WO2015185262A1 - Capteur magnétique pour un arbre de rotor d'une machine électrique, et machine électrique - Google Patents

Capteur magnétique pour un arbre de rotor d'une machine électrique, et machine électrique Download PDF

Info

Publication number
WO2015185262A1
WO2015185262A1 PCT/EP2015/058705 EP2015058705W WO2015185262A1 WO 2015185262 A1 WO2015185262 A1 WO 2015185262A1 EP 2015058705 W EP2015058705 W EP 2015058705W WO 2015185262 A1 WO2015185262 A1 WO 2015185262A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
rotor shaft
rotor
magnetically
Prior art date
Application number
PCT/EP2015/058705
Other languages
German (de)
English (en)
Inventor
Matthias LETZGUS
Andreas Horvath
Klaus Lindner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2015185262A1 publication Critical patent/WO2015185262A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/01Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for shielding from electromagnetic fields, i.e. structural association with shields
    • H02K11/014Shields associated with stationary parts, e.g. stator cores
    • H02K11/0141Shields associated with casings, enclosures or brackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements

Definitions

  • the invention relates to electronically commutated electrical machines that use a magnetic sensor, in particular for detection of a rotor position.
  • the present invention relates to measures for shielding the magnetic sensor against influences of the stator and the rotor magnetic field.
  • the current rotor position can be detected, for example, by means of a magnetic sensor arranged on a rotor shaft of the rotor.
  • Conventional magnetic sensors usually have a magnetic field sensitive sensor, such. As a Hall sensor, a GMR sensor or the like on.
  • the magnetic field sensitive sensor is mounted in an arrangement by which a magnetic field applied to the magnetic field sensitive sensor is variable depending on the rotor position of the rotor.
  • a donor wheel is attached to the rotor shaft. The magnetic field change is detected by the magnetic field sensitive sensor and appropriately provided as rotor position information.
  • the rotor of an electric machine is set in rotation as a result of the stator magnetic field generated by the stator, wherein the magnetic field strength in the air gap between the stator and rotor can be several Tesla.
  • the magnetic field strength in the air gap between the stator and rotor can be several Tesla.
  • these magnetic fields emerge from the air gap as stray magnetic fields, their field strength decreasing as a function of the distance.
  • the stray fields can couple into the rotor shaft, which is often formed of soft magnetic material, and have an effect in the region of the magnetic sensor.
  • eddy currents can extend over the usually also electrically conductive rotor shaft formed up to the area of the magnetic sensor and cause magnetic fields there.
  • both the stray magnetic fields from the air gap and magnetic fields caused by eddy currents generated in the rotor shaft can act on the magnetic sensor. If the influences thus caused in the region of the magnetic sensor are too great, this can be disturbed in its function and the detection of the rotor position can become inaccurate or faulty. As a result, the operation of the electric machine can be significantly impaired, since the generation of the stator magnetic field depends on a knowledge of the exact rotor position.
  • magnetic sensors can be arranged in the vicinity of the rotor provided with permanent magnets, stator windings for generating a stator magnetic field being provided by means of a magnetic shield arranged between the stator windings and the magnetic sensor. It is an object of the present invention to ensure that detection by a magnetic sensor in an electrical machine is as far as possible not impaired by disturbing magnetic fields resulting from the operation of the electrical machine.
  • a magnetic sensor for use in an electrical machine, in particular for detecting the position of a rotor assembly of the electric machine, according to claim 1, an arrangement of the magnetic sensor on the rotor shaft and an electric machine according to the independent claims.
  • a magnetic sensor for use on a rotor shaft of an electrical machine, comprising:
  • At least one sensor element for detecting a magnetic field and for providing a sensor signal
  • At least one permanent magnet for providing a sensor magnetic field
  • a transmitter wheel which has a magnetically active structuring for influencing the sensor magnetic field and is formed with a holding region for application to a rotor shaft,
  • the encoder wheel between the holding region and the magnetically active structuring, in particular full-circumference, is magnetically non-conductive.
  • One idea of the above magnetic sensor is to shield magnetically effective structures of a sensor wheel from coupling in from magnetic influences caused by parasitic magnetic fields resulting from the operation of the electrical machine, namely the stator magnetic field, the rotor magnetic field or magnetic fields generated due to eddy currents become. Since, for reasons of strength, the rotor shaft is frequently made of a magnetically and electrically conductive material, in particular of steel, the parasitic magnetic fields can also be provided with a suitable shielding. ner stator assembly and rotor assembly of the electric machine via the rotor shaft to the magnetic sensor arranged thereon pass. The sensitivity of the magnetic sensor is very high.
  • parasitic magnetic fields of low field strength can already act on the sensor element of the magnetic sensor and lead to disturbances in the detection of the rotor position.
  • it is therefore provided to provide a magnetic and electrical insulation between the magnetically active structures of the sensor wheel and the rotor shaft.
  • a magnetic ring closure via a housing which comprises the stator and the rotor assembly of the electric machine, no longer exists.
  • parasitic magnetic fields can not be derived via the housing and pass through the rotor shaft in the axial direction in an area outside the housing. Since a magnetic sensor for rotor position detection is usually arranged in this area, this can thereby be protected against an influence of the parasitic magnetic fields, so that no impairment of the function takes place.
  • an isolation region between the holding region and the magnetically active structuring may be provided, wherein regions of different magnetic conductivity are formed on the outer circumference of the isolation region region.
  • the regions of different magnetic conductivity can have an annular donor element of magnetically conductive material with radially projecting sections.
  • the areas of different magnetic conductivity are formed with an annular donor element of ring segments of different magnetic conductivity.
  • the regions of different magnetic conductivity can be formed by regions spaced apart from one another with magnetically conductive elements introduced into a magnetically nonconductive annular donor element.
  • tendem material in particular in the form of particles of a soft magnetic material, be formed.
  • annular donor element and the isolation region can be formed in one piece.
  • an arrangement of the above magnetic sensor is provided on a rotor shaft, wherein the magnetic sensor is in contact with the holding region on the rotor shaft.
  • an electric machine comprising:
  • a rotor assembly which is rotatably disposed and spaced by an air gap of the stator assembly
  • a rotor shaft which carries the rotor assembly and is mounted in the housing;
  • the rotor shaft may be supported by a magnetically non-conductive or weakly conductive bearing on the housing, wherein the magnetic sensor is arranged on a portion of the rotor shaft, which is opposite to the bearing of the rotor assembly.
  • the magnetic resistance between the holding region and the magnetically active structuring of the encoder wheel is greater than the magnetic resistance acting on the bearing between the rotor shaft and the housing.
  • FIG. 1 shows a cross-sectional view through an electronically commutated electric machine with a magnetic sensor for detecting a rotor position of the electric machine;
  • Figure 2 is a cross-sectional view through a transmitter wheel for the magnetic sensor
  • Figure 3 is a cross-sectional view through another encoder wheel for the magnetic sensor.
  • Figure 4 is a cross-sectional view through another encoder wheel for the magnetic sensor.
  • FIG. 1 shows a schematic cross-sectional representation through an electronically commutated electric machine 1.
  • the electric machine corresponds to a synchronous machine.
  • the electric machine 1 has a housing 2, in which a circular cylindrical stator arrangement 3 is arranged.
  • the stator assembly 3 comprises stator teeth 31 and a circular cylindrical stator yoke 32, from which the stator teeth 31 are arranged projecting inwardly.
  • the stator teeth 31 are surrounded individually or in groups by one or more stator coils 33, which can be supplied with current using a power electronics, not shown, according to a Kommut istsschema.
  • the stator yoke 32 opposite ends of the stator teeth 31 define a circular cylindrical inner recess 4, in which a rotor assembly 5 is rotatably arranged.
  • the rotor assembly 5 is substantially formed of a magnetically conductive material in which rotor poles 51 are formed, which may be at least partially provided with permanent magnets 52.
  • the rotor assembly 5 is arranged on a rotor shaft 6, which is mounted so that an outer periphery of the rotor assembly 5 is disposed opposite to the inwardly facing ends of the stator teeth 31, so that between the stator assembly 3 and the rotor assembly 5, an air gap 7 is formed.
  • the rotor shaft 6 is mounted on a fixed bearing 8, which is in particular electrically conductive and the rotor shaft 6 relative to the housing 2 is supported.
  • the fixed bearing 8 keeps the rotor shaft 6 continues in the axial direction.
  • a sliding bearing 9 is provided, which may be formed as a plastic plain bearing, a simple socket or other, electrically and magnetically non-conductive or weakly conductive bearing 9.
  • the sliding bearing 9 is also supported on the housing 2, so that the rotor shaft 6 is held by the fixed bearing 8 and the sliding bearing 9 stationary and rotatable.
  • the rotor shaft 6 exits the housing 2 and forms the output shaft for the electric machine 1.
  • the stator coils 33 are energized in a suitable manner by means of a commutation scheme.
  • the energization must be set as a function of the rotor position of the rotor arrangement 5.
  • a maximum torque can be achieved if the stator magnetic field has an overfeed with respect to the rotor magnetic field of 90 ° electrical rotor position in the direction of rotation.
  • the electrical rotor position corresponds to a mechanical rotor position angle of 360 ° divided by the number of pole pairs.
  • a rotor position sensor is usually provided, which is usually designed in the form of a magnetic sensor 10.
  • the magnetic sensor 10 usually comprises a sensor magnet 1 1 designed as a permanent magnet for providing a sensor magnetic field, a sensor element 12, such as a Hall sensor or a GMR sensor, and a transmitter wheel 13, which extends over a holding region 14 on the rotor shaft 6 at one the housing 2 projecting portion of the rotor shaft 6 is arranged and thus rotates with the rotor.
  • the encoder wheel 13 usually has on its peripheral surface on a magnetically effective structuring.
  • the material of the structuring is usually a magnetically conductive material, so that the magnetic field emitted by the transmitter magnet 1 1 is influenced by the structure rotorpositionswin and thus a corresponding dependent on the rotor position change of the magnetic field flowing through the magnetic field 10 can be detected.
  • the structuring runs along the axial direction and may be tooth-shaped on the peripheral surface of the encoder wheel 13.
  • a use of an electrically non-conductive or electrically weakly sliding bearing 9 on the side of the housing 2, on which the magnetic sensor 10 is arranged, is advantageous for various reasons. As a result, however, there is no derivation of a magnetic flux from the rotor shaft 6 via the housing 2, so that part of the parasitic magnetic fields can pass through the sliding bearing 9 through the rotor shaft 6 and exit the rotor shaft 6 in the region of the encoder wheel 13. Since the sensor elements 12, which are usually used for magnetic sensors 10, usually have a high sensitivity, it may therefore interfere with the detection of the rotor position during operation of the electric machine 1, which deteriorate the function of the electric machine 1 or even prevent.
  • the insulation section 21 is at least magnetically nonconductive, ie it has a very low magnetic conductivity, in particular of ⁇ ⁇ 50, preferably ⁇ ⁇ 10.
  • Surrounding the insulation section 21 is annular surrounding a sensor element 22 as a magnetically active element of the encoder wheel 13, which has a structuring in the circumferential direction.
  • the circumferentially extending magnetically active structuring of the magnetically active donor element 22 can be realized by a partially different magnetic conductivity, for example by ring segments 23, 24 of different magnetic conductivity are arranged together, for , B.
  • ring segments 23 made of a magnetic material, such.
  • plastic or aluminum As plastic or aluminum.
  • a transmitter wheel 40 also integrally made of a magnetically non-conductive material, such. B a plastic, be formed on the outer peripheral region of magnetically conductive regions 41, for example, by introducing soft magnetic particles, in particular iron particles, can be formed.
  • the magnetically conductive regions 41 extend along the circumferential direction and are spaced from each other by regions without soft magnetic particles.
  • encoder wheels 13, 30, 40 of the above embodiments were each shown with eight poles or structuring regions in the circumferential direction, they may also have different numbers of structuring regions, depending on the desired resolution of the magnetic sensor 10.
  • Alternative embodiments can also provide the arrangement of the encoder magnets 1 1 on a sensor wheel 13, 30, 40 provide, wherein the encoder magnets 1 1 are magnetically non-conductive connected to the rotor shaft 6 or connectable.
  • the encoder magnets 1 1 are magnetically non-conductive connected to the rotor shaft 6 or connectable.
  • metal particles of magnetically conductive material magnetised, for example hard magnetic, material can then be introduced into the otherwise magnetically non-conductive material of the encoder wheel 13, 30, 40 and with a corresponding arrangement along the circumferential direction, which extends along the axial direction, be formed.

Abstract

L'invention concerne un capteur magnétique (10) pour l'utilisation sur un arbre de rotor (6) d'une machine électrique (1), comprenant: - au moins un élément capteur (12) pour la détection d'un champ magnétique et pour la production d'un signal de capteur; - au moins un aimant émetteur (11) pour la production d'un champ magnétique de capteur; et une roue-émetteur (13, 30, 40), qui présente une structure magnétiquement active pour influencer le champ magnétique du capteur, et qui est conformée avec une zone de retenue (14) pour l'application sur un arbre de rotor (6); la roue-émetteur (13, 30, 40) étant conformée magnétiquement non conductrice entre la zone de retenue (14) et la structure magnétiquement active.
PCT/EP2015/058705 2014-06-05 2015-04-22 Capteur magnétique pour un arbre de rotor d'une machine électrique, et machine électrique WO2015185262A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014210725.3 2014-06-05
DE102014210725.3A DE102014210725A1 (de) 2014-06-05 2014-06-05 Magnetsensor für eine Rotorwelle einer elektrischen Maschine sowie elektrische Maschine

Publications (1)

Publication Number Publication Date
WO2015185262A1 true WO2015185262A1 (fr) 2015-12-10

Family

ID=52991743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/058705 WO2015185262A1 (fr) 2014-06-05 2015-04-22 Capteur magnétique pour un arbre de rotor d'une machine électrique, et machine électrique

Country Status (2)

Country Link
DE (1) DE102014210725A1 (fr)
WO (1) WO2015185262A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921156B2 (en) 2018-04-10 2021-02-16 Simmonds Precision Products, Inc. Rotary encoder with additive manufacturing features
WO2022085782A1 (fr) * 2020-10-23 2022-04-28 ミネベアミツミ株式会社 Moteur

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160886A (en) * 1991-02-14 1992-11-03 Carlen Controls, Inc. Permanent magnet resolver for producing a resolver-to-digital converter compatible output
DE4311267A1 (de) * 1993-04-06 1994-10-20 Tornado Antriebstech Gmbh Positionsgeber
DE10044232A1 (de) * 1999-09-08 2001-03-29 Aisin Seiki Rotationsmaschine mit einem Drehmelder
JP2003174751A (ja) * 2001-12-06 2003-06-20 Matsushita Electric Ind Co Ltd 電動機
WO2005055394A1 (fr) * 2003-12-05 2005-06-16 Valeo Systemes D'essuyage Dispositif d'entrainement a moteur electrique
US20050183902A1 (en) * 2002-10-31 2005-08-25 Nsk Ltd. Electric power steering apparatus
JP2005318745A (ja) * 2004-04-28 2005-11-10 Nsk Ltd 電動モータ及び電動パワーステアリング装置
JP2007221935A (ja) * 2006-02-17 2007-08-30 Hitachi Ltd 回転電機及びエンジン駆動装置
US20080284288A1 (en) * 2002-11-07 2008-11-20 Mitsubishi Denki Kabushiki Kaisha Electric rotating machine for vehicle
WO2010043478A2 (fr) * 2008-10-16 2010-04-22 Robert Bosch Gmbh Dispositif capteur pour détecter la position rotative d'une pièce en rotation
EP2228886A1 (fr) * 2009-03-13 2010-09-15 Dunkermotoren GmbH Rotor pour moteur électrique et moteur électrique
DE102009023691A1 (de) * 2009-06-03 2010-12-23 Sew-Eurodrive Gmbh & Co. Kg Anordnung zur Bestimmung der Winkelstellung einer Welle und Elektromotor
US20120176073A1 (en) * 2011-01-07 2012-07-12 Mitsuba Corporation Wiper motor
US20130140963A1 (en) * 2010-11-08 2013-06-06 Kabushiki Kaisha Yaskawa Denki Motor with encoder and encoder for motor
JP2013215032A (ja) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp 車両用回転電機
US20140070649A1 (en) * 2012-09-07 2014-03-13 Remy Technologies, Llc Resolver with mounting structure and method
WO2014109171A1 (fr) * 2013-01-10 2014-07-17 株式会社日立産機システム Moteur équipé d'un résolveur et moteur apte à être regraissé ayant un résolveur

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010040857B4 (de) 2010-09-16 2019-10-24 Robert Bosch Gmbh Elektronisch kommutierter Elektromotor mit einem abgeschirmten Rotorpositionssensor

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5160886A (en) * 1991-02-14 1992-11-03 Carlen Controls, Inc. Permanent magnet resolver for producing a resolver-to-digital converter compatible output
DE4311267A1 (de) * 1993-04-06 1994-10-20 Tornado Antriebstech Gmbh Positionsgeber
DE10044232A1 (de) * 1999-09-08 2001-03-29 Aisin Seiki Rotationsmaschine mit einem Drehmelder
JP2003174751A (ja) * 2001-12-06 2003-06-20 Matsushita Electric Ind Co Ltd 電動機
US20050183902A1 (en) * 2002-10-31 2005-08-25 Nsk Ltd. Electric power steering apparatus
US20080284288A1 (en) * 2002-11-07 2008-11-20 Mitsubishi Denki Kabushiki Kaisha Electric rotating machine for vehicle
WO2005055394A1 (fr) * 2003-12-05 2005-06-16 Valeo Systemes D'essuyage Dispositif d'entrainement a moteur electrique
JP2005318745A (ja) * 2004-04-28 2005-11-10 Nsk Ltd 電動モータ及び電動パワーステアリング装置
JP2007221935A (ja) * 2006-02-17 2007-08-30 Hitachi Ltd 回転電機及びエンジン駆動装置
WO2010043478A2 (fr) * 2008-10-16 2010-04-22 Robert Bosch Gmbh Dispositif capteur pour détecter la position rotative d'une pièce en rotation
EP2228886A1 (fr) * 2009-03-13 2010-09-15 Dunkermotoren GmbH Rotor pour moteur électrique et moteur électrique
DE102009023691A1 (de) * 2009-06-03 2010-12-23 Sew-Eurodrive Gmbh & Co. Kg Anordnung zur Bestimmung der Winkelstellung einer Welle und Elektromotor
US20130140963A1 (en) * 2010-11-08 2013-06-06 Kabushiki Kaisha Yaskawa Denki Motor with encoder and encoder for motor
US20120176073A1 (en) * 2011-01-07 2012-07-12 Mitsuba Corporation Wiper motor
JP2013215032A (ja) * 2012-04-02 2013-10-17 Mitsubishi Electric Corp 車両用回転電機
US20140070649A1 (en) * 2012-09-07 2014-03-13 Remy Technologies, Llc Resolver with mounting structure and method
WO2014109171A1 (fr) * 2013-01-10 2014-07-17 株式会社日立産機システム Moteur équipé d'un résolveur et moteur apte à être regraissé ayant un résolveur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10921156B2 (en) 2018-04-10 2021-02-16 Simmonds Precision Products, Inc. Rotary encoder with additive manufacturing features
WO2022085782A1 (fr) * 2020-10-23 2022-04-28 ミネベアミツミ株式会社 Moteur

Also Published As

Publication number Publication date
DE102014210725A1 (de) 2015-12-17

Similar Documents

Publication Publication Date Title
EP1670121B2 (fr) Machine électrique, moteur à courant continu sans balais en particulier
EP3073622B1 (fr) Moteur électrique commuté électroniquement par balayage direct du champ magnétique de rotor
DE112013004395T5 (de) Variabler Reluktanzresolver mit integraler elektromagnetischer Störabschirmung und rotierende elektrische Maschine mit diesem
DE102013217428A1 (de) Elektrische Maschine, Rotorlagensensorik
WO2010043478A2 (fr) Dispositif capteur pour détecter la position rotative d'une pièce en rotation
DE10348347B4 (de) Elektrische Maschine für ein Fahrzeug
DE112007000289T5 (de) Elektrische Servolenkungsvorrichtung
EP2071712A2 (fr) Actionneur avec dispositif capteur pour détection de la position du rotor
WO2010012277A1 (fr) Palier à roulement avec un dispositif magnétique
DE102010021160A1 (de) Wälzlager mit integriertem Generator
EP3563472A1 (fr) Moteur électrique sans balais
DE4303480A1 (de) Elektromotor, insbesondere ein umrichtergespeister Asynchronmotor zum Antrieb von Kraftfahrzeugen
EP0336078B1 (fr) Dispositif de mesure de la vitesse de rotation et de la position d'un rotor d'une machine électrique
DE102016002387B4 (de) Sensoranordnung
DE19811424A1 (de) Drehmeßeinrichtung mit magnetisiertem Kommutator
WO2015185262A1 (fr) Capteur magnétique pour un arbre de rotor d'une machine électrique, et machine électrique
DE102021201603A1 (de) Rotor für eine elektrische Maschine sowie elektrische Maschine mit einem Rotor
DE102007000446A1 (de) Bürstenloser Motor und zugehöriger Sensor
DE4307337A1 (de) Elektronisch kommutierter Gleichstrommotor
WO2008077865A1 (fr) Détecteur de position de rotor d'une direction assistée électrique pour un véhicule automobile
DE102020215448A1 (de) Elektrische Maschine mit Rotortemperaturüberwachung
EP1505712B1 (fr) Machine électrique polyphasée avec capteur pour déterminer la position de rotation
WO1997002646A1 (fr) Moteur electrique equipe d'un dispositif de determination de la position, de la vitesse de rotation et/ou du sens de rotation du rotor
EP1256002A1 (fr) Dispositif pour produire des signaux dependant de la vitesse de rotation
DE102011116292A1 (de) Elektromotor mit Sensoranordnung zur Erfassung des Drehwinkels und/oder der Drehgeschwindigkeit des Rotors des Elektromotors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15717505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15717505

Country of ref document: EP

Kind code of ref document: A1