WO2016129531A1 - 非小細胞肺がん細胞(h1975)に結合するdnaアプタマー - Google Patents

非小細胞肺がん細胞(h1975)に結合するdnaアプタマー Download PDF

Info

Publication number
WO2016129531A1
WO2016129531A1 PCT/JP2016/053560 JP2016053560W WO2016129531A1 WO 2016129531 A1 WO2016129531 A1 WO 2016129531A1 JP 2016053560 W JP2016053560 W JP 2016053560W WO 2016129531 A1 WO2016129531 A1 WO 2016129531A1
Authority
WO
WIPO (PCT)
Prior art keywords
lung cancer
dna aptamer
dna
cancer cells
seq
Prior art date
Application number
PCT/JP2016/053560
Other languages
English (en)
French (fr)
Inventor
古性 均
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2016574783A priority Critical patent/JPWO2016129531A1/ja
Priority to KR1020177025022A priority patent/KR20170109674A/ko
Priority to US15/549,843 priority patent/US20180016582A1/en
Priority to EP16749175.2A priority patent/EP3257940A4/en
Publication of WO2016129531A1 publication Critical patent/WO2016129531A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1048SELEX
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57423Specifically defined cancers of lung
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/16Aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/35Nature of the modification
    • C12N2310/351Conjugate
    • C12N2310/3517Marker; Tag
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2525/00Reactions involving modified oligonucleotides, nucleic acids, or nucleotides
    • C12Q2525/10Modifications characterised by
    • C12Q2525/205Aptamer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/60Detection means characterised by use of a special device
    • C12Q2565/632Detection means characterised by use of a special device being a surface enhanced, e.g. resonance, Raman spectrometer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof

Definitions

  • the present invention relates to a DNA aptamer that can specifically bind to cancer cells, particularly non-small cell lung cancer cells (H1975), and a composition containing the DNA aptamer.
  • DNA is a biopolymer composed of four nucleobases: guanine (G), cytosine (C), adenine (A), and thymine (T), and plays a role mainly in the preservation, expression and propagation of genes in vivo. Yes.
  • G guanine
  • C cytosine
  • A adenine
  • T thymine
  • Nucleotide sequences that have high binding affinity for low molecular weight compounds such as drugs, DNA, RNA, peptides, and proteins have been discovered and selected so far, and they have selective recognition ability for specific molecules.
  • DNA is called “DNA aptamer”.
  • the selection of nucleic acid aptamers such as DNA aptamers is generally based on the in vitro selection method, in particular, the method based on the in vitro evolution method (Systematic Evolution of Ligands by EXPERIMENTAL ENRICHEMENT: SELEX method).
  • SELEX method is a nucleic acid molecule (single-stranded DNA, RNA) having affinity for a target substance by selecting a nucleic acid ligand (aptamer) that binds to the target substance and repeating exponential amplification by PCR multiple times. Is to get
  • various improvements have been made in recent years, and aptamers can be recovered with fewer cycles.
  • the method is excellent in efficiency and selectivity, and not only small molecules and proteins but also cells and tissues (exactly on the surface)
  • a method for obtaining an aptamer that binds to a molecule (Cell-SELEX method; for example, Non-patent Document 3) has been reported.
  • Such a DNA aptamer is similar to an antibody in that it is a biopolymer with molecular recognition ability, but is easier to synthesize and modify than an antibody; it has excellent stability against environmental changes such as heat and pH.
  • aptamers can be obtained for any substance, and the target substance to be targeted is not limited; it can be amplified quickly and inexpensively by PCR and other techniques, and the cost is excellent. It has the following advantages.
  • lung cancer is roughly divided into non-small cell lung cancer and small cell lung cancer, and the former accounts for 80 to 85% of all lung cancers.
  • Non-small cell lung cancer is classified into squamous cell carcinoma, adenocarcinoma, large cell carcinoma, etc. according to its histological type, 2/3 of which are already unresectable at the time of discovery, and drug therapy is the center of treatment.
  • Increasing the therapeutic results of advanced lung cancer that is, improving the results of chemotherapy, is essential for improving the therapeutic results of non-small cell lung cancer.
  • a biomolecule that distinguishes normal cells from cancer cells and specifically binds to cancer cells is required. Therefore, there is a need for the development of new lung cancer biomarkers useful for earlier diagnosis and development of effective therapeutic agents.
  • an object of the present invention is to provide a novel DNA aptamer useful for cancer basic research such as diagnosis and treatment of lung cancer, prevention of metastasis, and cancer metastasis research. .
  • the present inventors have identified a nucleotide sequence having a specific binding ability for non-small cell lung cancer cells by using the Cell-SELEX method.
  • the inventors have newly found that a DNA having the sequence can function as a specific aptamer for non-small cell lung cancer cells, and have completed the present invention.
  • the present invention relates to detection of lung cancer cells by the above DNA aptamer, and in particular, (9) A composition for detecting lung cancer cells, comprising the DNA aptamer according to any one of (1) to (8) above; (10) A kit for detecting lung cancer cells, comprising the DNA aptamer according to any one of (1) to (8) above; (11) A method for detecting lung cancer, characterized by using the DNA aptamer according to any one of (1) to (8) above; and (12) lung DNA, lung tissue, blood, serum, wherein the DNA aptamer is used.
  • the present invention relates to the use of the above DNA aptamer in pharmaceutical compositions and drug delivery systems, in particular, (14) A pharmaceutical composition for preventing or treating metastasis of lung cancer, comprising the DA aptamer according to any one of (1) to (8) above; (15) Use of the DNA aptamer according to any one of (1) to (8) above for the manufacture of a pharmaceutical composition for preventing or treating lung cancer metastasis; (16) A drug delivery system for preventing or treating metastasis of lung cancer, comprising the DNA aptamer according to any one of (1) to (8) above.
  • a novel DNA aptamer that specifically binds to non-small cell lung cancer cells such lung cancer cells can be efficiently detected.
  • a kit containing a DNA aptamer provided with a detection site such as a fluorescent label simple and high-throughput detection or imaging using a lung cell or tissue collected from a living body as a measurement target can be performed. Detection of such lung cancer cells makes it possible to diagnose the onset of cancer, the presence or absence of metastasis, the prognosis of cancer, and the grade of malignancy.
  • the DNA aptamer of the present invention has the property of being able to specifically bind to non-small cell lung cancer cells
  • the above-mentioned DNA aptamer can be used by conjugating a drug such as an anticancer agent to the DNA aptamer. Since the drug can act on the target site reliably, it can be expected to be useful as a pharmaceutical composition for preventing or treating lung cancer metastasis or a drug delivery system for such a pharmaceutical composition.
  • the consensus sequence in the DNA aptamer of the present invention is a relatively short region of only about 30 bases, it is possible to suppress the labor and cost for production, and to perform desired chemical modification or the like depending on various applications. There is also an advantage that it is easy to add a further function.
  • FIG. 1 is a schematic diagram showing the formation of single-stranded double-stranded DNA using magnetic particles.
  • FIG. 2 is a fluorescence imaging diagram of H1975 cells by a DNA aptamer having SEQ ID NO: 1.
  • FIG. 3 is a fluorescence imaging diagram of H1975 cells by a DNA aptamer having SEQ ID NO: 2.
  • DNA aptamer means a single-stranded oligo DNA that can specifically recognize a target molecule or substance, and the DNA aptamer according to the present invention is specific to non-small cell lung cancer cells. It is a single-stranded oligo DNA having a function of binding to.
  • non-small cell lung cancer is classified into squamous cell carcinoma (ASC), adenocarcinoma (ADC), and large cell carcinoma (LCC) mainly depending on the tissue type.
  • non-limiting examples of “non-small cell lung cancer cells” herein include squamous cell carcinoma cells NCI-H226, NCI-H647; lung adenocarcinoma cells NCI-H1975, A549, LC319. , PC-3, PC-9, PC-14, A427, NCI-H1373, and LX1, which is a large cell lung cancer cell.
  • the binding target of the DNA aptamer according to the present invention is preferably a lung adenocarcinoma cell, and more preferably an H1975 cell (for details of the H1975 cell, research subject name: Obioid cancer cell proliferation and stem cell differentiation) Influence, issue number 23781731, scientific research fund grant project (scientific research grant fund grant) research result report, described on May 15, 2013, etc.).
  • the DNA aptamer according to the present invention has a nucleotide sequence represented by any of SEQ ID NOs: 1 and 2 shown below.
  • the nucleotide sequence is written from left to right in the direction from the 5 ′ end to the 3 ′ end.
  • the DNA aptamer according to the present invention has a function of specifically binding to non-small cell lung cancer cells, one or a plurality of nucleotides in SEQ ID NOs: 1 and 2 are substituted, deleted, or added. It may be an array.
  • the number of nucleotides to be substituted, deleted or added is 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the DNA aptamer sequence according to the present invention is 90% or more, preferably 93% or more, more preferably 96, with each of SEQ ID NOs: 1 and 2. % Or more homologous sequences (hereinafter sometimes referred to as “homologues”).
  • the term “homology” refers to the generally accepted meaning in the art.
  • the term is typically referred to when examined by sequence analysis programs (eg, Karlin and Altschul, 1990, PNAS 87: 2264-2268; Karlin and Altschul, 1993, PNAS 90: 5873-5877) or by visual inspection.
  • sequence analysis programs eg, Karlin and Altschul, 1990, PNAS 87: 2264-2268; Karlin and Altschul, 1993, PNAS 90: 5873-5877
  • universal base indicates its commonly accepted meaning in the art.
  • the term generally refers to nucleotide base analogs that form base pairs with each base of standard DNA / RNA almost indistinguishably and are recognized by intracellular enzymes (see, eg, Loakes et al., 1997, J. Mol. Bio.270: 426-435).
  • Non-limiting examples of universal bases include C-phenyl, C-naphthyl and other aromatic derivatives, inosine, azole carbozamide, and nitroazole derivatives (3′-nitropyrrole, 4-nitro Indole, 5-nitroindole, and 6-nitroindole) (Loakes, 2001, Nucleic Acids Res. 29: 2437).
  • the length of the DNA aptamer according to the present invention is not limited as long as it has a function of specifically binding to non-small cell lung cancer cells.
  • the upper limit of the length of the DNA aptamer in the present embodiment is, for example, 200 bases or less, preferably 150 bases or less, more preferably 100 bases or less. .
  • the lower limit is the number of bases in SEQ ID NOS: 1 and 2 or more, that is, 34 bases or 35 bases or more.
  • the DNA aptamer is preferably single-stranded (ssDNA), but even when a double-stranded structure is partially formed by taking a hairpin loop structure, the length of the DNA aptamer is one. Calculate as the length of the chain.
  • the DNA aptamer according to the present invention may be a nucleotide sequence consisting of the sequence of any of SEQ ID NOs: 1 and 2 and a primer / primer recognition sequence on the 5 ′ and 3 ′ terminal sides thereof. That is, in this case, the DNA aptamer is 5'-P 1 -XP 2 -3 ' It has the nucleotide sequence represented by these.
  • X is a nucleotide sequence selected from the sequences shown in SEQ ID NOs: 1 and 2, or a sequence comprising 1 to 3 nucleotide substitutions, deletions or additions in these sequences.
  • P 1 and P 2 are the first and second primer recognition sequence introduced for the PCR amplification.
  • P 1 is GCC TGT TGT GAG CCT CCT (SEQ ID NO: 3) and P 2 is CGC TTA TTC TTG TCT CCC (SEQ ID NO: 4).
  • the DNA aptamer according to the present invention may be chemically modified in order to increase stability in vivo.
  • Non-limiting examples of such chemical modifications include chemical substitution at the sugar chain moiety (eg, 2′-0 methylation), chemical substitution at the phosphate ester moiety (eg, phosphorothioate, amino group) , Lower alkylamine groups, acetyl groups, and the like), and chemical substitution at the base moiety.
  • it can have additional bases at the 5 'or 3' end. The length of the additional base is usually 5 bases or less.
  • the additional base may be DNA or RNA, but if DNA is used, the stability of the aptamer may be improved in some cases.
  • Examples of such an additional base sequence include ug-3 ′, uu-3 ′, tg-3 ′, tt-3 ′, ggg-3 ′, guuu-3 ′, gttt-3 ′, and ttttt-3.
  • Examples of such sequences include, but are not limited to, ', uuuu-3'.
  • the DNA aptamer according to the present invention can have a detection label linked to, for example, the 5 'end or the 3' end for use in the detection method of lung cancer cells described later or the detection kit.
  • a detection label is preferably a fluorescent label, but a Raman label, an enzyme label or an infrared label may be used.
  • a fluorescent label a fluorescent labeling agent commonly used in the art can be used.
  • 6-carboxytetramethylrhodamine TAMRA TM
  • fluorescein isothiocyanate FITC
  • 6-carboxyfluorocein- Examples thereof include fluorophores that can be introduced by commercially available oligonucleotide solid phase synthesis services such as aminohexyl (FAM) and cyanine fluorescent dyes (Cy3, Cy5).
  • FAM aminohexyl
  • Cy3, Cy5 cyanine fluorescent dyes
  • a quencher quenching substance
  • the fluorescence is detected by separating the fluorescent substance and the quencher during the detection reaction.
  • an enhancement is made by using an enhanced electric field formed by a surface plasma wave of a nanoparticle by adsorbing an organic substance, particularly a substance whose absorption band is slightly affected by the laser wavelength, to a nanometer-sized gold particle.
  • Raman scattering can also be used as a labeling agent.
  • a fluorescent dye is frequently used as the organic substance, but it is not particularly necessary to be particular about this, and a sufficient Raman signal can be obtained even with a dye such as crystal violet.
  • enzyme labels include ⁇ -galactosidase, ⁇ -glucosidase, alkaline phosphatase, peroxidase, malate dehydrogenase and the like.
  • luminol, luminol derivatives, luciferin, lucigenin, etc. may be used as a labeling agent.
  • DNA aptamer of the present invention can be selected and obtained using in vitro selection methods well known in the art.
  • an in vitro evolution method System Evolution of Ligands by EXPERIMENTAL ENRICHEMENT: SELEX method
  • SELEX method single-stranded DNA, RNA
  • nucleic acid ligand (aptamer) that binds to the target substance and exponential amplification by PCR multiple times.
  • a Cell-SELEX method as described in, for example, Guo, et al., Int. J. Mol. Sci., 9 (4): 668, 2008. Since this method can use the cell itself as a target, it does not require analysis of membrane proteins on the cell surface and can simultaneously select multiple aptamers that can bind to the cell surface, compared to the conventional SELEX method. And an aptamer that more specifically binds to the target cell can be selected.
  • the DNA aptamer of the present invention can be selected and obtained using a method well known in the art.
  • the “in vitro selection method” selects an aptamer molecule having affinity for a target molecule or cell from a pool of nucleic acid molecules (so-called DNA pool) containing a random nucleotide sequence, and determines the affinity. It is a method of eliminating molecules that do not have. By repeating the cycle of amplifying only the selected aptamer molecule by PCR or the like, and further selecting by affinity, aptamer molecules having strong binding ability can be concentrated.
  • a single-stranded nucleic acid molecule containing a random nucleotide sequence (base sequence) region of about 20 to 300 bases, preferably 30 to 150, more preferably about 30 to 100 bases, for example, an oligo DNA is prepared.
  • the primer recognition sequence portion may have an appropriate restriction enzyme site so that the primer portion can be excised with a restriction enzyme after PCR amplification.
  • the length of the primer recognition sequence portion to be used is not particularly limited, but is about 20 to 50, preferably about 20 to 30 bases.
  • the 5 ′ end may be labeled with a radiolabel, a fluorescent label, or the like.
  • the nucleic acid molecule (library pool) having the random nucleotide sequence obtained above and the target cell are mixed at an appropriate concentration ratio and incubated under an appropriate condition. After incubation, the mixture is centrifuged to separate the nucleic acid molecule-target cell complex and free nucleic acid molecule. The supernatant portion of the separation solution is removed, and a cell-bound nucleic acid sequence is amplified by performing a PCR reaction using the obtained nucleic acid molecule-target cell complex. Thereafter, the nucleic acid molecule forming a complex with the target cell is made into a single strand according to a technique well known in the art.
  • ssDNA having cell binding ability can be separated from the amplified nucleic acid duplex, and unnecessary coexisting substances contained in the PCR reaction solution such as DNA polymerase can be removed. Thereafter, the same operation is performed using the recovered ssDNA as a library pool.
  • the obtained nucleic acid molecule can be subjected to sequence analysis by a technique well known in the art.
  • DNA aptamers according to the present invention has a function to specifically bind to non-small cell lung cancer cells, of the lung cancer cells
  • the composition for detection that can be suitably used for detection and contains the DNA aptamer of the present invention can also be used as a tumor marker for non-small cell lung cancer.
  • the detection composition comprising the DNA aptamer of the present invention is brought into contact with a sample collected from a living body selected from the group consisting of lung cells, lung tissue, blood, serum, plasma, saliva, and sputum, Thereafter, the presence of lung cancer cells is detected by observing a response (the presence or absence of a signal) due to the binding between the sample and the DNA aptamer.
  • a sample collected from a living body is a sample collected from an animal, preferably a human, and is in a form particularly if it is a sample or secretory fluid that can be secured with minimal invasiveness, an in vitro cell culture fluid component sample, or the like. It is not limited.
  • the “response” for detecting the presence of lung cancer cells is preferably a fluorescence response. Therefore, as described above, the fluorescence of TAMRA TM FITC or the like is present at the 5 ′ end or 3 ′ end of the DNA aptamer. It is preferable to link a labeling agent.
  • the composition for detecting lung cancer cells of the present invention can also be provided as a kit containing a DNA aptamer in order to improve its convenience and portability.
  • the DNA aptamer can be provided usually in the form of an aqueous solution dissolved at an appropriate concentration, or in the form of a DNA array in which the DNA aptamer is immobilized on a solid phase carrier.
  • biotin is bound to the end of a DNA aptamer to form a complex
  • streptavidin is immobilized on the surface of the solid support
  • the DNA aptamer is immobilized on the solid support by the interaction of biotin and streptavidin. can do.
  • the kit may appropriately contain other reagents as necessary.
  • additives such as a solubilizing agent, a pH adjusting agent, a buffering agent, and a tonicity agent may be used as an additive. These blending amounts can be appropriately selected by those skilled in the art.
  • the present invention provides a pharmaceutical composition for preventing or treating lung cancer metastasis comprising the above DNA aptamer.
  • the pharmaceutical composition can contain an effective amount of a pharmaceutical compound (active ingredient) for preventing or treating metastasis of lung cancer, and a pharmaceutically acceptable carrier.
  • a pharmaceutical compound active ingredient
  • this aptamer bound to gold nanoparticles can be used as a reagent for cancer thermotherapy.
  • lung cancer is a non-small cell lung cancer including squamous cell carcinoma (ASC), adenocarcinoma (ADC), and large cell carcinoma (LCC), and preferably an adenocarcinomas associated with H1975 cells.
  • ASC squamous cell carcinoma
  • ADC adenocarcinoma
  • LCC large cell carcinoma
  • Methodastasis prevention or treatment can include cancer cell release, migration, metastasis, suppression of invasion or proliferation, induction of apoptosis. Suppression of metastasis means that cancer cells reach a different site from the primary lesion and prevent secondary cancer from occurring at the site.
  • the active ingredient contained in the pharmaceutical composition of the present invention is not particularly limited as long as it is effective for preventing or treating lung cancer metastasis, but is preferably an anticancer agent.
  • anticancer agents include alkylating agents, antimetabolites, antitumor antibiotics, chemotherapeutic agents, and other anticancer agents.
  • alkylating agent include nitrogen mustard, chlorambutyl, dibromodalcitol, thiotepa, carmustine, and busulfan.
  • the antimetabolite include 6-mercaptopurine, fluorouracil, tegafur, doxyfluridine, cytarabine, enocitabine, methotrexate, and the like.
  • Antibiotics such as mitomycin C, bleomycin, peplomycin, doxorubicin, THP-adriamycin, actinomycin D and other anticancer agents include Amrubicin hydrochloride, irinotecan hydrochloride, ifosfamide, etoposidrastat, gefitinib, cyclophosphamide, cisplatin, trastuzumab, fluorouracil, imanitib mesylate, methotrexate, rituxan, adriamycin, carboplatin, tamoxifen, camptothecin, melphalan cyclatanase Etc.
  • Amrubicin hydrochloride irinotecan hydrochloride, ifosfamide, etoposidrastat, gefitinib, cyclophosphamide, cisplatin, trastuzumab, fluorouracil, imanitib mes
  • Examples of the pharmaceutically acceptable carrier contained in the pharmaceutical composition of the present invention include excipients such as sucrose and starch, binders such as cellulose and methylcellulose, disintegrants such as starch and carboxymethylcellulose, and stearic acid.
  • Lubricants such as magnesium and aerosil, fragrances such as citric acid and menthol, preservatives such as sodium benzoate and sodium bisulfite, stabilizers such as citric acid and sodium citrate, suspending agents such as methylcellulose and polyvinylpyrrolidone, and interfaces
  • examples include, but are not limited to, dispersants such as active agents, diluents such as water and physiological saline, and base waxes.
  • the composition may further contain a reagent for introducing a nucleic acid.
  • a reagent for introducing nucleic acid cationic lipids such as atelocollagen, liposome, nanoparticle, lipofectin, lipfectamine, DOGS (transfectam), DOPE, DOTAP, DDAB, DHDAB, HDAB, polybrene, or polyethyleneimine are used. I can do it.
  • the pharmaceutical composition of the present invention can be administered to, for example, mammals (eg, humans, rats, mice, rabbits, sheep, pigs, cattle, cats, dogs, monkeys, etc.).
  • mammals eg, humans, rats, mice, rabbits, sheep, pigs, cattle, cats, dogs, monkeys, etc.
  • the pharmaceutical composition of the present invention can take various dosage forms, for example, capsules, tablets, liquids and the like, but is not limited, but more generally, it is liquefied and made into injections. Or an oral agent or a sustained-release agent.
  • the injection can be prepared by a well-known method in the technical field. For example, it can be prepared by dissolving in an appropriate solvent such as sterilized water, buffer solution, physiological saline, etc., sterilizing by filtration with a filter or the like, and then filling in an aseptic container.
  • Oral preparations are formulated into dosage forms such as tablets, granules, fine granules, powders, soft or hard capsules, solutions, emulsions, suspensions, syrups and the like.
  • sustained release agent As a sustained release agent, it is formulated into dosage forms such as tablets, granules, fine granules, powders, soft or hard capsules, microcapsules and the like.
  • a stabilizer such as albumin, globulin, gelatin, mannitol, glucose, dextran, ethylene glycol or the like can be preferably added.
  • necessary auxiliary additives such as excipients, solubilizers, antioxidants, soothing agents, tonicity agents and the like may be included.
  • a liquid preparation it is desirable to store it after removing moisture by freeze storage or freeze drying.
  • sustained release carriers include soluble collagen or soluble collagen derivatives, proteins such as gelatin, ceramic porous bodies, polyamino acids, polylactic acid, chitin or chitin derivatives, water-swellable polymer gels, etc. Can be used.
  • the pharmaceutical composition of the present invention can be administered by an appropriate administration route according to the form. It can be administered orally or parenterally, but is preferably administered parenterally. For example, it can be administered into a vein, artery, subcutaneous, intramuscular, etc. in the form of an injection. Moreover, it can administer by implanting in the living body, for example, an affected part, subcutaneous, intramuscular, etc. in the form of a sustained release agent.
  • the dose and frequency of administration vary depending on the purpose of administration, administration method, type and size of cancer, and the situation (gender, age, body weight, etc.) of the subject of administration, but basically a desirable dosage form for the above active ingredients follows.
  • the present invention provides a drug delivery system for preventing or treating lung cancer metastasis comprising the above DNA aptamer.
  • the pharmaceutical ingredients that can be transported by the drug delivery system are typically the above-mentioned anticancer agents, but as long as they are substances useful for the prevention or treatment of lung cancer metastasis, there are other toxins and cancer growth inhibitors. It can also be a siRNA (small interfering RNA) that inhibits the expression of a gene, a suicide gene, or a gene that plays an important role in the growth and metastasis of lung cancer.
  • Example 1 Selection of Aptamers Aptamers that specifically bind to non-small cell lung cancer cells, H1975 cells, were selected from DNA pools having random sequences using the Cell-SELEX method. Each step in the Cell-SELEX method is as follows. 1) Preparation of DNA pool (solution preparation of DNA aptamer candidate group) 2) Mixing with target substance-H1975 cells 3) Separation of target-binding DNA and non-binding DNA 4) Replication of target-binding DNA (amplification of DNA aptamer bound to target substance) 5) Purification of target-binding DNA (step of purifying amplified DNA aptamer into single-stranded DNA) 6) Cloning of target-binding nucleic acid (pretreatment for sequence analysis of the obtained DNA aptamer) 7) Perform 8 rounds of steps 1) to 6) 8) Sequence analysis of target-binding nucleic acid (analysis of nucleotide sequence of DNA aptamer using sequencer)
  • the DNA pool used was an oligo DNA having the following sequence with a total length of 70 bases and a random sequence part (N) of 34 bases.
  • DNA pool Random 34 (Tsukuba Oligo Service Co., Ltd.) Sequence: 5′-GCC TGT TGT GAG CCT CCT (N 34 ) CGC TTA TTC TTG TCT CCC-3 ′ ⁇ Length: 70 bases (random sequence is the center 34 bases) ⁇ Molecular weight: 21391.3 g / mol Molar extinction coefficient: 630475 L / mol ⁇ cm
  • a 1 ⁇ M DNA pool was prepared by using the random DNA as a solvent in a cell culture medium (Wako Pure Chemical Industries, Ltd .: RPM1-1640, Whith Glucose + calf serum + antibiotics) buffer.
  • H1975 cells were cultured in a culture dish and cultured until the number of cells reached 10 6 to 10 7 .
  • the medium was removed, and 2 mL of phosphate buffered saline (hereinafter referred to as PBS) was added to the petri dish to wash the cells.
  • 1 mL of 0.05% trypsin solution containing EDTA was added to the petri dish, and left in a 37 ° C. incubator for 2 minutes.
  • 4 mL of PBS was added, and this was collected in a 15 mL centrifuge tube and centrifuged at 200 g for 3 minutes. Thereafter, the supernatant was removed with an aspirator.
  • the obtained mixed solution was allowed to stand in a 37 ° C. incubator for 1 hour. Thereafter, centrifugation was performed at 400 g for 4 minutes using the same centrifuge tube. After removing the supernatant, 500 ⁇ L of PBS was added and centrifuged at 400 g for 4 minutes. This washing operation was performed three times. After removing the supernatant, 200 ⁇ L of PBS was added, and the mixture was heated at 95 ° C. for 10 minutes. Centrifugation was performed at 13000 g for 5 minutes, and the supernatant was collected.
  • the separated H1975 cell binding DNA was amplified by PCR.
  • the apparatus used was a Thermal Cycler (TAKARA-TP600).
  • As the primer an 18-base primer corresponding to the common sequence of the random DNA was used (manufactured by Tsukuba Oligo Service Co., Ltd.).
  • the 5 'terminal side of the primer is modified with biotin to enable separation of single-stranded DNA as described later.
  • Streptavidin is added to the purified DNA and adsorbed on the magnetic particles. After collecting the magnetic particles with a magnet, the supernatant is removed, and then single-stranded DNA not bound to the magnetic particles is recovered in the supernatant by denaturation with alkaline buffer ( FIG. 1). Thereafter, the alkaline buffer was replaced with a PBS buffer, and the single-stranded DNA, which was the target compound bound to the magnetic particles, was recovered. This was defined as one round, and this operation was performed 8 times.
  • PCR amplification was performed using an 18-base primer not modified with biotin, and the PCR product was subjected to sequencer analysis. Analysis is performed by a sequencer analyzer Ion PGMTM (registered trademark) manufactured by Life Technologies Japan, and further, DNA aptamers targeting mouse whole blood and mouse mononuclear cells using the same method as described above by the Cell-SELEX method, respectively.
  • sequencer analyzer Ion PGMTM registered trademark
  • DNA aptamers targeting mouse whole blood and mouse mononuclear cells using the same method as described above by the Cell-SELEX method, respectively.
  • the mouse aptamer group for mouse H1975 cells that has already been found and the common aptamer sequences targeting mouse whole blood and mouse mononuclear cells were pointed out. Sequences 1 and 2 were found as sequences that do not bind to mononuclear cells but bind only to H1975 cells.
  • Example 2 Staining of non-small cell lung cancer cells with a fluorescently labeled DNA aptamer H1975 cells are cultured in a culture dish and cultured until the number of cells reaches 10 6 to 10 7 .
  • 30 ⁇ L of the aptamer solution was taken and added while being dispersed in a culture dish (medium RPMI-1640; 2 mL). This was left still in an incubator at 37 ° C. for 1 hour.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Plant Pathology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 肺がんの診断、治療、及び転移予防等に有用な新規DNAアプタマーを提供することを課題とする。 配列番号1および2で示される配列から選択される少なくとも1つのヌクレオチド配列を有し、非小細胞肺がん細胞に対して特異的に結合することを特徴とするDNAアプタマー、当該DNAアプタマーを含む肺がん細胞の検出用組成物、当該DNAアプタマーを含む、肺がん細胞の検出用キット、当該DNAアプタマーを用いることを特徴とする、肺がんの検出方法、当該DNAアプタマーを肺細胞、肺組織、血液、血清、血漿、唾液、及び喀痰よりなる群から選択される生体から採取された試料と接触させる工程、及び当該試料とDNAアプタマーとの結合による応答を観測することによって肺がん細胞の存在を検出する工程を含む検出方法、当該DNAアプタマーを含有する、肺がんの転移予防又は治療用医薬組成物、当該DNAアプタマーを含有する、肺がんの転移予防又は治療用ドラッグデリバリーシステム。

Description

非小細胞肺がん細胞(H1975)に結合するDNAアプタマー
 本発明は、がん細胞、特に非小細胞肺がん細胞(H1975)に対して特異的に結合し得るDNAアプタマー、及び該DNAアプタマーを含む組成物に関する。
 DNAはグアニン(G)、シトシン(C)、アデニン(A)、チミン(T)の4つの核酸塩基からなる生体高分子で、生体内では主に遺伝子の保存・発現・伝搬の役割を担っている。しかし近年、標的物質に特異的に結合するDNAが存在することが明らかとなり、DNAそのものを機能性高分子として利用する研究が活発化してきている。これまでに薬剤などの低分子量化合物、DNA、RNA、ペプチド、タンパク質に対して高い結合親和能を有するヌクレオチド配列が発見・選別されており、ある特定の分子に対して選択的な認識能を有するDNAは“DNAアプタマー”と呼ばれる。
 DNAアプタマー等の核酸アプタマーの選別は、一般に、in vitroセレクション法、特に、試験管内進化法(Systematic Evolution of Ligands by EXponential enrichment:SELEX法)と呼ばれているコンビナトリアルケミストリーを原理とした手法を用いて行われている(例えば、非特許文献1及び2;特許文献1)。当該SELEX法は、ターゲット物質に結合する核酸リガンド(アプタマー)の選別と、PCRによる指数関数的な増幅を複数回繰り返すことにより,ターゲット物質に親和性を有する核酸分子(一本鎖DNA、RNA)を得るというものである。さらに、近年では様々な改良が加えられ、より少ないサイクル回数でアプタマーを回収できる、効率・選択性において優れた手法や、低分子やタンパク質だけでなく細胞や組織(正確には、表面に存在する分子)に結合するアプタマーを得る手法(Cell-SELEX法;例えば、非特許文献3)などが報告されている。
 かかるDNAアプタマーは分子認識能を有する生体高分子という点で、抗体と類似しているが、抗体と比較して合成・修飾が容易である点;熱やpH等の環境変化に対する安定性が優れている点;理論上はあらゆる物質に対してアプタマーを獲得することができ、対象とするターゲット物質が限定されない点;PCR等の手法によって迅速且つ安価に増幅ができコスト面でも優れている点などの長所を有するものである。
 一方、日本における肺がんの死亡率は、1950年以降一貫して増加しており、1993年以降は肺がん死亡数はがん死亡数の第1位となっている。肺がんは、非小細胞肺がんと小細胞肺がんの2つに大別され、前者が全肺がんのうち80~85%を占める。非小細胞肺がんは、その組織型により扁平上皮がん、腺がん、大細胞がんなどに分類され、その2/3は発見時既に切除不能例であり薬物療法が治療の中心になる。進行肺がんの治療成績をあげること、即ち化学療法の成績をあげることが、非小細胞肺がんの治療成績の向上に不可欠である。そのためには、正常細胞とがん細胞を識別し、がん細胞と特異的に結合する生体分子が必要となる。従って、より早期の診断及び効果的な治療剤の開発に有用な新規な肺がんバイオマーカーの開発が求められている。
国際公開WO/9119813
Lee,et al.,Curr Opin Chem Biol.,10(3):282,2006 Gilbert,et al.,Circulation.,116(23):2678,2007 Guo,et al.,Int.J.Mol.Sci.,9(4):668,2008
 以上のような背景の下に、本発明は、肺がんの診断、治療、及び転移予防さらにがん転移研究などがん基礎研究等に有用な新規DNAアプタマーを提供することを課題とするものである。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、Cell-SELEX法を用いることによって非小細胞肺がん細胞に対して特異的な結合能を有するヌクレオチド配列を特定し、当該特定の配列を有するDNAが非小細胞肺がん細胞に対する特異的アプタマーとして機能し得ることを新規に見出し、本発明を完成するに至った。
 すなわち、本発明は、一つの態様において、
(1)配列番号1および2で示される配列から選択される少なくとも1つのヌクレオチド配列を有し、非小細胞肺がん細胞に対して特異的に結合することを特徴とするDNAアプタマー;
(2)配列番号1および2で示される配列から選択される少なくとも1つのヌクレオチド配列において、1~3個のヌクレオチドの置換、欠失、又は付加を含む配列を有し、非小細胞肺がん細胞に対して特異的に結合することを特徴とするDNAアプタマー;
(3)非小細胞肺がん細胞に対して特異的に結合するDNAアプタマーであって、
     5’-P-X-P-3’
で表されるヌクレオチド配列を有し、
 ここで、Xは、1)配列番号1および2で示される配列から選択されるヌクレオチド配列、又は2)配列番号1および2で示される配列から選択されるヌクレオチド配列において1~3個のヌクレオチドの置換、欠失、又は付加を含む配列であり、
 P及びPは、PCR増幅のために導入された第1及び第2プライマー認識配列である、
該DNAアプタマー;
(4)Pは、配列番号3で示される第1プライマー認識配列であり、及びPは、配列番号4で示される第2プライマー認識配列である、上記(3)に記載のDNAアプタマー。
(5)前記非小細胞肺がん細胞が、H1975細胞である、上記(1)~(4)のいずれか1に記載のDNAアプタマー;
(6)糖鎖部分での化学的置換、リン酸エステル部分での化学的置換及び核酸塩基部分での化学的置換から成る群より選択される、少なくとも1つの化学修飾を含む、上記(1)~(5)のいずれか1に記載のDNAアプタマー;
(7)5’末端又は3’末端に蛍光標識を有する、上記(1)~(6)のいずれか1に記載のDNAアプタマー;及び
(8)前記蛍光標識が、6-カルボキシテトラメチルローダミン、フルオレセインイソチオシアネート、6-カルボキシフルオロセイン-アミノヘキシル、又はシアニン系蛍光色素である、上記(7)に記載のDNAアプタマー
に関する。
 別の態様において、本発明は、上記DNAアプタマーによる肺がん細胞の検出に関し、詳細には、
(9)上記(1)~(8)のいずれか1に記載のDNAアプタマーを含む、肺がん細胞の検出用組成物;
(10)上記(1)~(8)のいずれか1に記載のDNAアプタマーを含む、肺がん細胞の検出用キット;
(11)上記(1)~(8)のいずれか1に記載のDNAアプタマーを用いることを特徴とする、肺がんの検出方法;及び
(12)前記DNAアプタマーを肺細胞、肺組織、血液、血清、血漿、唾液、及び喀痰よりなる群から選択される生体から採取された試料と接触させる工程、及び当該試料とDNAアプタマーとの結合による応答を観測することによって肺がん細胞の存在を検出する工程を含む、上記(11)に記載の検出方法;
(13)前記応答が、蛍光応答もしくはラマン散乱応答である、上記(12)に記載の検出方法
に関する。
 更なる態様において、本発明は、上記DNAアプタマーを医薬組成物及びドラッグデリバリーシステムに用いることに関し、詳細には、
(14)上記(1)~(8)のいずれか1に記載のDAアプタマーを含有する、肺がんの転移予防又は治療用医薬組成物;
(15)肺がんの転移予防又は治療用医薬組成物の製造のための上記(1)~(8)のいずれか1に記載のDNAアプタマーの使用;
(16)上記(1)~(8)のいずれか1に記載のDNAアプタマーを含有する、肺がんの転移予防又は治療用ドラッグデリバリーシステム
に関する。
 本発明によれば、非小細胞肺がん細胞に対して特異的に結合する新規DNAアプタマーを用いることによって、かかる肺がん細胞の効率的な検出が可能となる。特に、蛍光標識等の検出部位を付与したDNAアプタマーを含むキット等に応用することで、生体から採取した肺細胞や組織を測定対象とする簡便かつハイスループットな検出又はイメージングを行うことができる。そのような肺がん細胞の検出によって、がんの発症や転移の有無、がんの予後や悪性度の診断が可能となる。
 また、本発明のDNAアプタマーは非小細胞肺がん細胞に対して特異的に結合し得るという性質を有することから、上記DNAアプタマーに抗がん剤等の薬物をコンジュゲートさせて用いることによって、当該薬剤をターゲット部位に確実に作用させることが可能となるため、肺がんの転移予防又は治療用医薬組成物又はかかる医薬組成物のためのドラッグデリバリーシステムとしても有用性が期待できる。
 さらに、本発明のDNAアプタマーにおけるコンセンサス配列は、わずか30塩基程度の比較的短い領域であることから、製造のための手間やコストを抑制すること、及び種々の用途に応じて所望の化学修飾や更なる機能の付加を行うことが容易であるという利点も有する。
図1は、磁性粒子を用いた2本鎖DNAの1本鎖化を示す模式図である。 図2は、配列番号1を有するDNAアプタマーによるH1975細胞の蛍光イメージング図である 図3は、配列番号2を有するDNAアプタマーによるH1975細胞の蛍光イメージング図である。
 以下、本発明の実施形態について説明する。本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても、本発明の趣旨を損なわない範囲で適宜変更し実施することができる。
1.DNAアプタマー
 本願において「DNAアプタマー」とは、ターゲットとなる分子や物質を特異的に認識できる一本鎖オリゴDNAを意味し、本発明に係るDNAアプタマーは、非小細胞肺がん細胞に対して特異的に結合する機能を有する一本鎖オリゴDNAである。
 一般に、非小細胞肺がんは、主としてその組織型により扁平上皮がん(ASC)、腺がん(ADC)、大細胞がん(LCC)に分類される。従って、本明細書における「非小細胞肺がん細胞」の非限定的な例は、扁平上皮がん細胞であるNCI-H226、NCI-H647;肺腺がん細胞であるNCI-H1975、A549、LC319、PC-3、PC-9、PC-14、A427、NCI-H1373、及び肺大細胞がん細胞であるLX1が挙げられる。本発明に係るDNAアプタマーの結合ターゲットとしては、好ましくは肺腺がん細胞であり、より好ましくはH1975細胞である(H1975細胞の詳細は、研究課題名:オビオイドのがん細胞増殖ならびに幹細胞分化に及ぼす影響、課題番号23781731,科学研究費助成事業(学術研究助成基金助成金)研究成果報告書、平成25年5月15日等に記載されている)。
典型的な態様において、本発明に係るDNAアプタマーは、以下に示す配列番号1および2のいずれかで表されるヌクレオチド配列を有する。なお、ヌクレオチド配列は、5’末端から3’末端方向に左から右に記載する。
<配列番号1>ACA GTT CGT CAG TGT TTG GGG TTC AGC TTA GGT G (34 mer)
<配列番号2>
TGC GCG TGG GTG GTT TTT GTC TGT CAG CTT GGG TC (35 mer)
 本発明に係るDNAアプタマーは、非小細胞肺がん細胞に対して特異的に結合するという機能を有する限り、上記配列番号1および2配列における1もしくは複数のヌクレオチドが置換、欠失、又は付加された配列であってもよい。好ましくは、当該置換、欠失、又は付加されるヌクレオチドは、1~3個であり、より好ましくは1又は2個であり、さらに好ましくは1個である。また、かかるヌクレオチドの置換、欠失、又は付加が存在する場合、本発明に係るDNAアプタマーの配列は、上記配列番号1および2のそれぞれと90%以上、好ましくは93%以上、さらに好ましくは96%以上の相同性である配列(以下、「相同体」という場合がある。)であることができる。ここで、本明細書で用いる場合、用語「相同性」は、当該技術分野で一般に認められた意味を示す。該用語は、典型的には配列解析プログラムによって(例えば、Karlin及びAltschul,1990,PNAS 87:2264-2268;Karlin及びAltschul,1993,PNAS 90:5873-5877)または目視検査によって調べたとき、参照核酸配列の同一のヌクレオチドにマッチした主題の核酸配列のヌクレオチドの数をいう。
 1もしくは複数のヌクレオチドが置換される場合、当該置換はユニバーサル塩基によってなされることができる。用語「ユニバーサル塩基」は、当該技術分野で一般に認められたその意味を示す。該用語は、一般的に、標準DNA/RNAの各塩基とほとんど区別なく塩基対を形成し、細胞内酵素によって認識されるヌクレオチド塩基類似体をいう(例えば、Loakesら,1997,J.Mol.Bio.270:426-435)。ユニバーサル塩基の非限定的な例としては、C-フェニル、C-ナフチル及び他の芳香族の誘導体、イノシン、アゾールカルボザミド(carbozamide)、ならびにニトロアゾール誘導体(3’-ニトロピロール、4-ニトロインドール、5-ニトロインドール、及び6-ニトロインドールなど)が挙げられる(Loakes,2001,Nucleic Acids Res.29:2437)。
 また、本発明に係るDNAアプタマーは、非小細胞肺がん細胞に対して特異的に結合するという機能を有する限り、その長さに上限はない。しかし、合成の容易さや抗原性の問題等を考慮すると、本実施の形態におけるDNAアプタマーの長さは、上限としては、例えば200塩基以下、好ましくは150塩基以下、より好ましくは100塩基以下である。全塩基の数が少ない場合、化学合成及び大量生産がより容易で、かつ費用面における長所も大きい。また、化学修飾も容易で生体内の安全性も高く、毒性も低くなる。下限としては、上記配列番号1および2における塩基数以上、すなわち34塩基又は35塩基以上である。DNAアプタマーは1本鎖(ssDNA)であることが好ましいが、ヘアピンループ型の構造をとることにより部分的に2本鎖構造を形成する場合であっても、そのDNAアプタマーの長さは1本鎖の長さとして計算するものとする。
 好ましい実施態様において、本発明に係るDNAアプタマーは、上記配列番号1および2のいずれかの配列、及びその5’及び3’末端側にそれぞれプライマープライマー認識配列よりなるヌクレオチド配列であることができる。すなわち、この場合、当該DNAアプタマーは、
     5’-P-X-P-3’
で表されるヌクレオチド配列を有する。ここで、Xは、配列番号1および2で示される配列から選択されるヌクレオチド配列、又はそれらの配列において1~3個のヌクレオチドの置換、欠失、又は付加を含む配列である。P及びPは、PCR増幅のために導入された第1及び第2プライマー認識配列である。好ましくは、Pは、GCC TGT TGT GAG CCT CCT(配列番号3)であり、及びPは、CGC TTA TTC TTG TCT CCC(配列番号4)である。
 本発明に係るDNAアプタマーは、生体内における安定性の増大のために、化学修飾されていてもよい。そのような化学修飾の非限定的な例としては、糖鎖部分での化学的置換(例えば、2’-0メチル化)、リン酸エステル部分での化学的置換(例えば、ホスホロチオエート化、アミノ基、低級アルキルアミン基、アセチル基等)、及び塩基部分での化学的置換が挙げられる。同様に、5’又は3’末端に付加的な塩基を有することもできる。該付加的塩基の長さは通常5塩基以下である。該付加的塩基は、DNAでもRNAでもよいが、DNAを用いるとアプタマーの安定性を向上させることができる場合がある。このような付加的塩基の配列としては、例えばug-3’、uu-3’、tg-3’、tt-3’、ggg-3’、guuu-3’、gttt-3’、ttttt-3’、uuuuu-3’などの配列が挙げられるが、これらに限定されるものではない。
 また、本発明に係るDNAアプタマーは、後述の肺がん細胞の検出方法又は当該検出用キットにおいて用いるために、例えば5’末端又は3’末端に連結した検出標識を有することができる。かかる検出標識としては、蛍光標識が好ましいが、ラマン標識、酵素標識や赤外線標識を用いてもよい。蛍光標識は、当該技術分野において慣用されている蛍光標識剤を用いることができるが、例えば、6-カルボキシテトラメチルローダミン(TAMRA(商標))、フルオレセインイソチオシアネート(FITC)、6-カルボキシフルオロセイン-アミノヘキシル(FAM)、シアニン系蛍光色素(Cy3、Cy5)など市販のオリゴヌクレオチド固相合成サービスで導入できる蛍光団が挙げられる。さらに、蛍光物質の近傍に該蛍光物質の発する蛍光エネルギーを吸収するクエンチャー(消光物質)がさらに結合されていてもよい。かかる実施態様においては、検出反応の際に蛍光物質とクエンチャーとが分離して蛍光が検出される。
ラマン標識の例としては、その直径がナノメートルサイズ金粒子に有機物、特にその吸収帯がレーザー波長に僅かでも被る物質を吸着させて、ナノ粒子の表面プラズマ波が形成する増強電場を利用した増強ラマン散乱を標識剤として用いることもできる。この場合、有機物として頻繁に蛍光色素が用いられるが、特にこれにこだわる必要はなく、クリスタルバイオレットなどの色素でも十分なラマン信号が得られる。
酵素標識の例としては、β-ガラクトシダーゼ、β-グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リンゴ酸脱水素酵素等が挙げられる。また、発光基質として、ルミノール、ルミノール誘導体、ルシフェリン、ルシゲニン等)などを標識剤として用いてもよい。
2.DNAアプタマーの選別
 本発明のDNAアプタマーは、当該技術分野において周知のインビトロセレクション法を用いて選別及び取得することができる。そのような手法の好ましい例として、試験管内進化法(Systematic Evolution of Ligands by EXponential enrichment:SELEX法)が用いられる。当該SELEX法は、ターゲット物質に結合する核酸リガンド(アプタマー)の選別と、PCRによる指数関数的な増幅を複数回繰り返すことにより、ターゲット物質に親和性を有する核酸分子(一本鎖DNA、RNA)を得るというものである。また、その改良手法として、例えばGuo,et al.,Int.J.Mol.Sci.,9(4):668,2008に記載されているようなCell-SELEX法を用いることが好ましい。この手法は、ターゲットとして細胞自体を用いることができるため、往来のSELEX法と比較して、細胞表面に膜タンパク質の解析が不要であること、細胞表面に結合し得る複数のアプタマーを同時に選抜できること、及びターゲット細胞に対してより特異的に結合するアプタマーを選抜できるといった利点を有するものである。なお、これら以外にも当該技術分野において周知の方法を用いて本発明のDNAアプタマーを選別及び取得することもできる。
 上述のとおり、「インビトロセレクション法」は、ランダムなヌクレオチド配列を含む核酸分子のプール(いわゆる、DNAプール)からターゲットとする分子や細胞に対して親和性を持つアプタマー分子を選択し、親和性を持たない分子を排除する方法である。当該選択されたアプタマー分子のみをPCR法等で増幅し、さらに親和性による選択をするというサイクルを繰り返すことにより、強い結合能を持つアプタマー分子を濃縮することができるというものである。
 具体的には、まず、20~300塩基、好ましくは30~150、より好ましくは30~100塩基程度のランダムなヌクレオチド配列(塩基配列)領域を含む1本鎖核酸分子、例えば、オリゴDNAを調製する。オリゴDNAは、PCR増幅を可能にするために、その両端にプライマーとなるべき塩基配列を有するものを用いることが好ましい。プライマー認識配列部分は、PCR増幅後にプライマー部分を制限酵素によって切除し得るように適当な制限酵素サイトを有するようにしてもよい。用いるプライマー認識配列部分の長さは、特に限定されるものではないが、約20~50、好ましくは20~30塩基程度である。また、PCR増幅後の1本鎖DNAを電気泳動などで分離可能とするために、5’側末端に、放射標識、蛍光標識などによる標識を行ってもよい。
 次に、上記で得られたランダムなヌクレオチド配列を有する核酸分子(ライブラリープール)と、ターゲット細胞とを適当な濃度比で混合し、適当な条件下でインキュベートする。インキュベート後、混合物を遠心機にかけて、核酸分子-ターゲット細胞複合体と遊離核酸分子とを分離する。分離溶液の上澄み部分を除去し、得られた核酸分子-ターゲット細胞複合体を用いてPCR反応を行うことで細胞結合性核酸配列の増幅を行う。この後、ターゲット細胞と複合体を形成している核酸分子を当該技術分野において周知の手法に従って一本鎖化する。そのような手法としては、例えば、ストレプトアビジン固定化磁性粒子とビオチンとの結合を利用する分離が挙げられる。これにより、増幅した核酸二重鎖のうち細胞結合能を有するssDNAを分離することができ、さらにDNAポリメラーゼなどのPCR反応溶液中に含まれる不要な共存物質を除去することができる。その後、回収されたssDNAをライブラリープールとして用いて同様の操作を行う。
 上述の核酸分子とターゲット細胞との混合、ターゲット細胞と結合した核酸分子の分離、PCR増幅、増幅された核酸分子を再びターゲット細胞との結合に使用するまでの一連の操作は数ラウンドを行う。ラウンドを繰り返し行うことにより、より特異的にターゲット細胞と結合する核酸分子を選別することができる。得られた核酸分子は、当該技術分野において周知の手法によりその配列解析を行うことができる。
3.がん細胞の検出用組成物、検出方法、及びキット
 上述のように、本発明に係るDNAアプタマーは、非小細胞肺がん細胞に対して特異的に結合する機能を有することから、当該肺がん細胞の検出において好適に用いることができ、本発明のDNAアプタマーを含む検出用組成物は、非小細胞肺がんに対する腫瘍マーカとしても用いることができる。
 具体的には、本発明のDNAアプタマーを含む検出用組成物を肺細胞、肺組織、血液、血清、血漿、唾液、及び喀痰よりなる群から選択される生体から採取された試料と接触させ、その後、当該試料とDNAアプタマーとの結合による応答(シグナルの有無)を観測することによって肺がん細胞の存在を検出する。「生体から採取された試料」は、動物、好ましくはヒトから採取したものであって、最小侵襲で確保可能な試料または分泌体液、in vitro細胞培養液成分試料等であれば、その形態は特に限定されない。また、肺がん細胞の存在を検出するための「応答」は、蛍光応答であることが好ましく、そのため上記で述べたとおり、DNAアプタマーの5’末端又は3’末端にTAMRA(商標)FITC等の蛍光標識剤を連結させることが好ましい。
 また、本発明の肺がん細胞の検出用組成物は、その簡便性や携帯性を高めるためDNAアプタマーを含むキットとして提供することもできる。当該キットにおいてDNAアプタマーは、通常、適当な濃度となるように溶解された水溶液の態様で、或いは該DNAアプタマーが固相担体上に固定されたDNAアレイの態様で提供されることができる。例えば、DNAアプタマーの末端にビオチンを結合させて複合体を形成し、固相担体の表面にストレプトアビジンを固定化させて、ビオチンとストレプトアビジンの相互作用によってDNAアプタマーを固相担体表面に固定化することができる。当該キットには、必要に応じて他の試薬等を適宜含んでいても良く、例えば、添加剤として、溶解補助剤、pH調節剤、緩衝剤、等張化剤などの添加剤を用いることができ、これらの配合量は当業者に適宜選択可能である。
4.医薬組成物及びDDS
 別の態様において、本発明は、上記DNAアプタマーを含有する、肺がんの転移予防又は治療用医薬組成物を提供するものである。好ましくは、当該医薬組成物は、DNAアプタマーに加えて、有効量の肺がんの転移予防又は治療のための医薬化合物(有効成分)、及び医薬上許容される担体を含むことができる。例えば、本アプタマーを金ナノ粒子に結合したものを用いて、癌の温熱療法用の試薬として利用できる可能性がある。
 上記「肺がん」は、扁平上皮がん(ASC)、腺がん(ADC)、及び大細胞がん(LCC)を含む非小細胞肺がんであり、好ましくはH1975細胞と関連する腺がんである。「転移予防又は治療」には、がん細胞の遊離、移動、転移、浸潤または増殖の抑制、アポトーシスの誘導が含まれ得る。転移の抑制とは、がん細胞が原発巣から異なる部位ヘ到達し、該部位においてがんを二次的に生じることを抑制することを意味する。
 本発明の医薬組成物中に含まれる有効成分は、肺がんの転移予防又は治療に有効なものであれば、特に限定されるものではないが、好ましくは抗がん剤である。かかる抗がん剤の例としては、アルキル化剤、代謝拮抗剤、抗腫瘍性抗生物質、化学療法剤、これら以外の他の抗ガン剤等が挙げられる。アルキル化剤としては、例えば、ナイトロジェンマスタード、クロラムブチル、ジブロモダルシトール、チオテパ、カルムスチン、ブスルファンなど、代謝拮抗剤としては、6-メルカプトプリン、フルオロウラシル、テガフール、ドキシフルリジン、シタラビン、エノシタビン、メトトレキセートなど、抗生物質としては、マイトマイシンC、ブレオマイシン、ペプロマイシン、ドキソルビシン、THP-アドリアマイシン、アクチノマイシンDなど、その他の抗ガン剤としては、
塩酸アムルビシン、塩酸イリノテカン、イホスファミド、エトポシドラステット、ゲフィニチブ、シクロホスファミド、シスプラチン、トラスツズマブ、フルオロウラシル、メシル酸イマニチブ、メソトレキサート、リツキサン、アドリアマイシン、カルボプラチン、タモキシフェン、カンプトテシン、メルファラン、L-アスパラギナーゼ、アセクラトン、シゾフィランなどが挙げられる。
 本発明の医薬組成物中に含まれる医薬上許容される担体としては、例えば、ショ糖、デンプン等の賦形剤、セルロース、メチルセルロース等の結合剤、デンプン、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、エアロジル等の滑剤、クエン酸、メントール等の芳香剤、安息香酸ナトリウム、亜硫酸水素ナトリウム等の保存剤、クエン酸、クエン酸ナトリウム等の安定剤、メチルセルロース、ポリビニルピロリドン等の懸濁剤、界面活性剤等の分散剤、水、生理食塩水等の希釈剤、ベースワックス等が挙げられるが、それらに限定されるものではない。
 本発明の医薬組成物のがん細胞内への導入を促進するために、当該組成物には、さらに核酸導入用試薬を含むこともできる。該核酸導入用試薬としては、アテロコラーゲン、リポソーム、ナノパーティクル、リポフェクチン、リプフェクタミン、DOGS(トランスフェクタム)、DOPE、DOTAP、DDAB、DHDEAB、HDEAB、ポリブレン、或いはポリエチレンイミン等の陽イオン性脂質等を用いることが出来る。
 本発明の医薬組成物は、例えば、哺乳動物(例えば、ヒト、ラット、マウス、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サル等)に対して投与することができる。
 本発明の医薬組成物は、多様な製剤形態、例えば、カプセル剤、錠剤、液剤等の剤形をとることができ、限定はしないが、より一般的には、液剤化され、注射剤とされるか、または、経口剤とされるか、又は徐放剤とされる。当該注射剤は、当該技術分野における周知の方法より調製することができる。例えば、滅菌水、緩衝液、生理食塩水等の適切な溶媒に溶解した後、フィルター等で濾過して滅菌し、次いで無菌的な容器に充填することにより調製することができる。また、経口剤としては、例えば、錠剤、顆粒剤、細粒剤、散剤、軟又は硬カプセル剤、液剤、乳剤、懸濁剤、シロップ剤等の剤形に製剤化される。徐放剤としては、例えば、錠剤、顆粒剤、細粒剤、散剤、軟又は硬カプセル剤、マイクロカプセル等の剤形に製剤化される。製剤化する場合には、好ましくは、例えば、アルブミン、グロブリン、ゼラチン、マンニトール、グルコース、デキストラン、エチレングリコール等の安定化剤が添加され得る。さらに、本発明の医薬組成物の製剤化においては、例えば、賦形剤、溶解補助剤、酸化防止剤、無痛化剤、等張化剤等の必要な補助添加物を含んでもよい。液状製剤とした場合は、凍結保存又は凍結乾燥等により水分を除去して保存するのが望ましい。凍結乾燥剤は、使用時に注射用蒸留水等を加え、再溶解して使用される。また、徐放剤とした場合、徐放用担体として例えば、可溶性コラーゲン又は可溶性コラーゲン誘導体、ゼラチン等の蛋白質、セラミックス多孔体、ポリアミノ酸、ポリ乳酸、キチン又はキチン誘導体、水膨潤性高分子ゲル等を使用することができる。
 本発明の医薬組成物は、その形態に応じた適切な投与経路により投与され得る。経口的に又は非経口的投与することが可能であるが、非経口的に投与するのが望ましい。例えば、注射剤の形態にして静脈、動脈、皮下、筋肉内等に投与することができる。また、徐放剤の形態にして生体内、例えば患部、皮下、筋肉内等に埋め込むことにより投与することができる。投与量及び投与回数等は、投与の目的、投与方法、癌の種類、大きさ、投与対象者の状況(性別、年齢、体重など)によって異なるが、基本的には上記有効成分における望ましい投与形態に従う。
 また、本発明のDNAアプタマーをリポソームやナノ粒子等の輸送材料の表面に付着させることによって、当該輸送材料中に含まれる医薬成分を肺がん細胞に選択的に輸送することができる。従って、更なる態様において、本発明は上記DNAアプタマーを含有する、肺がんの転移予防又は治療用ドラッグデリバリーシステムを提供するものである。当該ドラッグデリバリーシステムによって輸送され得る医薬成分は、典型的には上述の抗がん剤であるが、肺がんの転移予防又は治療に有用な物質である限り、それら以外にもトキシン、がん成長阻害遺伝子、自殺遺伝子、又は、肺がんの成長及び転移に重要な役割を果たす遺伝子の発現を阻害するsiRNA(small interfering RNA)等であることもできる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 実施例1:アプタマーの選別
 Cell-SELEX法を用いて、ランダムな配列を有するDNAプールから非小細胞肺がん細胞であるH1975細胞に特異的に結合するアプタマーの選別を行った。当該Cell-SELEX法における各工程は以下のとおりである。
 1) DNAプールの調製(DNAアプタマー候補群の溶液調製)
 2) ターゲット物質-H1975細胞-との混合
 3) ターゲット結合性DNAと非結合性DNAの分離
 4) ターゲット結合性DNAの複製(ターゲット物質と結合したDNAアプタマーを増幅する工程)
 5) ターゲット結合性DNAの精製(増幅したDNAアプタマーを1本鎖DNAに精製する工程)
 6) ターゲット結合性核酸のクローンニング(得られたDNAアプタマーの配列解析の前処理)
 7) これら1)~6)の工程を8ラウンド実行
 8) ターゲット結合性核酸の配列解析(シーケンサーによるDNAアプタマーのヌクレオチド配列の解析)
 より詳細な実験手順は、以下のとおりである。
DNAプールは、以下の配列を有する全長が70塩基でランダム配列部分(N)が34塩基のオリゴDNAを用いた。
 DNA pool:Random34(つくばオリゴサービス株式会社製)
 ・配列: 5’-GCC TGT TGT GAG CCT CCT(N34)CGC TTA TTC TTG TCT CCC-3’
 ・長さ: 70塩基(ランダム配列は中央の34塩基)
 ・分子量: 21391.3 g/mol
 ・モル吸光係数: 630475 L/mol・cm
 ランダム配列の両側は、後のPCRにおいてプライマーによって認識され、増幅を可能にするための配列である。上記ランダムDNAを細胞培養用培地(和光純薬工業株式会社製:RPM1-1640 With Glucose+仔牛血清+抗生物質)バッファーを溶媒として1μMのDNAプールを調製した。
 その後、H1975細胞を培養シャーレで培養し、細胞数が10~10個になるまで培養した。培養後培地を除去し、さらに同シャーレにリン酸緩衝生理食塩水(以下、PBSと称する。)を2mL添加して細胞を洗浄した。このシャーレにEDTA含有0.05%トリプシン溶液1mLを添加し、37℃インキュベーターに2分間静置した。細胞がシャーレから剥がれていることを確認した後、PBSを4mL添加し、これを15mL遠沈管にて回収し、200gで3分間遠心処理を行った。その後上澄み液をアスピレータにより除去した。それにPBSを3mL添加し、ピペッティングにより細胞を懸濁させたのち200gで3分間遠心処理を行い、上澄みを除去する洗浄工程を2回行った。培地を330uL中10セルになるように調製した。調製した懸濁液に予め準備しておいた1μMのランダムDNA(DNAプール)溶液370μLを混和し、ボルテックスにより十分に混和させた。
 得られた混合溶液を37℃インキュベーター内に1時間静置した。その後同遠沈管を用いて400gで4分間遠心処理を行い、上澄みを除去した後PBSを500μL添加し400gで4分間遠心処理を行った。この洗浄操作を3回行った。上澄みを除去した後PBS200μLを添加し、95℃で10分間過熱した。13000gで5分間遠心処理を行い、上澄みを回収した。
 分離したH1975細胞結合性のDNAをPCRにより増幅した。装置は、Thermal Cycler(TAKARA-TP600)を用いた。プライマーは、上記ランダムDNAの共通配列に対応する18塩基のプライマーを用いた(つくばオリゴサービス株式会社製)。当該プライマーの5’末端側には、後述のように1本鎖DNAの分離を可能にするためビオチン修飾を施してある。
 精製したDNAにストレプトアビジンを加えて磁性粒子に吸着させ、磁石により磁性粒子を回収したのち上澄みを除去、その後アルカリバッファー変性により上澄み中に磁性粒子と結合していない1本鎖DNAを回収した(図1)。その後アルカリバッファーをPBSバッファーに置換することで、磁性粒子と結合した目的物である1本鎖DNAを回収した。これを1ラウンドとし、この操作を8回行った。
 8ラウンド後、ビオチン非修飾の18塩基プライマーを用いてPCR増幅を行い、PCR産物をシークエンサー解析した。解析はライフテクノロジーズジャパン製シークエンサー解析装置Ion PGMTM(登録商標)により解析を行い、さらに上記同様の方法を用いてマウス全血およびマウス単核球細胞をターゲットとするDNAアプタマーをCell-SELEX法によりそれぞれ独立に探索を行い、既に見出されているH1975細胞に対するDNAアプタマー群からマウス全血およびマウス単核球をターゲットとするDNAアプタマー配列と共通なものを指しい引いた結果、マウス全血およびマウス単核球には結合せず、H1975細胞のみに結合する配列として配列1および2を見出した。
 実施例2:蛍光標識DNAアプタマーによる非小細胞肺がん細胞の染色
H1975細胞を培養シャーレで培養し、細胞数が10~10になるまで培養する。これにシークエンサー解析により見出されたH1975細胞に対して親和性のあるヌクレオチド配列からなるDNAアプタマーの5‘末端をCy3.5(商標)で修飾し、このDNAを超純水により100μMに調製したアプタマー溶液を30μLとり、培養シャーレ(培地RPMI-1640;2mL)に分散させながら添加した。これを37℃1時間インキュベーターに静置した。その後、PBSで細胞を3回洗浄した後、さらにPBSを2mL添加した状態でオリンパス製の倒立型蛍光顕微鏡IX51により観察した。配列番号1および2を有するDNAアプタマーによる結果を、それぞれ図2および図3に示す。これらの蛍光標識DNAアプタマーがH1975細胞に特異的に結合し、それによってH1975細胞に対する良好な蛍光イメージング画像が得られることが明らかとなった。

Claims (16)

  1.  配列番号1および2で示される配列から選択される少なくとも1つのヌクレオチド配列を有し、非小細胞肺がん細胞に対して特異的に結合することを特徴とするDNAアプタマー。
  2.  配列番号1および2で示される配列から選択される少なくとも1つのヌクレオチド配列において、1~3個のヌクレオチドの置換、欠失、又は付加を含む配列を有し、非小細胞肺がん細胞に対して特異的に結合することを特徴とするDNAアプタマー。
  3.  非小細胞肺がん細胞に対して特異的に結合するDNAアプタマーであって、
         5’-P-X-P-3’
    で表されるヌクレオチド配列を有し、ここで、
     Xは、1)配列番号1および2で示される配列から選択されるヌクレオチド配列、又は2)配列番号1および2で示される配列から選択されるヌクレオチド配列において1~3個のヌクレオチドの置換、欠失、又は付加を含む配列であり、
     P及びPは、PCR増幅のために導入された第1及び第2プライマー認識配列である
    該DNAアプタマー。
  4.  Pは、配列番号3で示される第1プライマー認識配列であり、及び
     Pは、配列番号4で示される第2プライマー認識配列である、請求項3に記載のDNAアプタマー。
  5.  前記非小細胞肺がん細胞が、H1975細胞である、請求項1~4のいずれか1に記載のDNAアプタマー。
  6.  糖鎖部分での化学的置換、リン酸エステル部分での化学的置換及び核酸塩基部分での化学的置換から成る群より選択される、少なくとも1つの化学修飾を含む、請求項1~5のいずれか1に記載のDNAアプタマー。
  7.  5’末端又は3’末端に蛍光標識を有する、請求項1~6のいずれか1に記載のDNAアプタマー。
  8.  前記蛍光標識が、6-カルボキシテトラメチルローダミン、フルオレセインイソチオシアネート、6-カルボキシフルオロセイン-アミノヘキシル、又はシアニン系蛍光色素である、請求項7に記載のDNAアプタマー。
  9.  請求項1~8のいずれか1に記載のDNAアプタマーを含む、肺がん細胞の検出用組成物。
  10.  請求項1~8のいずれか1に記載のDNAアプタマーを含む、肺がん細胞の検出用キット。
  11.  請求項1~8のいずれか1に記載のDNAアプタマーを用いることを特徴とする、肺がんの検出方法。
  12.  前記DNAアプタマーを肺細胞、肺組織、血液、血清、血漿、唾液、及び喀痰よりなる群から選択される生体から採取された試料と接触させる工程、及び当該試料とDNAアプタマーとの結合による応答を観測することによって肺がん細胞の存在を検出する工程を含む、請求項11に記載の検出方法。
  13. 前記応答が、蛍光応答もしくはラマン散乱応答である、請求項12に記載の検出方法。
  14.  請求項1~8のいずれか1に記載のDNAアプタマーを含有する、肺がんの転移予防又は治療用医薬組成物。
  15.  肺がんの転移予防又は治療用医薬組成物の製造のための請求項1~8のいずれか1に記載のDNAアプタマーの使用。
  16.  請求項1~8のいずれか1に記載のDNAアプタマーを含有する、肺がんの転移予防又は治療用ドラッグデリバリーシステム。
PCT/JP2016/053560 2015-02-10 2016-02-05 非小細胞肺がん細胞(h1975)に結合するdnaアプタマー WO2016129531A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016574783A JPWO2016129531A1 (ja) 2015-02-10 2016-02-05 非小細胞肺がん細胞(h1975)に結合するdnaアプタマー
KR1020177025022A KR20170109674A (ko) 2015-02-10 2016-02-05 비소세포 폐암 세포(h1975)에 결합하는 dna 앱타머
US15/549,843 US20180016582A1 (en) 2015-02-10 2016-02-05 Dna aptamer binding to non-small cell lung cancer cells (h1975)
EP16749175.2A EP3257940A4 (en) 2015-02-10 2016-02-05 Dna aptamer capable of binding to non-small cell lung cancer cell (h1975)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-024165 2015-02-10
JP2015024165 2015-02-10

Publications (1)

Publication Number Publication Date
WO2016129531A1 true WO2016129531A1 (ja) 2016-08-18

Family

ID=56615388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053560 WO2016129531A1 (ja) 2015-02-10 2016-02-05 非小細胞肺がん細胞(h1975)に結合するdnaアプタマー

Country Status (6)

Country Link
US (1) US20180016582A1 (ja)
EP (1) EP3257940A4 (ja)
JP (1) JPWO2016129531A1 (ja)
KR (1) KR20170109674A (ja)
TW (1) TW201643249A (ja)
WO (1) WO2016129531A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107488663A (zh) * 2017-07-19 2017-12-19 中国科学院化学研究所 核酸、dna g‑四链体、试剂、其制备方法和用途
JP2020519615A (ja) * 2017-05-08 2020-07-02 オーグマニティ ナノ リミテッド 急速に進化する生物学的実体の処置
JP2023543335A (ja) * 2020-10-30 2023-10-13 スピア、トッド オリゴヌクレオチドベースの治療剤およびその使用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914542A (zh) * 2009-04-28 2010-12-15 中国科学院化学研究所 用于不同亚型非小细胞肺癌分型的一种核酸适体及其筛选方法
CN101914543A (zh) * 2009-04-28 2010-12-15 中国科学院化学研究所 一种用于不同亚型非小细胞肺癌分型的核酸适体及其筛选方法
CN101955939A (zh) * 2009-04-28 2011-01-26 中国科学院化学研究所 用于不同亚型非小细胞肺癌分型的核酸适体及其筛选方法
JP2014217311A (ja) * 2013-05-08 2014-11-20 日産化学工業株式会社 がん細胞に結合するdnaアプタマー
JP2015019606A (ja) * 2013-07-17 2015-02-02 日産化学工業株式会社 非小細胞肺癌に特異的に結合する核酸

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101914542A (zh) * 2009-04-28 2010-12-15 中国科学院化学研究所 用于不同亚型非小细胞肺癌分型的一种核酸适体及其筛选方法
CN101914543A (zh) * 2009-04-28 2010-12-15 中国科学院化学研究所 一种用于不同亚型非小细胞肺癌分型的核酸适体及其筛选方法
CN101955939A (zh) * 2009-04-28 2011-01-26 中国科学院化学研究所 用于不同亚型非小细胞肺癌分型的核酸适体及其筛选方法
JP2014217311A (ja) * 2013-05-08 2014-11-20 日産化学工業株式会社 がん細胞に結合するdnaアプタマー
JP2015019606A (ja) * 2013-07-17 2015-02-02 日産化学工業株式会社 非小細胞肺癌に特異的に結合する核酸

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KAUR J ET AL.: "Ets1 identified as a novel molecular target of RNA aptamer selected against metastatic cells for targeted delivery of nano-formulation", ONCOGENE, vol. 34, no. 41, 2015, pages 5216 - 5228, XP055457073, ISSN: 0950-9232 *
See also references of EP3257940A4 *
XU, LI ET AL.: "Cellular internalization and cytotoxicity of aptamers selected from lung cancer cell", AM. J. BIOMED. SCI., vol. 5, no. 1, 2013, pages 47 - 58, XP055457072, ISSN: 1937-9080 *
ZHAO, ZILONG ET AL.: "Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells", ANALYST, vol. 134, no. 9, 2009, pages 1808 - 1814, XP009503956, ISSN: 0003-2654 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020519615A (ja) * 2017-05-08 2020-07-02 オーグマニティ ナノ リミテッド 急速に進化する生物学的実体の処置
CN107488663A (zh) * 2017-07-19 2017-12-19 中国科学院化学研究所 核酸、dna g‑四链体、试剂、其制备方法和用途
JP2023543335A (ja) * 2020-10-30 2023-10-13 スピア、トッド オリゴヌクレオチドベースの治療剤およびその使用

Also Published As

Publication number Publication date
KR20170109674A (ko) 2017-09-29
JPWO2016129531A1 (ja) 2017-11-24
EP3257940A1 (en) 2017-12-20
EP3257940A4 (en) 2018-07-04
US20180016582A1 (en) 2018-01-18
TW201643249A (zh) 2016-12-16

Similar Documents

Publication Publication Date Title
Zhang et al. Engineering of bioinspired, size-controllable, self-degradable cancer-targeting DNA nanoflowers via the incorporation of an artificial sandwich base
US11066667B2 (en) Organic compositions to treat APOC3-related diseases
Pei et al. Clinical applications of nucleic acid aptamers in cancer
Zhu et al. Self‐assembled aptamer‐based drug carriers for bispecific cytotoxicity to cancer cells
JP2022159552A (ja) iNOS阻害組成物および乳がん治療薬としてのその使用
EP3272868A1 (en) Organic compositions to treat kras-related diseases
CN113423833B (zh) 用于选择功能性适体的方法和组合物
WO2016158851A1 (ja) 血管内皮増殖因子受容体に結合する核酸アプタマー
Li et al. Targeted Delivery of Doxorubicin Using a Colorectal Cancer‐Specific ssDNA Aptamer
WO2016129531A1 (ja) 非小細胞肺がん細胞(h1975)に結合するdnaアプタマー
WO2015117206A1 (en) Improved aptamers
JP2014217311A (ja) がん細胞に結合するdnaアプタマー
EP3369819B1 (en) Dna aptamer binding to cancer cell
WO2017094733A1 (ja) 分子標的医薬に結合するdnaアプタマー及びそれを用いる分子標的医薬の検出方法
Feng et al. Chiral interaction is a decisive factor to replace d-DNA with l-DNA aptamers
JP2015019606A (ja) 非小細胞肺癌に特異的に結合する核酸
WO2014121256A1 (en) Aptamers for tumor initiating cells
US11807854B2 (en) CD44 aptamer
JP2015019607A (ja) マウス大腸癌Colon26に特異的に結合する核酸
JP2016021883A (ja) ヒト大腸癌細胞Colo205に特異的に結合する核酸
JP2016146766A (ja) 非小細胞肺がん細胞(a431)に結合するDNAアプタマー
JP2017099311A (ja) 慢性骨髄性白血病細胞(k562)に結合するdnaアプタマー
CN111518905B (zh) lncRNA在肺腺癌诊疗中的用途
US11459567B2 (en) Specific siRNA molecules, composition and use thereof for the treatment of triple negative breast cancer
WO2023230600A2 (en) Mirna-based cancer therapy with a tumor-navigating peptide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749175

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574783

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016749175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15549843

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177025022

Country of ref document: KR

Kind code of ref document: A