文献1に記載された制御装置では、モータを発電機として利用し、ファンを駆動する。ファンからの風を抵抗に当て、抵抗を冷却する。
特許文献2に、エレベータで使用される制御装置が記載されている。特許文献2に記載された制御装置では、ファンの間に放熱フィンが配置される。2つのファンを同じ方向に回転させ、放熱フィンを冷却する。放熱フィンに付着した塵埃を取り除く場合は、1つのファンを反対の方向に回転させる。放熱フィンに双方のファンから風を当てる。
特許文献3に、ファンを制御する制御装置が記載されている。特許文献3に記載された制御装置では、排気用或いは冷却用のファンを短時間だけ逆回転させる。ファンを逆回転させることにより、フィルタから塵埃を取り除く。
例えば、エスカレータの制御装置は、専門の技術者によってメンテナンスが行われる。技術者は、メンテナンスを行う時に電源からの電圧供給を遮断する。また、技術者は、メンテナンスを行う時に必要に応じて筐体内部の清掃を併せて行う。
特許文献1から3に記載された制御装置では、電源からの電圧供給が遮断されると、ファンを駆動することができない。このため、ファンを利用した効率的な清掃を行うことができなかった。
この発明は、上述のような課題を解決するためになされた。この発明の目的は、ファンを利用した効率的な清掃を行うことができる制御装置を提供することである。
この発明に係る制御装置は、交流電源から供給される交流電圧を直流電圧に変換するコンバータと、母線によってコンバータに接続されたインバータと、母線の間に接続されたコンデンサと、交流電源からの電圧を直流電圧に変換してファンに供給するファン電源部と、交流電源からコンバータへの電圧供給が遮断されると、コンデンサに蓄えられたエネルギーによってファンを駆動する制御部と、を備える。
また、この発明に係る制御装置は、交流電源から供給される交流電圧を直流電圧に変換するコンバータと、母線によってコンバータに接続されたインバータと、母線の間に接続されたコンデンサと、交流電源からコンバータに電圧が供給されている時に停止する第1ファンと、交流電源からコンバータへの電圧供給が遮断されると、コンデンサに蓄えられたエネルギーによって第1ファンを駆動する制御部と、を備える。
この発明に係る制御装置であれば、ファンを利用した効率的な清掃を行うことができる。
添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。
実施の形態1.
図1はこの発明の実施の形態1における制御装置の構成の一例を示す図である。
コンバータ1は、メインブレーカ2を介して交流電源3に接続される。交流電源3として、例えば、三相交流電源が採用される。コンバータ1は、交流電源3から供給される交流電圧を直流電圧に変換する。インバータ4は、母線5によってコンバータ1に接続される。母線5間に、電解コンデンサ6が接続される。電解コンデンサ6は、コンバータ1からの出力電圧を平滑化する。必要に応じて母線5間に他の種類のコンデンサを接続しても良い。
図1はこの発明の実施の形態1における制御装置の構成の一例を示す図である。
コンバータ1は、メインブレーカ2を介して交流電源3に接続される。交流電源3として、例えば、三相交流電源が採用される。コンバータ1は、交流電源3から供給される交流電圧を直流電圧に変換する。インバータ4は、母線5によってコンバータ1に接続される。母線5間に、電解コンデンサ6が接続される。電解コンデンサ6は、コンバータ1からの出力電圧を平滑化する。必要に応じて母線5間に他の種類のコンデンサを接続しても良い。
インバータ4は、母線5から供給される直流電圧を交流電圧に変換する。インバータ4に、モータ7が接続される。モータ7は、インバータ4によって駆動される。
抵抗8と抵抗9とスイッチ10とは、母線5間に直列に接続される。抵抗8と抵抗9とスイッチ10とは、母線5間に電解コンデンサ6に対して並列に接続される。抵抗8及び抵抗9は、交流電源3からコンバータ1への電圧供給が遮断された時に電解コンデンサ6に蓄積されたエネルギーを熱に変える。即ち、抵抗8及び抵抗9は、放電抵抗として機能する。
スイッチ10は、交流電源3からコンバータ1への電圧供給が遮断された時に抵抗8及び抵抗9を母線5間に接続する。例えば、スイッチ10は、通常はOFF状態である。スイッチ10がOFF状態であると、抵抗8及び抵抗9は母線5間に電気的に接続されない。スイッチ10は、メインブレーカ2がON状態からOFF状態に切り換えられるとON状態になる。メインブレーカ2がOFF状態になると、交流電源3からコンバータ1への電圧供給が遮断される。スイッチ10がON状態になると、抵抗8及び抵抗9が母線5間に電気的に接続される。これにより、通常運転から放電運転に移行する。通常運転は、モータ7を駆動するための運転である。放電運転は、電解コンデンサ6を放電させるための運転である。スイッチ10は、運転モードを切り換えるためのスイッチとして機能する。
ファン11は、コンバータ1等が収められた筐体の内部を冷却する。例えば、ファン11は、筐体の内部に気流を発生させるために使用される。他の例として、ファン11は、ある特定の部品を冷却するために使用される。通常運転では、ファン電源部12からファン11に電圧が供給される。ファン電源部12は、交流電源3からの電圧を入力し、直流電圧に変換してファン11に供給する。
ファン電源部12は、プラス側がスイッチ13を介してファン11に接続される。ファン電源部12のマイナス側とファン11との間にスイッチ等は設けられていない。スイッチ13は、ファン11に電圧を供給する機器を切り換えるための手段を構成する。通常運転では、ファン電源部12のプラス側がスイッチ13を介してファン11に電気的に接続される。通常運転では、ファン11はファン電源部12によって駆動される。
スイッチ13は、メインブレーカ2がON状態からOFF状態に切り換えられると、ファン11の一方の接続先をファン電源部12のプラス側から電解コンデンサ6のマイナス側に切り換える。抵抗8と抵抗9との接続点P1は、ファン電源部12のマイナス側が接続された接続点P2に接続される。放電運転では、ファン電源部12のプラス側がスイッチ13によってファン11から切り離される。そして、電解コンデンサ6のマイナス側がスイッチ13を介してファン11に電気的に接続される。放電運転では、ファン11は電解コンデンサ6に蓄えられたエネルギーによって駆動される。
接続点P1と電解コンデンサ6のマイナス側との間に、ツェナダイオード14が接続される。ツェナダイオード14は、直列に接続された抵抗9及びスイッチ10に対して並列に接続される。
次に、図2も参照し、本制御装置の動作について具体的に説明する。図2はこの発明の実施の形態1における制御装置の動作の一例を示すタイミングチャートである。
時刻t0ではメインブレーカ2はON状態であり、通常運転が行われる。通常運転では、交流電源3からコンバータ1に交流電圧が供給される。母線5間の電圧は一定に保たれ、電解コンデンサ6にエネルギーが蓄積される。モータ7は、インバータ4によって駆動される。
通常運転では、スイッチ10及びスイッチ13は、共にOFF状態である。したがって、ファン電源部12のプラス側がスイッチ13を介してファン11に電気的に接続される。ファン電源部12からファン11に電圧が供給される。ファン11は、ファン電源部12によって駆動され、一定の方向に回転する。以下の説明では、通常運転においてファン11が回転する方向を第1方向という。ファン11が第1方向に回転することにより、筐体の内部に気流が発生する。或いは、ファン11が第1方向に回転することにより、特定の部品が冷却される。時刻t0では、抵抗9と電解コンデンサ6のマイナス側とは電気的に接続されていない。また、ファン11と電解コンデンサ6のマイナス側とは電気的に接続されていない。
時刻t1でメインブレーカ2がOFF状態に切り換えられる。例えば、メンテナンスのためにメインブレーカ2が手動でOFF状態に切り換えられる。メインブレーカ2がOFF状態になると、コンバータ1、インバータ4及びモータ7が停止する。ファン電源部12は、電圧の供給を停止する。また、スイッチ10及びスイッチ13が、ON状態に切り換えられる。スイッチ10がON状態になると、抵抗8及び抵抗9が電解コンデンサ6に対して電気的に接続される。これにより、電解コンデンサ6の電圧が抵抗8と抵抗9とに分圧される。
スイッチ13がON状態になると、電解コンデンサ6のマイナス側がスイッチ13を介してファン11に電気的に接続される。これにより、抵抗9の電圧に相当する電圧がファン11に供給される。即ち、ファン11に電圧を供給する機器が、ファン電源部12から電解コンデンサ6に切り換えられる。ツェナダイオード14は、ファン11に安定した電圧を供給するために設けられている。
上記構成を有する制御装置であれば、交流電源3からコンバータ1への電圧供給が遮断された直後に、ファン11を清掃用として使用することができる。メンテナンスを行う際に、清掃用のファンを外部から持ち込む必要がない。また、清掃用のファンを駆動するための電源を外部から持ち込む必要がない。
ファン11は、放電運転が開始されると、一定の時間だけ駆動される。メンテナンスを開始する前に、機器に付着している塵埃を効率的に除去することができる。なお、図1に示す例では、抵抗8及び抵抗9による分圧比を変えることにより、ツェナダイオード14に電流が供給される時間を変更することができる。即ち、抵抗8及び抵抗9の抵抗値を変えることにより、放電運転においてファン11を駆動する時間を調整することができる。
図1に示す例では、接続点P1は接続点P2に接続されている。また、放電運転が開始されると、ファン11の一方の接続先がファン電源部12のプラス側から電解コンデンサ6のマイナス側に切り換えられる。このため、放電運転では、上記第1方向とは逆の方向にファン11が回転する。通常運転では風が当っていなかった場所に、放電運転においてファン11からの風を当てることができる。また、通常運転で風が当っていた場所にも、風向きを変えて風を当てることができる。
同様の効果は、スイッチ13によって、ファン11の接続先をファン電源部12のマイナス側から電解コンデンサ6のプラス側(接続点P1)に切り換えても実現できる。かかる場合、ファン電源部12のプラス側とファン11との間にスイッチ等は設けられない。電解コンデンサ6のマイナス側は、ファン電源部12のプラス側が接続された接続点に接続される。
ファン11は、例えば、コンタクタ等の開閉器に対向するように配置される。この開閉器は、例えば、メインブレーカ2がOFF状態である時に開く接点を有する。この開閉器は、メインブレーカ2であっても良い。メインブレーカ2がON状態である時にこのような開閉器に風を当てても、接点に溜まった塵埃を除去することはできない。ファン11は、上記第2方向に回転した時に開閉器の接点に風が当たるように配置される。かかる構成であれば、接点が開いている時に接点に風を当てて塵埃を除去することができる。接点の接触不良が発生することを防止できる。なお、ファン11の配置はこれに限定されない。
図1に示す例では、放電運転においてファン11を駆動する制御部は、抵抗8、抵抗9、スイッチ10、ツェナダイオード14及びスイッチ13を備える。
実施の形態2.
図3はこの発明の実施の形態2における制御装置の構成の一例を示す図である。
実施の形態1では、ファン11を冷却用及び清掃用として使用する場合について説明した。本実施の形態では、冷却用のファン15と清掃用のファン16との双方を備える場合について説明する。
図3はこの発明の実施の形態2における制御装置の構成の一例を示す図である。
実施の形態1では、ファン11を冷却用及び清掃用として使用する場合について説明した。本実施の形態では、冷却用のファン15と清掃用のファン16との双方を備える場合について説明する。
ファン15は、コンバータ1等が収められた筐体の内部を冷却する。例えば、ファン15は、筐体の内部に気流を発生させるために使用される。他の例として、ファン15は、ある特定の部品を冷却するために使用される。ファン15は、ファン電源部12に接続される。ファン電源部12は、交流電源3からの電圧を入力し、直流電圧に変換してファン15に供給する。ファン15は、ファン電源部12によって駆動される。
ファン16は、接続点P1と電解コンデンサ6のマイナス側との間に接続される。なお、接続点P1は、スイッチ17を介してファン16に接続される。スイッチ17は、通常はOFF状態である。スイッチ17がOFF状態であると、ファン16は母線5間に電気的に接続されない。スイッチ17は、メインブレーカ2がON状態からOFF状態に切り換えられるとON状態になる。スイッチ17がON状態になると、ファン16が母線5間に電気的に接続される。即ち、ファン16は、交流電源3からコンバータ1に電圧が供給されている時は停止している。ファン16は、交流電源3からコンバータ1への電圧供給が遮断されると、電解コンデンサ6に蓄えられたエネルギーによって駆動される。
図3に示す制御装置の他の構成は、実施の形態1で開示した構成と同じである。
次に、図4も参照し、本制御装置の動作について具体的に説明する。図4はこの発明の実施の形態2における制御装置の動作の一例を示すタイミングチャートである。
時刻t0ではメインブレーカ2はON状態であり、通常運転が行われる。通常運転では、交流電源3からコンバータ1に交流電圧が供給される。母線5間の電圧は一定に保たれ、電解コンデンサ6にエネルギーが蓄積される。モータ7は、インバータ4によって駆動される。
通常運転では、スイッチ10及びスイッチ17は、共にOFF状態である。したがって、ファン電源部12からファン15に電圧が供給される。ファン15は、ファン電源部12によって駆動され、第1方向に回転する。ファン15が第1方向に回転することにより、筐体の内部に気流が発生する。或いは、ファン15が第1方向に回転することにより、特定の部品が冷却される。時刻t0では、抵抗9と電解コンデンサ6のマイナス側とは電気的に接続されていない。また、ファン16は母線5間に電気的に接続されていない。通常運転では、ファン16は停止している。
時刻t1でメインブレーカ2がOFF状態に切り換えられる。例えば、メンテナンスのためにメインブレーカ2が手動でOFF状態に切り換えられる。メインブレーカ2がOFF状態になると、コンバータ1、インバータ4及びモータ7が停止する。ファン電源部12は、電圧の供給を停止する。このため、ファン15が停止する。また、スイッチ10及びスイッチ17が、ON状態に切り換えられる。スイッチ10がON状態になると、抵抗8及び抵抗9が電解コンデンサ6に対して電気的に接続される。これにより、電解コンデンサ6の電圧が抵抗8と抵抗9とに分圧される。
スイッチ17がON状態になると、ファン16が母線5間に電気的に接続される。これにより、抵抗9の電圧に相当する電圧がファン16に供給される。即ち、ファン16は、電解コンデンサ6に蓄えられたエネルギーによって駆動される。ツェナダイオード14は、ファン16に安定した電圧を供給するために設けられている。
上記構成を有する制御装置であっても、実施の形態1で開示した制御装置が奏する効果と同様の効果を奏することができる。また、上記構成を有する制御装置であれば、塵埃が溜まり易い位置に合わせてファン16を配置することができる。冷却用のファン15の設置位置に合わせてファン16を配置する必要はない。
上記構成を有する制御装置であれば、抵抗8及び抵抗9の抵抗値を変えることにより、放電運転においてファン16を駆動する時間を調整することができる。
ファン16は、例えば、コンタクタ等の開閉器に対向するように配置される。この開閉器は、例えば、メインブレーカ2がOFF状態である時に開く接点を有する。この開閉器は、メインブレーカ2であっても良い。ファン16は、開閉器の接点に風が当たるように配置される。かかる構成であれば、接点が開いている時に接点に風を当てて塵埃を除去することができる。接点の接触不良が発生することを防止できる。なお、ファン16の配置は、これに限定されない。
図3に示す例では、ファン16を駆動する制御部は、抵抗8、抵抗9、スイッチ10、ツェナダイオード14及びスイッチ17を備える。
実施の形態1及び2で開示した制御装置は、例えば、エスカレータを制御する装置に適用される。但し、適用例はこれに限定されない。かかる場合、モータ7は、エスカレータのステップを駆動するために使用される。エスカレータでは、トラス内部の機械室に制御装置が設置される。技術者は、狭い場所或いは不安定な場所で制御装置のメンテナンス及び清掃を実施しなければならない。実施の形態1及び2で開示した制御装置がエスカレータに備えられていれば、制御装置のメンテナンスを行う直前に機器に付着した塵埃を容易に除去することができる。
この発明に係る制御装置は、コンデンサを備えたものに適用できる。
1 コンバータ、 2 メインブレーカ、 3 交流電源、 4 インバータ、 5 母線、 6 電解コンデンサ、 7 モータ、 8 抵抗、 9 抵抗、 10 スイッチ、 11 ファン、 12 ファン電源部、 13 スイッチ、 14 ツェナダイオード、 15 ファン、 16 ファン、 17 スイッチ
Claims (8)
- 交流電源から供給される交流電圧を直流電圧に変換するコンバータと、
母線によって前記コンバータに接続されたインバータと、
前記母線の間に接続されたコンデンサと、
前記交流電源からの電圧を直流電圧に変換してファンに供給するファン電源部と、
前記交流電源から前記コンバータへの電圧供給が遮断されると、前記コンデンサに蓄えられたエネルギーによって前記ファンを駆動する制御部と、
を備えた制御装置。 - 前記ファンは、前記ファン電源部から電圧が供給されると第1方向に回転し、
前記制御部は、前記第1方向とは逆の第2方向に前記ファンを回転させる
請求項1に記載の制御装置。 - 前記制御部は、
前記交流電源から前記コンバータへの電圧供給が遮断されると、前記ファンの一方の接続先を前記ファン電源部のプラス側から前記コンデンサのマイナス側に切り換える又は前記ファン電源部のマイナス側から前記コンデンサのプラス側に切り換えるスイッチと、
を備えた請求項2に記載の制御装置。 - 前記ファンは、前記交流電源から前記コンバータへの電圧供給が遮断されている時に接点が開く開閉器に対向し、前記第2方向に回転した時に前記開閉器の前記接点に風を当てる請求項2又は請求項3に記載の制御装置。
- 交流電源から供給される交流電圧を直流電圧に変換するコンバータと、
母線によって前記コンバータに接続されたインバータと、
前記母線の間に接続されたコンデンサと、
前記交流電源から前記コンバータに電圧が供給されている時に停止する第1ファンと、
前記交流電源から前記コンバータへの電圧供給が遮断されると、前記コンデンサに蓄えられたエネルギーによって前記第1ファンを駆動する制御部と、
を備えた制御装置。 - 第2ファンと、
前記交流電源からの電圧を直流電圧に変換して前記第2ファンに供給するファン電源部と、
を更に備えた請求項5に記載の制御装置。 - 前記制御部は、
前記交流電源から前記コンバータへの電圧供給が遮断されると、前記第1ファンを前記母線間に電気的に接続するスイッチと、
を備えた請求項5又は請求項6に記載の制御装置。 - 前記第1ファンは、前記交流電源から前記コンバータへの電圧供給が遮断されている時に接点が開く開閉器に対向し、前記制御部によって駆動されると前記開閉器の前記接点に風を当てる請求項5又は請求項6に記載の制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480074256.5A CN105934588B (zh) | 2014-06-03 | 2014-06-03 | 控制装置 |
JP2016524976A JP6191770B2 (ja) | 2014-06-03 | 2014-06-03 | 制御装置 |
PCT/JP2014/064765 WO2015186197A1 (ja) | 2014-06-03 | 2014-06-03 | 制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/064765 WO2015186197A1 (ja) | 2014-06-03 | 2014-06-03 | 制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015186197A1 true WO2015186197A1 (ja) | 2015-12-10 |
Family
ID=54766296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/064765 WO2015186197A1 (ja) | 2014-06-03 | 2014-06-03 | 制御装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6191770B2 (ja) |
CN (1) | CN105934588B (ja) |
WO (1) | WO2015186197A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07208388A (ja) * | 1994-01-13 | 1995-08-08 | Fujitsu General Ltd | ファン冷却装置 |
JPH09151896A (ja) * | 1995-11-30 | 1997-06-10 | Elna Co Ltd | 電動ファンの駆動装置 |
JP2003286994A (ja) * | 2002-03-28 | 2003-10-10 | Nec Tokin Ceramics Corp | 消臭ファンの駆動装置 |
JP2008169028A (ja) * | 2007-01-15 | 2008-07-24 | Hitachi Ltd | エレベータ制御装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06111978A (ja) * | 1992-09-25 | 1994-04-22 | Matsushita Electric Works Ltd | 放電灯点灯装置 |
DE50114503D1 (de) * | 2000-03-31 | 2009-01-02 | Inventio Ag | Einrichtung und verfahren zur reduzierung der netzanschlussleistung von aufzugsanlagen |
FI120829B (fi) * | 2004-07-12 | 2010-03-31 | Kone Corp | Menetelmä ja järjestelmä hissijärjestelmässä tarvittavan energian varastoimiseksi |
JP4221436B2 (ja) * | 2006-12-13 | 2009-02-12 | 株式会社日立産機システム | 電力変換装置 |
WO2008142746A1 (ja) * | 2007-05-16 | 2008-11-27 | Mitsubishi Electric Corporation | エレベータの制御装置 |
CN101286655B (zh) * | 2008-05-22 | 2011-08-31 | 中国科学院电工研究所 | 基于超级电容器储能的风力发电、光伏发电互补供电系统 |
JP5041375B2 (ja) * | 2009-03-06 | 2012-10-03 | 東芝エレベータ株式会社 | 昇降機制御装置 |
CN201786566U (zh) * | 2010-09-03 | 2011-04-06 | 恒天重工股份有限公司 | 离网型具备不间断供电的垂直轴风力发电机控制系统 |
-
2014
- 2014-06-03 WO PCT/JP2014/064765 patent/WO2015186197A1/ja active Application Filing
- 2014-06-03 JP JP2016524976A patent/JP6191770B2/ja active Active
- 2014-06-03 CN CN201480074256.5A patent/CN105934588B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07208388A (ja) * | 1994-01-13 | 1995-08-08 | Fujitsu General Ltd | ファン冷却装置 |
JPH09151896A (ja) * | 1995-11-30 | 1997-06-10 | Elna Co Ltd | 電動ファンの駆動装置 |
JP2003286994A (ja) * | 2002-03-28 | 2003-10-10 | Nec Tokin Ceramics Corp | 消臭ファンの駆動装置 |
JP2008169028A (ja) * | 2007-01-15 | 2008-07-24 | Hitachi Ltd | エレベータ制御装置 |
Also Published As
Publication number | Publication date |
---|---|
CN105934588A (zh) | 2016-09-07 |
JP6191770B2 (ja) | 2017-09-06 |
CN105934588B (zh) | 2018-02-02 |
JPWO2015186197A1 (ja) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6200457B2 (ja) | 初期充電回路の異常発熱を検出する手段を有するモータ駆動装置 | |
JP4989591B2 (ja) | 永久磁石同期モータの駆動装置、空気調和装置、換気扇の駆動装置、洗濯機、自動車及び車両 | |
US20090230898A1 (en) | Servo amplifier with regenerative function | |
JP5653570B1 (ja) | ブレーキ付電動機 | |
CN110784154A (zh) | 电动机驱动装置 | |
JP4922749B2 (ja) | ファンシステム | |
JP2011120366A (ja) | 過電圧保護装置 | |
JP2006200404A (ja) | インバータ回路及びモータ制御装置 | |
WO2008142746A1 (ja) | エレベータの制御装置 | |
JP6191770B2 (ja) | 制御装置 | |
JP6250090B2 (ja) | 交流回転機の制御装置及び制御方法 | |
JP2005022321A (ja) | 成形機 | |
JP6763196B2 (ja) | インバータ装置 | |
JP2008169028A (ja) | エレベータ制御装置 | |
JP3566443B2 (ja) | インバ−タ過電圧保護装置 | |
WO2017212585A1 (ja) | モータ制御装置 | |
JP2013255297A (ja) | 車両用インバータ装置 | |
KR102253611B1 (ko) | 강제구동 기능을 갖는 차량용 냉각팬 제어장치 | |
JP5999141B2 (ja) | 電力変換装置 | |
JP2004286239A (ja) | 冷却装置の制御方法 | |
JP2010252411A (ja) | 負荷への電力供給の制御システム | |
JP7287117B2 (ja) | 動力工具及び制御回路 | |
JP2008086094A (ja) | マトリクスコンバータ | |
JP2017123717A (ja) | インバータ制御装置 | |
JP6346583B2 (ja) | モータ駆動制御装置およびこれを備えたファンモータシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14894170 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016524976 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14894170 Country of ref document: EP Kind code of ref document: A1 |