WO2015184990A1 - 芦丁在治疗肥胖及相关疾病或延缓衰老中的应用 - Google Patents

芦丁在治疗肥胖及相关疾病或延缓衰老中的应用 Download PDF

Info

Publication number
WO2015184990A1
WO2015184990A1 PCT/CN2015/080693 CN2015080693W WO2015184990A1 WO 2015184990 A1 WO2015184990 A1 WO 2015184990A1 CN 2015080693 W CN2015080693 W CN 2015080693W WO 2015184990 A1 WO2015184990 A1 WO 2015184990A1
Authority
WO
WIPO (PCT)
Prior art keywords
rutin
group
obesity
mice
diabetes
Prior art date
Application number
PCT/CN2015/080693
Other languages
English (en)
French (fr)
Inventor
金万洙
袁晓雪
黄园园
魏刚
李赫鍾
Original Assignee
中国科学院动物研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院动物研究所 filed Critical 中国科学院动物研究所
Publication of WO2015184990A1 publication Critical patent/WO2015184990A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages

Definitions

  • the invention belongs to the field of biomedicine.
  • the present invention relates to the use of a natural botanical ingredient for the preparation of a medicament for the treatment of obesity and related diseases or for the use of a medicament for delaying aging.
  • the present invention relates to the use of the plant polyphenol rutin (Rutin) for the preparation of a medicament for the treatment of obesity and related diseases or a medicament for delaying aging.
  • Rutin plant polyphenol rutin
  • the occurrence of obesity is the result of imbalance of energy metabolism in the body.
  • WAT white adipose tissue
  • WHO World Health Organization
  • Obesity refers to a certain degree of obvious overweight and excessive fat layer. Due to excessive food intake or changes in body metabolism, excessive accumulation of fat in the body causes excessive weight gain and causes a pathological and physiological change in the human body. Compared with normal people, obesity itself does not have many obvious characteristics, but obesity will bring about a significant increase in the incidence of many serious complications, such as hypertension, stroke, diabetes, cardiovascular disease, abnormal lipid metabolism, tumor And other metabolic diseases, and obesity and type 2 diabetes coexist with insulin resistance (Insulin Resistance) and impaired glucose tolerance. Obesity has become one of the major risk factors affecting human health in the 21st century, seriously endangering human health and quality of life.
  • PCOS Polycystic ovary syndrome
  • the etiology of the disease has not been clearly elucidated, and its diagnostic criteria have not yet been unified.
  • the clinical manifestations are irregular menstruation, amenorrhea, infertility, hairy, obesity and polycystic enlargement of bilateral ovaries.
  • PCOS uses insulin resistance, hyperinsulinemia, and hyperandrogenism as its core pathophysiological basis.
  • PCOS patients with type II diabetes, hypertension, hyperlipidemia, atherosclerosis and pregnancy-induced hypertension The risk of diseases such as morbidity and gestational diabetes is significantly increased; PCOS has become one of the most concerned diseases in clinical and basic research. How to improve the clinical symptoms of PCOS, improve the conception rate, and reduce the side effects caused by treatment is still a concern of everyone.
  • the incidence of PCOS has increased significantly, and the prevalence rate of women of childbearing age has reached 5% to 10%.
  • NASH National Institutes of Health
  • the incidence of PCOS in women of childbearing age worldwide is as high as 6%. 10%, and this data may be higher according to Rotterdam standards.
  • Aging is a normal life process of the body. Although it is inevitable, it is possible to improve the quality of life by delaying aging. Studies have shown that mitochondrial dysfunction has a close relationship with aging, such as decreased mitochondrial function, which leads to decreased body temperature, decreased exercise capacity, decreased oxygen consumption, etc., and thus loses a series of physiological characteristics of the youth state, and It eventually leads to aging, and the aging process is further promoted during aging.
  • the current anti-aging drugs are mainly divided into two categories, namely, chemical drugs and traditional Chinese medicines.
  • the former mainly includes antioxidants (vitamins, trace elements, loaders, enzyme antioxidants, etc.), anti-aging hormones (human growth hormone, melatonin, dehydroepiandrosterone, sex hormones, etc.), nutrients (nucleic acids) , protein, amino acid, etc.), monoamine oxidation Enzyme inhibitors, immunomodulators, brain function promoting drugs, and the like.
  • antioxidants vitamins, trace elements, loaders, enzyme antioxidants, etc.
  • anti-aging hormones human growth hormone, melatonin, dehydroepiandrosterone, sex hormones, etc.
  • nutrients nocleic acids
  • protein protein
  • amino acid amino acid
  • monoamine oxidation Enzyme inhibitors monoamine oxidation Enzyme inhibitors
  • immunomodulators brain function promoting drugs, and the like.
  • Rutin is a natural plant polyphenol, which belongs to the flavonoids. It is a citrus flavonoid glycoside found in the leaves and petioles of buckwheat and rhubarb and asparagus. It is also found in the fruit of the Brazilian musk tree. In the fruit and flowers of the tower-like tree, in fruits and peels (especially citrus fruits (orange, grapefruit, lemon and lime) and berries such as mulberry, ash tree and bilberry, the molecular formula is as shown in formula I Flavonoids are a class of low-molecular natural plant constituents, which are secondary metabolites of plants. They are widely found in plant foods and Chinese herbal medicines. At present, about 2,700 species have been isolated from various plants, and flavonoids have various kinds.
  • flavonoids anthocyanins have the pharmacological function of scavenging free radicals, reducing inflammation and reducing the incidence of cardiovascular diseases.
  • rutin has not been used for the treatment of obesity and related diseases or for Research to delay aging.
  • the present invention aims to provide a drug for treating obesity and related diseases or for delaying aging, in view of the current situation in which rutin is not used for the treatment of obesity and related diseases or for delaying aging.
  • the invention provides the use of a natural plant polyphenol rutin for the manufacture of a medicament for the treatment of obesity and obesity-related diseases or for the use of a medicament for delaying aging.
  • the obesity-related disease is selected from the group consisting of diabetes, insulin resistance, fatty liver, cardiovascular disease, metabolic syndrome, and PCOS, and diabetes is further preferably type II diabetes.
  • the invention provides the application of the natural plant polyphenol rutin in the preparation of a medicament for improving energy metabolism of the body, promoting heat generation of the body or promoting mitochondrial function.
  • the invention provides the application of rutin in the preparation of a medicament for treating obesity and obesity-related diseases or a medicament for delaying aging, and proves by experiments that rutin can effectively inhibit obesity, improve insulin resistance, improve fatty liver, PCOS Symptoms and delaying aging, and found that rutin can increase the body's energy metabolism, increase the body's glucose tolerance, enhance tissue insulin sensitivity, and also found that rutin enhances the body's cold stimulation by activating the body's heat production. Adaptability, promote mitochondrial function and open up new avenues for the treatment of obesity and obesity-related diseases and anti-aging.
  • Another object of the present invention is to provide a pharmaceutical composition for treating obesity and related diseases, delaying aging, improving body energy metabolism, promoting body heat generation or promoting mitochondrial function, and the pharmaceutical composition is composed of an effective amount of rutin and A pharmaceutically acceptable carrier or excipient composition, preferably, the pharmaceutically acceptable carrier or adjuvant is a starch and/or nanoparticles for promoting absorption or sustained release.
  • the pharmaceutical composition can be prepared by a conventional method using a carrier or an excipient commonly used in the field of formulation.
  • a pharmaceutical composition of the invention can be prepared by mixing an effective amount of rutin with a pharmaceutically acceptable carrier or adjuvant.
  • the obesity-related disease is selected from the group consisting of diabetes, insulin resistance, fatty liver, cardiovascular disease, metabolic syndrome, and PCOS;
  • the diabetes is type II diabetes.
  • the rutin is administered in an amount of 200 mg/kg body weight per day.
  • the present invention provides a method of treating obesity and obesity-related diseases or delaying aging, the method comprising administering to a patient in need of treatment a therapeutically effective amount of rutin of the following formula I:
  • a therapeutically effective amount of a pharmaceutical composition comprising rutin of formula I and a pharmaceutically acceptable carrier or adjuvant is administered to a patient in need of treatment.
  • the rutin is administered in an amount of 200 mg/kg Weight / day.
  • the pharmaceutically acceptable carrier or adjuvant is a starch and/or nanoparticles for promoting absorption or sustained release.
  • the obesity-related disease is selected from the group consisting of diabetes, insulin resistance, fatty liver, cardiovascular disease, metabolic syndrome, and PCOS. Further preferably, the diabetes is type II diabetes.
  • the invention provides a method of increasing energy metabolism, promoting body heat or promoting mitochondrial function, the method comprising administering to a patient in need of treatment a therapeutically effective amount of rutin of formula I:
  • a therapeutically effective amount of a pharmaceutical composition comprising rutin of formula I and a pharmaceutically acceptable carrier or adjuvant is administered to a patient in need of treatment.
  • the rutin is administered in an amount of 200 mg/kg body weight per day.
  • the pharmaceutically acceptable carrier or adjuvant is a starch and/or nanoparticles for promoting absorption or sustained release.
  • the invention provides rutin of formula I:
  • a pharmaceutical composition consisting of an effective amount of rutin and a pharmaceutically acceptable carrier or adjuvant for the treatment of obesity and obesity related diseases or for delaying aging.
  • the rutin is administered in an amount of 200 mg/kg body weight per day.
  • the pharmaceutically acceptable carrier or adjuvant is a starch and/or nanoparticles for promoting absorption or sustained release.
  • the obesity-related disease is selected from the group consisting of sugar Urine, insulin resistance, fatty liver, cardiovascular disease, metabolic syndrome, and PCOS.
  • the diabetes is type II diabetes.
  • the invention provides rutin of formula I:
  • a pharmaceutical composition consisting of an effective amount of rutin and a pharmaceutically acceptable carrier or adjuvant for increasing energy metabolism, promoting body heat or promoting mitochondrial function.
  • the rutin is administered in an amount of 200 mg/kg body weight per day.
  • the pharmaceutically acceptable carrier or adjuvant is a starch and/or nanoparticles for promoting absorption or sustained release.
  • the present invention proves that rutin can effectively inhibit obesity in obese and diabetic model db/db mice, improve insulin resistance in db/db mice, and increase glucose tolerance of the body by increasing the energy metabolism level of the body.
  • the amount which enhances the insulin sensitivity of the tissue, and also enhances the body's adaptability to cold stimuli by activating the body's fever, thus opening up new avenues for the treatment of obesity and obesity-related diseases and delaying aging.
  • the invention provides the application of rutin in the preparation of a medicament for treating PCOS, and proves that rutin can effectively improve the effect of PCOS and delay aging, and finds that rutin can increase the energy metabolism level of the body.
  • the body's glucose tolerance increases the insulin sensitivity of the tissue.
  • the animal test proves that rutin can effectively improve the clinical symptoms such as reproduction and metabolism of PCOS rats, including the estrous cycle of PCOS rats gradually improved and become more regular; increasing the body's energy metabolism level and improving the body's glucose Tolerance, enhance tissue insulin sensitivity, etc. This opens up new avenues for the treatment of PCOS.
  • the invention provides the application of natural plant polyphenol rutin in preparing medicine for anti-aging, and Animal experiments confirmed that rutin can effectively delay the aging process of C57BL/6 aged mice by effectively increasing the brown fat activity of C57BL/6 aged mice, improving fasting blood glucose levels and enhancing mitochondrial oxidative phosphorylation ability, and increasing C57BL/ The constitution of 6 aged mice can prolong the lifespan of C57BL/6 aged mice. This provides new ideas for the research and development of anti-aging drugs.
  • Figure 1 is a bar graph showing the effect of rutin on the body weight of db/db mice, wherein "control group” means a mouse that is free to drink ordinary water, and "Rutin group” means an aqueous solution containing 1 mg/mL of rutin. Mouse.
  • Figure 2 is a bar graph showing the effect of rutin on the weight of various organs in db/db mice, wherein "control group” means mice that are free to drink ordinary water, and “Rutin group” means that drink contains 1 mg/mL of reed. Ding aqueous solution of mice.
  • Fig. 3 is a line graph showing the effect of rutin on glucose tolerance in db/db mice, wherein "control group” means a mouse that is free to drink ordinary water, and "Rutin group” means an aqueous solution containing 1 mg/mL of rutin. Mouse.
  • Figure 4 is a bar graph showing the effect of rutin on the glucose tolerance curve area of db/db mice, wherein "control group” means mice that are free to drink ordinary water, and "Rutin group” means that drink contains 1 mg/mL of rutin. Aqueous mice.
  • Figure 5 is a line graph showing the effect of rutin on the glucose tolerance curve area of db/db mice, wherein "control group” means mice that are free to drink ordinary water, and "Rutin group” means that drinking 1 mg/mL of rutin is used. Aqueous mice.
  • Figure 6 is a bar graph showing the effect of rutin on the oxygen consumption of db/db mice, wherein "control group” means mice that are free to drink ordinary water, and "Rutin group” means that drinking 1 mg/mL of rutin is used. Aqueous mice.
  • Figure 7 is a bar graph showing the effect of rutin on the body temperature of db/db mice, wherein "control group” means a mouse that is free to drink ordinary water, and "Rutin group” means an aqueous solution containing 1 mg/mL of rutin. Mouse.
  • Figure 8 is a bar graph showing the effect of rutin on the number of mitochondria in db/db mice, wherein "control group” means a mouse that is free to drink ordinary water, and "Rutin group” means an aqueous solution containing 1 mg/mL of rutin. Mouse.
  • Figure 9 is a PET-CT scan showing the effect of rutin on brown fat activity in db/db mice, wherein "control group” means mice that are free to drink normal water, and "Rutin group” means that drink contains 1 mg/mL of rutin. Aqueous mice.
  • Figure 10 is a western blot diagram showing the effect of rutin on the amount of brown lipoprotein in db/db mice, wherein "control group” means mice that are free to drink ordinary water, and “Rutin group” means that drinking contains 1 mg/ Methyl rutin in aqueous solution of mice.
  • Figure 11 is a bar graph showing the expression of liver fat related genes and inflammatory factor mRNA in db/db mice by rutin.
  • control group means a mouse that is free to drink ordinary water
  • the "Rutin group” means a mouse that drinks an aqueous solution containing 1 mg/mL of rutin.
  • the "blank control group” and “control group” described in the following Figures 12-22 all indicate that the normal rat group drinking the same volume of drinking water, "DHEA-induced PCOS group” and “DHEA group” all indicate that drinking is equal to drinking.
  • Figure 12 shows three groups of rat estrus displayed by vaginal smear staining in a blank control group (control group), a DHEA-induced PCOS group (DHEA group), and a DHEA-induced Rutin group (DHEA + Rutin group).
  • the cycle change graph showed that the rust cycle of PCOS rats was significantly improved after rutin treatment.
  • P in the ordinate represents Proestrus, that is, in the early stage of estrus; E represents Estrus, that is, estrus; M represents Metaestrus, that is, late estrus; D represents Dioestrus, that is, estrus.
  • Fig. 13 is a graph showing the results of HE staining by paraffin sectioning of rat ovaries in the control group, the DHEA group, and the DHEA+Rutin group. The results showed that the ovarian morphology of the PCOS model rats tends to be normal after rutin treatment.
  • Figure 14 shows the detection of several steroidogenic synthase (Arom-P450, p450c17, STAR, 3B-HSD, 17B-HSD) in rat ovarian tissue of control, DHEA and DHEA+Rutin groups by RT-PCR.
  • a bar chart of gene expression The results showed that the expression levels of several steroid hormone synthetase in the DHEA group were lower than those in the control group, while the expression levels of the enzymes in the DHEA+Rutin group were significantly higher than those in the DHEA group, reaching the normal range. It indicates that rutin can reverse the abnormal expression of some ovarian steroid hormone synthase.
  • Fig. 15 is a bar graph showing the LH and FSH contents in the serum of the control, DHEA group and DHEA + Rutin group and the LH/FSH detected by the ELASA kit. The results showed that the LH content was significantly higher in the DHEA group than in the control group. After the rutin treatment, the LH content decreased to normal, LH/FSH. The change in the ratio also reflects the same pattern, indicating that the serum levels of some hormones in the PCOS model rats tend to be normal after rutin treatment.
  • Figure 16 shows a representative PET-CT median sagittal section of the control, DHEA, and DHEA+Rutin groups, with the arrows showing the brown adipose tissue range, with the DHEA group compared to the blank control group.
  • the activity was significantly reduced, while the DHEA+Rutin group showed a significant increase in brown fat activity compared to the DHEA group.
  • Figure 17 is a graph showing the semi-quantitative standard uptake value (SUV) analysis of PET-CT in the control group, the DHEA group, and the DHEA+Rutin group. As can be seen from the figure, the DHEA+Rutin group The brown fat activity was significantly enhanced compared to the DHEA group.
  • SSV semi-quantitative standard uptake value
  • Fig. 18 is a line graph and a bar graph showing the results of an intraperitoal glucose tolerance test (IPGTT) of a control group, a DHEA group, and a DHEA+Rutin group.
  • IPGTT intraperitoal glucose tolerance test
  • the results show that rutin can effectively improve the body's glucose metabolism and inhibit insulin resistance.
  • Figure 19 shows rat ELISA serum metabolic markers CHO (total cholesterol), TG (triglyceride), HDL (high density lipoprotein), LDL (low density lipoprotein) in the control group, DHEA group and DHEA + Rutin group.
  • CHO total cholesterol
  • TG triglyceride
  • HDL high density lipoprotein
  • LDL low density lipoprotein
  • Figure 20 is a bar graph showing the results of detection of the rat ELISA serum metabolic index T3 in the control group, the DHEA group, and the DHEA+Rutin group, and the results show that rutin can reduce the T3 content in the blood.
  • Fig. 21 is a bar graph showing the body weight of the control group, the DHEA group, and the DHEA + Rutin group at the end of the treatment, and the results showed that rutin can inhibit the increase in body weight of the PCOS rats.
  • Figure 22 shows brown adipose tissue (BAT), inguinal subcutaneous adipose tissue (SUB), visceral adipose tissue (EP), and liver in control, DHEA, and DHEA+Rutin rats, respectively, after treatment.
  • BAT brown adipose tissue
  • SUV inguinal subcutaneous adipose tissue
  • EP visceral adipose tissue
  • LIVER A bar graph of the results, showing that rutin inhibited the increase in EP in PCOS rats.
  • Figure 23 is a graph showing the survival rate of rutin on the lifespan of C57BL/6 aged mice (Log-rank (Mantel-Cox) Test), wherein the lifespan of the aged rutin group mice was significantly longer than that of the elderly control group.
  • Figure 24 is a PET-CT scan showing the effect of rutin on brown fat activity in C57BL/6 aged mice, in which the brown fat activity (the bright spot inside the dotted line) of the aged rutin group was significantly smaller than that of the old control group.
  • the brown fat of the mouse further indicates that rutin can directly activate brown fat.
  • Figure 25 shows an analysis of the semi-quantitative standard uptake value (SUV) of PET-CT, demonstrating that the brown fat activity of the old rutin group is significantly higher than that of the elderly control group. Strong and consistent with the young control group.
  • SUV semi-quantitative standard uptake value
  • Figure 26 is a bar graph showing the improvement of fasting blood glucose in C57BL/6 aged mice by rutin. It can be seen that the fasting blood glucose of the old rutin group is significantly lower than that of the old control group and the young control group, while the young control There was no statistically significant difference in fasting blood glucose between the group and the elderly control group.
  • Figure 27 is a bar graph showing the effect of rutin on the exercise capacity of C57BL/6 aged mice.
  • the elderly rutin group was significantly higher than the old control group, and the difference between the groups was statistically significant. There was no statistically significant difference in the average spontaneous exercise volume between the old rutin group and the young control group.
  • Figure 28 is a bar graph showing the expression of brown fat and longevity genes of rutin in C57BL/6 aged mice.
  • the total RNA was extracted from the brown fat of the three groups of mice, and the real-time quantitative PCR reaction was carried out after reverse transcription into DNA.
  • the thermogenic gene of the old rutin group mice can be seen.
  • the longevity gene sirt1 was significantly higher than the elderly control group, and was comparable or higher than the young control group.
  • FIG. 29 is a western blot diagram showing rutin-induced oxidative phosphorylation of brown fat mitochondria in C57BL/6 aged mice, in which brown fat mitochondrial oxidative phosphorylation-related proteins (UQCRC2, SDHB, The expression levels of NDUFB8 and ATP5A) were significantly higher than those of the old control mice, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control showed that the amount of protein per well was the same.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase
  • Type II diabetes model animal db/db mice used in the following examples were purchased from the Institute of Model Animals of Nanjing University unless otherwise specified.
  • reagents used in the following examples are of analytical grade grade and are commercially available from regular sources.
  • the rutin used in the following examples was purchased from Chengdu Mansite Biotechnology Co., Ltd.
  • the insulin used in the following examples was purchased from Novo Nordisk Pharmaceutical Co., Ltd. unless otherwise specified.
  • control group and the Rutin group were statistically analyzed, and P ⁇ 0.05 means that the difference between the groups was statistically significant.
  • mice Four-week-old db/db male mice were randomly divided into control group (10 rats) and Rutin group (10 rats), and they were given free diet for a period of time (fed 10Kcal% low fat diet, Research diet, D12450B); The control mice were given free access to normal water; while the Rutin mice were given an aqueous solution containing 1 mg/ml rutin (equivalent to 200 mg/kg body weight/day); continuous administration, the average daily water intake of each experimental group was measured every other day. The body weight was recorded weekly after administration, and after 15 weeks of continuous administration, the mice were sacrificed by cervical dislocation, and the liver, epididymal fat and subcutaneous fat were taken out and weighed.
  • 1 is a bar graph showing the body weights of control mice and Rutin mice, wherein the control mice weighed 58.29 ⁇ 1.73 g, and the Rutin mice weighed 51.69 ⁇ 1.28 g, p ⁇ 0.05. It indicates that rutin can effectively inhibit the obesity of db/db mice.
  • Figure 2 is a bar graph showing the effect of rutin on the weight of various organs in db/db mice. It can be seen that the weight of liver, subcutaneous fat and epididymal fat in the Rutin group compared with the control group. Both were significantly reduced (p ⁇ 0.05), indicating that rutin-treated mice reduced body fat deposition.
  • Example 2 rutin can improve insulin resistance in db/db mice
  • IPGTT Intraperitoal glucose tolerance test
  • mice administered in Example 1 for 12 weeks were fasted overnight, and after weighing, 1.0 g/kg body weight of glucose was intraperitoneally injected, and after the injection, blood glucose meters were respectively used at 0 min, 15 min, 30 min, 45 min, 60 min, 90 min, 120 min. Measuring blood sugar levels.
  • FIG. 3 is a bar graph showing the area under the curve of the glucose tolerance test according to the glucose tolerance test shown in FIG. 3, showing the area under the curve of the Rutin group.
  • FIG. 4 is a bar graph showing the area under the curve of the glucose tolerance test according to the glucose tolerance test shown in FIG. 3, showing the area under the curve of the Rutin group.
  • ITT Insulin tolerance test
  • mice after 13 weeks of administration in Example 1 were fasted for 6 hours, and the intraperitoneal injection of insulin 2 IU/kg body weight was weighed. After the injection, blood glucose levels were measured by blood glucose meters at 0 min, 15 min, 30 min, 45 min and 60 min, respectively. .
  • Figures 3-5 show that rutin can improve insulin resistance in db/db mice.
  • Example 3 rutin can increase the energy consumption of the body
  • mice administered to the 9th week in Example 1 were used, and the co-oxygen consumption of the control mice and the Rutin mice was separately measured by LabMaster of TSE, and the control mice and the Rutin group were separately measured. Each group of mice was placed at a body temperature of 25 ° C and 4 ° C, respectively. The result is shown in Figure 6-8.
  • Figure 6 is a bar graph of the effect of rutin on the oxygen consumption of db/db mice, which showed that the oxygen consumption of the Rutin group was higher than that of the control mice under both light and dark conditions. It indicated that rutin increased the overall energy metabolism of the body (P ⁇ 0.05).
  • Figure 7 is a bar graph of the effect of rutin on the body temperature of db/db mice, which showed that the body temperature of Rutin group and control mice were the same at room temperature of 25 °C, but the Rutin group was small at 4 °C.
  • the body temperature of the mice was significantly higher than that of the control mice, indicating that the body heat of the Rutin group was significantly higher than that of the control mice, indicating that rutin effectively increased the fever of mice under cold stimulation (P ⁇ 0.05). ).
  • Figure 8 is a bar graph showing the effect of rutin on the number of mitochondria in db/db mice.
  • the number of mitochondria in Rutin group was significantly higher than that in control mice (P ⁇ 0.05), indicating the Rutin group.
  • the level of energy metabolism in mice was higher than in control mice.
  • 18 F-FDG fluorodeoxyglucose, commercially available
  • PET-CT scan was performed after 1 hour of room temperature metabolism, and was obtained and analyzed.
  • the uptake of 18 F-FDG in the BAT region between the scapulae is shown in Figure 9.
  • the mice were sacrificed by neck removal, and liver, brown fat, epididymal fat, and subcutaneous fat were taken out. The above four tissues were placed in a tissue cryotube and stored in a -80 ° C refrigerator.
  • Partial brown lipoprotein was extracted from db/db mice with RIPA solution (tissue cell lysate, commercially available), and the brown fat-specific protein was subjected to Western blotting. The results are shown in Figure 10, using Trizol (total RNA). The extraction reagents, purchased from Invitrogen, USA, were used to extract partial liver total RNA from each group of db/db mice, and the expression levels of fat-related genes and inflammatory factors were detected by RT-PCR after reverse transcription. The results are shown in FIG.
  • Figure 9 is a positron emission tomography-TO-ray tomography (PET-CT) scan showing the effect of rutin on brown fat activity in db/db mice, in which the brown fat activity of the Rutin group mice (dotted line) The internal highlights are significantly more than the brown fat of the control mice, which in turn indicates that rutin can directly activate brown fat, thereby increasing the body's energy consumption.
  • PET-CT positron emission tomography-TO-ray tomography
  • FIG 10 is a western blot showing the effect of rutin on the amount of brown lipoprotein in db/db mice, in which the expression of brown fat-specific proteins (UCP1, ATP5A, UQCRC2, SDHB) in Rutin mice is significant. More than the brown fat of the control mice, actin as an internal control showed that the amount of protein loaded per well was the same. These results further indicate that rutin can directly up-regulate the expression of brown fat-specific protein, thereby increasing the energy consumption of the body.
  • brown fat-specific proteins UCP1, ATP5A, UQCRC2, SDHB
  • Figure 11 is a real-time fluorescence bar graph showing the mRNA expression of fat-related genes and inflammatory factors in the liver of db/db mice, in which the fat-related genes and inflammatory factors (PPARg2, IL- in the liver of Rutin mice). 6.
  • the mRNA expression levels of MCP1 and TNFa were significantly lower than those in the liver of control mice.
  • Figures 6-11 show that rutin can increase the energy metabolism level of the body.
  • Rats were given subcutaneous injection of DHEA (6 mg/100 g body weight/day) daily, three weeks later according to the large Murine vaginal smear results and plasma insulin levels were screened out for 20 successful PCOS rat models. They were randomly divided into 10 rutin experimental group and 10 rutin control group.
  • Rats in the experimental group were fed with rutin daily at a dose of 400 mg/kg body weight/day, and an equal volume of drinking water was administered to the rats in the blank control group and the rutin control group. After three weeks, the material was taken. During this period, weighed weekly and tested the estrous cycle of the rats, and finally detected serum changes in hormones and morphological changes in the ovary.
  • blade control group and “control group” all indicated that the normal rats group drinking the same volume of drinking water
  • DHEA induced PCOS group” and DHEA group all indicated that the PCOS rats group drinking the same volume of drinking water
  • DHEA-induced feeding in the Rutin group and "DHEA+Rutin group” were expressed at 400 mg/kg body weight. The day/day dose was administered to the PCOS rat group of rutin.
  • Figure 12 is a graph showing changes in estrous cycle of three groups of rats by the last HE staining of vaginal smears for 8 consecutive days in the control group, DHEA group and DHEA + Rutin group. The results showed that the rutin treatment significantly improved PCOS. The estrous cycle of model rats.
  • Fig. 13 is a graph showing the results of HE staining by paraffin sectioning of rat ovaries in the control group, the DHEA group, and the DHEA+Rutin group. The results showed that the ovarian morphology of the PCOS model rats tends to be normal after rutin treatment.
  • Figure 14 shows the detection of several steroidogenic synthase (Arom-P450, p450c17, STAR, 3B-HSD, 17B-HSD) in rat ovarian tissue of control, DHEA and DHEA+Rutin groups by RT-PCR.
  • a bar chart of gene expression The results showed that the expression levels of several steroid hormone synthetase in the DHEA group were lower than those in the control group, while the expression levels of the enzymes in the DHEA+Rutin group were significantly higher than those in the DHEA group, reaching the normal range. It indicates that rutin can reverse the abnormal expression of some ovarian steroid hormone synthase.
  • Fig. 15 is a bar graph showing the LH and FSH contents in the serum of the control, DHEA group and DHEA + Rutin group and the LH/FSH detected by the ELASA kit.
  • the results showed that the LH content in the DHEA group was significantly higher than that in the normal control group.
  • the LH content decreased to normal, and the LH/FSH ratio change also reflected the same pattern, indicating that the serum part of the PCOS model rats after rutin treatment. Hormone levels tend to be normal.
  • the arrow shows the range of brown adipose tissue, and the brown fat activity of the control group and DHEA+Rutin group is significantly higher.
  • the DHEA group from the analysis of the semi-quantitative standard uptake value (SUV, the ratio of the activity of the imaging agent of local tissue uptake to the average injection activity of the whole body) of PET-CT (Fig. 17), The DHEA+Rutin group showed a significant increase in brown fat activity compared to the DHEA group.
  • rutin treatment can improve insulin resistance in PCOS rats.
  • PCOS is often accompanied by islets Sustaining resistance is an important part of the pathogenesis of PCOS.
  • IPGTT glucose tolerance test
  • three groups of rats were tested for glucose tolerance test (IPGTT) three weeks after rutin treatment. The results are shown on the left side of Figure 18. The results show that rutin can effectively improve the body's glucose metabolism and inhibit insulin resistance.
  • the right side of Fig. 18 is the area under the AUC (area under the curve) curve, which also illustrates the above three sets of differences.
  • rutin can significantly increase the high-density lipoprotein content in the blood and reduce the T3 content in the blood (Fig. 20).
  • Rutin can inhibit the increase of body weight in PCOS rats. Three groups of rats were weighed and harvested after rutin treatment (BAT: brown adipose tissue; SUB: inguinal subcutaneous fat tissue; EP: visceral adenoma; LIVER: liver), as shown in Figure 21, rutin can Inhibition of the increase in body weight of PCOS rats, especially the increase in EP ( Figure 22).
  • Example 6 rutin can prolong the lifespan of elderly mice and some elderly symptoms
  • the age of C57BL/6 aged mice used in the present invention is 24 months old, and all of them are male mice, 30 in total, and are randomly divided according to body weight, that is, the elderly control group and the old rutin group, each group has 15; Fifteen male C57BL/6 young mice, aged 4-5 months, served as a young control group.
  • Figure 23 is a graph showing the survival rate of rutin on the lifespan of C57BL/6 aged mice (Log-rank (Mantel-Cox) Test), wherein the lifespan of the aged rutin group mice was significantly longer than that of the elderly control group.
  • Figure 24 is a positron emission computed tomography (PET-CT) scan showing the effect of rutin on brown fat activity in C57BL/6 aged mice ( 18 F-FDG injected into the tail vein of mice, metabolized for 1 hour after injection, A PET-CT scan was performed to analyze the uptake of 18 F-FDG in the BAT region of the scapula to show BAT activity.
  • the brown fat activity (the bright spot inside the dotted line) of the aged rutin group was significantly higher than that of the elderly control group. Brown fat.
  • the standard uptake value of the semi-quantitative index of PET-CT (standard uptake value, SUV, the ratio of the activity of the imaging agent of local tissue uptake to the average injection activity of the whole body) also further proved that the brown fat activity of the old rutin group was significantly enhanced compared with the elderly control group, and young The control group remained basically the same.
  • Figure 26 is a bar graph showing the improvement of fasting blood glucose in C57BL/6 aged mice by rutin.
  • the method for detecting fasting blood glucose is identical to that of db/db mice in Example 2. It can be seen that the fasting blood glucose of the old rutin group was significantly lower than that of the old control group and the young control group, while the fasting blood glucose difference between the young control group and the elderly control group was not statistically significant.
  • Figure 27 is a bar graph showing the effect of rutin on the exercise capacity of C57BL/6 aged mice.
  • the spontaneous exercise volume of the mice was recorded for 24 hours.
  • the aged rutin group was significantly higher than the old control group.
  • the difference between the groups was statistically significant. There was no statistically significant difference in the average spontaneous exercise volume between the control mice.
  • Figure 28 is a bar graph showing the expression of brown fat and longevity genes of rutin in C57BL/6 aged mice.
  • the total RNA was extracted from the brown fat of the three groups of mice, and the real-time quantitative PCR reaction was carried out after reverse transcription into DNA.
  • the thermogenic gene of the old rutin group mice can be seen.
  • the longevity gene sirt1 was significantly higher than the elderly control group, and was comparable or higher than the young control group.
  • FIG. 29 is a western blot diagram showing rutin-induced oxidative phosphorylation of brown fat mitochondria in C57BL/6 aged mice, in which brown fat mitochondrial oxidative phosphorylation-related proteins (UQCRC2, SDHB, The expression levels of NDUFB8 and ATP5A) were significantly higher than those of the old control mice, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control showed that the amount of protein per well was the same.
  • GPDH glyceraldehyde-3-phosphate dehydrogenase

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本发明提供了一种天然植物多酚芦丁在制备用于治疗肥胖或肥胖相关疾病的药物或用于延缓衰老的药物中的应用,并且提供了芦丁在制备用于提高机体能量代谢或促进机体发热的药物中的应用。进一步地,本发明还提供了一种用于治疗肥胖及肥胖相关疾病、延缓衰老、提高机体能量代谢或促进机体发热的药物组合物。本发明为治疗肥胖及肥胖相关疾病或延缓衰老开辟了新的途径。

Description

芦丁在治疗肥胖及相关疾病或延缓衰老中的应用 技术领域
本发明属于生物医药领域。具体而言,本发明涉及一种天然植物成分在制备用于治疗肥胖及相关疾病的药物或用于延缓衰老的药物中的应用。更具体地,本发明涉及植物多酚芦丁(Rutin)在制备用于治疗肥胖及相关疾病的药物或用于延缓衰老的药物中的应用。
背景技术
肥胖的发生是机体能量代谢失调的结果,即当机体能量摄入超过能量消耗时,余下的能量几乎全部转化为甘油三酯,储藏于全身白色脂肪组织(white adipose tissue,WAT)中。而目前随着人们生活水平的提高和膳食结构的改变,摄入的食物过量而体力活动和运动减少,导致人们机体能量代谢的失衡,肥胖已成为人类无法避免的一个难题。
肥胖在世界范围内均呈现出爆发性流行趋势,尽管在饮食控制和体质改善上的花费已经上千亿元,但其发生率仍在持续上升。2008年5月,世界卫生组织(WHO)公布统计资料显示,目前全球至少有10亿人口超重,而肥胖者则已高达3亿以上。而在我国,近年来,随着生活水平的提高、生活方式的改变,肥胖患者数量也已经急剧上升,肥胖和超重人口已达总人口的14.7%。
随着肥胖发病率的增高,与肥胖相关的疾病也相应增加,如Ⅱ型糖尿病、非酒精脂肪肝、胆结石、心血管病和老年痴呆症等的发病率也迅速上升。
肥胖是指一定程度的明显超重与脂肪层过厚,由于食物摄入过多或机体代谢的改变而导致体内脂肪积聚过多造成体重过度增长,并引起人体病理、生理改变的一种表现。与正常体质者相比,肥胖本身并没有太多明显特征,但是肥胖会带来很多严重的并发症的发生率明显增加,例如高血压、脑卒中、糖尿病、心血管疾病、脂代谢异常、肿瘤以及其他代谢性疾病,而且肥胖与Ⅱ型糖尿病并存表现为胰岛素抗性(Insulin Resistance)、糖耐量减低。肥胖已经成为21世纪影响人类健康的主要危险因素之一,严重危害人类的身体健康以及生活质量。
传统的观念认为减少肥胖者体内蓄积的脂肪也就是简单地减少能量摄取、增加能量的消耗。然而,人为的克制饮食,减少食物的摄入是对抗人类 自然状态的一种病理过程。因此,长期保持少量饮食的这种病理状态是难以坚持和实现的。另一方面,增加能量消耗往往需要长期、连贯有序的有氧运动,虽然有效却难以长期坚持。而目前,已有的药物,不论是通过抑制食欲(如西布曲明)还是通过促进消耗(如甲状腺激素)往往都疗效甚微,并且还具有不利肝脏、心血管等方面的副作用。目前,通过传统的方法长期有效地减少脂肪蓄积、抵抗肥胖是难以实现和保持的。因此,寻找新的安全有效的控制肥胖的方法已经成为研究热点。
多囊卵巢综合征(PCOS)是青春期及育龄妇女最常见的生殖轴内分泌紊乱性疾病。该病病因尚未确切阐明,其诊断标准也尚未统一,临床表现为月经不调、闭经、不孕、多毛、肥胖以及双侧卵巢多囊性增大。PCOS以胰岛素抵抗、高胰岛素血症、高雄激素血症等为其核心病理生理基础,在此基础上PCOS患者的Ⅱ型糖尿病、高血压、高脂血症、动脉粥样硬化以及妊娠高血压综合征、妊娠期糖尿病等疾病的患病风险明显增加;PCOS已成为临床和基础研究中备受关注的疾病之一。如何改善PCOS的临床症状,提高受孕率,减少治疗带来的毒副作用,仍然是目前大家关心的问题。近年来,PCOS的发病率呈明显增高趋势,育龄期妇女患病率达5%~10%,根据美国国立卫生院(NIH)的诊断标准,全世界育龄期妇女PCOS的发病率高达6%~10%,而根据鹿特丹标准这一数据可能会更高。
目前西医治疗PCOS致不孕患者主要是促排卵。诱发排卵的经典方法是克罗米芬(CC)和绒毛膜促性腺激素(HCG),还有抗雄激素和抗胰岛素治疗,尿促性素(HMG)、FSH制剂、GnRH、卵巢楔形切除术、腹腔镜下卵巢打孔术、体外受精一胚胎移植等治疗方案。但西药治疗存在一定的毒副作用,手术治疗带有一定的风险,其适应症和安全性尚待进一步确认。因此,寻找新的安全有效的治疗PCOS的方法已经成为研究热点。
衰老是机体一种正常的生命过程,尽管不可避免,但通过延缓衰老进而提高生命质量却可能实现。研究显示,线粒体功能紊乱与衰老存在紧密的关系,诸如在线粒体功能降低时,会导致机体温度降低,运动能力减弱,氧消耗下降等,进而丧失了一系列青年状态时才有的生理特征,并最终导致衰老,且衰老发生过程中也会进一步促进衰老进程。目前的抗衰老药物主要分为两大类,即化学药物和中药。前者主要包括抗氧化剂(维生素类、微量元素类、负荷剂、酶类抗氧化剂等)、抗衰老激素(人类生长激素、褪黑激素、脱氢表雄甾酮、性激素等)、营养素类(核酸、蛋白质、氨基酸等)、单胺氧化 酶抑制剂、免疫调节剂、大脑功能促进药等。针对西药存在不良反应多,且耐受性较差的缺陷,以及越来越多的人开始接受应用天然产物进行疾病的预防和治疗,使中药在抗衰老方面有了更广泛的研发价值。
Figure PCTCN2015080693-appb-000001
芦丁(Rutin)是一种天然植物多酚,属于黄酮类化合物,是存在于荞麦、大黄的叶子和叶柄以及芦笋中的柑橘属黄酮类化合物糖苷,其也存在于巴西芸香树的果实中、塔状树的果实和花中、水果和果皮中(特别是柑橘类水果(橘子、柚子、柠檬和酸橙)以及如桑葚、灰树果实以及越橘等浆果中,其分子式如式Ⅰ所示。黄酮类化合物是一类低分子的天然植物成分,是植物次级代谢产物,广泛存在于植物性食物及中草药中,目前,已经各种植物中分离出约2700种,黄酮类化合物具有多种生理活性。已经研究证明黄酮类化合物植物花色苷类具有清除体内自由基、消炎、降低心血管等疾病的发病率的药理功能。目前,尚无将芦丁用于治疗肥胖及相关疾病或用于延缓衰老的研究。
发明内容
本发明的目的在于针对目前尚无将芦丁用于治疗肥胖及相关疾病或用于延缓衰老的研究的现状,提供一种芦丁在制备用于治疗肥胖及相关疾病的药物或用于延缓衰老的药物中的应用,从而为肥胖及相关疾病的治疗或延缓衰老开辟新的治疗途径。
针对上述目的,本发明的技术方案具体如下:
一方面,本发明提供了天然植物多酚芦丁在制备用于治疗肥胖及肥胖相关疾病的药物或用于延缓衰老的药物中的应用。
优选地,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS,糖尿病进一步优选为Ⅱ型糖尿病。另一方面, 本发明的提供了天然植物多酚芦丁在制备用于提高机体能量代谢、促进机体发热或促进线粒体功能的药物中应用。
本发明提供了芦丁在制备用于治疗肥胖及肥胖相关疾病的药物或用于延缓衰老的药物中的应用,并通过实验证实芦丁可以有效地抑制肥胖、改善胰岛素抵抗、改善脂肪肝、PCOS症状以及延缓衰老,并且发现了芦丁可以通过增加机体的能量代谢水平,提高机体的葡萄糖耐受量,增强组织的胰岛素灵敏性,还发现芦丁通过激活机体产热来增强机体对寒冷刺激的适应性,促进线粒体功能从而为肥胖及肥胖相关疾病以及延缓衰老的治疗开辟新的途径。
本发明的另一目的在于,提供一种用于治疗肥胖及相关疾病、延缓衰老、提高机体能量代谢、促进机体发热或促进线粒体功能的药物组合物,该药物组合物由有效量的芦丁和药学上可接受的载体或辅料组成,优选地,所述药学上可接受的载体或辅料为淀粉和/或用于促进吸收或缓释的纳米颗粒。可使用制剂领域常用的载体或辅料,采用常规方法来制备所述药物组合物。例如,本发明药物组合物可通过将有效量的芦丁与药学上可接受的载体或辅料混合来制备。
优选地,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS;
进一步优选地,所述糖尿病是Ⅱ型糖尿病。
优选地,所述芦丁的给药量为200mg/kg体重/天。
又一方面,本发明提供一种治疗肥胖及肥胖相关疾病或延缓衰老的方法,所述方法包括给予需要治疗的患者治疗有效量的下式Ⅰ的芦丁:
Figure PCTCN2015080693-appb-000002
或者给予需要治疗的患者治疗有效量的、由式Ⅰ的芦丁和药学上可接受的载体或辅料组成的药物组合物。优选地,所述芦丁的给药量为200mg/kg 体重/天。再优选地,所述药学上可接受的载体或辅料为淀粉和/或用于促进吸收或缓释的纳米颗粒。还优选地,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS。进一步优选地,所述糖尿病是Ⅱ型糖尿病。
另一方面,本发明提供一种提高机体能量代谢、促进机体发热或促进线粒体功能的方法,所述方法包括给予需要治疗的患者治疗有效量的下式Ⅰ的芦丁:
Figure PCTCN2015080693-appb-000003
或者给予需要治疗的患者治疗有效量的、由式Ⅰ的芦丁和药学上可接受的载体或辅料组成的药物组合物。优选地,所述芦丁的给药量为200mg/kg体重/天。再优选地,所述药学上可接受的载体或辅料为淀粉和/或用于促进吸收或缓释的纳米颗粒。
再一方面,本发明提供下式Ⅰ的芦丁:
Figure PCTCN2015080693-appb-000004
或者由有效量的芦丁和药学上可接受的载体或辅料组成的药物组合物,其用于治疗肥胖及肥胖相关疾病或用于延缓衰老。优选地,所述芦丁的给药量为200mg/kg体重/天。再优选地,所述药学上可接受的载体或辅料为淀粉和/或用于促进吸收或缓释的纳米颗粒。还优选地,所述肥胖相关疾病选自糖 尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS。进一步优选地,所述糖尿病是Ⅱ型糖尿病。
又一方面,本发明提供下式Ⅰ的芦丁:
Figure PCTCN2015080693-appb-000005
或者由有效量的芦丁和药学上可接受的载体或辅料组成的药物组合物,其用于提高机体能量代谢、促进机体发热或促进线粒体功能。优选地,所述芦丁的给药量为200mg/kg体重/天。再优选地,所述药学上可接受的载体或辅料为淀粉和/或用于促进吸收或缓释的纳米颗粒。
本领域技术人员也可以进一步对芦丁进行结构优化和改造,所得到的芦丁结构优化物或对芦丁基本结构进行改变的药物以及药物组合物也应当在本发明的权利要求所要求保护的范围之内。
本发明通过试验证明,芦丁可以有效地抑制肥胖和糖尿病模型db/db小鼠的肥胖,改善db/db小鼠的胰岛素抗性,并通过增加机体的能量代谢水平,提高机体的葡萄糖耐受量,增强组织的胰岛素灵敏度,而且还通过激活机体发热增强了机体对寒冷刺激的适应性,从而为治疗肥胖及肥胖相关疾病以及延缓衰老开辟了新的途径。
本发明提供了芦丁在制备用于治疗PCOS的药物中的应用,并通过实验证实芦丁可以有效地改善PCOS的效果以及延缓衰老,并且发现了芦丁可以通过增加机体的能量代谢水平,提高机体的葡萄糖耐受量,增强组织的胰岛素灵敏性。
本发明通过动物试验证明,芦丁可以有效地改善PCOS大鼠的生殖和代谢等临床症状,包括PCOS大鼠的发情周期逐步得到改善并日趋规律;通过增加机体的能量代谢水平,提高机体的葡萄糖耐受量,增强组织的胰岛素灵敏度等。这为治疗PCOS开辟了新的途径。
本发明提供了天然植物多酚芦丁在制备用于抗衰老的药物中的应用,并 通过动物实验证实芦丁能够通过有效提升C57BL/6老年小鼠的棕色脂肪活性,并改善空腹血糖水平及增强线粒体氧化磷酸化能力等方面有效延缓C57BL/6老年小鼠的衰老进程,增加C57BL/6老年小鼠的体质,并可以延长C57BL/6老年小鼠的寿命。这为抗衰老药物的研究和开发提供新思路。
附图的简要说明
以下,结合附图来详细说明本发明的实施方案,其中:
本发明附图中出现的*表示P<0.05,**表示P<0.01,***表示P<0.001。
图1是显示芦丁对db/db小鼠体重的影响的条形图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图2是显示芦丁对db/db小鼠各种脏器重量的影响的条形图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图3是显示芦丁对db/db小鼠葡萄糖耐量的影响的折线图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图4是显示芦丁对db/db小鼠葡萄糖耐量曲线面积的影响的条形图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图5是显示芦丁对db/db小鼠葡萄糖耐量曲线面积的影响的折线图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图6是显示芦丁对db/db小鼠耗氧量的影响的条形图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图7是显示芦丁对db/db小鼠体温的影响的条形图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图8是显示芦丁对db/db小鼠线粒体数量的影响的条形图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图9是显示芦丁对db/db小鼠棕色脂肪活性影响的PET-CT扫描图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图10是显示芦丁对db/db小鼠棕色脂肪蛋白量影响的蛋白质印迹(western blot)图,其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
图11是显示芦丁对db/db小鼠肝脏脂肪相关基因和炎症因子mRNA的表达条形图。其中,“对照组”表示自由饮用普通水的小鼠,“Rutin组”表示饮用含1mg/mL芦丁的水溶液的小鼠。
以下附图12-22中所述的“空白对照组”、“对照组”均表示饮用等体积饮用水的正常大鼠组,“DHEA诱导PCOS组”、“DHEA组”均表示饮用等体积饮用水的PCOS大鼠组,“DHEA诱导饲喂Rutin组”、“DHEA+Rutin组”均表示以400mg/kg体重/天的剂量灌饲芦丁的PCOS大鼠组。
图12示出了通过对空白对照组(对照组)、DHEA诱导PCOS组(DHEA组)以及DHEA诱导饲喂Rutin组(DHEA+Rutin组)的大鼠阴道涂片染色显示的三组大鼠发情周期变化图,结果表明芦丁处理后可明显改善PCOS模型大鼠的发情周期。其中,纵坐标中的P代表Proestrus,即发情前期;E代表Estrus,即发情期;M代表Metaestrus,即发情后期;D代表Dioestrus,即发情间期。
图13示出了通过对对照组、DHEA组和DHEA+Rutin组的大鼠卵巢石蜡切片后HE染色观察的结果图。结果表明芦丁处理后,PCOS模型大鼠卵巢形态趋于正常。
图14示出了通过RT-PCR检测对照组、DHEA组和DHEA+Rutin组的大鼠卵巢组织中几个类固醇激素合成酶(Arom-P450、p450c17、STAR、3B-HSD、17B-HSD)的基因表达情况的条形图。结果显示相比于对照组,DHEA组的几个类固醇激素合成酶的表达量降低,而DHEA+Rutin组相比于DHEA组这几个酶的表达量又显著升高,达到正常范围。表明芦丁能逆转部分卵巢类固醇激素合成酶的异常表达。
图15示出了用ELASA试剂盒检测对照组、DHEA组和DHEA+Rutin组的大鼠血清中的LH和FSH含量以及LH/FSH的条形图。结果显示LH含量在DHEA组显著高于对照组,芦丁处理后,LH含量降至正常,LH/FSH 的比值变化也反映出相同规律,表明芦丁处理后,PCOS模型大鼠血清中部分激素含量趋于正常。
图16示出了对照组、DHEA组和DHEA+Rutin组的大鼠代表性的PET-CT正中矢状面切图,箭头所示为棕色脂肪组织范围,其中DHEA组相比空白对照组棕色脂肪活性显著降低,而DHEA+Rutin组相比DHEA组棕色脂肪活性显著提升。
图17示出了对照组、DHEA组和DHEA+Rutin组的大鼠的PET-CT的半定量指标标准摄取值(standard uptake value,SUV)分析图,从图中可以看出,DHEA+Rutin组比DHEA组棕色脂肪活性显著增强。
图18示出了对照组、DHEA组和DHEA+Rutin组的大鼠的葡萄糖耐量试验(intraperitoneal glucose tolerancetest,IPGTT)结果的折线图和条形图。结果表明芦丁可以有效改善机体葡萄糖代谢,抑制胰岛素抵抗。
图19示出了对照组、DHEA组和DHEA+Rutin组的大鼠ELISA血清代谢指标CHO(总胆固醇)、TG(甘油三酯)、HDL(高密度脂蛋白)、LDL(低密度脂蛋白)的检测结果的条形图。结果表明芦丁可以显著提高血液中高密度脂蛋白含量。
图20示出了对照组、DHEA组和DHEA+Rutin组的大鼠ELISA血清代谢指标T3的检测结果的条形图,结果表明芦丁可以降低了血液中T3的含量。
图21示出了对照组、DHEA组和DHEA+Rutin组的大鼠在处理结束后体重的条形图,结果表明芦丁可以抑制PCOS大鼠体重的增加。
图22示出了在处理结束后分别取对照组、DHEA组和DHEA+Rutin组大鼠的棕色脂肪组织(BAT)、腹股沟部皮下脂肪组织(SUB)、内脏性腺脂肪组织(EP)和肝脏(LIVER)称重结果的条形图,结果表明,芦丁抑制了PCOS大鼠EP的增加。
图23是显示芦丁对C57BL/6老年小鼠的寿命影响的存活率比较图(Log-rank(Mantel-Cox)Test),其中老年芦丁组小鼠的寿命较老年对照组显著延长。
图24是显示芦丁对C57BL/6老年小鼠的棕色脂肪活性影响的PET-CT扫描图,其中老年芦丁组小鼠的棕色脂肪活性(点线内部的亮点)明显多于老年对照组小鼠的棕色脂肪,进而说明了芦丁可以直接激活棕色脂肪。
图25显示了对PET-CT的半定量指标标准摄取值(standard uptake value,SUV)的分析图,证明老年芦丁组小鼠的棕色脂肪活性较老年对照组显著增 强,且与年轻对照组基本保持一致。
图26是显示芦丁对C57BL/6老年小鼠的空腹血糖改善情况的条形图,可以看出,老年芦丁组小鼠的空腹血糖显著低于老年对照组和年轻对照组,而年轻对照组和老年对照组小鼠的空腹血糖差异不存在统计学意义。
图27是显示芦丁对C57BL/6老年小鼠的运动能力影响的条形图。其中老年芦丁组的显著高于老年对照组,组间比较差异具有统计学意义;而老年芦丁组与年轻对照组小鼠之间每天平均自发运动量比较差异不存在统计学意义。
图28是显示芦丁对C57BL/6老年小鼠棕色脂肪产热及长寿基因的表达条形图。经过对三组小鼠的棕色脂肪进行总RNA提取,并经反转录为DNA后进行实时定量PCR反应,以年轻对照组小鼠作为参考,可以看出老年芦丁组小鼠的产热基因以及长寿基因sirt1均显著高于老年对照组,且相当或高于年轻对照组小鼠。
图29是显示芦丁对C57BL/6老年小鼠棕色脂肪线粒体氧化磷酸化相关的蛋白质印迹(western blot)图,其中老年芦丁组小鼠的棕色脂肪线粒体氧化磷酸化相关蛋白(UQCRC2、SDHB、NDUFB8、ATP5A)的表达量明显多于老年对照组小鼠的棕色脂肪,甘油醛-3-磷酸脱氢酶(GAPDH)作为内参对照表明每孔蛋白的上样量是一样的。这些结果进而说明了芦丁可以直接上调棕色脂肪线粒体氧化磷酸化相关蛋白的表达量,进而提高机体的能量消耗。
实施发明的最佳方式
下面结合实施例和附图进一步说明本发明。应当理解,下述实施例仅是对本发明的进一步阐明,而非对本发明的限制。
除非特别指明,以下实施例中所用的Ⅱ型糖尿病模式动物db/db小鼠均购自南京大学模式动物研究所。
除非特别指明,以下实施例中所用的试剂均为分析纯级别的试剂,且可从正规渠道商购获得。
除非特别指明,以下实施例中所用的芦丁购自成都曼思特生物技术有限公司。
除非特别指明,以下实施例中所用的胰岛素购自诺和诺德制药有限公司。
本发明将对照组和Rutin组进行统计学分析,P<0.05即表示组间差异具有统计学意义。
实施例1芦丁抑制db/db小鼠的肥胖
选取db/db小鼠模型:
取4周龄的db/db雄性小鼠,随机分为对照组(10只)和Rutin组(10只),自由饮食一段时间(饲喂10Kcal%低脂饲料,Research diet,D12450B);然后,对照组小鼠自由饮用普通水;而Rutin组小鼠饮用含1mg/ml芦丁(相当于200mg/kg体重/天)的水溶液;连续给药,隔天检测各实验组动物每天平均饮水量,并在给药的每周记录体重,连续给药15周后,脱颈处死小鼠,取出肝脏、附睾脂肪和皮下脂肪,称重。
结果如图1-2所示。
其中,图1是显示对照组小鼠和Rutin组小鼠的体重的条形图,其中对照组小鼠体重为58.29±1.73g,Rutin组小鼠体重为51.69±1.28g,p<0.05。表明芦丁可以有效地抑制db/db小鼠的肥胖。
图2是显示了芦丁对db/db小鼠各种脏器重量的影响的条形图,可以看见,Rutin组小鼠与对照组小鼠相比,其肝脏、皮下脂肪和附睾脂肪的重量都显著地降低(p<0.05),表明经芦丁处理的小鼠减少了机体的脂肪沉积。
实施例2芦丁可以改善db/db小鼠的胰岛素抗性
已有大量研究表明,肥胖往往伴随着严重的胰岛素抗性,因此,对于实施例1中给药至第12周的小鼠还进行了以下试验:
1.葡萄糖耐量试验(intraperitoneal glucose tolerancetest,IPGTT):
将实施例1中给药12周的小鼠禁食过夜,称重后,腹腔注射葡萄糖1.0g/kg体重,注射后,用血糖仪分别于0min、15min、30min、45min、60min、90min、120min测血糖量。
结果如图3所示,对照组db/db小鼠的空腹血糖(31.80±2.00mM),显著高于Rutin组db/db小鼠的空腹血糖(23.34±1.46mM),说明芦丁可以有效地控制db/db小鼠的高血糖(p<0.01);图4所示为根据图3所示葡萄糖耐量试验绘制的葡萄糖耐量检查的曲线下方的面积的条形图,显示Rutin组的曲线下方面积明显小于对照组的曲线下方面积,表明芦丁可以显著地提高血糖的清除(p<0.01)。
2.胰岛素耐量试验(insulin tolerance test,ITT):
将实施例1中给药13周后的小鼠禁食6小时,称重后腹腔注射胰岛素2IU/kg体重,在注射后,用血糖仪分别于0min、15min、30min、45min和60min测血糖量。
结果如图5所示,表明芦丁可以显著地提高胰岛素灵敏度。
综上所述,图3-5表明芦丁可以改善db/db小鼠的胰岛素抗性。
实施例3芦丁可以提高机体的能量消耗
取实施例1中给药至第9周的db/db小鼠,用TSE公司的LabMaster分别检测对照组小鼠和Rutin组小鼠的共耗氧量,并分别测量对照组小鼠和Rutin组小鼠中的每一组分别在置于25℃以及4℃的条件下的体温。结果如图6-8所示。
图6是芦丁对db/db小鼠耗氧量的影响的条形图,其中,显示无论是光照还是黑暗条件下,Rutin组小鼠的机体的耗氧量都高于对照组小鼠,说明芦丁提高了机体的整体能量代谢(P<0.05)。
图7则是芦丁对db/db小鼠体温的影响的条形图,其中,显示在25℃室温时Rutin组小鼠和对照组小鼠的体温相同,但是在4℃低温下Rutin组小鼠的体温明显高于对照组小鼠的体温,表明Rutin组小鼠机体的发热量明显高于对照组小鼠,表明芦丁有效地提高了小鼠在寒冷刺激下的发热作用(P<0.05)。
图8是显示芦丁对db/db小鼠线粒体数量的影响的条形图,其中Rutin组小鼠的线粒体数量明显多于对照组小鼠的线粒体数量(P<0.05),进而说明了Rutin组小鼠的能量代谢水平高于对照组小鼠。
给药至第10周的db/db小鼠空腹16小时后,尾静脉注射18F-FDG(氟代脱氧葡萄糖,商购获得),室温代谢1小时后进行PET-CT扫描,获取并分析在肩胛间BAT区18F-FDG的摄取量,结果见图9。连续给药15周后,脱颈处死小鼠,取出肝脏、棕色脂肪、附睾脂肪和皮下脂肪。将上述四种组织置于组织冻存管中并在-80℃冰箱内保存。用RIPA液(组织细胞裂解液,商购获得)提取各组db/db小鼠部分棕色脂肪蛋白,并对棕色脂肪特异性蛋白进行蛋白质印迹实验,结果如图10所示,用Trizol(总RNA抽提试剂,购自Invitrogen,美国)提取各组db/db小鼠部分肝脏总RNA,反转录后通过RT-PCR检测脂 肪相关基因和炎症因子的表达量,结果如图11所示。
图9是显示芦丁对db/db小鼠棕色脂肪活性影响的正电子发射断层显像--X线断层显像(PET-CT)扫描图,其中Rutin组小鼠的棕色脂肪活性(点线内部的亮点)明显多于对照组小鼠的棕色脂肪,进而说明了芦丁可以直接激活棕色脂肪,进而提高机体的能量消耗。
图10是显示芦丁对db/db小鼠棕色脂肪蛋白量影响的蛋白质印迹(western blot)图,其中Rutin组小鼠的棕色脂肪特异性蛋白(UCP1、ATP5A、UQCRC2、SDHB)的表达量明显多于对照组小鼠的棕色脂肪,肌动蛋白作为内参对照表明每孔蛋白的上样量是一样的。这些结果进而说明了芦丁可以直接上调棕色脂肪特异性蛋白的表达量,进而提高机体的能量消耗。
图11是显示芦丁对db/db小鼠肝脏中脂肪相关基因和炎症因子的mRNA表达的实时荧光定量条形图,其中Rutin组小鼠的肝脏中脂肪相关基因和炎症因子(PPARg2、IL-6、MCP1、TNFa)的mRNA的表达量明显低于对照组小鼠的肝脏中的表达量。这些结果进而说明了芦丁可以通过提高机体的能量消耗,进而改善脂肪肝。
综上所述,图6-11表明芦丁能够提高机体的能量代谢水平。
实施例4芦丁能够改善PCOS模型大鼠的部分生殖异常症状
用DHEA诱导出成功的PCOS大鼠模型。
购买三周龄Wister雌性大鼠50只,10只作为空白对照组,剩余40只用来建模,方法:每日给大鼠皮下注射DHEA(6mg/100g体重/天),三周后根据大鼠阴道涂片结果和血浆胰岛素水平筛选出成功的PCOS大鼠模型20只。随机分为芦丁实验组10只和芦丁对照组10只。
灌胃法处理上述三组大鼠。
每日用芦丁灌饲实验组大鼠,剂量为400mg/kg体重/天,同时灌饲空白对照组和芦丁对照组大鼠等体积的饮用水。三周后取材。在此期间,每周称重,并检测大鼠发情周期,最后检测血清中激素变化及卵巢形态学改变。
结果如图12-15所示。
其中,“空白对照组”、“对照组”均表示饮用等体积饮用水的正常大鼠组,“DHEA诱导PCOS组”、“DHEA组”均表示饮用等体积饮用水的PCOS大鼠组,“DHEA诱导饲喂Rutin组”、“DHEA+Rutin组”均表示以400mg/kg体重 /天的剂量灌饲芦丁的PCOS大鼠组。
图12示出了通过对对照组、DHEA组和DHEA+Rutin组的大鼠连续8天阴道涂片最后HE染色显示的三组大鼠发情周期变化图,结果表明芦丁处理后可明显改善PCOS模型大鼠的发情周期。
图13示出了通过对对照组、DHEA组和DHEA+Rutin组的大鼠卵巢石蜡切片后HE染色观察的结果图。结果表明芦丁处理后,PCOS模型大鼠卵巢形态趋于正常。
图14示出了通过RT-PCR检测对照组、DHEA组和DHEA+Rutin组的大鼠卵巢组织中几个类固醇激素合成酶(Arom-P450、p450c17、STAR、3B-HSD、17B-HSD)的基因表达情况的条形图。结果显示相比于对照组,DHEA组的几个类固醇激素合成酶的表达量降低,而DHEA+Rutin组相比于DHEA组这几个酶的表达量又显著升高,达到正常范围。表明芦丁能逆转部分卵巢类固醇激素合成酶的异常表达。
图15示出了用ELASA试剂盒检测对照组、DHEA组和DHEA+Rutin组的大鼠血清中的LH和FSH含量以及LH/FSH的条形图。结果显示LH含量在DHEA组显著高于正常对照组,芦丁处理后,LH含量降至正常,LH/FSH的比值变化也反映出相同规律,表明芦丁处理后,PCOS模型大鼠血清中部分激素含量趋于正常。
实施例5芦丁能够改善PCOS模型大鼠的部分代谢异常症状
一、从每组大鼠中随机选取4只进行棕色脂肪组织的PET-CT扫描。方法如下:大鼠经异氟烷气体麻醉后,尾静脉注射[18F]FDG,1小时后,用PET-CT检测大鼠棕色脂肪组织活性。其中DHEA组相比空白对照组棕色脂肪活性显著降低,而DHEA+Rutin组相比DHEA组棕色脂肪活性显著提升,结果如图16所示。图16为对照组、DHEA组和DHEA+Rutin组的大鼠代表性的PET-CT正中矢状面切图,箭头所示为棕色脂肪组织范围,对照组与DHEA+Rutin组棕色脂肪活性显著高于DHEA组,从PET-CT的半定量指标标准摄取值(standard uptake value,SUV,局部组织摄取的显像剂的放射性活度与全身平均注射活度的比值)分析来看(图17),DHEA+Rutin组比DHEA组棕色脂肪活性显著增强。
二、芦丁处理后可改善PCOS大鼠胰岛素抵抗。PCOS往往伴随着胰岛 素抵抗,是PCOS发病的一个重要环节,为验证芦丁处理后是否能改善胰岛素抵抗,特在芦丁处理后三周对三组大鼠进行了葡萄糖耐量试验(intraperitoneal glucose tolerancetest,IPGTT)。结果如图18左侧所示,结果表明,芦丁可以有效改善机体葡萄糖代谢,抑制胰岛素抵抗。图18右侧为AUC(area under the curve)曲线下面积,同样说明上述三组差别。
三、大鼠血清代谢指标检测。如图19所示,芦丁可以显著提高血液中高密度脂蛋白含量,并且降低了血液中T3的含量(图20)。
四、芦丁可以抑制PCOS大鼠体重的增加。三组大鼠在芦丁处理结束后称体重并取材(BAT:棕色脂肪组织;SUB:腹股沟部皮下脂肪组织;EP:内脏性腺脂肪组织;LIVER:肝脏),如图21所示,芦丁能抑制PCOS大鼠体重的增加,尤其抑制了EP的增加(图22)。
实施例6芦丁能够延长老年小鼠寿命及部分老年症状
本发明采用的C57BL/6老年小鼠的年龄为24个月龄,均为雄性小鼠,共30只,根据体重进行随机分组,即老年对照组和老年芦丁组,每组各15只;年龄约4-5个月的雄性C57BL/6年轻小鼠15只,作为年轻对照组。自由采食一段时间(饲喂10Kcal%低脂饲料,Research diet,D12450B);老年芦丁组每天小鼠饮用含1mg/ml芦丁(相当于200mg/kg体重/天)的水溶液(含1/1000二甲基亚砜),老年对照组和年轻对照组每天饮用含1/1000二甲基亚砜的水溶液,隔天检测各实验组动物每天平均饮水量,并在给药的每周记录体重,连续给药约4个月时间,统计各组小鼠的死亡情况,及检测各种指标,结果如图23-29所示。
图23是显示芦丁对C57BL/6老年小鼠的寿命影响的存活率比较图(Log-rank(Mantel-Cox)Test),其中老年芦丁组小鼠的寿命较老年对照组显著延长。
图24是显示芦丁对C57BL/6老年小鼠的棕色脂肪活性影响的正电子发射计算机断层显像(PET-CT)扫描图(小鼠尾静脉注射18F-FDG,注射后代谢1小时,进行PET-CT扫描,分析在肩胛间BAT区18F-FDG的摄取以显示BAT活性),其中老年芦丁组小鼠的棕色脂肪活性(点线内部的亮点)明显多于老年对照组小鼠的棕色脂肪。
从图25对PET-CT的半定量指标标准摄取值(standard uptake value, SUV,局部组织摄取的显像剂的放射性活度与全身平均注射活度的比值)分析来看,也进一步证明了老年芦丁组小鼠的棕色脂肪活性较老年对照组显著增强,且与年轻对照组基本保持一致。
图26是显示芦丁对C57BL/6老年小鼠的空腹血糖改善情况的条形图,空腹血糖检测方法同实施例2中db/db小鼠一致。可以看出,老年芦丁组小鼠的空腹血糖显著低于老年对照组和年轻对照组,而年轻对照组和老年对照组小鼠的空腹血糖差异不存在统计学意义。
图27是显示芦丁对C57BL/6老年小鼠的运动能力影响的条形图。采用哥伦布公司生产的Opto M3仪器运动量记录仪,连续24小时记录小鼠自发运动量,其中老年芦丁组的显著高于老年对照组,组间比较差异具有统计学意义;而老年芦丁组与年轻对照组小鼠之间每天平均自发运动量比较差异不存在统计学意义。
图28是显示芦丁对C57BL/6老年小鼠棕色脂肪产热及长寿基因的表达条形图。经过对三组小鼠的棕色脂肪进行总RNA提取,并经反转录为DNA后进行实时定量PCR反应,以年轻对照组小鼠作为参考,可以看出老年芦丁组小鼠的产热基因以及长寿基因sirt1均显著高于老年对照组,且相当或高于年轻对照组小鼠。
图29是显示芦丁对C57BL/6老年小鼠棕色脂肪线粒体氧化磷酸化相关的蛋白质印迹(western blot)图,其中老年芦丁组小鼠的棕色脂肪线粒体氧化磷酸化相关蛋白(UQCRC2、SDHB、NDUFB8、ATP5A)的表达量明显多于老年对照组小鼠的棕色脂肪,甘油醛-3-磷酸脱氢酶(GAPDH)作为内参对照表明每孔蛋白的上样量是一样的。这些结果进而说明了芦丁可以直接上调棕色脂肪线粒体氧化磷酸化相关蛋白的表达量,进而提高机体的能量消耗。

Claims (10)

  1. 下式Ⅰ的芦丁在制备用于治疗肥胖及肥胖相关疾病的药物或用于延缓衰老的药物中的应用
    Figure PCTCN2015080693-appb-100001
  2. 根据权利要求1所述的应用,其特征在于,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS。
  3. 根据权利要求2所述的应用,其特征在于,所述糖尿病是Ⅱ型糖尿病。
  4. 下式Ⅰ的芦丁在制备用于提高能量代谢、促进机体发热或促进线粒体功能的药物中的应用
    Figure PCTCN2015080693-appb-100002
  5. 一种用于治疗肥胖及肥胖相关疾病、延缓衰老、提高机体能量代谢、促进机体发热或促进线粒体功能的药物组合物,其特征在于,所述药物组合物由有效量的芦丁和药学上可接受的载体或辅料组成,其中,所述载体或辅料为淀粉和/或纳米颗粒,所述纳米颗粒为用于促进吸收或缓释的纳米颗粒;
    优选地,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS;
    进一步优选地,所述糖尿病是Ⅱ型糖尿病。
  6. 根据权利要求5所述的药物组合物,其特征在于,所述芦丁的给药量为200mg/kg体重/天。
  7. 一种治疗肥胖及肥胖相关疾病或延缓衰老的方法,其特征在于,所述方法包括给予需要治疗的患者治疗有效量的下式Ⅰ的芦丁:
    Figure PCTCN2015080693-appb-100003
    或者给予需要治疗的患者治疗有效量的权利要求5或6所述的药物组合物;
    优选地,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS;
    进一步优选地,所述糖尿病是Ⅱ型糖尿病。
  8. 一种提高机体能量代谢、促进机体发热或促进线粒体功能的方法,其特征在于,所述方法包括给予需要治疗的患者治疗有效量的下式Ⅰ的芦丁:
    Figure PCTCN2015080693-appb-100004
    或者给予需要治疗的患者治疗有效量的权利要求5或6所述的药物组合物。
  9. 下式Ⅰ的芦丁:
    Figure PCTCN2015080693-appb-100005
    或者权利要求5或6所述的药物组合物,其用于治疗肥胖及肥胖相关疾病或用于延缓衰老;
    优选地,所述肥胖相关疾病选自糖尿病、胰岛素抗性、脂肪肝、心血管疾病、代谢综合征和PCOS;
    进一步优选地,所述糖尿病是Ⅱ型糖尿病。
  10. 下式Ⅰ的芦丁:
    Figure PCTCN2015080693-appb-100006
    或者权利要求5或6所述的药物组合物,其用于提高机体能量代谢、促进机体发热或促进线粒体功能。
PCT/CN2015/080693 2014-06-03 2015-06-03 芦丁在治疗肥胖及相关疾病或延缓衰老中的应用 WO2015184990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410242204.6 2014-06-03
CN201410242204.6A CN104958309A (zh) 2014-06-03 2014-06-03 芦丁在制备用于治疗肥胖及相关疾病的药物中的应用

Publications (1)

Publication Number Publication Date
WO2015184990A1 true WO2015184990A1 (zh) 2015-12-10

Family

ID=54212515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080693 WO2015184990A1 (zh) 2014-06-03 2015-06-03 芦丁在治疗肥胖及相关疾病或延缓衰老中的应用

Country Status (2)

Country Link
CN (1) CN104958309A (zh)
WO (1) WO2015184990A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220273748A1 (en) * 2021-02-26 2022-09-01 Tci Co., Ltd. Plant ferment and weight loss method for using the same
GB2586745B (en) * 2018-03-13 2023-04-05 Nuchido Ltd Compositions

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105997984B (zh) * 2016-05-13 2021-07-02 合肥迈可罗生物工程有限公司 表儿茶素及其衍生物在制备降血脂药物中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1615900A (zh) * 2004-09-08 2005-05-18 华东师范大学 神经介素u2受体激动剂芦丁的新用途
CN103006830A (zh) * 2012-12-31 2013-04-03 西北大学 治疗2型糖尿病的中药组合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1778293A (zh) * 2004-11-22 2006-05-31 牛蓉 芦丁泡腾剂组合物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1615900A (zh) * 2004-09-08 2005-05-18 华东师范大学 神经介素u2受体激动剂芦丁的新用途
CN103006830A (zh) * 2012-12-31 2013-04-03 西北大学 治疗2型糖尿病的中药组合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, XINGTAI ET AL.: "Research on the Effect of FlosSophorae and Rutin in Clearing Superoxide Negion and Protecting Chondriosome", INFORMATION ON TRADITIONAL CHINESE MEDICINE, vol. 24, no. 6, 30 November 2007 (2007-11-30), pages 66 - 68, ISSN: 1002-2406 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2586745B (en) * 2018-03-13 2023-04-05 Nuchido Ltd Compositions
US20220273748A1 (en) * 2021-02-26 2022-09-01 Tci Co., Ltd. Plant ferment and weight loss method for using the same

Also Published As

Publication number Publication date
CN104958309A (zh) 2015-10-07

Similar Documents

Publication Publication Date Title
US11147847B2 (en) Extracts from plants of the Moringaceae family and methods of making
WO2017193824A1 (zh) 青蒿素类似物促进脂肪分解和改善糖代谢的用途、方法及组合物
Deng et al. Chitosan oligosaccharide ameliorated obesity by reducing endoplasmic reticulum stress in diet-induced obese rats
WO2015184990A1 (zh) 芦丁在治疗肥胖及相关疾病或延缓衰老中的应用
Park et al. Berberine for appetite suppressant and prevention of obesity
KR101213825B1 (ko) 세린을 유효성분으로 함유하는 지방간 질환의 예방 및 치료용 조성물
US10100011B2 (en) Pentadienoyl piperidine derivative and use thereof
CN109550051B (zh) 组蛋白去甲基化酶kdm6a抑制剂在制备肥胖症治疗药物的用途
US20200230102A1 (en) Composition and medical product for reducing body weight and body fat, and use of said product
CN110801446A (zh) 一种亚腈胺在制备治疗结肠炎药物中的应用
TWI776450B (zh) 正丁基苯酞於促進脂肪褐變、以及預防或治療脂肪肝及相關肝病變之應用
Jing et al. Pterostilbene ameliorates glycemic control, dyslipidemia and liver injury in type 2 diabetes rats
US20150051272A1 (en) Uses of hydroxyl polymethoxylflavones (HPMFs) and derivatives thereof
JP7352275B2 (ja) 更年期症状改善用組成物
WO2017121333A1 (zh) 管花肉苁蓉萃取物及异类叶升麻苷于保护肌肉的用途
CN110693873B (zh) 冬凌草活性成分组合物的制备及应用
US20150031775A1 (en) Composition and method for affecting male and female hormone levels
CN104523737B (zh) 醉鱼草苷ⅳ在制备治疗非酒精性脂肪肝和胰岛素抵抗的药物中的应用
KR20190111726A (ko) 천연 혼합 추출물을 포함하는 비만 예방 또는 치료용 조성물
KR102475918B1 (ko) 남성 갱년기 증후군 개선, 경감 또는 예방용 조성물 및 이를 포함하는 기능성 식품
CN107929304A (zh) 龙胆苦苷在非酒精性脂肪性肝病治疗中的应用
CN115645449B (zh) 一种双辅料酒蜜制山萸肉炮制方法及应用
WO2024103215A1 (zh) 治疗脂肪肝疾病的医药组合及其用途
WO2024060359A1 (zh) 甘油磷脂类化合物在预防和治疗高血脂、动脉粥样硬化、非酒精性脂肪肝和肥胖中的用途
KR101895850B1 (ko) 벌씀바귀 추출물을 유효성분으로 함유하는 전립선 질환의 예방, 개선 또는 치료용 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15803557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15803557

Country of ref document: EP

Kind code of ref document: A1