WO2015184566A1 - 一种对核酸适配体序列进行化学修饰的方法及其产品和应用 - Google Patents

一种对核酸适配体序列进行化学修饰的方法及其产品和应用 Download PDF

Info

Publication number
WO2015184566A1
WO2015184566A1 PCT/CN2014/000564 CN2014000564W WO2015184566A1 WO 2015184566 A1 WO2015184566 A1 WO 2015184566A1 CN 2014000564 W CN2014000564 W CN 2014000564W WO 2015184566 A1 WO2015184566 A1 WO 2015184566A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
acid aptamer
heteronucleoside
sequence
nucleoside
Prior art date
Application number
PCT/CN2014/000564
Other languages
English (en)
French (fr)
Inventor
杨振军
蔡报彬
范鑫萌
李理宇
武芸
关注
张礼和
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to PCT/CN2014/000564 priority Critical patent/WO2015184566A1/zh
Publication of WO2015184566A1 publication Critical patent/WO2015184566A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to a method for aptamer sequence modification, and more particularly to a method for chemically modifying a nucleic acid aptamer sequence using a heteronucleoside or a heteronucleoside in combination with 2,-deoxyinosine and a product thereof And applications, the invention belongs to the field of biomedicine. Background technique
  • Aptamer a nucleic acid aptamer, derived from the Latin "aptus", is a single-stranded oligo (RNA) or single-stranded oligodeoxynucleotide (DNA) consisting of 20-60 bases. It specifically binds to a variety of target molecules such as proteins, small molecules, ions and cells. Nucleic acid aptamers were invented in 1990 by Nobel Prize-winning scientists Szostak and Gold et al., which have many advantages that are unmatched by antibodies.
  • Nucleic acid aptamers are screened by SELEX technology, and a nucleic acid aptamer (Aptamer) that specifically binds to a target with high affinity can be selected from a library of random single-stranded nucleic acid sequences. Since Tuerk et al. first used this technique to screen specific oligonucleotide ligands that specifically adsorb phage T4 DNA polymerase and organic dye molecules, SELEX technology has become an important research tool after more than two decades of development. tool.
  • the basic principle of SELEX technology is to combine the PCR amplification with a chemically synthesized large-capacity oligonucleotide library (RA/DNA), and exponentially enrich the oligonucleotides that specifically bind to the target molecule, after several rounds or several Ten rounds of screening process, obtaining high affinity, high specificity oligonucleotide ligands, ie aptamers.
  • the screening of SELEX mainly includes the following parts: (1) Database construction: First, a random library containing 10 14 -10 15 single-stranded oligonucleotide sequences was artificially synthesized.
  • the random library can be an RNA library or a single-stranded DNA library, and a general random RNA library is commonly used.
  • the sequence of the single-stranded oligonucleotide is a fixed sequence with a restriction endonuclease site, and a random sequence of 20-40 bases in the middle.
  • the immobilization sequence is to increase the stability of the library and prepare for amplification. This immobilization sequence is a binding site for PCR reactions and other enzymatic reaction-related primers.
  • the random sequence should not be too short. Too short may result in insufficient secondary structure to bind to the target molecule, nor too long. Too long may result in a decrease in the selection of the isolated ligand due to the sequence of the complete library single-stranded oligonucleotide. Probability.
  • PCR amplification is required to increase the number of nucleic acids screened.
  • screened nucleic acid grows exponentially under the action of the nucleic acid polymerase, increasing the number of samples to meet the next round of screening.
  • Recycling After a sufficient number of nucleic acids capable of binding to the target are amplified by PCR, the previous screening work is repeated, and after several rounds or even dozens of rounds of screening, high specificity and high target can be obtained. Affinity-binding nucleic acid aptamers.
  • nucleic acid aptamers for any target can be obtained by SELEX screening.
  • SELEX screening scientists screened a series of nucleic acid aptamers closely related to human diseases, such as nucleic acids against HIV-1 reverse transcriptase, vascular endothelial growth factor (VEGF), nucleolin, thrombin, hnR PAl protein, etc. Aptamer.
  • the nucleic acid aptamer AS1411 against nucleolin has completed Phase II clinical trials, which have significant therapeutic effects on both renal and non-small cell lung cancer.
  • Nucleic acid aptamers against thrombin have also entered the clinical stage. Therefore, it is very important to carry out research work on nucleic acid aptamers.
  • nucleic acid aptamers are obtained by SELEX screening. There are four important steps in the SELEX process: library building, screening, separation, and PCR amplification, which have important implications for the success of screening. At present, the success rate of SELEX screening can be greatly improved by a reasonable design screening library and optimized separation method.
  • PCR is an important part of SELEX screening.
  • the obtained nucleic acid is used as a template and amplified by the action of DNA polymerase.
  • the selected nucleic acid aptamers are generally only A, G, The combination of C and T.
  • nucleoside analogs with better physicochemical properties such as UNA, LNA, 2, -F-araN, etc.
  • DNA polymerase cannot incorporate it into nucleic acid aptamers. This limitation limits the application of SELEX.
  • the modified nucleic acid aptamers were found to be active in the UNA, LNA, 2,-F-araN, 2,-O-methyl modifications of the currently selected nucleic acid aptamers.
  • nucleic acid aptamer In order to further increase the specificity of the nucleic acid aptamer to the target, optimizing the physicochemical properties of the nucleic acid aptamer to increase the activity of the nucleic acid aptamer, it is necessary to further optimize the nucleic acid aptamer.
  • Traditional SELEX screening has not been able to meet this requirement.
  • the identification of a nucleic acid aptamer and a target is a process of mutual induction. Therefore, a certain fine-tuning of the nucleic acid aptamer locally can enhance the interaction with the target while maintaining the overall secondary structure of the nucleic acid, and improve the specificity and biological activity of the nucleic acid aptamer.
  • a heteronucleoside refers to a nucleoside in which a base of one base is displaced from a sugar group to another position. Similar to natural ribose, depending on the configuration of the glycosyl group, the isonucleosides can be further divided into D- and L-, wherein the D-configuration is the same as the natural nucleoside type, and the L-configuration is the opposite. Due to the shifting of the base of the heteronucleoside, the local conformation of the nucleic acid aptamer resulting in the heteronucleoside incorporation is altered.
  • the site of heteronucleoside incorporation is the site of action of the nucleic acid aptamer and the target
  • changes in the conformation of the base space will result in a change in the spatial distance from the target, when the heterologous nucleosides of the two configurations are reversed.
  • the distance between the target and the target is increased, the activity is decreased, and the distance between the nucleic acid aptamer and the target of the other configuration is shortened, and the activity is shortened. increase.
  • the introduction of the heteronucleoside into the nucleic acid aptamer, by adjusting the local spatial conformation of the nucleic acid aptamer, can enhance the interaction with the target, and further improve the biological activity of the nucleic acid aptamer.
  • This modification strategy for heteronucleosides differs from that of SELEX, which is the search for a specific nucleic acid that specifically binds to a target from a number of disordered nucleic acid sequences, while the heterologous nucleoside modification strategy targets It is an optimization of existing nucleic acid aptamers. However, their goal is to achieve nucleic acid aptamers that bind specifically to the target with various methods.
  • SELEX is an initial selection
  • the heteronucleoside modification strategy is a late optimization
  • the heteronucleoside modification strategy and the SELEX selection method complement each other and complement the method of screening nucleic acid aptamers.
  • the present invention utilizes a hetero-nucleoside modification strategy to perform heteronucleoside modification on the thrombin nucleic acid aptamer TBA and the nucleolar nucleolar adaptor AS1411, and has found a nucleic acid aptamer capable of further enhancing affinity with the target. It has also been demonstrated by in vitro and animal experiments that the nucleic acid aptamer optimized by this heteronucleoside modification strategy can significantly increase the biological activity against the target. Further extension of this modification strategy will allow optimization of various nucleic acid aptamers to obtain nucleic acid aptamers that are more specific and more active than the target. Summary of the invention
  • the present invention provides a chemical modification of a nucleic acid aptamer sequence using a hetero- or a hetero-nucleoside in combination with 2,-deoxyinosine.
  • the present invention chemically modifies a nucleic acid aptamer by using a heteronucleoside or a heteronucleoside in combination with 2,-deoxyinosine, thereby changing the spatial conformation of the base of the binding partner of the nucleic acid aptamer to the target, thereby The interaction of the nucleic acid aptamer with the target is enhanced to enhance the specificity of the nucleic acid aptamer to the target and to enhance the biological activity of the nucleic acid aptamer.
  • a method for chemically modifying a sequence of a nucleic acid aptamer according to the present invention characterized in that a heteronucleoside is incorporated in one or more nucleoside sites of a sequence of a nucleic acid aptamer, and the structural formula of the heteronucleoside is as defined I or chemistry
  • the heteronucleoside represented by Formula I is an isonucleoside in the L-configuration
  • the heteronucleoside represented by Formula II is a hetero-nucleoside in the D-configuration, wherein Base is adenine, thymus Pyrimidine, guanine G or cytosine C,
  • Coupling is carried out at the corresponding position by replacing the natural nucleoside with a heteronucleoside represented by Chemical Formula I or Chemical Formula II.
  • the nucleic acid aptamer sequence is further included in one or more nucleoside sites. 2,-deoxyinosine, as described
  • the nucleosides are coupled at the corresponding positions.
  • the D/L configuration heteronucleoside has the following characteristics compared with the natural nucleoside: a. The base shifts from the oxime of the sugar ring to 2, the position; b. The glycocyclic ring of the L-configuration heteronucleotide reverses, the local conformational change Larger than the D configuration nucleoside. This results in a conformational change in the conformation of the nucleic acid aptamer modified with D/L heteronucleotide compared to the native nucleic acid adaptor, without changing the amino acid sequence. When this modification site is in the region that binds to the target, it will regulate the binding to the target.
  • Partial sites are incorporated with isonucleosides, ultimately achieving the goal of increasing binding to the target and enhancing biological activity. 2, the effect of deoxyinosine is similar to that of heteronucleosides, but it is mainly achieved by adjusting the bases to adjust the local spatial conformation.
  • the hetero-nucleoside compound represented by Chemical Formula I and Formula II and the 2,-deoxyinosine compound represented by Chemical Formula III are separately prepared before chemical modification of the nucleic acid aptamer.
  • a heteronuclear phosphoramidite monomer represented by the chemical formula IV and the chemical formula V and a 2,-deoxyinosine phosphoramidite monomer represented by the chemical formula VI, wherein the heteronuclear phosphoramidite monomer can be synthesized.
  • a heteronuclear phosphoramidite monomer represented by the chemical formula IV and the chemical formula V and a 2,-deoxyinosine phosphoramidite monomer represented by the chemical formula VI, wherein the heteronuclear phosphoramidite monomer can be synthesized.
  • Base is selected from the group consisting of adenine A, thymine 1 guanine G or cytosine (3).
  • the oligonucleotide chain of the nucleic acid aptamer is synthesized by a solid phase synthesis technique using a phosphoramidite method, and one or several of the heteronucleosides are described on a DNA synthesizer.
  • the phosphoramidite monomer or one or more of the heteronucleoside phosphoramidite monomers and one or more of the 2,-deoxyinosine phosphoramidite monomers are simultaneously incorporated into the synthesized sequence.
  • the coupling is carried out at the corresponding position, one cycle for each coupling of one nucleoside, and each cycle includes four reactions: de-DMT, coupling, blocking, oxidation.
  • the conditions for synthesizing the DNA oligonucleotide chain are to increase the number of injections of the nucleoside phosphorylation monomer to 2-6 times; the coupling time after each injection is 120-240 seconds/time; The condition of the glycoside/2,-deoxyinosine-modified DNA oligonucleotide strand was such that the coupling time after each injection was increased to 200-360 sec/time and coupled 2-6 times.
  • the present invention also provides a heterologous nucleoside or heteronucleoside combined with a 2,-deoxyinosine modified nucleic acid aptamer sequence synthesized according to the method of any of the above.
  • the nucleic acid aptamer is a nucleic acid aptamer (TBA) of human thrombin, a nucleic acid aptamer of nucleolin, a nucleic acid aptamer of hn NPAl protein; wherein, the modification
  • TAA nucleic acid aptamer
  • AS1411 sequence of the nucleic acid aptamer sequence of the nucleolin before modification
  • SEQ ID No. 2 The nucleic acid aptamer sequence (BC15-31) of the pre-hnR PAl protein is shown in SEQ ID No. 3.
  • the modified nucleic acid aptamer sequence of thrombin is selected from the group consisting of:
  • TSA- Three nucleic acid aptamers (TBA-) obtained by incorporating a heteronucleoside represented by Chemical Formula I at position 3, 9 or 12 of the TBA sequence shown in SEQ ID No. 1 in place of the coupling of the natural nucleoside at the corresponding position. 3L, TBA-9L and TBA-12L), wherein Base is thymine T; 2) a nucleic acid aptamer (TBA-7D) obtained by incorporating a heteronucleotide represented by Chemical Formula II at the 7th position of the TBA sequence shown in SEQ ID No. 1 in place of the natural nucleoside at a corresponding position, wherein Base is thymine T;
  • the modified nucleic acid aptamer sequence of nucleolin is selected from the group consisting of:
  • nucleic acid aptamer (AS1411-6L) obtained by incorporating a heteronucleotide represented by Chemical Formula I at position 6 of the AS 1411 sequence shown in SEQ ID No. 2 in place of the natural nucleoside at the corresponding position, Wherein Base is thymine T;
  • a nucleic acid aptamer (AS 1411-12D) obtained by incorporating a heteronucleotide represented by Formula II at position 12 of the AS 1411 sequence shown in SEQ ID No. 2 in place of the natural nucleoside at the corresponding position.
  • Base is thymine T;
  • nucleic acid aptamer sequence of the modified hnRNPAl protein is selected from the group consisting of the following sequences:
  • a nucleic acid aptamer (BC15-31) obtained by incorporating a heteronucleotide represented by Chemical Formula I at position 3 of the BC 15-31 sequence shown in SEQ ID No. 3 in place of the natural nucleoside at the corresponding position. -3L ), wherein Base is thymine T;
  • a nucleic acid aptamer obtained by simultaneously coupling a heteronucleoside represented by Chemical Formula I at position 1 and 30 of the BC15-31 sequence shown in SEQ ID No. 3 to a natural nucleoside at a corresponding position. -31-1L /30L ), wherein Base is thymine T;
  • a nucleic acid aptamer obtained by simultaneously coupling the heteronucleotide of the chemical formula I at the 3 position of the BC15-31 sequence shown in SEQ ID No. 3 and 30 in place of the natural nucleoside at the corresponding position. -31-3L/ 30L ), wherein Base is thymine T;
  • BC15 A nucleic acid aptamer obtained by simultaneously coupling a heteronucleoside represented by Chemical Formula II at position 3 and 30 of BC15-31 sequence shown in SEQ ID No. 3 to a natural nucleoside at a corresponding position. -31-3D /30D ), wherein Base is thymine T;
  • the above-mentioned heteronuclear acid represented by Chemical Formula I at the 3 position of the TBA sequence shown in SEQ ID No. 1 in place of the natural nucleoside at the corresponding position refers to the TBA chain: -GGT TGG TGT GGT TGG -3' (shown in SEQ ID No. 1)
  • the nucleotide sequence starts at the 5th end of the nucleotide sequence (ie, "T"), and so on.
  • heteronuclear modified TBA-12L and AS1411-6L provided by the present invention have the characteristics of stable physical and chemical properties and high synthesis efficiency; in addition, TBA-12L, TBA-7D/12L, TBA-3L/12L, AS1411-6L, AS1411-6L/12D/24dI, BC15-31-3D/30D, BC15-31-3L/30D have better biological activity than the native parent sequence.
  • AS1411-12D isothymidine of formula II at position 12 of AS1411 sense strand
  • simultaneous incorporation of isothymidine of formula I and formula II at positions 6 and 12 of the sense strand of AS1411 (AS1411-6L/12D) AS1411 can significantly increase its binding to nucleolin and inhibit the proliferation of cancer cells in place of the modification of natural nucleosides at the corresponding positions.
  • the present invention further provides the use of the nucleic acid aptamer sequence in the preparation of a medicament or a reagent for anti-cardiovascular diseases, wherein the nucleic acid aptamer sequence is a hetero-nucleoside or hetero-nucleoside combination.
  • the nucleic acid aptamer sequence is a hetero-nucleoside or hetero-nucleoside combination.
  • TAA deoxyinosine modified human thrombin nucleic acid aptamer
  • nucleic acid aptamer sequence for the preparation of a medicament or a reagent for the early detection of cancer or cancer, wherein the nucleic acid aptamer sequence is an isonucleoside or a heteronucleoside combination 2,-deoxy A nucleic acid aptamer of nucleolin or a nucleic acid aptamer of hnRNPAl protein.
  • the hetero-nucleoside modification/isonucleoside provided by the present invention is combined with 2,-deoxyinosine-modified TBA, AS1411, BC15-31, which has the characteristics of stable physical and chemical properties and high synthesis efficiency; the product itself has more aptamer than the natural nucleic acid. Good biological activity.
  • nucleic acid aptamers improve the serum stability of nucleic acid aptamers by comprehensively examining the heterologous nucleoside/isonucleosides in combination with 2,-deoxyinosine at different sites, enhancing the stability of nucleic acid aptamers and targets.
  • the binding force increases the in vitro activity of the nucleic acid aptamer.
  • animal experiments have also shown that heteronuclear or heteronucleoside combined with 2,-deoxyinosine-modified nucleic acid aptamers can enhance the inhibition of cancer tissues at the animal level, which is a heteronuclear modified nucleic acid aptamer. Clinical application provides important guiding significance. 3.
  • the heteronucleoside compound provided by the present invention can significantly improve the enzyme stability of the modified TBA and its binding to the target.
  • TBA modified by heteronucleoside could show an increase in its anticoagulant effect, which provided further theoretical support for the future clinical application of heteronucleoside modified TBA.
  • the heteronucleotide (TBA-7D) represented by the formula II was incorporated at the 7th position of the TBA, and the heteronucleoside (TBA-12L) represented by the formula I was incorporated at the 12 position, and the 7 and 12 positions were respectively incorporated.
  • the heteronucleoside (TBA-7D/12L) shown in Chemical Formula II and Formula I, and the heteronucleoside (TBA-7D/3L) of Formula II and Formula I, respectively, are incorporated at positions 7 and 3 of the TBA, respectively.
  • the TBA coupled at the corresponding position instead of the natural nucleoside can significantly increase the binding of TBA to thrombin and its anticoagulant activity.
  • TBA (TBA-12L) obtained by incorporation of a heteronucleoside represented by Chemical Formula I at position 12 of the TBA in place of the natural nucleoside at the corresponding position has the best in vitro activity.
  • AS1411 which has been modified by heteronuclear acid, can significantly increase the binding capacity to the target.
  • AS1411-12L can significantly increase the ability to inhibit the proliferation of MCF-7 cancer cell lines, which is a hetero-nucleoside modification.
  • the AS1411 provides further theoretical support for future clinical applications.
  • AS1411-6L/12D/24dI modified by heteronucleoside in combination with 2,-deoxyinosine can significantly increase the binding to the target and inhibit the growth of mouse tumors at the animal level.
  • the nucleoside-modified BC15-31-3D/30D and BC15-31-3L/30D significantly increased the inhibitory activity against A549 tumor cells.
  • Figure 1 is a diagram showing the results of CD light transmission experiments of heteronucleoside modified TBA
  • Figure 2 is a graph showing the results of CD spectrum experiments of natural and hetero-nucleoside modified AS1411;
  • Figure 3 is a graph showing the results of serum stability test of D/L heteronucleoside modified TBA
  • Figure 4 is a graph showing the results of the stability of D/L heteronucleoside modified BC15-31 in 10% and 50% fetal bovine serum;
  • Figure 5 is a graph showing the results of an experimental study on the affinity of TBA and thrombin per unit of heteronucleoside modification
  • Figure 6 is a graph showing the results of an experimental study on the affinity of a two-site heteronucleoside modified TBA and thrombin;
  • Figure 7 is a graph showing the results of in vitro anticoagulant activity of TBA modified by single site
  • Figure 8 is a graph showing the results of in vitro anticoagulant activity of a two-site heteronucleoside modified TBA
  • Figure 9 is a graph showing the results of cytostatic proliferation assay of compound AS1411 and a single-point hetero-nucleoside modified product
  • Figure 10 is a result of inhibition experiment of AS1411 cells modified by two-site heteronucleoside and heteronucleoside combined with 2,-deoxyinosine combination
  • Figure 11 is a graph showing the results of cytostatic inhibition of 293 cells modified by AS1411 at different sites
  • Figure 12 is a graph showing the results of experimental experiments on the proliferation of A549 tumor cells by single-site and double-site heteronucleoside modified BC15-31;
  • Figure 13 shows the results of biopsy tissue sections of different nucleic acid aptamers
  • Figure 14 shows the results of animal level evaluation of AS1411 in combination with two-site heteronucleoside and heteronucleoside combined with 2,-deoxyinosine.
  • Example 1 Isonucleoside or heteronucleoside combination 2,-deoxyinosine modified TBA, AS1411 and BC15-31 solid phase synthesis
  • DNA synthesis was performed using an Appllied Biosystems model 394 DNA solid phase synthesizer.
  • the heterocyclic nucleoside compounds represented by the chemical formula I and the chemical formula II are respectively A heteronucleoside phosphoramidite monomer of the formula IV and the formula V is prepared. That is, the monomer compounds I and II were respectively dried in a vacuum, 3.5 times equivalent of 1H-tetrazole was added, and dried under vacuum overnight, 5 ml of anhydrous pyridine was added, and 3.5 equivalent of phosphorous reagent was added under water bath, and the reaction was completed. After evaporation of the solvent, it was separated on a silica gel column under anhydrous anaerobic conditions to give a white solid, that is, Compounds IV and V.
  • Base is selected from the group consisting of adenine A, thymine T, guanine G or cytosine. .
  • nucleoside phosphoramidite monomer solution Weigh under argon gas, add anhydrous acetonitrile, and prepare 0.12 ⁇ solution;
  • the natural and heteronucleoside modified TBA, AS 141 K BC15-31 sequences were synthesized by solid phase synthesis.
  • On a DNA synthesizer one or more of the heteronucleoside phosphoramidite monomers described or one or more of the heteronucleoside phosphoramidite monomers and one or more of the 2,- The deoxyinosine phosphoramidite monomer is simultaneously incorporated into the synthesized sequence to replace the natural nucleoside phosphoramidite monomer at the corresponding position, each coupling one nucleoside is one cycle, and each cycle includes four reactions. : De-DMT, coupling, blocking, oxidation.
  • the sequence of the human thrombin nucleic acid aptamer (TBA) before modification is as shown in SEQ ID No. 1
  • the nucleic acid aptamer sequence of nucleolin (AS1411) ⁇ [pre-decoration sequence is SEQ ID No.
  • the sequence before modification of the nucleic acid aptamer sequence (BC15-31) of the hn PAl protein is shown in SEQ ID No. 3.
  • a hetero-nucleoside represented by the chemical formula I is substituted at the 3 position of the TBA sequence shown in SEQ ID No. 1 instead of the natural nucleoside at the corresponding position, that is, in the TBA chain: 5,- GGT TGG TGT GGT TGG-3, (indicated by SEQ ID No. 1), the nucleotide sequence of the third nucleotide (ie, "T") at the 5th end of the nucleotide sequence is incorporated into the chemical formula I (L-configuration) Type, wherein Base is selected from the nucleosides shown by thymine T) in place of the natural nucleosides at the corresponding positions, and so on.
  • Synthesis step Each time about 33 mg of CPG-dC/CPG-dG was weighed into a synthesis column and subjected to a total of 84 steps per standard according to the standard procedure of the ABi394 nucleic acid synthesizer.
  • the normal nucleoside monomer was coupled 3 times, 180 seconds each time, and the heteronucleoside monomer was coupled 3 times for 300 seconds each time for a total coupling time of 15 minutes.
  • DNA cleavage and deprotection After the synthesis is completed, the CPG is removed, and an equal volume of 30% concentrated ammonia water and a mass fraction of 25% methylamine aqueous solution are added in an equal volume of 60. C, Shake the reaction for 60 minutes, the oligonucleotide was cleaved from the CPG and some of the protecting groups were removed and dried by centrifugation. Then, an appropriate amount of purified water was added to dissolve, and the mixture was centrifuged on a centrifuge of 14,000 rpm for 10 minutes, the supernatant was taken out, centrifuged, and the product was stored at -80 °C.
  • the 3, 6, 9, 12, 13, 15, or 24 positions of the AS1411 sequence are incorporated into a heteronucleoside represented by Formula I or Formula II (wherein Base is selected from thymine T) or Formula III
  • Base is selected from thymine T
  • Formula III The modified AS1411 sequence obtained by coupling 2,-deoxyinosine, in place of the natural nucleoside, was prepared according to the method of Example 1.
  • the natural and hetero-nucleoside modified TBA was dissolved in Tm buffer (0.1 M KC1, 0.01 M sodium arsenate, pH 7.0), and all samples were denatured to room temperature after denaturation at 95 ° C for 5 min. To be tested. ⁇ Measure the UV absorption of the sample with an ultraviolet spectrophotometer with a wavelength range of 200-400 nm, an absorption wavelength of 295 nm, a temperature rise (25 ° C to 90 ° C, a heating rate of 0.3 C / min), and record UV absorption with The temperature change curve is calculated by a first-order differential method. The experimental results are shown in Table 1.
  • Buffer 100 mM KC1, 10 mM sodium diformate, pH 7.0 Wherein D subscript indicates D-isonucleotide modification, L subscript indicates L-isonucleotide modification; (2) CD spectral analysis
  • the TBA sequence test samples were dissolved in lxCD buffer (138 mM NaCl, 2.7 mM KC1, 10 mM Na 2 HPO 4 , 1.76 mM KH 2 PO 4 , pH 7.4), and all samples were slowly degraded after denaturation at 95 ° C for 5 min. To room temperature, to be tested.
  • the CD scan ranged from 200-400 nm with a constant temperature of 25. C, scanning interval 0.2 nm, scanning speed 100 nm / min, each sample repeated 3 scans, using the instrument's own software for smoothing.
  • the experimental results are shown in Figure 1.
  • the AS 1411 sequence sample was dissolved in PBS, and all samples were at 95. After 5 min of C denaturation, it slowly decreased to room temperature and was tested.
  • the CD scan ranged from 200-400 nm, the temperature was constant at 25 °C, the scan interval was 0.2 nm, and the scanning speed was 100 nm/min. Each sample was repeated 3 times and smoothed by the instrument's own software. The experimental results are shown in Figure 2.
  • nucleic acid aptamers The stability of the above different nucleic acid aptamers and the unmodified nucleic acid aptamers TBA, BC15-31 in 10% and 50% (volume fraction) fetal calf serum were examined.
  • the nucleic acid aptamer was dissolved in PBS to a certain concentration, and denatured at 95 ° C for 5 min, then annealed, slowed down to room temperature, and added different volumes of fetal bovine serum, diluted with PBS buffer to make fetal calf Serum concentrations reached 10% and 50%, respectively, and the final concentration of nucleic acid was 20 g/mL. Incubate at 37 ° C, remove at different time points, -80. C rapidly freezes the quenching reaction.
  • Example 4 SPR assay for isonucleoside modified TBA sequence, isonucleoside modification and heteronucleoside combined with deoxyinosine modified AS1411 sequence, heteronucleoside modified BC15-31 sequence and thrombin, nucleolin protein, hnRNPAl, respectively Affinity of protein
  • thrombin immobilizing thrombin, nucleolin protein and hnRNPAl protein on CM5 chip, and preparing a certain amount of thrombin/nucleolin/hnRNPAl protein into a series of solutions with sodium acetate solution of appropriate pH value.
  • the optimal coupling conditions of the protein on the surface of the chip is as follows: PBS buffer is a flowing working solution, temperature 25 ° C, flow rate 10 ⁇ 7 ⁇ , stable baseline.
  • the EDC and HS mixture was passed through the surface of the chip at a flow rate of 5 ⁇ for 7 min to activate the carboxyl groups on the surface.
  • thrombin/nucleolin/hnRNPAl protein solution Different concentrations of thrombin/nucleolin/hnRNPAl protein solution were prepared and injected into the surface of the chip to find the most suitable concentration coupled to the surface of the chip. Then, the unreacted activated carboxyl group was blocked with ethanolamine hydrochloride (1 mmol/L, pH 8.5) for about 2-3 h. Channel 1 was used as the blank control channel, and channel 2 was used as the experimental group for the next study.
  • Natural and hetero-nucleoside modified TBA, heteronucleoside modification, and isonucleoside combined with 2'-deoxyinosine modified AS1411 and isonucleoside modified BC15-31 were formulated into a series of concentrations ranging from 0.02 to 100 ⁇ .
  • Gradient solution PBS buffer
  • flow through the core at 30 ⁇ 7 ⁇ , 3 min, dissociation time 5 min
  • dissociation time 5 min
  • On the surface of the sheet its binding to thrombin was recorded in real time.
  • different concentrations of NaOH were used as the regenerant, and the elution effect was evaluated according to the change of the RU value of the sensorgram, and a suitable regeneration solution was selected therefrom for repeated use of the chip.
  • the appropriate concentration gradients were selected for kinetic experiments, and the measured data were used to calculate the equilibrium dissociation constant (Kd) value of the interaction between the nucleic acid aptamer and the target protein using the Scatchard curve.
  • the concentration of the regenerant NaOH was chosen to be 10 mM.
  • the heteronuclear phosphoramidite monomers IV and V prepared by the chemical formula I and the formula II can be substituted for the TBA of the natural nucleoside phosphoramidite monomer at the corresponding position.
  • the experimental results of the affinity of the single-nucleoside modified AS1411 and nucleolin protein are shown in Table 3.
  • Two-site heteronucleoside modification AS1411 and heteronucleoside /2,-deoxyinosine combination modification The affinity test results of AS1411 and nucleolin protein are shown in Table 4.
  • TBA-3D, TBA-3L, TBA-4D, TBA-4L, TBA-7D, TBA-7L, TBA-9D, TBA-9L, TBA-12D, TBA-12L, TBA-13D, TBA -13L, TBA-3L7D, TBA-3L9L, TBA-3L12L, TBA-7D9L, TBA-7D12L, TBA-9L12L were prepared according to the method of Example 1.
  • the natural and different site heteronucleoside modified TBA was dissolved in PBS buffer, heated at 95 ° C for 5 min, then slowly cooled to room temperature, and the buffer in the kit was determined by thrombin time (TT).
  • the solution was dissolved so that the concentration of the nucleic acid sample was 0.33 ⁇ M.
  • the blood was taken and centrifuged at 3000 rpm for 30 min. The upper plasma was taken and used. 200 ⁇ human plasma was taken and placed in a coagulation instrument, and 100 ml of TT buffer in which a nucleic acid sample was dissolved was quickly added to measure the anticoagulation time of different nucleic acid aptamers to blood.
  • the experimental results are shown in Fig. 7 and Fig. 8.
  • MCF-7 breast cancer cells and 293 cells were plated in 96-well plates, respectively, and the appropriate serum was used as the medium to have a cell concentration of 1.5 ⁇ 10 3 /well. After 16 hours, the cells were allowed to attach, and the oligonucleotide (or PBS as a control) was directly added to the medium to give a final concentration of the oligonucleotide of 0.75 ⁇ M. The dose of oligonucleotide was halved over the next 2-4 days and added to the medium. After cell plating, the number of cells per day was counted using the cell counting kit CCK-8. The medium was not changed throughout the experiment. The results are shown in Figure 9 and Figure 10.
  • nucleic acid aptamer a.
  • the amount of nucleic acid aptamer is 0.4 ⁇ ⁇ /well, diluted with 50 ⁇ serum-free medium, and gently mixed;
  • ( 3 ) MTT test continue to culture 24 1 at 37 °C! ⁇ 96 h. The medium was discarded, and 100 newly prepared serum-free antibiotic-free medium containing 20 ( ⁇ L/mL MTS) was added to each well. After incubation for 2 hours at 37 ° C, the absorbance at a wavelength of 490 nm was measured with a microplate reader.
  • the sequence of the nucleic acid aptamer used was BC15-31 and its heteronucleotide double-site modified sequence: BC15-31-3L/30L, BC15-31-1L/30L and BC15-31-1L/3L.
  • mice with established tumor models they were treated by intraperitoneal injection of nucleic acid aptamers at a dose equivalent to 2.5 OD/mouse/day. . Inject once a day for 1-4 days, and once for the sixth and eighth days, for a total of six injections. Tumor volume is calculated using the following formula:
  • L and W represent the length and width of the tumor measured by the vernier caliper, respectively, during the experiment.
  • the weight of the rats was measured periodically for toxicity investigation.
  • the two-site heteronucleoside modified aptamer AS1411-6L/12D (6L/12D) and the heteronucleoside combination 2,-deoxyinosine repair aptamer AS1411-6L/ 12D/24dI (6L/12D/24dI) significantly delayed tumor growth.
  • the tumor volume was significantly reduced in the AS1411 group compared with the native AS1411 group, which was statistically significant (p ⁇ 0.01). There was no significant decrease in body weight of the rats, ie no significant toxicity.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种对核酸适配体序列进行化学修饰的方法及其产品,其中采用异核苷或异核苷联合2'-脱氧肌苷对核酸适配体的不同位置的核苷酸进行替换,以达到提高核酸适配体生物活性的目的。还提供了修饰后的人凝血酶的核酸适配体TBA在制备抗心脑血管疾病的药物或试剂中的应用,以及修饰后的核仁素的核酸适配体或hnRNPA1蛋白的核酸适配体在制备治疗癌症或癌症的早期检测方面的药物或试剂中的应用。

Description

一种对核酸适配体序列进行化学修饰的方法及其产品和应用 技术领域
本发明涉及一种核酸适配体 (aptamer)序列修饰的方法,特别涉及一种利用异核 苷或异核苷联合 2,-脱氧肌苷对核酸适配体序列进行化学修饰的方法及其产品和应 用, 本发明属于生物医药领域。 背景技术
Aptamer, 即核酸适配体, 源于拉丁语" aptus", 是由 20-60个碱基组成的单链寡 聚核苷酸(RNA )或单链寡聚脱氧核苷酸( DNA )。 它能特异结合蛋白、 小分子、 离子和细胞等多种靶分子。 核酸适配体于 1990 年由诺贝尔医学奖获得者 Szostak 和 Gold等人发明, 其具有很多抗体难以比拟的优势。 核酸适配体是通过 SELEX 技术筛选得到的,利用该技术可以从随机单链核酸序列库中筛选出特异性与靶标高 亲和力结合的核酸适配体 (Aptamer)。自 Tuerk等首先运用此技术筛选到特异性吸附 噬菌体 T4 DNA聚合酶和有机染料分子的特异寡核苷酸配基后,经过二十几年的发 展, SELEX技术已经成为一种重要的研究手段和工具。
SELEX技术的基本原理是从一个化学合成的大容量寡核苷酸库 (R A/DNA) 中, 结合 PCR扩增, 指数级富集与靶分子特异结合的寡核苷酸, 经过几轮或数十 轮筛选过程, 获得高亲和力、 高特异性的寡核苷酸配基, 即适配体。 SELEX的筛 选主要包括以下几个部分: (1 ) 建库: 首先人工合成一个含 1014-1015个单链寡核 苷酸序列的随机文库。 随机文库可以是 RNA文库, 也可以是单链 DNA文库, 一般 随机 RNA文库较为常用。单链寡核苷酸的序列两端是带有限制性内切酶位点的固 定序列, 中间是 20-40个碱基的随机序列。 固定序列是为增加文库的稳定性和为扩 增做准备, 此固定序列是 PCR反应及其他酶学反应相关引物的结合位点。 随机序 列不能太短, 太短可能导致没有足够的二级结构同靶标分子结合, 也不能太长, 太 长可能由于全套文库单链寡核苷酸序列一定, 导致降低了选择分离出来的配基概 率。 (2 ) 筛选: 在特定的緩冲体系和选定温度下, 将所构建的随机序列库与靶标共 同孵育, 能与靶标进行结合的核酸会粘附在靶标上, 与靶标无相互作用的核酸则会 游离在緩冲体系中。(3 )分离: 将孵育后与靶标结合的核酸通过物理的方法分离出 来。先通过透析及电泳等方法将与靶标结合及游离的核酸分离开, 然后通过升温等 手段将与靶标结合的核酸与靶标分离开, 得到初步能与靶标识别的核酸。 ( 4 ) PCR 扩增: 将之前分离得到能与靶标结合的核酸进行 PCR扩增。 由于之前分离得到的 核酸数目较少, 无法满足下一轮筛选的要求, 因此需要进行 PCR扩增, 增加所筛 选得到的核酸的数量。 以筛选得到的核酸为模板,在核酸聚合酶的作用下以指数的 形式增长, 增加样品的数量, 以满足下一轮的筛选。 (5 )再循环: 通过 PCR扩增 得到数目充足的能与靶标结合的核酸后, 重复之前的筛选工作,通过数轮甚至十几 轮的筛选后, 既可得到与靶标进行高特异性, 高亲合力结合的核酸适配体。
理论上,通过 SELEX筛选可以得到针对任何靶标的核酸适配体。利用 SELEX 筛选科学家筛选得到了一系列与人类疾病密切相关的核酸适配体, 如针对 HIV-1 逆转录酶、 血管内皮生长因子 (VEGF )、 核仁素、 凝血酶、 hnR PAl蛋白等的核 酸适配体。 其中针对核仁素的核酸适配体 AS1411 已经完成二期临床实验, 其对肾 癌和非小细胞肺癌都有明显的治疗作用。针对凝血酶的核酸适配体也已经进入临床 阶段。 因此开展对核酸适配体的研究工作具有非常重要的意义。
目前的核酸适配体绝大多数均是通过 SELEX筛选得到。 而 SELEX过程中的 四个重要步驟: 建库、 筛选、 分离、 PCR扩增, 对筛选是否成功都具有比较重要 的影响。 目前通过合理的设计筛选库和优化分离方法能够大大提高 SELEX筛选的 成功率。在 SELEX筛选中 PCR是比较重要的一个环节。在此环节中以筛选得到的 核酸为模板,在 DNA聚合酶的作用下进行扩增。在 DNA的合成过程中 ,由于 DNA 聚合酶有比较强的选择性, 只能识别天然的 A、 G、 C、 T四种核苷酸, 所以筛选 得到的核酸适配体一般只是 A、 G、 C、 T的组合。 对于一些理化性质更好的核苷 类似物如 UNA、 LNA、 2,-F-araN等, DNA聚合酶无法将其掺入到核酸适配体中。 这种局限性限制了 SELEX 的应用。 在对目前已经筛选得到的核酸适配体进行 UNA, LNA、 2,-F-araN、 2,-O-methyl修饰发现, 这些经过修饰的核酸适配体在一 的活性。
为了进一步增加核酸适配体与靶标的特异性,优化核酸适配体的理化性质提高 核酸适配体的活性, 有必要对核酸适配体进行进一步的优化。 而传统的 SELEX筛 选已经无法满足此要求。核酸适配体与靶标的识别是一个相互诱导契合的过程。 因 此在核酸适配体局部进行一定的微调,能够在保持核酸总体二级结构的前提下增强 与靶标的相互作用, 提高核酸适配体的特异性和生物活性。 异核苷是指一类碱基由糖基的 1,位移至其它位置的核苷。 类似于天然核糖, 根据糖基构型的不同, 异核苷又可分为 D-和 L-两种, 其中 D-构型与天然核苷类型 相同, L-构型则相反。 由于异核苷的碱基发生移位, 导致异核苷掺入的核酸适配体 的局部构象发生改变。 当异核苷掺入的位点为核酸适配体与靶标的作用位点时,碱 基空间构象的变化会导致与靶标的空间距离发生改变,当用两种构型相反的异核苷 分别掺入到核酸与耙标的结合位点时,就会导致一种与靶标的作用距离增加, 活性 降低, 另一种构型异核苷掺入的核酸适配体与靶标的作用距离缩短, 活性增加。 因 此将异核苷引入到核酸适配体中,通过调整核酸适配体局部空间构象,可以达到增 强与靶标的作用力,进一步提高核酸适配体生物活性的目的。异核苷的这种修饰策 略与 SELEX有所不同, SELEX筛选是从众多无序的核酸序列中寻找到某一条特定 的能与靶标特异性结合的核酸,而异核苷修饰策略作用的对象则是对现有核酸适配 体的优化。但它们的目标一致, 即通过各种方法得到能与靶标高特异性结合的核酸 适配体。 SELEX是一种初期的 选, 异核苷修饰策略是一种后期的优化, 异核苷 修饰策略和 SELEX歸选方法彼此相互补充和完善了筛选核酸适配体的方法。
本发明利用异核苷的修饰策略对凝血酶核酸适配体 TBA和核仁素的核酸适配 体 AS1411进行异核苷修饰,都寻找到了能进一步提高与靶标亲合力的核酸适配体。 通过体外实验和动物实验也证明这种异核苷修饰策略优化后的核酸适配体能够明 显提高对靶标的生物活性。将这种修饰策略进行进一步的推广,将有望对各种不同 的核酸适配体进行优化, 从而得到与靶标特异性更强, 活性更好的核酸适配体。 发明内容
为了提高核酸适配体的稳定性、生物活性以及与靶标作用的特异性,本发明提 供了一种利用异核苷或异核苷联合 2,-脱氧肌苷对核酸适配体序列进行化学修饰的 方法及其产品, 本发明通过采用异核苷或异核苷联合 2,-脱氧肌苷对核酸适配体进 行化学修饰, 改变了核酸适配体与靶标结合部分碱基的空间构象,从而增强了核酸 适配体与靶标的相互作用, 以达到增强核酸适配体对靶标的特异性, 以及提高核酸 适配体生物活性的目的。
为了达到上述目的, 本发明釆用的技术方案如下:
本发明一种对核酸适配体序列进行化学修饰的方法,其特征在于,在核酸适配 体序列的一个或多个核苷位点掺入异核苷,所述异核苷的结构式如化学式 I或化学 式 II所示, 化学式 I所示的异核苷为 L-构型的异核苷, 化学式 II所示的异核苷为 D-构型的异核苷, 其中, Base为腺嘌呤八、 胸腺嘧啶丁、 鸟嘌呤 G或胞嘧啶 C,
Figure imgf000006_0001
用化学式 I或化学式 II所示的异核苷代替天然核苷在相应位置进行偶联。
在本发明中,优选的,在核酸适配体序列的一个或多个核苷位点掺入异核苷的 同时, 还包括在核酸适配体序列的一个或多个核苷位点掺入 2,-脱氧肌苷, 所述的
2,-脱氧肌苷的结构式如化学式 III所示:
Figure imgf000006_0002
然核苷在相应位置进行偶联。
D/L构型异核苷与天然核苷相比具有如下特点: a. 碱基从糖环的 Γ位移到 2, 位; b. L构型异核苷的糖环发生翻转, 局部构象变化相比 D构型核苷较大。 导致 在氨基酸序列不变的前提下, 釆用 D/L 异核苷修饰的核酸适配体与天然的核酸适 配体相比构象会发生一定的变化。 当这种修饰位点处于与靶标结合的区域时, 则会 起到调节与靶标结合的作用。部分位点掺入异核苷,最终达到提高与靶标的结合力、 增强生物活性的目的。 2,-脱氧肌苷的作用与异核苷的作用类似, 但它主要通过调 整碱基来达到调整局部空间构象的目的。
在本发明所述的化学修饰方法中,在对核酸适配体进行化学修饰前,将化学式 I、 化学式 II所示的异核苷化合物和化学式 III所示的 2,-脱氧肌苷化合物分别制备 成化学式 IV、 化学式 V所示的异核苷亚磷酰胺单体和化学式 VI所示的 2, -脱氧 肌苷亚磷酰胺单体, 所述的异核苷亚磷酰胺单体的合成方法可参见文献 (HW Yu, LR Zhang, JC Zhuo, LT Ma, LH Zhang, Bioorg. Med. Chem., 1996, 40, 609 - 614)。 NC p oa¾a¾C
Figure imgf000007_0001
其中, Base选自腺嘌呤 A、 胸腺嘧啶1\ 鸟嘌呤 G或胞嘧啶(3。
在本发明所述的修饰方法中, 使用固相合成技术, 采用亚磷酰胺法合成核酸适 配体的寡核苷酸链, 在 DNA合成仪上, 将一个或几个所述的异核苷亚磷酰胺单体 或者将一个或几个所述的异核苷亚磷酰胺单体和一个或几个所述的 2,-脱氧肌苷亚 磷酰胺单体同时掺入到所合成的序列中代替天然核苷亚磷酰胺单体在相应位置进 行偶联, 每偶联一个核苷为一个循环, 每个循环包括四个反应: 脱 DMT、 偶联、 封闭、 氧化。
由于异核苷亚磷酰胺单体常规条件下的偶联收率较低,需增加异核苷亚磷酰胺 单体的进样次数和每次进样后的偶联时间以保证合成的收率。 合成 DNA寡核苷酸 链的条件是采用增加核苷亚磷酰化单体的进样次数至 2-6次;每次进样后的偶联时 间为 120-240秒 /次; 合成异核苷 /2,-脱氧肌苷修饰的 DNA寡核苷酸链的条件是每 次进样后的偶联时间增加至 200-360秒 /次, 偶联 2-6次。
进一步的,本发明还提出了按照以上任一项所述的方法合成的异核苷或异核苷 联合 2,-脱氧肌苷修饰的核酸适配体序列。
在本发明的具体实施例中, 所述的核酸适配体为人的凝血酶的核酸适配体 (TBA) , 核仁素的核酸适配体, hn NPAl蛋白的核酸适配体; 其中, 修饰前的人 的凝血酶的核酸适配体 (TBA)序列如 SEQ ID No.l所示, 修饰前的核仁素的核酸适 配体序列 (AS1411)序列如 SEQ ID No.2所示, 修饰前的 hnR PAl蛋白的核酸适配 体序列 (BC15-31)如 SEQ ID No.3所示。
在本发明的具体实施例中,修饰后的凝血酶的核酸适配体序列选自以下序列所 组成的群组:
1 )在 SEQ ID No.l所示 TBA序列的 3、 9或 12位掺入化学式 I所示的异核苷 代替天然核苷在相应位置进行偶联而得到的三条核酸适配体 (TBA-3L、 TBA-9L 和 TBA-12L ), 其中, Base为胸腺嘧啶 T; 2 )在 SEQ ID No. l所示 TBA序列的 7位掺入化学式 II所示的异核苷代替天然 核苷在相应位置进行偶联而得到的核酸适配体(TBA-7D ), 其中, Base 为胸腺嘧 啶 T;
3 ) 同时在 SEQ ID No. l所示 TBA序列的 7位和 12位分别掺入化学式 II和化 学式 I 所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体
( TBA-7D/12L ), 其中, Base为胸腺嘧11定 T; 以及
4 ) 同时在 SEQ ID No. l所示 TBA序列的 7位和 3位掺入化学式 II和化学式 I 所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体
( TBA-7D/3L ), 其中, Base为胸腺嘧啶 T。
在本发明的具体实施例中,修饰后的核仁素的核酸适配体序列选自以下序列所 组成的群组:
1 )在 SEQ ID No.2所示的 AS 1411序列的 6位掺入化学式 I所示的异核苷代替 天然核苷在相应位置进行偶联而得到的核酸适配体(AS1411-6L ), 其中, Base为 胸腺嘧啶 T;
2 )在 SEQ ID No.2所示的 AS 1411序列的 12位掺入式 II所示的异核苷代替天 然核苷在相应位置进行偶联而得到的核酸适配体(AS 1411-12D ), 其中, Base为胸 腺嘧啶 T; 以及
3 ) 同时在 SEQ ID No.2所示的 AS 1411序列的 6位和 12位分别掺入化学式 I 和化学式 II所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体
( AS 1411-6L/12D ), 其中, Base为胸腺嘧啶 T; 以及
4 )同时在 SEQ ID No.2所示的 AS1411序列的 6位, 12位和 24分别掺入化学 式 I, 化学式 II所示的异核苷和化学式 III所示的 2,-脱氧肌苷代替天然核苷在相应 位置进行偶联而得到的核酸适配体(AS 1411-6L/12D/24dI ), 其中, Base为胸腺嘧 啶丁。
在本发明的具体实施例中 , 修饰后的 hnRNPAl蛋白的核酸适配体序列选自以 下序列所组成的群组:
1 )在 SEQ ID No.3所示的 BC 15-31序列的 3位掺入化学式 I所示的异核苷代 替天然核苷在相应位置进行偶联而得到的核酸适配体(BC15-31-3L ), 其中, Base 为胸腺嘧啶 T;
2 )在 SEQ ID No.3所示的 BC15-31序列的 3位掺入化学式 II所示的异核苷代 替天然核苷在相应位置进行偶联而得到的核酸适配体(BC15-31-3D ), 其中, Base 为胸腺嘧啶 T;
3 )在 SEQ ID No.3所示的 BC15-31序列的 30位掺入化学式 II所示的异核苷 代替天然核苷在相应位置进行偶联而得到的核酸适配体 ( BC15-31-30D );
4 ) 同时在 SEQ ID No.3所示的 BC15-31序列的 1位和 3位掺入化学式 I所示 的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体
( BC15-31-1L/3L ), 其中, Base为胸腺嘧 丁;
5 )同时在 SEQ ID No.3所示的 BC15-31序列的 1位和 30掺入化学式 I所示的 异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体 ( BC15-31-1L /30L ), 其中, Base为胸腺嘧啶 T;
6 )同时在 SEQ ID No.3所示的 BC15-31序列的 3位和 30掺入化学式 I所示的 异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体 ( BC15-31-3L/ 30L ), 其中, Base为胸腺嘧啶 T;
7 ) 同时在 SEQ ID No.3所示的 BC15-31序列的 3位和 30掺入化学式 II所示 的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体 ( BC15-31-3D /30D ), 其中, Base为胸腺嘧啶 T;
8 )同时在 SEQ ID No.3所示的 BC15-31序列的 3位和 30位分别掺入化学式 I, 化学式 II 所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体
( BC15-31-3L/ 30D ), 其中, Base为胸腺嘧啶 T;
以 TBA-3L为例, 以上所述在 SEQ ID No.l所示 TBA序列的 3位掺入化学式 I所示的异核苷代替天然核苷在相应位置进行偶联是指 TBA链: 5,-GGT TGG TGT GGT TGG -3' ( SEQ ID No.l所示)核苷酸序列中 5,端开始第 3个核苷酸(即" T" ), 其余以此类推。
研究证明, 本发明提供的异核苷修饰的 TBA-12L, AS1411-6L具有理化性质 稳定、合成效率高等特点;此外 TBA-12L、 TBA-7D/12L、 TBA-3L/12L、 AS1411-6L、 AS1411-6L/12D/24dI、 BC15-31-3D/30D, BC15-31-3L/30D具有比天然的母体序列 更好的生物活性。
在 TBA的 7位掺入化学式 II所示的异胸苷( TBA-7D )、 在 12位掺入化学式 I 所示异胸苷( TBA-12L )、 同时在 TBA的 7和 12位分别掺入化学式 II和化学式 I 所示的异胸苷(TBA-7D/12L ), 代替天然核苷在相应位置进行偶联得到的修饰后的 TBA能够显著提高其与凝血酶的结合力及其抗凝血活性。将异核苷掺入到 AS1411 中的活性结果应用到 MCF-7 癌细胞系中, 蛋白水平及细胞水平结果表明: 在 AS1411正义链的 6位掺入化学式 I所示的异胸苷 (AS1411-6L )、 在 AS1411正义 链 12位掺入化学式 II所示的异胸苷 (AS1411-12D )及同时在 AS1411正义链的 6 位和 12位分别掺入化学式 I和化学式 II所示的异胸苷(AS1411-6L/12D )代替天 然核苷在相应位置进行偶联得到的修饰后 AS1411能够显著提高其与核仁素的结合 力及抑制癌细胞增殖活性。 将异核苷联合 2,-脱氧肌苷对 AS1411进行化学修饰发 现, 同时在 AS1411序列的 6位掺入化学式 I所示的异胸苷, 在 12位掺入式 II所 示的异胸苷, 以及在 24位掺入 III所示的 2,-脱氧肌苷代替天然核苷在相应位置进 行偶联得到的修饰后的核酸适配体(AS1411-6L/12D/24dI )能够进一步提高其与核 仁素的结合力及抑制 MCF-7 癌细胞增殖活力 , 动物实验也表明 AS1411-6L/12D/24dI 能够显示抑制小鼠肿瘤的生长。 在动物实验中发现 AS1411-6L, AS1411-12D和 AS1411-AS1411-6L/12D/24dI也能够明显地抑制小鼠 肿瘤的生长。
因此, 更进一步的, 本发明提出了所述的核酸适配体序列在制备抗心脑血管疾 病的药物或试剂中的应用, 所述的核酸适配体序列为异核苷或异核苷联合 2,-脱氧 肌苷修饰的人的凝血酶的核酸适配体 (TBA)。 及
所述的核酸适配体序列在制备治疗癌症或癌症的早期检测方面的药物或试剂 中的应用, 所述的核酸适配体序列为异核苷或异核苷联合 2,-脱氧 ^^苷 饰的核仁 素的核酸适配体或 hnRNPAl蛋白的核酸适配体。
相较于现有技术, 本发明的优点在于:
1. 本发明提供的异核苷修饰 /异核苷联合 2,-脱氧肌苷修饰的 TBA、 AS1411、 BC15-31 , 具有理化性质稳定、 合成效率高等特点; 产物自身具有比天然核酸适体 更好的生物活性。
2. 通过全面考察异核苷 /异核苷联合 2,-脱氧肌苷在不同位点掺入的核酸适配 体, 改善了核酸适配体的血清稳定性增强了核酸适配体与耙标的结合力、提高了核 酸适配体的体外活性。 此外, 动物实验结果也表明异核苷或异核苷联合 2,-脱氧肌 苷修饰的核酸适配体可以提高在动物水平对癌组织的抑制作用,为异核苷修饰的核 酸适配体的临床应用提供了重要的指导意义。 3. 本发明提供的异核苷化合物能够显著地提高经过其修饰的 TBA 的酶稳定 性, 与靶标的结合力。 通过体外实验与人体血浆进行作用发现经过异核苷修饰的 TBA能够显示提高其抗凝效果, 这为异核苷修饰的 TBA在以后的临床应用提供了 进一步的理论支持。 发现在 TBA的 7位掺入化学式 II所示的异核苷( TBA-7D )、 在 12位掺入式 I所示的异核苷 ( TBA-12L )、 同时在 7位和 12位分别掺入化学式 II和化学式 I所示的异核苷 ( TBA-7D/12L )、 同时在 TBA的 7位和 3位分别掺入 化学式 II和化学式 I所示的异核苷( TBA-7D/3L )代替天然核苷在相应位置进行偶 联的 TBA能够显著提高 TBA与凝血酶的结合力及其抗凝血活性。 其中在 TBA的 12 位掺入化学式 I 所示的异核苷代替天然核苷在相应位置进行偶联得到的 TBA ( TBA-12L )具有最佳的体外活性。 经过异核苷修 _饰的 AS1411能够显著提高与靶 标的结合力, 通过细胞水平的实验及动物实验发现 AS1411-12L能够显著提高抑制 MCF-7癌细胞系增殖的能力,这为异核苷修饰的 AS1411在以后的临床应用提供了 进一步的理论支持。经过异核苷联合 2,-脱氧肌苷修饰的 AS1411-6L/12D/24dI 能够 显著提高与靶标的结合力,在动物水平最强的抑制小鼠肿瘤的生长的活性。经过异 核苷修饰的 BC15-31-3D/30D、 BC15-31-3L/30D够明显提高对 A549肿瘤细胞的抑 制活性。 附图说明
图 1为异核苷修饰 TBA的 CD光傳实验结果图;
图 2为天然的及异核苷修饰的 AS1411的 CD光谱实验结果图;
图 3 为 D/L异核苷修饰 TBA的血清稳定性实验结果图;
图 4为 D/L异核苷修饰 BC15-31在 10%及 50%胎牛血清中的稳定性实验结果 图;
图 5为单位点异核苷修饰 TBA与凝血酶亲合力实验结果图;
图 6为双位点异核苷修饰 TBA与凝血酶亲合力实验结果图;
图 7为单位点异核苷修饰 TBA体外抗凝活性结果图;
图 8为双位点异核苷修饰 TBA体外抗凝活性结果图;
图 9为化合物 AS1411及单位点异核苷修饰产物的细胞抑制增殖实验结果图; 图 10为双位点异核苷及异核苷联合 2,-脱氧肌苷组合修饰的 AS1411细胞抑制 增殖实验结果图; 图 11为不同位点修饰的 AS1411对 293细胞的细胞抑制实验结果图; 图 12为单位点及双位点异核苷修饰的 BC15-31对 A549肿瘤细胞增殖活性实 验结果图;
图 13为不同核酸适配体识别肝癌组织切片结果;
图 14为双位点异核苷及异核苷联合 2,-脱氧肌苷组合修饰 AS1411动物水平活 性评价结果。
本发明中使用的化学命名:
AIBN 偶氮二异丁腈
Bu3SnH 三正丁基锡氢
Bz- 苯曱醜基
DBU 1, 8-二氮杂双环 (5.4.0)十一 -7-烯
DMAP 4-二甲氨基吡啶
DMTr 二曱氧基三苯曱基
DMF N-曱酰二甲胺
Py 匕
TFA 三氟乙酸
TMS- 2,4,6-三甲基苯磺酰基
Ts- 对甲苯磺 基
9-BBN 9-硼二环 [3.3.1]壬烷 具体实施方式
下面结合具体实施例来进一步描述本发明, 本发明的优点和特点将会随着描 述而更为清楚。 但实施例仅是范例性的, 并不对本发明的范围构成任何限制。 本领 域技术人员应该理解的是,在不偏离本发明的精神和范围下可以对本发明技术方案 的细节和形式进行修改或替换, 但这些修改和替换均落入本发明的保护范围内。
实施例 1 异核苷或异核苷联合 2,-脱氧肌苷修饰的 TBA、 AS1411和 BC15-31 固相合成
DNA的合成采用 Appllied Biosystems model 394 DNA固相合成仪。
正常的脱氧核苷亚磷酰化单体 (dT, dGAc, dABz, dCAc)从上海吉玛制药技术有 P艮公司购买; 2, -脱氧肌苷亚磷酰胺单体 (化合物 VI )从上海智研科技有限公司 (上海) 购买。 CPG(CPG-dG), CAP-A和 CAP-B , 氧化 12液, C13CCOOH从北 京奥科生物科技公司购买; 0.25M的 5-乙巯基 1H-四氮唑溶液从上海智研科技有限 公司 (上海) 购买。
按照文献 (HW Yu, LR Zhang, JC Zhuo, LT Ma, LH Zhang, Bioorg. Med. Chem., 1996, 40, 609-614)的方法, 将化学式 I以及化学式 II所示的异核苷化合物分別制备 成化学式 IV以及化学式 V所示的异核苷亚磷酰胺单体。 即: 将单体化合物 I、 II 分别在真空中干燥, 加 3.5倍当量的 1H-四氮唑, 真空干燥过夜, 加入 5ml无水吡 啶, 水浴条件下, 加入 3.5当量的亚磷试剂, 反应完成后蒸干溶剂, 于无水无氧条 件下采用硅胶柱分离, 最终得到白色固体, 即化合物 IV、 V。
Figure imgf000013_0001
Figure imgf000013_0002
其中, Base选自腺嘌呤 A、 胸腺嘧啶 T、 鸟嘌呤 G或胞嘧啶。。
合成规模: 〜 1.0 μηιοΐ
1H-四氮唑溶液的配制: 氩气保护下称量, 加无水乙腈, 配成 0.5 M 1H-四氮唑 溶液;
核苷亚磷酰化单体溶液的配制: 氩气保护下称量, 加无水乙腈, 配成 0.12 Μ 溶液;
异核苷亚磷酰化单体溶液的配制:氩气保护下取 0.231 mmol的 {5S-[3-O-(4,4,- 二曱氧基三苯基甲基) -曱基 ]-4R-O-[(2-氰乙基 -Ν,Ν'-二异丙基) -亚磷酰胺基 ]-3S- (胸 腺嘧啶基 -1-yl)}-四氢呋喃 (化学式 IV所示的异核苷化合物), 加入 2.5 ml的无水 乙腈, 配成 0.092 M的溶液; 氩气保护下取 0.244 mmol的{51 -[3-0-(4,4,-二甲氧基 三苯基曱基) -曱基 ]-4S-O-[(2-氰乙基 -N,N,-二异丙基) -亚磷酰胺基 ]-3R- (胸腺嘧啶基 -1-yl)}-四氢呋喃(化学式 V所示的异核苷化合物;), 加入 2.5 ml的无水乙腈, 配成 0.098 M的溶液;
2, -脱氧肌苷亚磷酰胺单体溶液的配制: 氩气保护下称量 2, -脱氧肌苷亚磷酰 胺单体, 加无水乙腈, 配成 0.12 M的溶液;
采用固相合成的方法合成了天然的及异核苷修饰的 TBA、 AS 141 K BC15-31 序列。 在 DNA合成仪上, 将一个或几个所述的异核苷亚磷酰胺单体或者将一个或 几个所述的异核苷亚磷酰胺单体和一个或几个所述的 2,-脱氧肌苷亚磷酰胺单体同 时掺入到所合成的序列中代替天然核苷亚磷酰胺单体在相应位置进行偶联,每偶联 一个核苷为一个循环, 每个循环包括四个反应: 脱 DMT、 偶联、 封闭、 氧化。
其中, 人的凝血酶的核酸适配体 (TBA) 修饰前的序列如 SEQ ID No. l所示, 核仁素的核酸适配体序列 (AS1411) ^[ 饰前的序列如 SEQ ID No.2所示, hn PAl 蛋白的核酸适配体序列 (BC15-31)修饰前的序列如 SEQ ID No.3所示,
以合成 TBA-3L为例, 在 SEQ ID No. l所示 TBA序列的 3位掺入化学式 I所 示的异核苷代替天然核苷在相应位置进行偶联, 即在 TBA链: 5,-GGT TGG TGT GGT TGG -3, ( SEQ ID No. l所示)的核苷酸序列中 5,端开始第 3个核苷酸(即" T" ), 的位置处掺入化学式 I ( L构型, 其中 Base选自胸腺嘧啶 T )所示的异核苷代替天 然核苷在相应位置进行偶联, 其余以此类推。
合成步骤: 每次称量约 33 mg CPG-dC/CPG-dG装入合成柱中, 按照 ABi394 核酸合成仪的标准步骤, 每次合成共 84步。 正常核苷单体偶联 3次, 每次 180秒, 异核苷单体偶联 3次, 每次 300秒, 共计偶联时间 15分钟。
DNA的切割、 脱保护: 合成结束后, 取下 CPG, 等体积加入质量分数为 30% 浓氨水以及质量分数为 25%甲胺水溶液, 恒温 60。C, 摇床振荡反应 60分钟, 将寡 核苷酸从 CPG上切割下来并脱除部分保护基, 离心干燥。 然后加入适量纯净水溶 解, 于 1万 4千转 /分钟的离心机上离心 10分钟, 将上清取出, 离心干燥, 将产物 放置 -80°C下保存。
DNA的分离纯化: 混合物以纯水溶解, HPLC (Sephedax G-25 , 50% 乙腈 的 水溶液) 脱盐, 离心干燥。 而后 HPLC 方式纯化, 釆用如下条件: Dionex-DNA Pac-PA200阴离子交换柱梯度洗脱, 0-40 min, 10% -30% A液 (B液: 0.02 M tris-HClO4 緩沖液, pH 为 8.0, 含有 10% (指体积分数) MeCN; A液: 0.4 mol/L NaClO4 in B 液), 流速 1.2 ml/min。 冷冻干燥所得产物, DEPC水复溶, HPLC (Sephedax G-25) 脱盐, 冷冻干燥, 得到目标单链 DNA, -80°C保存。 实施例 2 修饰后的 TB A及 AS 1411序列的基本性质研究
1、 样品名称: TBA序列的 3位、 4位、 7位、 9位、 12位或 13位掺入化学式 I或化学式 II所示的异核苷(其中 Base选自胸腺嘧啶 T ), 代替天然核苷在相应位 置进行偶联得到的修饰后的 TBA序列, 按照实施例 1方法制备;
AS1411序列的 3位、 6位、 9位、 12位、 13位、 15位或 24位掺入化学式 I 或化学式 II所示的异核苷(其中 Base选自胸腺嘧啶 T ) 或化学式 III所示的 2,-脱 氧肌苷, 代替天然核苷在相应位置进行偶联得到的修饰后的 AS1411序列, 按照实 施例 1方法制备。
2、 方法
( 1 ) Tm值测定
将天然的及异核苷修饰的 TBA溶于 Tm緩冲液中(0.1 M KC1, 0.01M次曱砷酸 钠,pH 7.0), 所有样品在 95°C变性 5 min后, 緩慢降至室温, 待测。 釆用紫外分光 光度计测定样品的紫外吸收, 波长范围为 200-400 nm, 吸收波长为 295 nm, 升温 ( 25。C至 90°C, 升温速度为 0.3。C/min ), 记录紫外吸收随温度变化曲线, 采用一 阶微分法计算 Tm值。 实验结果见表 1。
表 1 D/L异核苷修饰 TBA的热力学稳定性实验结果 核酸适配体 序列 Tm (°C) △Tm (°C)
TBA 5,-GGTTGGTGTGGTTGG-3, 49.8
TBA-3D 5 '-GGrDTGGTGTGGTTGG-3 ' 51.3 1.5
TBA-3L 5 '-GGriTGGTGTGGTTGG-3 ' 52.3 2.5
TBA-4D 5'-GGTrDGGTGTGGTTGG-3' 35.9 -13.9
TBA-4L 5 '-GGrLTGGTGTGGTTGG-3 ' 44.5 -5.3
TBA-7D 5,-GGTTGG GTGGTTGG-3 ' 55.2 5.4
TBA-7L 5, -GGTTGG7iGTGGTTGG-3 ' 37.1 -12.7
TBA-9D 5, -GGTTGGTGrDGGTTGG-3 ' 38.6 -11.2
TBA-9L 5, -GGTTGGTGrL GGTTGG-3 ' 54.9 5.1
TBA-12D 5, -GGTTGGTGTGG2VTGG-3, 50.7 0.9
TBA-12L 5, -GGTTGGTGTGGrLTGG-3 ' 52.9 3.1
TBA-13D 5 '-GGTTGGTGTGGTrDGG-3 ' 32.3 -17.5
TBA-13L 5'-GGTTGGTGTGGTriGG-3' 46.5 -3.3
Buffer: 100 mM KC1, 10 mM二甲砷酸钠, pH 7.0 其中 D下标表示 D-异核苷酸修饰, L下标表示 L-异核苷酸修饰; ( 2 ) CD光谱分析
用 lxCD 緩冲液 (138 mM NaCl, 2.7 mM KC1, 10 mM Na2HPO4, 1.76 mM KH2PO4 , pH 7.4)溶解 TBA序列测试样品, 所有样品在 95°C变性 5 min后, 緩慢 降至室温,待测。 CD扫描范围从 200-400 nm,温度恒定为 25。C,扫描间隔 0.2 nm, 扫描速度 100 nm/min, 每个样品重复 3次扫描, 采用仪器自带软件进行平滑处理。 实验结果见图 1。
用 PBS溶解 AS 1411序列样品, 所有样品在 95。C变性 5min后, 緩慢降至室 温, 待测。 CD扫描范围从 200-400 nm, 温度恒定为 25°C, 扫描间隔 0.2 nm, 扫 描速度 100 nm/min, 每个样品重复 3次扫描, 采用仪器自带软件进行平滑处理。 实验结果见图 2。 实施例 3 血清稳定性考察
1、 样品名称: TBA-9L、 TBA-9D、 TBA-7L、 TBA-7D、 BC15-31-1L/ 30D、 BC15-31-1L/ 3L、 BC15-31-3L/ 30L、 BC15-31-3L/ 30D、 BC15-31-3D/ 30D, 分别按 照实施例 1方法制备。
2、 方法
分别考察上述不同核酸适配体以及未经修饰核酸适配体 TBA、; BC15-31在 10% 及 50% (体积分数)的胎牛血清中的稳定性。 将核酸适配体溶解于 PBS中配制成一 定浓度, 于 95°C变性 5 min后退火, 緩' f曼降至室温, 加入不同体积的胎牛血清, 用 PBS緩冲液稀释, 使胎牛血清的浓度分别达到 10%和 50%, 核酸终浓度为 20 g/mL。 37°C 孵育, 于不同的时间点取出, -80。C迅速冷冻淬灭反应。 样品在 20 % 的变性聚丙浠酰胺凝胶电泳 110V电压条件下分离, 用 0.1% SYBR Gold核酸染料 染色 15min, 用化学发光凝胶成像系统对电泳结果进行成像分析。 实验结果见图 3 和图 4。 变性胶配方如下表 2:
2
试剂 20%聚丙烯酰胺凝胶 (mL)
尿素 3.36g
40%丙烯酰胺 4
Figure imgf000016_0001
10%过硫酸铵 0.07
TEMED 0.008
ddH2O
结果表明, 经过修饰后的核酸适配体,相较于未修饰的核酸适配体其血清稳定 性得到一定提高。 实施例 4 SPR测定异核苷修饰的 TBA序列、 异核苷修饰及异核苷联合脱氧 肌苷修饰的 AS1411序列、异核苷修饰的 BC15-31序列分别与凝血酶、核仁素蛋白、 hnRNPAl蛋白的亲合力
1、 样品名称: TBA-3D、 TBA-3L、 TBA-4D、 TBA-4L、 TBA-7D、 TBA-7L、 TBA-9D、 TBA-9L、 TBA- 12D , TBA-12L、 TBA- 13D . TBA-13L、 TBA-3L7D、 TBA-3L9L、 TBA-3L12L、 TBA-7D9L、 TBA-7D12L、 TBA-9L12L, AS1411-6L、 AS1411-12D. AS1411-13L、 AS1411-6L/12D、 AS1411-6L/12D/24dI、 BC15-31-3L, BC15-31-3D、 BC15-31-1L/3L、 BC15-31-1L/30L 以及 BC15-31-3L/30L, 按照实施 例 1方法制备。
2、 方法
( 1 )将凝血酶蛋白、 核仁素蛋白及 hnRNPAl蛋白固定在 CM5芯片上 将一定量的凝血酶 /核仁素 /hnRNPAl蛋白分别用合适的 pH值的醋酸钠溶液配成 一系列浓度的溶液, 优选蛋白在芯片表面的最佳偶联条件。 具体操作如下: PBS 緩冲液为流动工作液, 温度 25°C, 流速 10 μΙ7πώι, 稳定基线。 将 EDC和 HS混 合液以 5 μΐνπήη的流速流过芯片表面 7 min, 活化表面的羧基。 分别配制成不同浓 度的凝血酶 /核仁素蛋白/ hnRNPAl蛋白溶液, 注入芯片表面, 找到偶联至芯片表面 最合适的浓度。 然后, 以盐酸乙醇胺( 1 mmol/L, pH 8.5)封闭未反应的活化羧基, 时间约为 2-3 h。 以通道 1 为空白对照通道, 通道 2作为实验组进行下一步研究。
( 2 ) 天然及异核苷修饰的 TBA、 异核苷修饰及异核苷联合 2,-脱氧肌苷修饰 的 AS1411、 异核苷修饰的 BC15-31分别与凝血酶、 核仁素蛋白、 hnRNPAl蛋白的 相互作用
将天然及异核苷修饰的 TBA、 异核苷修饰及及异核苷联合 2'-脱氧肌苷修饰的 AS1411、 异核苷修饰的 BC15-31分别配制成 0.02~100μΜ范围内的一系列浓度梯 度的溶液(PBS緩冲液), 以 30 μΙ7πιίη, 3 min, 解离时间为 5 min的流速流过芯 片表面, 实时记录其与凝血酶的结合情况。 反应结束后, 用不同浓度的 NaOH作 为再生液,根据传感图的 RU值变化, 评价其洗脱效果, 从中选择合适的再生溶液, 用于芯片的重复使用。
( 3 )动力学实验
根据上述实验筛选的结果,选择合适的不同浓度梯度进行动力学实验,将测得 的数据用 Scatchard曲线计算核酸适配体与靶标蛋白相互作用的平衡解离常数 (Kd) 值。 再生液 NaOH的浓度选定为 10 mM。
( 4 )数据处理
所有实验数据采用 BIAcore3000的 Bia evaluation分析软件进行处理分析。 3、 实验结果
TBA与凝血酶相互作用的亲合力实验结果见图 5和图 6, 结果说明在 TBA的 7位掺入由化学式 II所示化合物制备的异核苷亚磷酰胺单体 V、 在 12位掺入由化 学式 I所示化合物制备的异核苷亚磷酰胺单体 IV、 同时在 TBA的 7和 12位分别 掺入由化学式 II和化合式 I所制备的异核苷亚磷酰胺单体 V和 IV、同时在 TBA的 3位和 7位分别掺入化学式 I和化学式 II所制备的异核苷亚磷酰胺单体 IV和 V代 替天然核苷亚磷酰胺单体在相应位置进行偶联的 TBA能够显著提高其与凝血酶的 结合力。 单位点异核苷修饰的 AS1411与核仁素蛋白的亲合力实验结果见表 3。 双 位点异核苷修饰 AS1411及异核苷 /2,-脱氧肌苷组合修饰 AS1411与核仁素蛋白的亲 合力实验结果见表 4。 单位点异核苷修饰的 BC15-31与 hnRNPAl蛋白的亲合力实 验结果见表 5。 双位点异核苷修饰的 BC15-31与 hnRNPAl蛋白的亲合力实验结果 见表 6。
表 3 天然及单位点 D/L异核苷修饰的 AS1411与靶标的亲合力测试实验结果 核酸适配体 序列 Kd (nmol)
AS1411 5, -GGT GGT GGT GGT TGT GGT GGT GGT GG-3' 345
AS1411-6L 5, -GGT GGTz, GGT GGT TGT GGT GGT GGT GG-3' 51.2
AS1411-12D 5, -GGT GGT GGT GGTD TGT GGT GGT GGT GG-3' 69.6
AS1411-13L 5, -GGT GGT GGT GGT TLGT GGT GGT GGT GG-3' 304
表 4 天然、 双位点 D/L异核苷组合修饰、 双位点 D/L异核苷联合 2,-脱氧肌苷组合 修饰的 AS1411与靶标的亲合力测试实验结果 核酸适配体 序列 Kd (nM)
AS1411 5,-GGT GGT GGT GGT TGT GGT GGT GGT GG-3' 148.00
AS1411-6L/12D 5,-GGT GGT , GGT GGTD TGT GGT GGT GGT GG-3 ' 9.56
AS1411-6L/12D/24dI 5, -GGT GGTi GGT GGTD TGT GGT GGT GGdl GG-3' 4.70 表 5单位点异核苷修饰 BC15-31与靶标的亲合力测试实验结果 核酸适配体 序列 Kd/nM
BC15-31 5'-TGTGGCGAGGTAGGTGGGGTGTGTGTGTATC-3' 255.71
BC15-31-3L 5'-TGT GGCGAGGTAGGTGGGGTGTGTGTGTATC-3' 112.87
BC15-31-3D 5'-TGTDGGCGAGGTAGGTGGGGTGTGTGTGTATC-3' 159.57 表 6双位点异核苷修饰 BC15-31与靶标的亲合力测试实验结果 核酸适配体 Kd/nM
BC15-31 5'-TGTGGCGAGGTAGGTGGGGTGTGTGTGTATC-3' 60.96
BC15-31-1L/3L 5'-TiGTiGGCGAGGTAGGTGGGGTGTGTGTGTATC-3' 14.28 BC15-31-1L/30L 5'-TiGTGGCGAGGTAGGTGGGGTGTGTGTGTATLC-3' 40.40 BC15-31-3L/30L 5'-TGT GGCGAGGTAGGTGGGGTGTGTGTGTATiC-3' 51.71
实施例 5 异核苷 饰的 TBA体外抗凝活性考察
1、 样品名称: TBA-3D、 TBA-3L、 TBA-4D、 TBA-4L、 TBA-7D、 TBA-7L、 TBA-9D、 TBA-9L、 TBA-12D、 TBA-12L、 TBA-13D、 TBA-13L、 TBA-3L7D、 TBA-3L9L、 TBA-3L12L、 TBA-7D9L、 TBA-7D12L、 TBA-9L12L, 按照实施例 1 方法制备。
2、 方法
将天然及不同位点异核苷修饰的 TBA溶解于 PBS緩冲液中 , 于 95°C下加热 5 min, 后緩慢冷却至室温, 用凝血酶时间 ( TT ) 测定试剂盒中的緩冲液溶解, 使 核酸样品的浓度为 0.33μΜ。 取人的血液, 于 3000转 /分钟离心 30 min, 取上层血 浆, 备用。 取 200μ 人血浆, 置于凝血仪中, 快速加入 lOO L溶解有核酸样品的 TT緩冲液, 测定不同核酸适配体对血液的抗凝时间, 实验结果如图 7和图 8所示。 实验结果表明在 TBA的 Ί位掺入由化学式 II所示化合物制备的异核苷亚磷酰胺单 体 V、 在 3位掺入由化学式 I所示化合物制备的异核苷亚磷酰胺单体 IV、 在 9位 掺入由化学式 I所示化合物制备的异核苷亚磷酰胺单体 IV、 在 12位掺入由化学式 I所示化合物制备的异核苷亚磷酰胺单体 IV、 同时在 7位和 12位分别掺入由化学 式 II所示化合物制备的异核苷亚磷酰胺单体 V和由化学式 I所示化合物制备的异 核苷亚磷酰胺单体 IV、 同时在 3位和 7位分别掺入由化学式 I所示化合物制备的 替天然核苷亚磷酰胺单体在相应位置进行偶联得到的修饰后的 TBA具有更强的体 外抗凝活性。 实施例 6 异核苷及异核苷联合 2,-脱氧肌苷修饰的 AS1411对 MCF-7癌细胞的 抑制增殖活性测定及对正常细胞的影响
1、样品名称: AS1411-3D, AS1411-3L、 AS1411-6D、 AS1411-6L、 AS1411-15D、 AS1411-15L、 AS1411-9D、 AS1411-9L、 AS1411-12D、 AS1411-12L、 AS1411-13D、 AS1411-13L, AS1411-24D、 AS1411-24L, AS1411-6L/12D, AS1411-6L/12D/24dI, 按照实施例 1方法制备。
2、 方法
将 MCF-7乳腺癌细胞以及 293细胞分别铺板在 96孔板中,以适当的血清为培 养基, 使细胞浓度为 1.5χ 103/孔为宜。 16 小时后, 使细胞附着, 将寡核苷酸(或 PBS作为对照)直接加入到培养基中, 使寡核苷酸的终浓度为 0.75 μΜ。 在随后的 2-4天内, 将寡核苷酸的剂量减半, 加入到培养基中。 细胞铺板后使用细胞计数试 剂盒 CCK-8对每天细胞数量进行计数。 在整个实验过程中, 不更换培养基。 实验 结果如图 9 和图 10 所示, 结果表明对于 MCF-7 乳腺癌细胞, AS1411-6L、 AS1411-12D、 AS1411-6L/12D(6L/12D)、 AS1411-6L/12D/24dI(6L/12D/24dI)给药组 细胞吸光度 OD 值明显低于 AS1411 给药组, 说明 AS1411-6L、 AS1411-12D. AS 1411 -6L/ 12D(6L/ 12D)、 AS1411-6L/12D24dI (6L/ 12D/24dI)能够对细胞生长产生 更明显的抑制作用。 图 11为不同位点修饰的 AS1411对 293细胞的细胞抵制实验 结果图, 从该结果可以看出对于 293A正常细胞, 不同适配体给药均不会抑制细胞 生长, 即对于正常细胞的生长无影响。
以上实验表明 AS1411-6L/12D、 AS1411-6L/12D/24dI能够显著抑制 MCF-7乳 腺癌细胞生长, 而对于正常细胞无作用。 实施例 7 异核苷修饰的 BC15-31对 A549肿瘤细胞的抑制增殖活性测定
1、 样品名称: BC15、 BC15-31、 BC15-31-3D、 BC15-31-3L、 BC15-31-15D、 BC15-31-15L、 BC15-31-22D、 BC15-31-22L、 BC15-31-26D、 BC15-31-26L、 BC15-31-24D、 BC15-31-24L, BC15-31-28L , BC15-31-30D、 BC15-31-30L, 按照 实施例 1方法制备。
2、 方法
(1) 细胞转染: 将对数生长期的 A549肿瘤细胞, 加入适量胰酶消化, 制备成 单细胞悬液。调整细胞浓度, 以每孔 2000-4000 个细胞的密度接种于 96孔培养板。 培养过夜后, 使转染时细胞汇合率达约 50-70%;
(2) 转染: 核酸样品 ( g)与 Lipofectamine 2000^L)的比例为 1 : 2.5;
a. 核酸适配体用量为 0.4 μδ /孔, 用 50 μΐ^无血清培养液稀释, 柔和混匀; b. 按上述比例的 Lipofectamine 2000 用 50 无血清培养液稀释,轻轻混匀, 室温静置 5 min;
c. 将稀释好的核酸样品和 Lipofectamine 2000 试剂混合, 轻柔混匀, 室温静 置 20min;
d. 转染前约 l h, 将细胞培养基更换为无血清培养基;
e. 将约 100 μΐ:混合物加入 96 孔板中, 十字形晃匀, 培养 4 h后, 更换为含
A清培养基培养。
(3) MTT检测:在 37 °C再继续培养 24 1!〜 96h。弃去培养基,每孔加入 100 新配制的含 20(^L/mL MTS 的无血清无抗生素培养基, 37。C培养 2 h后, 用酶标 仪检测波长 490 nm 的光吸收值。
实验结果如图 12 所示, 相比天然 BC15-31 , BC15-31-3D/30D 和 BC15-31-3L/30D对于 A549肿瘤细胞的抑制能力有显著提高。 实施例 8异核苷修饰的核酸适配体与肝癌组织的特异性结合实验
1、 组织切片的处理
石蜡组织切片进行筛选及结合鉴定之前先进行常规脱蜡。组织切片置于二甲苯 中浸泡 20min; 更换二甲苯后再浸泡 20min; 依次在无水乙醇、 95%乙醇、 90%乙 醇、 80%乙醇、 70%乙醇中各浸泡 5min; 用 PBS浸泡 5min, 共 2次。 然后进行抗 原微波热修复, 即将切片放入盛有 0.01mol/L枸橼酸钠緩冲液 (pH 6.0)的容器中, 微波炉加热, 使容器内液体温度保持在 92°C~98°C并持续约 20min, 取出容器, 冷 却至室温。
2、 核酸适配体与肝组织切片结合实验
抗原修复, 所用核酸适配体序列为 BC15-31及其异核苷双位点修饰后的序列: BC15-31-3L/30L, BC15-31-1L/30L以及 BC15-31-1L/3L。
(1) 经抗原修复后的石蜡组织切片用 PBS洗涤 3次, 每次 3min;
(2) PBS-0.3%Triton X100室温透化 15min;
(3) PBS-0.3%Tween 20室温透化 15min; (3) 用体积约为 10(^LPBS-l%BSA-0.1 g^L ytRNA-l g^L鲑鱼精 DNA緩冲 液, 在室温下封闭 15min;
(4) 将约 lOOpmol FAM标记的核酸适配体, 孵育体积约为 50μ]:〜100μΙ 湿盒 中 37°C避光孵育 2h;
(5) 弃液体, 滴加 0.25%伊文氏蓝溶液在室温染色 lOmin;
(6) PBS洗涤 3次, 每次 5min;
(7) 擦干组织周边水渍, 用抗荧光衰减封片剂封片, 荧光显微镜或激光共聚焦 显微镜观察并留图。
为比较异核苷修饰的 BC15-31 是否具有更优秀的肝癌组织识别能力, 采用同 一患者的肝癌组织切片进行对比研究。 实验操作步骤如上所述。 结果见图 13。 结 果显示: 各核酸适配体识别能力依次为 BC15-31-1L/3L>BC15-31-1L/30L> BC 15-31>BC 15-31 -3L/30L>BC 15 , 异核苷双位点修饰后的 BC15-31序列能够特异 的结合耙组织切片, 即肝癌石蜡组织切片中具有明显异形核变化的癌细胞, 染色部 位主要在细胞核。 此结果与亲和力测定结果基本一致。 实施例 9异核苷及异核苷联合 2,-脱氧肌苷修饰的 AS1411对小鼠的肿瘤抑制 生长实验
通过对小鼠在皮下接种浓度为 5χ 106个细胞 /200 iL的 MCF-7细胞建立异种移 植物, 每个位点在棵鼠的右背面建立。 接种 5天后, 当肿瘤体积达到大约 100 mm3 时, 将小鼠随机分为 5组 (n=6)即: 空白(PBS)、 对照 (AS1411)、 AS1411-12D(12D)、 AS1411-6L12D(6L/12D)、 AS 1411 -6L 12D24dI(6L/ 12D/24dI) 0 对已建立肿瘤模型的 小鼠, 通过腹腔注射核酸适配体的方式进行治疗, 注射剂量相当于 2.5 OD/小鼠 / 天。 在 1-4天每天注射一次, 在第六天和第八天分别注射一次, 共注射六次。 肿瘤 体积使用如下公式计算:
V=LxW2/2
其中, L和 W分别代表在实验过程中使用游标卡尺所测定的肿瘤的长度和宽 度。 定期测定棵鼠的重量, 以进行毒性的考察。 从图 14可以看出, 双位点异核苷 修饰的适配体 AS1411-6L/12D(6L/12D) 及异核苷联合 2,-脱氧肌苷修 _饰的适配体 AS1411-6L/12D/24dI (6L/12D/24dI)能够明显延緩肿瘤生长, 通过持续测量肿瘤体 积, 饰后 AS1411组与天然 AS1411组相比, 肿瘤体积明显减小, 具有统计学意 义(p < 0.01 ), 而棵鼠体重未见明显下降, 即无明显毒性。

Claims

权 利 要 求
1、 一种对核酸适配体序列进行化学修饰的方法, 其特征在于, 在核酸适配体 序列的一个或多个核苷位点掺入异核苷,所述异核苷的结构式如化学式 I或化学式 II所示, 化学式 I所示的异核苷为 L-构型的异核苷, 化学式 II所示的异核苷为 D- 构型的异核苷, 其中, Base为腺嘌呤八、 胸腺嘧啶丁、 鸟嘌呤 G或胞嘧啶 C,
Figure imgf000023_0001
用化学式 I或化学式 II所示的异核苷代替天然核苷在相应位置进行偶联。
2、 根据权利要求 1所述的方法, 其特征在于, 在核酸适配体序列的一个或多 个核苷位点掺入异核苷的同时,还包括在核酸适配体序列的一个或多个核苷位点掺 入 2,-脱氧肌苷, 所述的 2,-脱氧肌苷的结构式如化学式 III所示:
Figure imgf000023_0002
2,-脱氧肌苷代替天 然核苷在相应位置进行偶联。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 在对核酸适配体序列进行 化学修饰前, 将化学式 I、 化学式 II所示的异核苷和化学式 III所示的 2,-脱氧肌苷 分别制备成化学式 IV、化学式 V所示的异核苷亚磷酰胺单体和化学式 VI所示的 2, -脱氧肌苷亚磷酰胺单体,
Figure imgf000024_0001
其中, Base为腺嘌呤八、 胸腺嘧啶1\ 鸟嘌呤 G或胞嘧啶(。
4、 根据权利要求 3所述的方法, 其特征在于, 使用固相合成技术, 采用亚磷 酰胺法合成核酸适配体的寡核苷酸链, 在 DNA合成仪上, 将一个或几个权利要求 3所述的异核苷亚磷酰胺单体或者将一个或几个权利要求 3所述的异核苷亚磷酰胺 单体和一个或几个权利要求 3所述的 2,-脱氧肌苷亚磷酰胺单体同时掺入到所合成 的序列中代替天然核苷亚磷酰胺单体在相应位置进行偶联,每偶联一个核苷为一个 循环, 每个循环包括四个反应: 脱 DMT、 偶联、 封闭、 氧化。
5、 根据权利要求 4所述的方法, 其特征在于, 合成 DNA寡核苷酸链的条件 是采用增加异核苷或 2,-脱氧肌苷亚磷酰胺单体的进样次数至 2-6次; 每次进样后 的偶联时间为 120-240 秒 /次; 合成异核苷修饰或异核苷联合 2,-脱氧肌苷修饰的 DNA寡核苷酸链的条件是每次进样后的偶联时间增加至 200-360秒 /次, 偶联 2-6 次。
6、 按照权利要求 1-5任一项所述的方法合成的异核苷或异核苷联合 2,-脱氧肌 苷修饰的核酸适配体序列。
7、根据权利要求 6所述的异核苷或异核苷联合 2,-脱氧肌苷修饰的核酸适配体 序列, 其特征在于, 所述的核酸适配体为人的凝血酶的核酸适配体 (TBA) , 核仁 素的核酸适配体, hnRNPAl 蛋白的核酸适配体; 修饰前的人的凝血酶的核酸适配 体 (TBA)序列如 SEQ ID No.l所示, 修饰前的核仁素的核酸适配体序列 (AS1411)序 列如 SEQ ID No.2所示, 修饰前的 hnRNPAl蛋白的核酸适配体序列 (BC15-31)如 SEQ ID No.3所示。
8、根据权利要求 7所述的异核苷或异核苷联合 2,-脱氧肌苷修饰的核酸适配体 序列,其特征在于,修饰后的凝血酶的核酸适配体序列选自以下序列所组成的群组:
1 )在 SEQ ID No.l所示 TBA序列的 3、 9或 12位掺入化学式 I所示的异核苷 代替天然核苷在相应位置进行偶联而得到的三条核酸适配体序列, 其中, Base 为 胸腺嘧 11定 T;
2 )在 SEQ ID No.l所示 TBA序列的 7位掺入化学式 II所示的异核苷代替天然 核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T;
3 ) 同时在 SEQ ID No.l所示 TBA序列的 7位和 12位分别掺入化学式 II和化 学式 I 所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其 中, Base为胸腺嘧啶 T; 以及
4 ) 同时在 SEQ ID No.l所示 TBA序列的 7位和 3位掺入化学式 II和化学式 I 所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base 为胸腺嘧啶 T;
修饰后的核仁素的核酸适配体序列选自以下序列所组成的群组:
1 )在 SEQ ID No.2所示的 AS1411序列的 6位掺入化学式 I所示的异核苷代替 天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T;
2 )在 SEQ ID No.2所示的 AS1411序列的 12位掺入式 II所示的异核苷代替天 然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base 为胸腺嘧啶 T; 以 及
3 ) 同时在 SEQ ID No.2所示的 AS1411序列的 6位和 12位分别掺入化学式 I 和化学式 II所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T; 以及
4 )同时在 SEQ ID No.2所示的 AS1411序列的 6位, 12位和 24分别掺入化学 式 I, 化学式 II所示的异核苷和化学式 ΙΠ所示的 2,-脱氧肌苷代替天然核苷在相应 位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T;
修饰后的 hnRNPAl蛋白的核酸适配体序列选自以下序列所组成的群组:
1 )在 SEQ ID No.3所示的 BC15-31序列的 3位掺入化学式 I所示的异核苷 « 替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T;
2 )在 SEQ ID No.3所示的 BC15-31序列的 3位掺入化学式 II所示的异核苷代 替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T;
3 )在 SEQ ID No.3所示的 BC15-31序列的 30位掺入化学式 II所示的异核苷 代替天然核苷在相应位置进行偶联而得到的核酸适配体,其中, Base为胸腺嘧啶 T; 4 ) 同时在 SEQ ID No.3所示的 BC15-31序列的 1位和 3位掺入化学式 I所示 的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base 为 胸腺嘧啶 T;
5 )同时在 SEQ ID No.3所示的 BC15-31序列的 1位和 30掺入化学式 I所示的 异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base 为胸 腺嘧啶 T;
6 )同时在 SEQ ID No.3所示的 BC15-31序列的 3位和 30掺入化学式 I所示的 异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base 为胸 腺嘧啶 T;
7 ) 同时在 SEQ ID No.3所示的 BC15-31序列的 3位和 30掺入化学式 II所示 的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base 为 胸腺嘧啶 T;
8 )同时在 SEQ ID No.3所示的 BC15-31序列的 3位和 30位分别掺入化学式 I, 化学式 II所示的异核苷代替天然核苷在相应位置进行偶联而得到的核酸适配体, 其中, Base为胸腺嘧啶 T。
9、 如权利要求 7或 8所述的核酸适配体序列在制备抗心脑血管疾病的药物或 试剂中的应用, 所述的核酸适配体序列为异核苷或异核苷联合 2,-脱氧肌苷修饰的 人的凝血酶的核酸适配体 (ΤΒ Α:)。
10、如权利要求 7或 8所述的核酸适配体序列在制备治疗癌症或癌症的早期检 测方面的药物或试剂中的应用, 所述的核酸适配体序列为异核苷或异核苷联合 2'- 脱氧肌苷修饰的核仁素的核酸适配体或 hnR PAl蛋白的核酸适配体。
PCT/CN2014/000564 2014-06-05 2014-06-05 一种对核酸适配体序列进行化学修饰的方法及其产品和应用 WO2015184566A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000564 WO2015184566A1 (zh) 2014-06-05 2014-06-05 一种对核酸适配体序列进行化学修饰的方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/000564 WO2015184566A1 (zh) 2014-06-05 2014-06-05 一种对核酸适配体序列进行化学修饰的方法及其产品和应用

Publications (1)

Publication Number Publication Date
WO2015184566A1 true WO2015184566A1 (zh) 2015-12-10

Family

ID=54765919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000564 WO2015184566A1 (zh) 2014-06-05 2014-06-05 一种对核酸适配体序列进行化学修饰的方法及其产品和应用

Country Status (1)

Country Link
WO (1) WO2015184566A1 (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660543A (zh) * 2012-01-21 2012-09-12 北京大学 一种利用异核苷对siRNA序列进行化学修饰的方法、及其产品和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660543A (zh) * 2012-01-21 2012-09-12 北京大学 一种利用异核苷对siRNA序列进行化学修饰的方法、及其产品和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG, YE ET AL.: "Modification of oligonucleotides by isonucleosides incorporation and peptides conjugation", JOURNAL OF CHINESE PHARMACEUTICAL SCIENCES, vol. 21, no. 6, 25 October 2012 (2012-10-25), pages 49, XP055240622 *
YANG, ZHENJUN ET AL.: "Biological effects of conformational alteration induced by D-/L-isonucleoside or 2'-deoxyinosine incorporation in siRNA or aptamer", ABSTRACT BOOK OF THE 8TH NATIONAL CONFERENCE ON CHEMICAL BIOLOGY, 31 December 2013 (2013-12-31) *

Similar Documents

Publication Publication Date Title
US10316321B2 (en) Method for generating aptamers with improved off-rates
KR102031715B1 (ko) 표적 단백질에 결합하는 핵산 단편
JP2021129577A (ja) 改善されたオフ速度(off−rate)を持つアプタマーを生成するための方法
CN107469088A (zh) 一种基于dna折纸术的精确识别靶向纳米载体的构建方法及其应用
CN105296491B (zh) 一种经化学修饰后的核酸适配体as1411及其用途
WO2012050611A2 (en) Aptamers to glycoprotein vi
Morihiro et al. anti–syn unnatural base pair enables alphabet-expanded dna self-assembly
CN106032534B (zh) 一种与人非小细胞肺癌细胞特异结合的核糖核酸适配体及其筛选方法
KR20220059472A (ko) Rna-표적화 리간드, 이의 조성물, 및 이의 제조 및 사용 방법
CN116555273A (zh) 一种核苷类似物改性的核酸适体及其应用
CN105063055B (zh) 一种异核苷或异核苷联合2’-脱氧肌苷修饰的腱糖蛋白c核酸适配体gbi-10及其制备方法和应用
WO2007058323A1 (ja) 核酸ホモポリマー結合機能性核酸医薬品の製造法
WO2015184566A1 (zh) 一种对核酸适配体序列进行化学修饰的方法及其产品和应用
CN113373155A (zh) 一种g-四链核酸适配体的综合化学修饰方法、产品及其在抗多药耐药肿瘤细胞中的应用
WO2016129531A1 (ja) 非小細胞肺がん細胞(h1975)に結合するdnaアプタマー
CN103180463B (zh) 亲硫性固相以及包含硫代羰基核苷酸的寡核苷酸的缀合物
AU2015249082B2 (en) Method for generating aptamers with improved off-rates
CN111518905B (zh) lncRNA在肺腺癌诊疗中的用途
WO2012149906A1 (zh) 具有抗hiv-1融合活性的修饰的核酸结构
KR20180119758A (ko) 백혈구에 선택적으로 결합하는 압타머 및 이의 용도
US20220096516A1 (en) Oligonucleotide molecule and application thereof in tumor therapy
WO2022144815A1 (en) Dual-specific aptamer triggering cell-mediated cytotoxicity to lyse her2-positive cancer cells
JP2024515576A (ja) 修飾ヌクレオシド
CN116286817A (zh) 靶向p53-R175H的核酸适配体及其蛋白靶向降解嵌合体与应用
CN117242085A (zh) 经修饰的核苷

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893817

Country of ref document: EP

Kind code of ref document: A1