WO2015182797A1 - 광학 모듈 - Google Patents

광학 모듈 Download PDF

Info

Publication number
WO2015182797A1
WO2015182797A1 PCT/KR2014/004704 KR2014004704W WO2015182797A1 WO 2015182797 A1 WO2015182797 A1 WO 2015182797A1 KR 2014004704 W KR2014004704 W KR 2014004704W WO 2015182797 A1 WO2015182797 A1 WO 2015182797A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting diode
light
optical module
substrate
Prior art date
Application number
PCT/KR2014/004704
Other languages
English (en)
French (fr)
Inventor
장명기
최종현
Original Assignee
주식회사 이아이라이팅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이아이라이팅 filed Critical 주식회사 이아이라이팅
Priority to US14/894,658 priority Critical patent/US20160230955A1/en
Priority to PCT/KR2014/004704 priority patent/WO2015182797A1/ko
Publication of WO2015182797A1 publication Critical patent/WO2015182797A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • F21V7/0033Combination of two or more reflectors for a single light source with successive reflections from one reflector to the next or following
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • F21V17/10Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening
    • F21V17/101Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages characterised by specific fastening means or way of fastening permanently, e.g. welding, gluing or riveting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/06Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0066Reflectors for light sources specially adapted to cooperate with point like light sources; specially adapted to cooperate with light sources the shape of which is unspecified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2103/00Elongate light sources, e.g. fluorescent tubes
    • F21Y2103/10Elongate light sources, e.g. fluorescent tubes comprising a linear array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to an optical module using a light emitting diode as a light source, and more particularly, to an optical module provided with a multi-reflective structure between the light emitting diodes to enable a slim design while reducing the quantity of light emitting diodes. .
  • LEDs Light emitting diodes
  • LCDs liquid crystal displays
  • the light emitting diode has a problem that the price is higher than the conventional light source, and due to the inherent problem of the point light source, the price competitiveness of the final product is lowered and it is difficult to implement free product design.
  • FIG. 1 is a cross-sectional view showing an example of an internal structure of a conventional optical module
  • FIG. 2 is a cross-sectional view showing another example of an internal structure of a conventional optical module.
  • a substrate 30 is provided between the display panel 20 and the frame 10, and a plurality of light emitting diodes 40 are mounted on the substrate 30.
  • Each LED 40 is positioned behind the display panel 20 to emit light in a predetermined area of the display panel 20.
  • FIG. 2 there is shown another optical module which reduces the number of light emitting diodes 40 compared to the optical module shown in FIG. 1, in which case the number of light emitting diodes 40 can be reduced.
  • the unit price can be lowered.
  • the frame 10 also has a problem that the total distance of the optical module is increased by increasing the distance from the display panel 20.
  • the present invention has been made in an effort to solve the above-described problems with respect to the conventional optical module, and to provide an optical module capable of enabling a slim design while reducing the quantity of light emitting diodes.
  • An optical module for solving the above technical problem, the substrate; A light emitting diode provided in the substrate; A first member provided in front of the substrate and transmitting a part of light emitted from the light emitting diode and reflecting a part of the light; And an exposure area disposed between the substrate and the first member so as to be spaced apart from the first member by a predetermined distance, and an exposure area where the light emitting diode is exposed is formed at a position corresponding to the light emitting diode, and the light reflected from the first member. It may be configured to include; a second member to reflect back to the front.
  • the optical module according to the present invention is provided between the first member and the substrate or between the first member and the second member, the first member to maintain the distance between the first member and the light emitting diode. It may be configured to further include a support member for supporting.
  • the support member when the support member is provided between the first member and the substrate, a through hole through which the support member passes is formed in the second member, and solder is formed on a surface of the support member in contact with the substrate.
  • the support member may be fixed to the substrate.
  • the support member when the support member is provided between the first member and the second member, the support member may be fixed to the first member and the second member by an adhesive resin.
  • the support member may be formed of a material having transparency to transmit light emitted from the light emitting diode.
  • the support member a vertical portion provided around the light emitting diode; And a horizontal part connected to the vertical part and provided at the front of the light emitting diode to be in contact with the first member.
  • At least one of the vertical portion and the horizontal portion may be formed with a transmission region for transmitting a portion of the light emitted from the light emitting diode or a reflection region for reflecting a portion of the light emitted from the light emitting diode.
  • the vertical portion and the horizontal portion is formed of a material having transparency to transmit light emitted from the light emitting diode, and a reflective material is coated on a portion of the horizontal portion so that a reflective region is formed on a portion of the horizontal portion.
  • the reflective material coated on a portion of the horizontal portion may be coated with a larger area toward a position corresponding to the light emitting diode.
  • the vertical portion and the horizontal portion is formed of a material having an impermeable to block or reflect the light emitted from the light emitting diode, the portion of the horizontal portion is open so that a transmission area is formed in a portion of the horizontal portion A portion of the horizontal portion to be opened may be opened to a narrower area toward the position corresponding to the light emitting diode.
  • the transmissive region formed in a portion of the horizontal portion may cross each other with a transmissive region provided in the first member so as to transmit a portion of the light emitted from the light emitting diode. It may be formed.
  • the first member may be formed with a transmission region for transmitting a portion of the light emitted from the light emitting diode or a reflection region for reflecting a portion of the light emitted from the light emitting diode.
  • the first member may be formed of a material having transparency to transmit light emitted from the light emitting diode, and a reflective material may be coated to form a reflective region on a portion of the first member.
  • the reflective material coated on the first member may be coated with a larger area toward the position corresponding to the light emitting diode.
  • the first member is formed of a material having an impermeable to block or reflect the light emitted from the light emitting diode, a portion of the first member so that a transmission region is formed in a portion of the first member Can be opened.
  • a part of the first member to be opened may be composed of one or more passage holes through which the light emitted from the light emitting diode can pass.
  • the density of the pass holes or the individual areas may be different depending on the position corresponding to the light emitting diodes and the intensity of light emitted from the light emitting diodes.
  • the density may increase or the individual areas of the through holes may increase.
  • the through-holes are spaced apart from the position perpendicular to the light emitting diode to a predetermined position, the density decreases or the individual area of the through-holes decreases.
  • the individual area of the holes may increase.
  • the exposed area of the second member may be formed in the shape of an insertion hole into which the light emitting diode is inserted.
  • a multi-reflective structure is provided between the light emitting diodes, thereby enabling a slim design while reducing the number of light emitting diodes.
  • FIG. 1 is a cross-sectional view showing an example of the internal structure of a conventional optical module.
  • FIG. 2 is a cross-sectional view showing another example of the internal structure of a conventional optical module.
  • FIG 3 is a cross-sectional view showing a first embodiment of an optical module according to the present invention.
  • FIG. 4 is a cross-sectional view showing a path of light in the first embodiment shown in FIG.
  • FIG. 5 is a cross-sectional view showing a modification of the first embodiment shown in FIG.
  • FIG. 6 is a cross-sectional view showing another modified example of the first embodiment shown in FIG.
  • FIG. 7 is a plan view showing an example of the arrangement of the light emitting diode and the supporting member in the first embodiment of the optical module according to the present invention.
  • FIG 8 is a plan view showing another example of the arrangement of the light emitting diode and the supporting member in the first embodiment of the optical module according to the present invention.
  • FIG. 9 is a plan view showing a first form of the first member in the first embodiment of the optical module according to the present invention.
  • FIG 10 is a plan view showing a second form of the first member in the first embodiment of the optical module according to the present invention.
  • FIG 11 is a plan view showing a third form of the first member in the first embodiment of the optical module according to the present invention.
  • FIG. 12 is a schematic view for explaining a third form of the first member shown in FIG. 11.
  • FIG. 13 is a plan view showing a fourth form of the first member in the first embodiment of the optical module according to the present invention.
  • 15 is a plan view showing a fifth form of the first member in the first embodiment of the optical module according to the present invention.
  • 16 is a sectional view showing a second embodiment of an optical module according to the present invention.
  • 17 is a cross-sectional view showing the path of light in the second embodiment shown in FIG.
  • FIG. 18 is a plan view showing an example of the arrangement of the light emitting diode and the supporting member in the second embodiment of the optical module according to the present invention.
  • 19 is a plan view showing another example of the arrangement of the light emitting diode and the supporting member in the second embodiment of the optical module according to the present invention.
  • FIG. 20 is a perspective view showing a first form of the support member deformed in the second embodiment of the optical module according to the present invention.
  • 21 is a perspective view showing a second form of the support member deformed in the second embodiment of the optical module according to the present invention.
  • FIG. 22 is a perspective view showing a third form of the support member deformed in the second embodiment of the optical module according to the present invention.
  • Fig. 23 is a perspective view showing a fourth form of the support member deformed in the second embodiment of the optical module according to the present invention.
  • 24 is a partial perspective view partially showing an example of a lighting device to which an optical module according to the present invention is applied.
  • 25 is a partial perspective view showing a partial cutaway of another example of the lighting apparatus to which the optical module according to the present invention is applied.
  • FIG. 3 is a cross-sectional view showing a first embodiment of an optical module according to the present invention
  • FIG. 4 is a cross-sectional view showing a light path in the first embodiment shown in FIG. 6 is a cross-sectional view showing a modification of the first embodiment shown
  • FIG. 6 is a cross-sectional view showing another modification of the first embodiment shown in FIG.
  • FIG. 7 is a plan view showing an example of an arrangement of a light emitting diode and a supporting member in the first embodiment of the optical module according to the present invention
  • FIG. 8 is a light emitting diode in the first embodiment of the optical module according to the present invention. It is a top view which shows another example of the arrangement
  • FIG. 9 is a plan view showing a first form of the first member in the first embodiment of the optical module according to the present invention
  • FIG. 10 is a first view of the first member in the first embodiment of the optical module according to the present invention
  • 2 is a plan view showing two forms
  • FIG. 11 is a plan view showing a third form of the first member in the first embodiment of the optical module according to the present invention
  • FIG. 12 is a third view of the first member shown in FIG.
  • FIG. 13 is a top view which shows the 4th form of the 1st member in the 1st Example of the optical module which concerns on this invention
  • FIG. 14 is the 4th of the 1st member shown in FIG.
  • FIG. 15 is a top view which shows the 5th form of the 1st member in 1st Example of the optical module which concerns on this invention.
  • the first embodiment of the optical module according to the present invention may include the first member 100 in addition to the frame 10, the display panel 20, the substrate 30, and the light emitting diode 40. ), The second member 200 and the support member 300.
  • the frame 10 and the display panel 20 may be implemented in various forms according to the type of the product, for example, the LCD display to which the first embodiment of the optical module according to the present invention is applied, which is obvious to those skilled in the art. As it is a matter of description, detailed description thereof will be omitted.
  • the direction in which the display panel 20 is positioned to the front and the direction in which the frame 10 is positioned to the rear are defined.
  • the substrate 30 is a circuit configured to apply power to the light emitting diode 40, and the light emitting diode 40 is mounted on the substrate 30.
  • a method in which the light emitting diode 40 may be mounted on the substrate 30 may be various.
  • a plurality of substrates 30 may be provided, and one light emitting diode 40 may be provided in each substrate 30.
  • the present invention is not limited thereto, and a plurality of light emitting diodes 40 may be mounted on one substrate 30, or one may cover the entire area instead of a plurality of substrates 30. Of course it is possible.
  • the light emitting diode 40 itself is emerging as a light source for a next generation light source for a next generation lighting or a non-light emitting display as described in the background art, this is obvious to those skilled in the art, and thus a detailed description thereof will be omitted. .
  • the first member 100 is provided in front of the substrate 30, a portion of the light emitted from the light emitting diode 40 is transmitted to the front, and the other part is a component that can reflect back.
  • the first member 100 may be formed of various materials having the characteristics of transmitting and reflecting light as described above.
  • the first member 100 for anything, such as glass, sheet, plastic or metal.
  • the first member 100 may be formed as translucent, but may have the above characteristics as the material itself, but other methods may be used. This will be described later.
  • the second member 200 is provided between the substrate 30 and the first member 100, in particular, provided to be spaced apart from the first member 100 by a predetermined interval. Therefore, a space is formed between the first member 100 and the second member 200.
  • the support member 300 is provided to support the first member 100 and the second member 200, which will be described later.
  • the second member 200 may be formed to have reflectivity, and may be reflected back from the light emitted from the light emitting diode 40 and reflected from the first member 100. That is, the light emitted from the light emitting diode 40 may be directly transmitted to the front of the first member 100 or may be reflected back to the front through the first member 100-the second member 40, respectively.
  • a part of the light emitted from the light emitting diode 40 is directly transmitted to the front of the first member 100, the other part is reflected to the second member 200 side and then reflected by the second member 200. It is reflected and emitted forward, which can be seen from the referenced figures.
  • the first embodiment of the optical module according to the present invention since this process may be repeated several times, there is an advantage that one light emitting diode 40 can cover a wider range. Therefore, the first embodiment of the optical module according to the present invention can reduce the compactness of the light emitting diode 40 can reduce the product cost.
  • an exposed area where the light emitting diode 40 is exposed may be formed at a position corresponding to the light emitting diode 40 in the entire area of the second member 200. This is to prevent the light emitted from the light emitting diode 40 from being blocked by the second member 200.
  • the exposed area of the second member 200 is formed in the shape of an insertion hole 220 into which the light emitting diode 40 is inserted. That is, an insertion hole 220 is formed in a portion of the second member 200 corresponding to the light emitting diode 40, and the light emitting diode 40 protrudes through the second member 200.
  • light emitted from the light emitting diode 40 may be smoothly transmitted to the first member 100, and a multi-reflective structure may be formed by the first member 100 and the second member 200.
  • the exposed area of the second member 200 is formed in the shape of the insertion hole 220, the exposed area may be formed in another shape. For example, even when the exposed area is formed of a transparent material, the light of the light emitting diode 40 may be transmitted to the first member 100.
  • the light emitting diode 40 may be located behind the second member 200 without being inserted into the insertion hole 220. .
  • one light emitting diode 40 may cover a larger area of the display panel 20. Therefore, since the number of light emitting diodes 40 can be used in comparison with the related art, the manufacturing cost can be reduced when the LCD display having the same thickness is manufactured.
  • the first member 100 as described above may be formed of a variety of materials having the characteristics of transmitting and reflecting light as described above, in order to have the reflection and transmission characteristics of light at the same time It can be used in the form.
  • the first member 100 according to the first shape as shown in FIG. 9 is formed of a material having transparency, and a part of the first member 100 is coated with a reflective material 120.
  • the first member 100 itself is formed of a transmissive material 140 that can transmit light, but may be coated with the reflective material 120 to reflect the light on a part of the area.
  • the reflective material 120 may be coated in a lattice form.
  • the reflective material 120 formed on the first member 100 may increase its area toward the position corresponding to the light emitting diode. Accordingly, since the probability of the light emitted from the light emitting diode is first reflected by the reflective material 120 of the first member 100 increases, the probability of multiple reflections is also increased.
  • the reflective material 120 as described above may also have various arrangements by selection.
  • the first member 100 according to the second form as shown in FIG. 10 is formed of a reflective material 160, and emits light emitted from the light emitting diode. At least one passing hole 180 is formed to pass therethrough.
  • the first member 100 of the second shape itself may block or reflect light, and may form one or more through holes 180 to allow light to pass therethrough.
  • the through holes 180 may be arranged along a plurality of columns and rows.
  • a plurality of passage holes 180 formed in the first member 100 may be formed, and the density may decrease toward the position corresponding to the light emitting diode 40. Accordingly, the probability that the light emitted from the light emitting diode 40 is first reflected by the surface of the first member 100 increases, so that the probability of multiple reflections is also increased.
  • an individual area of the through hole 180 may decrease. That is, the area of the through hole 180 gradually decreases toward the light emitting diode 40, thereby obtaining the same effect as described above.
  • This method is identified from the first member 100 of the third form shown in FIG. 11 and the first member 100 of the fourth form shown in FIG. 13, which is further described below with reference to FIGS. 12 and 14. It will be described in detail.
  • the first member 100 of the third shape shown in FIG. 11 is the most perpendicular in the direction perpendicular to the substrate 30 when there is no other component for adjusting the light intensity in front of the light emitting diode 40 as shown in FIG. 12. Since the region L in which light of high intensity is emitted will be formed, as the pass hole 180 is spaced apart from the position corresponding to the light emitting diode 40, the density increases or the individual area of the pass hole 180 increases. It may be configured to.
  • the first member 100 of the fourth form shown in FIG. 13 is the most when the other component for adjusting the intensity of light in front of the light emitting diode 40, that is, the adjustment lens 50 as shown in FIG.
  • the region L in which the light of high intensity is emitted will not be formed in the direction perpendicular to the substrate 30. Therefore, in this case, the passage hole 180 should be configured differently in consideration of the intensity of light emitted from the light emitting diode 40 according to the structure of the adjustment lens 50.
  • an area L in which light of the strongest intensity is emitted in a direction away from the vertical direction of the light emitting diode 40 by a predetermined distance may be formed. Since the through hole 180 is spaced from the position perpendicular to the light emitting diode 40 to a predetermined position, the density decreases or the individual area of the pass hole 180 decreases, and the density increases as the space is further spaced apart from the preset position. May be increased or an individual area of the passage hole 180 may be increased.
  • the through hole 180 formed in the first member 100 may have a different density or individual area depending on the position corresponding to the light emitting diode 40 and the intensity of light emitted from the light emitting diode 40. Will be said.
  • first member 100 of the fifth form illustrated in FIG. 15 is substantially the same as the ratio of the horizontal and vertical to the first member 100 of the fourth form described above, it will be described by those skilled in the art. Since it can be expected sufficiently from the first member 100 of the fourth form, description thereof will be omitted.
  • the support member 300 is provided between the first member 100 and the second member 200, which is of the light emitting diode 40 It can be arranged in a variety of ways to ensure sufficient space for reflecting light.
  • the support member 300 is arranged to be spaced apart from each other to have a plurality of rows and columns, the light emitting diode 40 is arranged to be located in the center of the four support member (300). Therefore, each light emitting diode 40 may be spaced apart from the support member 300 to the maximum, thereby ensuring a sufficient space for reflecting light.
  • the cross-sectional shape of the support member 300 in the present embodiment is formed in a square, the cross section of the support member 300 may have a variety of shapes, such as circular in addition to.
  • the support member 300 may be fixed by forming an adhesive layer 320 between the first member 100 and the second member 200.
  • a method of printing the adhesive material by screen printing may be used as a method of forming the adhesive layer 320, or a method using a dispenser or the like may be used.
  • PSA Pressure Sensitive Adhesive
  • UV adhesive may be used as the adhesive material used for the adhesive layer 320, and various other adhesive materials may be used.
  • first embodiment of the optical module according to the present invention can be modified in various forms, wherein the shape of the light emitting diode 40 and the first member 100 is substantially the same, but the substrate 30, The shape of the two members 200 is different, and the fixing method of the support member 300 is different.
  • the substrate 30 is not provided with a plurality, one is provided to cover the entire area. Accordingly, a plurality of light emitting diodes 40 are provided on one substrate 30 spaced apart from each other.
  • the insertion hole 220 into which the light emitting diode 40 is inserted is formed in the same manner as in the first embodiment before the modification described above, but in the modification, the support member 300 penetrates. Through holes are further formed. That is, the support member 300 is provided between the first member 100 and the substrate 30 through the second member 200.
  • the surface in contact with the first member 100 of the support member 300 is fixed in an adhesive manner by the adhesive layer 320.
  • solder is formed on a surface of the support member 300 that contacts the substrate 30, and the support member 300 may be bonded to the substrate 30 by a surface mount technology (SMT) method.
  • SMT surface mount technology
  • FIG. 16 is a cross-sectional view showing a second embodiment of an optical module according to the present invention
  • FIG. 17 is a cross-sectional view showing a path of light in the second embodiment shown in FIG. 16
  • FIG. Fig. 19 is a plan view showing an arrangement of a light emitting diode and a supporting member in a second embodiment of the optical module according to the present invention
  • Fig. 19 shows another example of an arrangement of a light emitting diode and a supporting member in a second embodiment of the optical module according to the present invention. It is a top view shown.
  • FIG. 20 is a perspective view showing a first shape of the support member deformed in the second embodiment of the optical module according to the present invention
  • FIG. 21 is a support member deformed in the second embodiment of the optical module according to the present invention
  • 22 is a perspective view illustrating a third form of the support member deformed in the second embodiment of the optical module according to the present invention
  • FIG. 23 is a perspective view showing the third form of the optical module according to the present invention.
  • 4 is a perspective view showing a fourth form of the support member deformed in the second embodiment.
  • the second embodiment of the optical module according to the present invention except for modifying the support member 300 of the first embodiment will be said to be the same as other components
  • the second embodiment will be described in detail with respect to the deformed support member 400.
  • the deformed support member 400 is provided between the first member 50 and the second member 60 in the same manner as the support member 300 described above, and is provided on the first member 50 and the second member 60. Each is contacted to form a support structure.
  • the deformed support member 400 includes a vertical portion 420 and a horizontal portion 440.
  • the vertical portion is a component provided around the light emitting diode 40
  • the horizontal portion 440 is connected to the vertical portion 420, and is provided in front of the light emitting diode 40 so as to be provided with the first member 100.
  • the component to be contacted it is similar in shape to a cup.
  • the deformed support member 400 including the vertical portion 420 and the horizontal portion 440 may also be bonded in various ways as the support member 300 described above, and the vertical portion 420 There is no limitation on the specific shape of the horizontal portion 440.
  • both the vertical portion 420 and the horizontal portion 440 constituting the deformed support member 400 may be formed of a material that transmits light.
  • FIG. 20. 23 may be configured in various ways.
  • the first form of the deformed support member 400 illustrated in FIG. 20 will be described.
  • the first form of the deformed support member 400 may be similar or vice versa to the first member 100 described above.
  • the branch may be formed of a material 442, and one or more passage holes 444 may be formed to pass light emitted from the light emitting diode 40.
  • the second shape of the deformed support member 400 illustrated in FIG. 21 is formed in the same shape as the first shape described above, but the pattern of the reflective material 442 formed on the horizontal portion 440 is different. .
  • the reflective material 442 is formed in a concentric shape with respect to the center of the horizontal portion 440. Therefore, in this case, since the distance between the light emitting diode 40 and the reflective material 442 can be uniformly formed, uniform and stable reflection can occur and the probability can be easily predicted.
  • the third shape of the deformed support member 400 illustrated in FIG. 22 is also formed in the same shape as the first or second shape described above, but the pattern of the reflective material 442 formed on the horizontal portion 440 is included. This is formed differently.
  • the reflective material 442 is formed to have a circular shape at the center of the horizontal portion 440. In such a case, the probability of initial reflection of light emitted from the light emitting diode 40 may be increased to allow the light emitting diode 40 to cover a wider range.
  • the fourth form of the deformed support member 400 illustrated in FIG. 23 is also formed in the same shape as the first to third forms described above, but the reflective material 442 formed on the horizontal portion 440 is formed.
  • the pattern is formed differently.
  • the horizontal portion 440 may be formed such that the entire area 446 is reflective unlike the above-described embodiments. That is, in this case, the light may be transmitted through the vertical portion 420 so that the light is reflected in a wider range than the entire area of the horizontal portion 440.
  • the horizontal portion 440 may be formed such that the entire area 446 is transmissive, unlike the above-described embodiments. That is, in such a case, light may be transmitted to the first member 100 as it is, and may serve as a supporting structure, but may adjust reflection, refraction, etc. of light according to transparency.
  • the horizontal portion 440 of the deformed support member 400 may be formed in various shapes, which may adjust the intensity of light emitted from the light emitting diode 40 together with the first member 100 described above. have.
  • the transmission region formed in part of the horizontal portion 440 may cross each other with the transmission region provided in the first member 100. It may be formed.
  • FIG. 24 is a partial perspective view showing a partial cutaway of an example of a lighting device to which an optical module according to the present invention is applied
  • FIG. 25 is a partial cutaway view of another example of a lighting device to which an optical module according to the present invention is applied. Perspective view.
  • the lighting device to which the optical module according to the present invention is applied may be configured as a panel type lighting device that emits a surface, or may be configured as a fluorescent type lighting device that emits light. .
  • first or second embodiment of the optical module according to the present invention can be applied to such various types of lighting devices, and it is natural that the scope of the present invention is not limited due to such an application example.
  • the first and second members may be formed of various materials, which may be advantageous in terms of versatility.

Abstract

본 발명은 광학 모듈에 관한 것으로, 기판; 상기 기판에 구비되는 발광 다이오드; 상기 기판의 전방에 구비되며, 상기 발광 다이오드에서 방출되는 빛의 일부는 투과시키고, 다른 일부는 반사시키는 제1부재; 및 상기 기판과 상기 제1부재 사이에 상기 제1부재와 소정 간격 이격되도록 구비되며, 상기 발광 다이오드와 대응되는 위치에는 상기 발광 다이오드가 노출되는 노출영역이 형성되고, 상기 제1부재에서 반사된 빛을 전방으로 재반사시키는 제2부재;를 포함한다.

Description

광학 모듈
본 발명은 발광 다이오드를 광원으로 하는 광학 모듈에 관한 것으로, 더욱 구체적으로는 발광 다이오드의 수량을 절감하면서도 슬림한 디자인을 가능하게 할 수 있도록 발광 다이오드 사이에 다중 반사 구조가 마련되는 광학 모듈에 관한 것이다.
발광 다이오드(Light Emitting Diode, LED)는 차세대 조명용 광원 및 LCD(Liquid Crystal Display) 등과 같은 비 발광 디스플레이에 적용하는 백라이트용 광원으로 부상하였으며 그 적용 분야를 넓혀가고 있다.
하지만, 발광 다이오드는 기존 광원에 비해 가격이 높다는 문제가 있으며, 점광원 이라는 태생적 문제로 인해 최종 제품의 가격 경쟁력이 떨어지고, 자유로운 제품 디자인을 구현하기 힘들다는 측면이 단점으로 지적되고 있다.
따라서 발광 다이오드를 광원으로 사용하는 LED 면조명, LCD용 백라이트 등의 광학 기기에 있어, 원가 절감과 디자인 개선은 가장 중요한 개발 요구사항이라 할 것이다.
이러한 원가 절감과 디자인 개선을 위하여, 발광 다이오드를 광원으로 하는 종래의 광학 모듈에 대하여 도 1 및 도 2를 참조하여 먼저 살펴보고, 이에 대한 문제점이 무엇인지에 대하여 확인해보기로 한다.
여기서, 도 1은 종래의 광학 모듈의 내부 구조의 일례를 도시한 단면도이고, 도 2는 종래의 광학 모듈의 내부 구조의 다른 일례를 도시한 단면도이다.
먼저, 도 1을 참조하면, 종래의 광학 모듈은 디스플레이 패널(20)과 프레임(10) 사이에 기판(30)이 구비되며, 기판(30) 상에는 복수 개의 발광 다이오드(40)가 실장된다. 그리고 각 발광 다이오드(40)는 디스플레이 패널(20)의 후방에 위치되어 디스플레이 패널(20)의 소정 면적에 빛을 방출한다.
다음으로, 도 2를 참조하면 도 1에 도시된 광학 모듈에 비해 발광 다이오드(40)의 개수를 줄인 또 다른 광학 모듈이 도시되어 있는데, 이 경우 발광 다이오드(40)의 개수를 줄일 수 있으므로 제품의 단가를 낮출 수 있다.
다만, 이 경우에는 하나의 발광 다이오드(40)가 디스플레이 패널(20)의 보다 넓은 면적을 커버하여야 하므로 자연히 디스플레이 패널(20)과 기판(30)의 이격된 거리가 증가하게 된다. 따라서 프레임(10) 역시 디스플레이 패널(20)과 이격된 거리가 증가하여 광학 모듈의 전체 두께가 증가하게 되는 문제가 있다.
결과적으로, 점광원 특성을 가지는 발광 다이오드를 사용하는 광학기기의 경우 디자인을 중시할 경우 발광 다이오드의 수량이 증가하고, 반대로 발광 다이오드의 수량을 줄이기 위해서는 슬림 디자인을 포기해야 하는 근원적 문제를 야기한다.
이러한 문제점을 해결하기 위하여 도광판을 이용하여 발광 다이오드의 수량을 줄이고 동시에 디자인도 확보하고자 하는 노력이 진행되고 있다. 하지만, 도광판 추가에 따라 광효율이 감소되고 광학기기의 무게가 증가하며, 또한 대형 광학기기에 적용 시에는 대응되는 크기의 도광판을 제조하기가 어렵다는 문제가 있다.
따라서 상기와 같은 문제점들을 해결하기 위한 방법이 요구되고 있으며, 이하 상세히 설명할 본 발명은 이러한 방법의 일환으로서 발명된 것이다.
본 발명의 기술적 과제는, 종래의 광학 모듈에 대한 전술한 문제점을 해결하기 위한 것으로, 발광 다이오드의 수량을 절감하면서도 슬림한 디자인을 가능하게 할 수 있는 광학 모듈을 제공하는데 있다.
또한, 본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
전술한 기술적 과제를 해결하기 위한 본 발명에 따른 광학 모듈은, 기판; 상기 기판에 구비되는 발광 다이오드; 상기 기판의 전방에 구비되며, 상기 발광 다이오드에서 방출되는 빛의 일부는 투과시키고, 다른 일부는 반사시키는 제1부재; 및 상기 기판과 상기 제1부재 사이에 상기 제1부재와 소정 간격 이격되도록 구비되며, 상기 발광 다이오드와 대응되는 위치에는 상기 발광 다이오드가 노출되는 노출영역이 형성되고, 상기 제1부재에서 반사된 빛을 전방으로 재반사시키는 제2부재;를 포함하여 구성될 수 있다.
또한, 본 발명에 따른 광학 모듈은, 상기 제1부재와 상기 기판 사이 또는 상기 제1부재와 상기 제2부재 사이에 마련되어, 상기 제1부재와 상기 발광 다이오드 사이의 거리를 유지하도록 상기 제1부재를 지지하는 지지부재를 더 포함하여 구성될 수도 있다.
여기서, 상기 제1부재와 상기 기판 사이에 상기 지지부재가 마련되는 경우에는, 상기 제2부재에는 상기 지지부재가 통과하는 관통홀이 형성되며, 상기 기판과 접촉되는 상기 지지부재의 면에는 솔더가 형성되어 상기 기판에 상기 지지부재가 고정될 수 있다.
반면, 상기 제1부재와 상기 제2부재 사이에 상기 지지부재가 마련되는 경우에는, 상기 지지부재는 접착수지에 의해 상기 제1부재 및 상기 제2부재에 고정될 수 있다.
한편, 상기 지지부재는 상기 발광 다이오드에서 방출되는 빛을 투과시킬 수 있도록 투과성을 갖는 재질로 형성될 수 있다.
또한, 상기 지지부재는, 상기 발광 다이오드의 둘레에 구비되는 수직부; 및 상기 수직부와 연결되고, 상기 발광 다이오드의 전방에 구비되어 상기 제1부재에 접촉되는 수평부;를 포함하여 구성될 수 있다.
여기서, 상기 수직부 및 상기 수평부 중 적어도 하나 이상에, 상기 발광 다이오드에서 방출되는 빛의 일부를 투과시키는 투과 영역 또는 상기 발광 다이오드에서 방출되는 빛의 일부를 반사시키는 반사 영역이 형성될 수 있다.
이때, 상기 수직부 및 상기 수평부는 상기 발광 다이오드에서 방출되는 빛을 투과시킬 수 있도록 투과성을 갖는 재질로 형성되되, 상기 수평부의 일부에 반사 영역이 형성될 수 있도록 상기 수평부의 일부에 반사성 물질이 코팅될 수 있는데, 상기 수평부의 일부에 코팅되는 상기 반사성 물질은 상기 발광 다이오드에 대응되는 위치로 갈수록 더 넓은 면적으로 코팅될 수 있다.
반면, 상기 수직부 및 상기 수평부는 상기 발광 다이오드에서 방출되는 빛을 차단하거나 반사시킬 수 있도록 불투과성을 갖는 재질로 형성되되, 상기 수평부의 일부에 투과 영역이 형성될 수 있도록 상기 수평부의 일부가 개방될 수 있는데, 개방되는 상기 수평부의 일부는 상기 발광 다이오드에 대응되는 위치로 갈수록 더 좁은 면적으로 개방될 수 있다.
또한, 상기 수평부의 일부에 투과 영역이 형성되는 경우, 상기 수평부 일부에 형성된 투과 영역은 상기 발광 다이오드에서 방출되는 빛의 일부를 투과시킬 수 있도록 상기 제1부재에 마련되는 투과 영역과 상호 교차되도록 형성될 수도 있다.
한편, 본 발명에 따른 광학 모듈에 있어서 상기 제1부재에는 상기 발광 다이오드에서 방출되는 빛의 일부를 투과시키는 투과 영역 또는 상기 발광 다이오드에서 방출되는 빛의 일부를 반사시키는 반사 영역이 형성될 수 있다.
여기서, 상기 제1부재는 상기 발광 다이오드에서 방출되는 빛을 투과시킬 수 있도록 투과성을 갖는 재질로 형성되되, 상기 제1부재의 일부에 반사 영역이 형성될 수 있도록 반사성 물질이 코팅될 수 있다.
이때, 상기 제1부재에 코팅되는 상기 반사성 물질은 상기 발광 다이오드에 대응되는 위치로 갈수록 더 넓은 면적으로 코팅될 수 있다.
또한, 상기 제1부재는 상기 발광 다이오드에서 방출되는 빛을 차단하거나 반사시킬 수 있도록 불투과성을 갖는 재질로 형성되되, 상기 제1부재의 일부에 투과 영역이 형성될 수 있도록 상기 제1부재의 일부가 개방될 수 있다.
이때, 개방되는 상기 제1부재의 일부는 상기 발광 다이오드에서 방출되는 빛을 통과시킬 수 있는 하나 이상의 통과홀로 구성될 수 있다.
이와 같이 하나 이상의 통과홀로 구성되는 경우, 상기 통과홀은 상기 발광 다이오드에 대응되는 위치 및 상기 발광 다이오드에서 방출되는 빛의 세기에 따라 밀집도 또는 개별 면적이 다르게 형성될 수 있다.
이때, 상기 통과홀은 상기 발광 다이오드에 대응되는 위치에서 이격될수록 밀집도가 증가하거나 또는 상기 통과홀의 개별 면적이 증가할 수 있다.
또한, 상기 통과홀은 상기 발광 다이오드에 수직되는 위치에서 기설정된 위치까지 이격될수록 밀집도가 감소하거나 또는 상기 통과홀의 개별 면적이 감소하다가, 상기 기설정된 위치를 벗어나서 더욱 이격될수록 밀집도가 증가하거나 또는 상기 통과홀의 개별 면적이 증가할 수도 있다.
한편, 본 발명에 따른 광학 모듈에 있어서, 상기 제2부재의 상기 노출영역은 상기 발광 다이오드가 삽입되는 삽입홀 형태로 형성될 수 있다.
전술한 기술적 해결방법을 통해 제시된 본 발명에 따른 광학 모듈에 의하면, 발광 다이오드 사이에 다중 반사 구조가 마련되어 있어서, 발광 다이오드의 수량을 절감하면서도 슬림한 디자인을 가능하게 할 수 있다.
본 발명의 효과들은 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 청구범위의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 종래의 광학 모듈의 내부 구조의 일례를 도시한 단면도이다.
도 2는 종래의 광학 모듈의 내부 구조의 다른 일례를 도시한 단면도이다.
도 3은 본 발명에 따른 광학 모듈의 제1 실시예를 도시한 단면도이다.
도 4는 도 3에 도시된 제1 실시예에서 빛의 경로를 도시한 단면도이다.
도 5는 도 3에 도시된 제1 실시예의 변형례를 도시한 단면도이다.
도 6은 도 3에 도시된 제1 실시예의 다른 변형례를 도시한 단면도이다.
도 7은 본 발명에 따른 광학 모듈의 제1 실시예에서 발광 다이오드와 지지부재의 배열의 일례를 도시한 평면도이다.
도 8은 본 발명에 따른 광학 모듈의 제1 실시예에서 발광 다이오드와 지지부재의 배열의 다른 일례를 도시한 평면도이다.
도 9는 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제1 형태를 도시한 평면도이다.
도 10은 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제2 형태를 도시한 평면도이다.
도 11은 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제3 형태를 도시한 평면도이다.
도 12는 도 11에 도시된 제1부재의 제3 형태를 설명하기 위한 모식도이다.
도 13은 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제4 형태를 도시한 평면도이다.
도 14는 도 13에 도시된 제1부재의 제4 형태를 설명하기 위한 모식도이다.
도 15는 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제5 형태를 도시한 평면도이다.
도 16은 본 발명에 따른 광학 모듈의 제2 실시예를 도시한 단면도이다.
도 17은 도 16에 도시된 제2 실시예에서 빛의 경로를 도시한 단면도이다.
도 18은 본 발명에 따른 광학 모듈의 제2 실시예에서 발광 다이오드와 지지부재의 배열의 일례를 도시한 평면도이다.
도 19는 본 발명에 따른 광학 모듈의 제2 실시예에서 발광 다이오드와 지지부재의 배열의 다른 일례를 도시한 평면도이다.
도 20은 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제1 형태를 도시한 사시도이다.
도 21은 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제2 형태를 도시한 사시도이다.
도 22는 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제3 형태를 도시한 사시도이다.
도 23은 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제4 형태를 도시한 사시도이다.
도 24는 본 발명에 따른 광학 모듈이 적용된 조명 장치의 일례를 부분 절개하여 도시한 부분 사시도이다.
도 25는 본 발명에 따른 광학 모듈이 적용된 조명 장치의 다른 일례를 부분 절개하여 도시한 부분 사시도이다.
이하 본 발명의 목적이 구체적으로 실현될 수 있는 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명한다. 본 실시예를 설명함에 있어서, 동일 구성에 대해서는 동일 명칭 및 동일 부호가 사용되며 이에 따른 부가적인 설명은 생략하기로 한다.
먼저, 도 3 내지 도 15를 참조하여, 본 발명에 따른 광학 모듈의 제1 실시예에 대하여 상세히 설명한다.
여기서, 도 3은 본 발명에 따른 광학 모듈의 제1 실시예를 도시한 단면도이고, 도 4는 도 3에 도시된 제1 실시예에서 빛의 경로를 도시한 단면도이며, 도 5는 도 3에 도시된 제1 실시예의 변형례를 도시한 단면도이고, 도 6은 도 3에 도시된 제1 실시예의 다른 변형례를 도시한 단면도이다.
또한, 도 7은 본 발명에 따른 광학 모듈의 제1 실시예에서 발광 다이오드와 지지부재의 배열의 일례를 도시한 평면도이고, 도 8은 본 발명에 따른 광학 모듈의 제1 실시예에서 발광 다이오드와 지지부재의 배열의 다른 일례를 도시한 평면도이다.
또한, 도 9는 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제1 형태를 도시한 평면도이고, 도 10은 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제2 형태를 도시한 평면도이며, 도 11은 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제3 형태를 도시한 평면도이고, 도 12는 도 11에 도시된 제1부재의 제3 형태를 설명하기 위한 모식도이며, 도 13은 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제4 형태를 도시한 평면도이고, 도 14는 도 13에 도시된 제1부재의 제4 형태를 설명하기 위한 모식도이며, 도 15는 본 발명에 따른 광학 모듈의 제1 실시예에서 제1부재의 제5 형태를 도시한 평면도이다.
도 3 내지 도 15에 도시된 바와 같이, 본 발명에 따른 광학 모듈의 제1 실시예는 프레임(10), 디스플레이 패널(20), 기판(30), 발광 다이오드(40) 이외에 제1부재(100), 제2부재(200) 및 지지부재(300)를 포함한다.
여기서, 프레임(10) 및 디스플레이 패널(20)는 본 발명에 따른 광학 모듈의 제1 실시예가 적용되는 제품, 예를 들어 LCD 디스플레이의 종류에 따라 다양한 형태로 구현될 수 있으며, 이는 당업자에게 자명한 사항이므로 이에 대한 자세한 설명은 생략하도록 한다.
그리고 이하 설명에 있어서, LCD 디스플레이에 있어서 디스플레이 패널(20)이 위치된 방향을 전방으로 하며, 프레임(10)이 위치된 방향을 후방으로 정의하도록 한다.
기판(30)은 발광 다이오드(40)에 전원을 인가하도록 구성된 회로이며, 이러한 기판(30) 상에는 발광 다이오드(40)가 실장된다. 이때, 기판(30) 상에 발광 다이오드(40)가 실장될 수 있는 방법은 다양할 수 있다.
즉, 기판(30)이 복수 개 구비되며, 발광 다이오드(40)는 각 기판(30)에 하나씩 구비될 수 있다. 또한, 이에 제한되는 것이 아니라, 발광 다이오드(40)는 하나의 기판(30)에 복수 개가 실장될 수도 있거나, 또는 기판(30)이 복수 개가 구비되는 것이 아니라 하나가 전체 면적을 커버하도록 구비되는 것도 가능함은 물론이다.
한편, 발광 다이오드(40) 자체는 앞서 배경기술에서 설명한 바와 같이 차세대 조명용 광원 또는 비 발광 디스플레이에 적용하는 백라이트용 광원으로 부상하고 있는 만큼 이는 당업자에게 자명한 사항이므로, 이에 대한 자세한 설명 또한 생략하도록 한다.
한편, 제1부재(100)는 기판(30)의 전방에 구비되며, 발광 다이오드(40)로부터 방출되는 빛의 일부는 전방으로 투과시키고, 다른 일부는 후방으로 반사시킬 수 있는 구성요소이다.
즉, 제1부재(100)로 인해, 발광 다이오드(40)로부터 방출되는 빛의 일부는 디스플레이 패널(20)에 전달되며, 다른 일부는 제2부재(200) 측으로 반사된다.
제1부재(100)는 상기와 같이 빛을 반사하는 동시에 투과시키는 특성을 가지는 다양한 재질로 형성될 수 있다. 예를 들어, 유리, 시트, 플라스틱 또는 금속 등 어떤 것이라도 제1부재(100)로서 제한이 없다.
또한, 빛의 반사 및 투과 특성을 동시에 가지도록 하기 위하여 다양한 방법이 사용될 수 있다. 즉, 제1부재(100)를 반투명으로 형성하는 등 재질 자체로서 상기와 같은 특성을 가지도록 할 수도 있으나, 이외의 다른 방법이 사용될 수도 있다. 이에 대해서는 후술하도록 한다.
한편, 제2부재(200)는 기판(30)과 제1부재(100) 사이에 구비되며, 특히 제1부재(100)와는 소정 간격 이격되도록 구비된다. 따라서 제1부재(100)와 제2부재(200) 사이에는 공간이 형성된다. 그리고 본 실시예의 경우 제1부재(100)와 제2부재(200)를 서로 지지하기 위해 지지부재(300)가 구비되며, 이에 대해서는 후술하도록 한다.
또한, 제2부재(200)는 반사성을 가지도록 형성되어, 발광 다이오드(40)로부터 방출되어 제1부재(100)에서 반사된 빛을 전방으로 재반사시킬 수 있다. 즉, 발광 다이오드(40)에서 방출되는 빛은 제1부재(100)의 전방으로 직접 투과되거나, 제1부재(100) - 제2부재(40)를 각각 거쳐 다시 전방으로 반사될 수 있다.
다시 말해서, 발광 다이오드(40)로부터 방출된 빛의 일부는 제1부재(100)의 전방으로 직접 투과되며, 다른 일부는 제2부재(200) 측으로 반사된 후 제2부재(200)에 의해 재반사되어 전방으로 방출되는데, 이는 참조한 도면으로부터 확인될 수 있다.
이와 같이, 본 발명에 따른 광학 모듈의 제1 실시예의 경우, 이러한 과정이 수 차례 반복될 수 있으므로, 발광 다이오드(40) 하나가 더욱 넓은 범위를 커버할 수 있다는 장점이 있다. 따라서 본 발명에 따른 광학 모듈의 제1 실시예는 발광 다이오드(40)의 밀집도를 줄일 수 있어 제품 단가를 절감할 수 있게 된다.
또한, 제2부재(200)의 전체 면적 중 발광 다이오드(40)와 대응되는 위치에는 발광 다이오드(40)가 노출되는 노출영역이 형성될 수 있다. 이는 발광 다이오드(40)에서 방출되는 빛이 제2부재(200)에 의해 차단되는 것을 방지하기 위함이다.
즉, 제2부재(200)의 노출영역은 발광 다이오드(40)가 삽입되는 삽입홀(220) 형태로 형성된다. 즉 제2부재(200) 중 발광 다이오드(40)에 대응되는 부분에는 삽입홀(220)이 형성되어, 발광 다이오드(40)가 제2부재(200)를 관통하여 돌출된다.
따라서, 발광 다이오드(40)에서 방출되는 빛은 제1부재(100)에 원활하게 전달될 수 있으며, 제1부재(100)와 제2부재(200)에 의해 다중 반사 구조를 형성할 수 있다.
이와 같이 본 실시예에서 제2부재(200)의 노출 영역은 삽입홀(220) 형태로 형성되나, 노출 영역은 다른 형태로 형성될 수도 있다. 예를 들어, 노출 영역이 투명한 재질로 형성될 경우에도 발광 다이오드(40)의 빛이 제1부재(100)에 전달될 수 있을 것이다.
또한, 본 실시예와 마찬가지로 노출 영역에 삽입홀(220)이 형성되나, 발광 다이오드(40)가 삽입홀(220)에 삽입되지 않고 제2부재(200)보다 후방에 위치되는 것도 가능함은 물론이다.
이상 설명한 바와 같이, 본 발명에 따른 광학 모듈의 제1 실시예는 하나의 발광 다이오드(40)가 디스플레이 패널(20)의 보다 넓은 면적을 커버할 수 있다. 따라서 종래에 비해 적은 개수의 발광 다이오드(40)를 사용할 수 있으므로 동일한 두께의 LCD 디스플레이를 제조할 경우 단가를 절감할 수 있다.
한편, 앞서 설명한 바 있는 제1부재(100)는 상기와 같이 빛을 반사하는 동시에 투과시키는 특성을 가지는 다양한 재질로 형성될 수 있으나, 빛의 반사 및 투과 특성을 동시에 가지도록 하기 위하여 다음과 같은 다양한 형태로 사용될 수 있다.
먼저, 도 9에 도시된 바와 같은 제1 형태에 따른 제1부재(100)는 투과성을 가지는 재질로 형성되며, 제1부재(100)의 일부에는 반사성 물질(120)로 코팅되어 형성된다.
즉, 제1부재(100) 자체는 빛을 투과할 수 있는 투과성 물질(140)로 형성되나, 일부 면적에는 반사성 물질(120)로 코팅하여 빛을 반사시키도록 할 수 있다.
특히, 도 9에 도시된 제1 형태에 따른 제1부재(100)의 경우, 반사성 물질(120)은 격자 형태로 코팅된 것을 확인할 수 있다.
또한, 이와 같이 제1부재(100)에 형성된 반사성 물질(120)은 발광 다이오드에 대응되는 위치로 갈수록 그 면적이 증가하도록 할 수도 있다. 이에 따라 발광 다이오드에서 방출되는 빛은 제1부재(100)의 반사성 물질(120)에 의해 최초로 반사될 확률이 증가하므로, 다중의 반사가 이루어질 확률 역시 높아지게 된다.
이상 설명한 바와 같은 반사성 물질(120) 역시 선택에 의한 다양한 배열을 가질 수 있음은 당연하다.
다음으로, 도 10에 도시된 바와 같은 제2 형태에 따른 제1부재(100)는 도 9에 도시된 제1 형태와 달리 반사성을 가지는 재질(160)로 형성되며, 발광 다이오드에서 방출되는 빛을 통과시키는 통과홀(180)이 하나 이상 형성된다.
즉, 제2 형태의 제1부재(100) 자체는 빛을 차단 또는 반사하고, 통과홀(180)을 하나 이상 형성하여 빛을 통과시키도록 할 수 있다.
특히, 도 10에 도시된 제2 형태에 따른 제1부재(100)의 경우, 통과홀(180)은 복수 열과 행을 따라 배열된 것을 확인할 수 있다.
또한, 이와 같이 제1부재(100)에 형성된 통과홀(180)은 복수 개가 형성되고, 발광 다이오드(40)에 대응되는 위치로 갈수록 밀집도가 감소하도록 할 수도 있다. 이에 따라 발광 다이오드(40)에서 방출되는 빛은 제1부재(100)의 면에 의해 최초로 반사될 확률이 증가하므로, 다중의 반사가 이루어질 확률 역시 높아지게 된다.
또 다른 방법으로는 제1부재(100)가 발광 다이오드(40)에 대응되는 위치로 갈수록 통과홀(180)의 개별 면적이 감소하도록 할 수도 있다. 즉, 발광 다이오드(40) 근처로 갈수록 통과홀(180)의 면적이 점점 감소하도록 하여, 상기와 같은 효과를 얻을 수 있다.
이러한 방법에 대하는 도 11로 도시된 제3 형태의 제1부재(100) 및 도 13으로 도시된 제4 형태의 제1부재(100)로부터 확인되며, 이에 대하여는 도 12 및 도 14를 통해 이하 더욱 상세하게 설명하기로 한다.
도 11로 도시된 제3 형태의 제1부재(100)는, 도 12와 같이 발광 다이오드(40) 전방에 빛의 세기를 조절하는 다른 구성요소가 없는 경우 기판(30)에 수직된 방향으로 가장 강한 세기의 빛이 방출되는 영역(L)이 형성될 것이므로, 통과홀(180)을 발광 다이오드(40)에 대응되는 위치에서 이격될 수록 밀집도가 증가하거나 또는 통과홀(180)의 개별 면적이 증가되도록 구성될 수 있다.
한편, 도 13으로 도시된 제4 형태의 제1부재(100)는, 도 14와 같이 발광 다이오드(40) 전방에 빛의 세기를 조절하는 다른 구성요소, 즉 조절랜즈(50)가 있는 경우 가장 강한 세기의 빛이 방출되는 영역(L)이 기판(30)에 수직된 방향으로 형성되지 않을 것이다. 따라서 이 경우에는 조절랜즈(50)의 구조에 따라 발광 다이오드(40)에서 방출되는 빛의 세기를 고려하여 통과홀(180)을 다르게 구성하여야 할 것이다.
일례로, 조절랜즈(50) 전방에 차단막(52)이 형성된 경우라면, 발광 다이오드(40)의 수직된 방향으로부터 소정 거리 이격된 방향으로 가장 강한 세기의 빛이 방출되는 영역(L)이 형성될 것이므로, 통과홀(180)은 발광 다이오드(40)에 수직되는 위치에서 기설정된 위치까지 이격될수록 밀집도가 감소하거나 또는 통과홀(180)의 개별 면적이 감소하다가, 기설정된 위치를 벗어나서 더욱 이격될수록 밀집도가 증가하거나 또는 통과홀(180)의 개별 면적이 증가되도록 구성될 수 있다.
정리하면, 제1부재(100)에 형성되는 통과홀(180)은 발광 다이오드(40)에 대응되는 위치 및 발광 다이오드(40)에서 방출되는 빛의 세기에 따라 밀집도 또는 개별 면적이 다르게 형성될 수 있다고 할 것이다.
한편, 도 15로 도시된 제5 형태의 제1부재(100)는, 전술한 제4 형태의 제1부재(100)와 가로 및 세로의 비율이 상이할 뿐 실질적으로 동일하다고 할 것이므로, 이는 당업자가 제4 형태의 제1부재(100)로부터 충분히 예상할 수 있을 것이므로, 이에 대한 설명은 생략한다.
한편, 전술한 바와 같이, 본 발명에 따른 광학 모듈의 제1 실시예의 경우 제1부재(100) 및 제2부재(200) 사이에 지지부재(300)가 구비되며, 이는 발광 다이오드(40)의 빛을 반사시키기 위한 공간을 충분히 확보하기 위해 다양한 방법으로 배열될 수 있다.
일례로, 지지부재(300)는 복수의 행과 열을 가지도록 서로 일정 간격 이격되도록 배열되며, 발광 다이오드(40)는 4개의 지지부재(300)의 중심에 위치되도록 배열된다. 따라서, 각 발광 다이오드(40)는 각 지지부재(300)로부터 최대로 이격될 수 있으므로 빛을 반사시키기 위한 공간을 충분히 확보할 수 있다.
이때, 본 실시예에서 지지부재(300)의 단면 형상은 사각형으로 형성되나, 지지부재(300)의 단면은 이외에도 원형 등 다양한 형상을 가질 수 있다.
또한, 지지부재(300)는 제1부재(100) 및 제2부재(200)와의 사이에 접착층(320)을 형성하여 고정될 수 있다.
이때, 접착층(320)을 형성하는 방법으로는 접착 물질을 스크린 프린팅 방식으로 인쇄하는 방법이 사용될 수도 있으며, 또는 디스펜서 등을 이용하는 방법이 사용될 수도 있다.
그리고 접착층(320)에 사용되는 접착 물질은 PSA(Pressure Sensitive Adhesive) 또는 UV 접착제 등이 사용될 수 있으며, 이외의 다양한 접착 물질이 사용될 수도 있음은 물론이다
그 밖에도, 본 발명에 따른 광학 모듈의 제1 실시예는 다양한 형태로 변형될 수 있는데, 이때 발광 다이오드(40) 및 제1부재(100)의 형태는 실질적으로 동일하나, 기판(30), 제2부재(200)의 형태가 다르며, 또한 지지부재(300)의 고정 방식이 상이하다.
구체적으로, 기판(30)은 복수 개가 구비되지 않으며, 하나가 전체 면적을 커버하도록 구비된다. 이에 따라 발광 다이오드(40)는 하나의 기판(30) 상에 복수 개가 서로 이격되어 구비된다.
또한, 제2부재(200)의 경우, 발광 다이오드(40)가 삽입되는 삽입홀(220)이 형성되는 것은 앞서 설명한 변형 전 제1실시예의 경우와 같으나, 변형례에서는 지지부재(300)가 관통하는 관통홀이 더 형성된다. 즉 지지부재(300)는 제2부재(200)를 관통하여 제1부재(100)와 기판(30) 사이에 구비된다.
이때, 지지부재(300)의 제1부재(100)와 접촉되는 면은 접착층(320)에 의해 접착 방식으로 고정된다. 또한, 지지부재(300)의 기판(30)과 접촉되는 면에는 솔더가 형성되어, 지지부재(300)는 기판(30)에 SMT(Surface Mount Technology) 방식 등에 의해 접합될 수 있다.
따라서, 지지부재(300)와 기판(30)을 접합 시에는 접착층을 형성하기 위한 별도의 과정이 요구되지 않으므로 공정 상의 이득을 기대할 수 있게 된다.
이어서, 도 16 내지 도 23을 참조하여, 본 발명에 따른 광학 모듈의 제2 실시예에 대하여 상세히 설명한다.
여기서, 도 16은 본 발명에 따른 광학 모듈의 제2 실시예를 도시한 단면도이고, 도 17은 도 16에 도시된 제2 실시예에서 빛의 경로를 도시한 단면도이며, 도 18은 본 발명에 따른 광학 모듈의 제2 실시예에서 발광 다이오드와 지지부재의 배열의 일례를 도시한 평면도이고, 도 19는 본 발명에 따른 광학 모듈의 제2 실시예에서 발광 다이오드와 지지부재의 배열의 다른 일례를 도시한 평면도이다.
또한, 도 20은 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제1 형태를 도시한 사시도이고, 도 21은 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제2 형태를 도시한 사시도이며, 도 22는 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제3 형태를 도시한 사시도이고, 도 23은 본 발명에 따른 광학 모듈의 제2 실시예에서 변형된 지지부재의 제4 형태를 도시한 사시도이다.
도 16 내지 도 23에 도시된 바와 같이, 본 발명에 따른 광학 모듈의 제2 실시예는, 전술한 제1 실시예의 지지부재(300)를 변형한 것을 제외하고는 다른 구성요소는 동일하다고 할 것이므로, 이하에서는 변형된 지지부재(400)를 중심으로 하여 제2 실시예에 대하여 상세히 설명하기로 한다.
변형된 지지부재(400)는 전술한 지지부재(300)와 동일하게 제1부재(50) 및 제2부재(60) 사이에 구비되며, 제1부재(50)와 제2부재(60)에 각각 접촉되어 지지 구조를 형성한다.
다만, 변형된 지지부재(400)는 전술한 지지부재(300)와 달리 수직부(420) 및 수평부(440)를 포함하여 구성된다.
이때, 수직부는 발광 다이오드(40)의 둘레에 구비되는 구성요소이고, 수평부(440)는 수직부(420)와 연결되고, 발광 다이오드(40)의 전방에 구비되어 제1부재(100)와 접촉되는 구성요소로서, 마치 컵 형태의 형상과 유사하다.
이러한 수직부(420) 및 수평부(440)를 포함하여 구성되는 변형된 지지부재(400) 역시 전술한 지지부재(300)와 같이 다양한 방법으로 접착될 수 있음은 물론이며, 수직부(420) 및 수평부(440)의 구체적인 형상에 대하여는 제한이 없다.
또한, 변형된 지지부재(400)를 구성하는 수직부(420) 및 수평부(440)는 모두 빛을 투과하는 재질로 형성될 수 있는데, 이에 대하여는 - 특히 수평부(440)에 대하여는 - 도 20 내지 도 23에 도시된 바와 같이 다양하게 구성될 수 있다.
먼저, 도 20에 도시된 변형된 지지부재(400)의 제1 형태에 대하여 설명하면, 변형된 지지부재(400)의 제1 형태는 전술한 제1부재(100)와 유사하게 또는 반대로 반사성을 가지는 재질(442)로 형성될 수 있으며, 발광 다이오드(40)에서 방출되는 빛을 통과시키는 통과홀(444)이 하나 이상 형성될 수 있다.
한편, 도 21에 도시된 변형된 지지부재(400)의 제2 형태는 전체적으로 전술한 제1 형태와 동일한 형상으로 형성되나, 수평부(440)에 형성된 반사성 물질(442)의 패턴이 다르게 형성된다.
구체적으로, 반사성 물질(442)은 수평부(440)의 중앙을 중심으로 동심원 형태로 형성된다. 따라서 이 경우에는 발광 다이오드(40)와 반사성 물질(442) 간의 거리를 일정하게 형성할 수 있으므로, 균일하고 안정적인 반사가 일어날 수 있으며 그 확률을 예측하기가 용이해질 수 있다.
한편, 도 22에 도시된 변형된 지지부재(400)의 제3 형태 또한 전체적으로 전술한 제1 형태 또는 제2 형태와 동일한 형상으로 형성되나, 수평부(440)에 형성된 반사성 물질(442)의 패턴이 다르게 형성된다.
구체적으로, 반사성 물질(442)은 수평부(440)의 중심부에 원형의 형태를 가지도록 형성된다. 이와 같은 경우에는 발광 다이오드(40)로부터 방출되는 빛의 최초 반사 확률을 높여 발광 다이오드(40)가 보다 넓은 범위를 커버할 수 있도록 할 수 있다.
한편, 도 23에 도시된 변형된 지지부재(400)의 제4 형태는 또한 전체적으로 전술한 제1 형태 내지 제3 형태와 동일한 형상으로 형성되나, 수평부(440)에 형성된 반사성 물질(442)의 패턴이 다르게 형성된다.
구체적으로, 수평부(440)는 전술한 실시예들과 달리 전체 면적(446)이 반사성을 가지도록 형성될 수 있다. 즉, 이와 같은 경우에는 수직부(420)를 통해 빛이 투과되도록 하여 수평부(440) 전체 면적에 비해 넓은 범위로 빛이 반사되도록 할 수 있다.
또는, 반대로, 수평부(440)는 전술한 실시예들과 달리 전체 면적(446)이 투과성을 가지도록 형성될 수 있다. 즉, 이와 같은 경우에는 제1부재(100)에 빛을 그대로 전달시킬 수 있으며, 지지 구조로서의 역할을 수행하나, 투명도에 따라 빛의 반사, 굴절 등을 조절할 수 있다.
정리하면, 변형된 지지부재(400)의 수평부(440)는 다양한 형태로 형성될 수 있으며, 이는 전술한 제1부재(100)와 함께 발광 다이오드(40)에서 방출되는 빛의 세기를 조절할 수 있다.
일례로, 도 20에 도시된 변형된 지지부재(400)와 같은 작용 결과를 더욱 향상시키기 위하여 수평부(440) 일부에 형성된 투과 영역은 제1부재(100)에 마련되는 투과 영역과 상호 교차되도록 형성될 수 있을 것이다.
마지막으로, 도 24 및 도 25을 참조하여, 본 발명에 따른 광학 모듈의 제1 실시예 또는 제2 실시예의 적용 사례와 효과 등에 대하여 상세히 설명한다.
여기서, 도 24는 본 발명에 따른 광학 모듈이 적용된 조명 장치의 일례를 부분 절개하여 도시한 부분 사시도이고, 도 25는 본 발명에 따른 광학 모듈이 적용된 조명 장치의 다른 일례를 부분 절개하여 도시한 부분 사시도이다.
도 24 및 도 25에 도시된 바와 같이, 본 발명에 따른 광학 모듈이 적용된 조명 장치는 면 발광하는 패널 타입의 조명 장치로 구성될 수 있거나, 또는 선 발광하는 형광등 타입의 조명 장치로 구성될 수도 있다.
이러한 다양한 형태의 조명 장치에 본 발명에 따른 광학 모듈의 제1 실시예 또는 제2 실시예가 적용될 수 있다고 할 것이며, 이와 같은 적용 사례로 인해 본 발명의 권리범위가 제한되지 않음은 당연하다고 할 것이다.
한편, 이러한 본 발명에 따른 광학 모듈의 제1 실시예 또는 제2 실시예에 의하면, 첫째 도광판을 사용하지 않고도 광학모듈의 전체 두께를 얇게 형성할 수 있다는 장점이 있고, 둘째 동일한 두께의 광학모듈에 실장되는 발광 다이오드의 개수를 크게 줄일 수 있으므로 제조 단가를 낮출 수 있다는 장점이 있으며, 셋째 제1부재 및 제2부재는 다양한 재질로 형성될 수 있어 범용성이 뛰어나다는 장점이 있을 수 있다.
이와 같은 본 발명에 따른 광학 모듈의 제1 실시예 또는 제2 실시예에 대한 효과 이외에 다른 효과도 도출될 수 있음은 당연하며, 이상에서 언급된 효과들로 인해 본 발명의 권리범위가 제한되지 않음은 물론이다.
이상과 같이 본 발명에 따른 바람직한 실시예를 살펴보았으며, 앞서 설명된 실시예 이외에도 본 발명이 그 취지나 범주에서 벗어남이 없이 다른 특정 형태로 구체화될 수 있다는 사실은 해당 기술에 통상의 지식을 가진 이들에게는 자명한 것이다. 그러므로, 상술된 실시예는 제한적인 것이 아니라 예시적인 것으로 여겨져야 하고, 이에 따라 본 발명은 상술한 설명에 한정되지 않고 첨부된 청구항의 범주 및 그 동등 범위 내에서 변경될 수도 있다.

Claims (21)

  1. 기판;
    상기 기판에 구비되는 발광 다이오드;
    상기 기판의 전방에 구비되며, 상기 발광 다이오드에서 방출되는 빛의 일부는 투과시키고, 다른 일부는 반사시키는 제1부재; 및
    상기 기판과 상기 제1부재 사이에 상기 제1부재와 소정 간격 이격되도록 구비되며, 상기 발광 다이오드와 대응되는 위치에는 상기 발광 다이오드가 노출되는 노출영역이 형성되고, 상기 제1부재에서 반사된 빛을 전방으로 재반사시키는 제2부재;를 포함하는, 광학 모듈.
  2. 제1항에 있어서,
    상기 제1부재와 상기 기판 사이 또는 상기 제1부재와 상기 제2부재 사이에 마련되어, 상기 제1부재와 상기 발광 다이오드 사이의 거리를 유지하도록 상기 제1 부재를 지지하는 지지부재를 더 포함하는, 광학 모듈.
  3. 제2항에 있어서,
    상기 제1부재와 상기 기판 사이에 상기 지지부재가 마련되는 경우, 상기 제2부재에는 상기 지지부재가 통과하는 관통홀이 형성되며, 상기 기판과 접촉되는 상기 지지부재의 면에는 솔더가 형성되어 상기 기판에 상기 지지부재가 고정되는, 광학 모듈.
  4. 제2항에 있어서,
    상기 제1부재와 상기 제2부재 사이에 상기 지지부재가 마련되는 경우, 상기 지지부재는 접착수지에 의해 상기 제1부재 및 상기 제2부재에 고정되는, 광학 모듈.
  5. 제2항에 있어서,
    상기 지지부재는 상기 발광 다이오드에서 방출되는 빛을 투과시킬 수 있도록 투과성을 갖는 재질로 형성되는, 광학 모듈.
  6. 제2항에 있어서,
    상기 지지부재는, 상기 발광 다이오드의 둘레에 구비되는 수직부; 및 상기 수직부와 연결되고, 상기 발광 다이오드의 전방에 구비되어 상기 제1부재에 접촉되는 수평부;를 포함하는, 광학 모듈.
  7. 제6항에 있어서,
    상기 수직부 및 상기 수평부 중 적어도 하나 이상에, 상기 발광 다이오드에서 방출되는 빛의 일부를 투과시키는 투과 영역 또는 상기 발광 다이오드에서 방출되는 빛의 일부를 반사시키는 반사 영역이 형성되는, 광학 모듈.
  8. 제7항에 있어서,
    상기 수직부 및 상기 수평부는 상기 발광 다이오드에서 방출되는 빛을 투과시킬 수 있도록 투과성을 갖는 재질로 형성되되, 상기 수평부의 일부에 반사 영역이 형성될 수 있도록 상기 수평부의 일부에 반사성 물질이 코팅되는, 광학 모듈.
  9. 제8항에 있어서,
    상기 수평부의 일부에 코팅되는 상기 반사성 물질은 상기 발광 다이오드에 대응되는 위치로 갈수록 더 넓은 면적으로 코팅되는, 광학 모듈.
  10. 제7항에 있어서,
    상기 수직부 및 상기 수평부는 상기 발광 다이오드에서 방출되는 빛을 차단하거나 반사시킬 수 있도록 불투과성을 갖는 재질로 형성되되, 상기 수평부의 일부에 투과 영역이 형성될 수 있도록 상기 수평부의 일부가 개방되는, 광학 모듈.
  11. 제10항에 있어서,
    개방되는 상기 수평부의 일부는 상기 발광 다이오드에 대응되는 위치로 갈수록 더 좁은 면적으로 개방되는, 광학 모듈.
  12. 제7항에 있어서,
    상기 수평부의 일부에 투과 영역이 형성되는 경우, 상기 수평부 일부에 형성된 투과 영역은 상기 발광 다이오드에서 방출되는 빛의 일부를 투과시킬 수 있도록 상기 제1부재에 마련되는 투과 영역과 상호 교차되도록 형성되는, 광학 모듈.
  13. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 제1부재에, 상기 발광 다이오드에서 방출되는 빛의 일부를 투과시키는 투과 영역 또는 상기 발광 다이오드에서 방출되는 빛의 일부를 반사시키는 반사 영역이 형성되는, 광학 모듈.
  14. 제13항에 있어서,
    상기 제1부재는 상기 발광 다이오드에서 방출되는 빛을 투과시킬 수 있도록 투과성을 갖는 재질로 형성되되, 상기 제1부재의 일부에 반사 영역이 형성될 수 있도록 반사성 물질이 코팅되는, 광학 모듈.
  15. 제14항에 있어서,
    상기 제1부재에 코팅되는 상기 반사성 물질은 상기 발광 다이오드에 대응되는 위치로 갈수록 더 넓은 면적으로 코팅되는, 광학 모듈.
  16. 제13항에 있어서,
    상기 제1부재는 상기 발광 다이오드에서 방출되는 빛을 차단하거나 반사시킬 수 있도록 불투과성을 갖는 재질로 형성되되, 상기 제1부재의 일부에 투과 영역이 형성될 수 있도록 상기 제1부재의 일부가 개방되는, 광학 모듈.
  17. 제16항에 있어서,
    개방되는 상기 제1부재의 일부는 상기 발광 다이오드에서 방출되는 빛을 통과시킬 수 있는 하나 이상의 통과홀로 구성되는, 광학 모듈.
  18. 제17항에 있어서,
    상기 통과홀은 상기 발광 다이오드에 대응되는 위치 및 상기 발광 다이오드에서 방출되는 빛의 세기에 따라 밀집도 또는 개별 면적이 다르게 형성되는, 광학 모듈.
  19. 제18항에 있어서,
    상기 통과홀은 상기 발광 다이오드에 대응되는 위치에서 이격될수록 밀집도가 증가하거나 또는 상기 통과홀의 개별 면적이 증가하는, 광학 모듈.
  20. 제18항에 있어서,
    상기 통과홀은 상기 발광 다이오드에 수직되는 위치에서 기설정된 위치까지 이격될수록 밀집도가 감소하거나 또는 상기 통과홀의 개별 면적이 감소하다가, 상기 기설정된 위치를 벗어나서 더욱 이격될수록 밀집도가 증가하거나 또는 상기 통과홀의 개별 면적이 증가하는, 광학 모듈.
  21. 제1항 내지 제12항 중 어느 한 항에 있어서,
    상기 제2부재의 상기 노출영역은 상기 발광 다이오드가 삽입되는 삽입홀 형태로 형성되는, 광학 모듈.
PCT/KR2014/004704 2014-05-27 2014-05-27 광학 모듈 WO2015182797A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/894,658 US20160230955A1 (en) 2014-05-27 2014-05-27 Optical module
PCT/KR2014/004704 WO2015182797A1 (ko) 2014-05-27 2014-05-27 광학 모듈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/004704 WO2015182797A1 (ko) 2014-05-27 2014-05-27 광학 모듈

Publications (1)

Publication Number Publication Date
WO2015182797A1 true WO2015182797A1 (ko) 2015-12-03

Family

ID=54699113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004704 WO2015182797A1 (ko) 2014-05-27 2014-05-27 광학 모듈

Country Status (2)

Country Link
US (1) US20160230955A1 (ko)
WO (1) WO2015182797A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9784432B2 (en) * 2014-05-21 2017-10-10 Abl Ip Holding Llc Optical assembly with form-analogous optics for translucent luminaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277061A (ja) * 2008-05-15 2009-11-26 Renesas Technology Corp 半導体装置の製造方法
KR20120043986A (ko) * 2010-10-27 2012-05-07 엘지이노텍 주식회사 백라이트 유닛
KR20120096809A (ko) * 2011-02-23 2012-08-31 주식회사 에이에프오 다중 반사를 이용한 터치스크린 장치
KR20130135019A (ko) * 2012-11-20 2013-12-10 주식회사 이아이라이팅 다중 반사식 광학모듈
KR20140059991A (ko) * 2012-11-09 2014-05-19 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 이를 포함하는 조명장치

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050121076A (ko) * 2004-06-21 2005-12-26 삼성전자주식회사 백라이트 어셈블리 및 이를 이용한 표시장치
US8646927B2 (en) * 2004-12-15 2014-02-11 Rensselaer Polytechnic Institute Scattered-photon extraction-based light fixtures
TWI313375B (en) * 2005-11-04 2009-08-11 Hon Hai Prec Ind Co Ltd Direct type back light module
KR100764368B1 (ko) * 2006-01-11 2007-10-08 삼성전기주식회사 광 혼합 성능이 향상된 백 라이트 유니트
US7478930B2 (en) * 2006-01-12 2009-01-20 Samsung Corning Precision Glass Co., Ltd. Backlight unit with an oxide compound-laminated optical layer
JP4280283B2 (ja) * 2006-01-27 2009-06-17 株式会社オプトデザイン 面照明光源装置及びこれを用いた面照明装置
US7731377B2 (en) * 2006-03-21 2010-06-08 Semiconductor Energy Laboratory Co., Ltd. Backlight device and display device
CN101162316A (zh) * 2006-10-13 2008-04-16 鸿富锦精密工业(深圳)有限公司 直下式背光模组
US8651685B2 (en) * 2007-03-16 2014-02-18 Cree, Inc. Apparatus and methods for backlight unit with vertical interior reflectors
CN101275719B (zh) * 2007-03-27 2010-12-01 鸿富锦精密工业(深圳)有限公司 发光二极管照明装置
US7942556B2 (en) * 2007-06-18 2011-05-17 Xicato, Inc. Solid state illumination device
JP4538675B2 (ja) * 2007-10-26 2010-09-08 株式会社オプトデザイン 面照明ユニット、面照明光源装置、および面照明装置
KR101255280B1 (ko) * 2008-02-22 2013-04-15 엘지디스플레이 주식회사 백라이트 유닛
JP5113573B2 (ja) * 2008-03-24 2013-01-09 パナソニック株式会社 Led照明装置
JP5401689B2 (ja) * 2009-10-01 2014-01-29 株式会社オプトデザイン 照明光の色補正方法、この色補正方法を採用した光源モジュール及びこの光源モジュールを用いた照明装置
KR101636883B1 (ko) * 2009-12-01 2016-07-07 삼성디스플레이 주식회사 확산형 도광판을 이용한 표시장치
JP5816910B2 (ja) * 2010-04-23 2015-11-18 株式会社オプトデザイン 面照明器具及び面照明装置
KR20130090328A (ko) * 2010-06-25 2013-08-13 가부시키가이샤 오푸토 디자인 조명 장치
KR20120074825A (ko) * 2010-12-28 2012-07-06 엘지전자 주식회사 디스플레이 장치
JP2012174634A (ja) * 2011-02-24 2012-09-10 Sharp Corp 光源モジュールおよび光学部材
JP2012204370A (ja) * 2011-03-23 2012-10-22 Sony Corp 光源回路ユニットおよび照明装置、並びに表示装置
CN102644883A (zh) * 2011-03-25 2012-08-22 京东方科技集团股份有限公司 直下式背光源
JP2013037788A (ja) * 2011-08-03 2013-02-21 Opt Design:Kk 発光体を用いた面照明光源装置
TW201320384A (zh) * 2011-11-08 2013-05-16 Ind Tech Res Inst 吸頂燈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277061A (ja) * 2008-05-15 2009-11-26 Renesas Technology Corp 半導体装置の製造方法
KR20120043986A (ko) * 2010-10-27 2012-05-07 엘지이노텍 주식회사 백라이트 유닛
KR20120096809A (ko) * 2011-02-23 2012-08-31 주식회사 에이에프오 다중 반사를 이용한 터치스크린 장치
KR20140059991A (ko) * 2012-11-09 2014-05-19 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 이를 포함하는 조명장치
KR20130135019A (ko) * 2012-11-20 2013-12-10 주식회사 이아이라이팅 다중 반사식 광학모듈

Also Published As

Publication number Publication date
US20160230955A1 (en) 2016-08-11

Similar Documents

Publication Publication Date Title
WO2016126049A1 (en) Display apparatus
WO2018212436A1 (ko) 로컬 디밍을 위한 백라이트유닛 및 광속제어부재
WO2011059178A2 (en) Backlight unit and liquid crystal display including the same
WO2013081417A1 (en) Light emitting module and lens
WO2013069878A1 (en) Optical sheet, display device and light emitting device having the same
WO2011115351A1 (en) Backlight unit and display apparatus including the same
WO2012161395A1 (en) Optical member, display device including the same, method for manufacturing the same
WO2011025172A2 (en) Backlight unit and dipslay device
WO2013032128A1 (en) Optical member, display device, and light emitting device having the same
WO2011102585A1 (en) Backlight unit and liquid crystal display including the same
WO2011013885A1 (en) Backlight unit and display apparatus incliding the same
WO2016017899A1 (en) Display apparatus
WO2011065806A2 (en) Light guide plate and backlight unit
WO2017052070A1 (en) Display apparatus
WO2020032387A1 (en) Display apparatus
WO2021085756A1 (ko) 도너 기판 및 이를 이용한 led 전사 방법
WO2019164063A1 (ko) 디스플레이 디바이스
WO2020060030A1 (ko) 백라이트 장치용 엘이디 렌즈 어레이 및 이를 구비한 디스플레이 장치
WO2018221878A1 (ko) 차폐부가 형성된 광전달유닛, 이를 이용한 백라이트모듈 및 광전달유닛의 제조방법
WO2021157977A1 (en) Display apparatus
WO2011013889A1 (en) Backlight unit and display apparatus including the same
WO2018117412A2 (en) Display apparatus
WO2021015433A1 (en) Display apparatus
WO2015182797A1 (ko) 광학 모듈
WO2020022630A1 (en) Display apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14894658

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893586

Country of ref document: EP

Kind code of ref document: A1