WO2015182124A1 - シリコン材料及び二次電池の負極 - Google Patents

シリコン材料及び二次電池の負極 Download PDF

Info

Publication number
WO2015182124A1
WO2015182124A1 PCT/JP2015/002653 JP2015002653W WO2015182124A1 WO 2015182124 A1 WO2015182124 A1 WO 2015182124A1 JP 2015002653 W JP2015002653 W JP 2015002653W WO 2015182124 A1 WO2015182124 A1 WO 2015182124A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
negative electrode
active material
secondary battery
electrode active
Prior art date
Application number
PCT/JP2015/002653
Other languages
English (en)
French (fr)
Inventor
敬史 毛利
正則 原田
正孝 仲西
弘樹 大島
合田 信弘
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Priority to RU2016151186A priority Critical patent/RU2650976C1/ru
Priority to US15/314,246 priority patent/US10217990B2/en
Priority to CN201580027617.5A priority patent/CN106414324B/zh
Priority to KR1020167031287A priority patent/KR101841871B1/ko
Priority to CA2950251A priority patent/CA2950251C/en
Priority to JP2016523148A priority patent/JP6176511B2/ja
Priority to EP15800022.4A priority patent/EP3150554B1/en
Publication of WO2015182124A1 publication Critical patent/WO2015182124A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicon material used as a negative electrode active material of a lithium ion secondary battery or the like, a negative electrode active material containing the silicon material, and a secondary battery using the negative electrode active material.
  • the lithium ion secondary battery is a secondary battery that has a high charge / discharge capacity and can achieve high output. Currently, it is mainly used as a power source for portable electronic devices, and is further expected as a power source for electric vehicles expected to be widely used in the future.
  • a lithium ion secondary battery has an active material capable of inserting and removing lithium (Li) on a positive electrode and a negative electrode, respectively. Then, it operates by moving lithium ions in the electrolytic solution provided between both electrodes.
  • lithium-containing metal complex oxides such as lithium cobalt complex oxide are mainly used as the active material of the positive electrode, and carbon materials having a multilayer structure are mainly used as the active material of the negative electrode There is.
  • the performance of the lithium ion secondary battery depends on the materials of the positive electrode, the negative electrode and the electrolyte that constitute the secondary battery. Above all, research and development of active material materials that form active materials are actively conducted. For example, silicon or silicon oxide having a higher capacity than carbon is being studied as a negative electrode active material.
  • silicon As the negative electrode active material, a battery with higher capacity than using a carbon material can be obtained.
  • silicon has a large volume change associated with absorption and release of Li during charge and discharge. Therefore, in a secondary battery using silicon as a negative electrode active material, silicon is pulverized during charge and discharge to cause a structural change, and it falls off or peels off the current collector, so that the charge and discharge cycle life of the battery is short. There is a point. Then, the technique which suppresses the volume change accompanying absorption and discharge of Li at the time of charge and discharge rather than silicon is examined by using a silicon oxide as a negative electrode active material.
  • SiO x silicon oxide
  • SiO x decomposes into Si and SiO 2 when heat-treated. This is called disproportionation reaction, and it is separated into two phases of Si phase and SiO 2 phase by internal reaction of solid.
  • the Si phase obtained by separation is very fine.
  • the SiO 2 phase covering the Si phase has the function of suppressing the decomposition of the electrolytic solution. Therefore, a secondary battery using a negative electrode active material composed of SiO x decomposed into Si and SiO 2 is excellent in cycle characteristics.
  • Patent Document 1 describes a method of heating and subliming metal silicon and SiO 2 into silicon oxide gas and cooling it to produce SiO x .
  • JP-A 2009-102219 decomposes a silicon raw material into an elemental state in high temperature plasma, and rapidly cools it to liquid nitrogen temperature to obtain silicon nanoparticles, and then this silicon nanoparticles are A manufacturing method of fixing in a SiO 2 -TiO 2 matrix by a sol-gel method or the like is described.
  • the raw material is limited to a sublimable material. Furthermore, it is known that the irreversible Li is generated on the negative electrode by the fact that the SiO 2 phase covering the Si phase changes to lithium silicate when Li is absorbed, and it is necessary to add a surplus active material to the positive electrode. Further, the manufacturing method described in Patent Document 2 requires high energy for plasma discharge. Furthermore, in the silicon composite obtained by these manufacturing methods, there is a problem that the dispersibility of silicon particles in the Si phase is low and aggregation is easy. When the silicon particles aggregate to increase the particle size, the secondary battery using it as a negative electrode active material has a low initial capacity, and the cycle characteristics also deteriorate.
  • Non-patent document 2 Materials Research Bulletin, Vol. 31, No. 3, pp. 307-316, 1996 (non-patent document 2) is obtained by reacting hydrogen chloride (HCl) with calcium disilicide (CaSi 2 ). It is described that the layered polysilane was heat-treated at 900 ° C. to obtain plate-like silicon crystals.
  • Patent Document 3 describes a lithium ion secondary battery using layered polysilane as a negative electrode active material.
  • a secondary battery such as a lithium ion secondary battery
  • high capacity can be achieved by using silicon or SiO x as the negative electrode active material.
  • a secondary battery using silicon or SiO x as a negative electrode active material may have insufficient life and initial efficiency, and has not been put to practical use. Therefore, in the case of using the above-described silicon material as a negative electrode active material of a secondary battery, it is required to achieve both the improvement of the initial efficiency and the extension of the life.
  • a new silicon material useful as a negative electrode active material capable of suitably maintaining the capacity of a secondary battery is required.
  • the present inventors diligently investigated the characteristics of a lithium ion secondary battery using a silicon material obtained by heat treatment of a layered silicon compound as a negative electrode active material. Then, the inventors found that the band gap of the silicon material greatly affects the life (cycle characteristics) which is one of the battery characteristics, and completed the present invention.
  • the feature of the silicon material of the present invention for solving the above problems is that the Si / O atomic ratio is in the range of more than 1 / 0.5 and 1 / 0.1 or less, and the band gap is in the range of more than 1.1 eV and less than 2.1 eV. It is to be.
  • the feature of the secondary battery of the present invention is to have a negative electrode containing a negative electrode active material using the silicon material of the present invention.
  • the silicon material of the present invention is useful as a negative electrode active material of a secondary battery using a non-aqueous electrolyte.
  • the secondary battery using the silicon material of the present invention as a negative electrode active material can maintain its capacity suitably and has a long life.
  • the silicon material of the present invention has a band gap of more than 1.1 eV and less than or equal to 2.1 eV. It is particularly desirable that the band gap be in the range of 1.2 eV to 1.6 eV.
  • Non-Patent Document 2 mentioned above describes that the band gap has been calculated, and it also describes that the band gap of the silicon material changes depending on the annealing conditions of the layered silicon compound. However, there is no description or suggestion regarding the relationship between the band gap and the battery characteristics.
  • the present inventors set a silicon material having an Si / O atomic ratio in the range of 1 / 0.5 to 1 / 0.1 or less and a band gap in the range of 1.1 eV or less and 2.1 eV or less as the negative electrode active material. By using it, it was found that the life of the secondary battery is improved while maintaining the initial efficiency high to some extent.
  • the band gap can be calculated from the absorption edge wavelength of the light absorption spectrum of the silicon material.
  • the silicon material of the present invention has a Si / O atomic ratio in the composition of more than 1 / 0.5 and less than 1 / 0.1. More preferably, the Si / O atomic ratio is in the range of 1 / 0.4 to 1 / 0.2. It is difficult to produce silicon materials with Si / O atomic ratio exceeding 1 / 0.1, and when Si / O atomic ratio is 1 / 0.5 or less, initial capacity and initial capacity of secondary battery using the silicon material as negative electrode active material Efficiency may be reduced.
  • the Si / O atomic ratio can be calculated from TEM-EDX data.
  • the silicon material of the present invention preferably contains silicon crystallites.
  • the silicon crystallite preferably has a crystallite size of 0.5 nm to 300 nm, more preferably 1 nm to 30 nm, and particularly preferably in the range of 1 nm to 10 nm. When the crystallite size exceeds 300 nm, the battery capacity may decrease when used as a negative electrode active material of a secondary battery.
  • the crystallite size is calculated from the half width of the diffraction peak of the (111) plane (present at a position of 27 ° to 30 °) in the X-ray diffraction measurement result according to the Scherrer's equation.
  • the silicon material of the present invention may be a composite particle further including at least one of amorphous silicon, silicon oxide (SiO x , 0 ⁇ x ⁇ 2), or a silicon compound in addition to silicon crystallites.
  • silicon crystallites exist on at least one surface and / or inside of amorphous silicon, silicon oxide (SiO x , 0 ⁇ x ⁇ 2), or silicon compound.
  • silicon crystallites may be dispersed like islands in a matrix mainly composed of amorphous silicon, or may be adhered like islands on the surface of particles mainly composed of amorphous silicon.
  • the initial capacity is low when used as a negative electrode active material of a secondary battery. If the concentration of silicon crystallite is too high, the expansion and contraction amount of the whole active material may be increased, and the life (cycle characteristics) may be deteriorated.
  • the particle size of the silicon material (composite particles) of the present invention is not particularly limited, but when used as a negative electrode active material of a secondary battery, it is preferable to use one classified in the range of 2 ⁇ m to 20 ⁇ m.
  • the silicon material of the present invention contains fluorine (F).
  • fluorine By containing fluorine, the content of chlorine (Cl) and oxygen (O) can be reduced, and when used as a negative electrode active material of a secondary battery, the reaction between chlorine or oxygen and lithium can be reduced.
  • the content of fluorine in the silicon material can be in the range of 0.01 to 10% by mass. If the amount of fluorine is less than this range, the amount of chlorine (Cl) and oxygen (O) will increase, and the conductive resistance will increase, and the initial efficiency of a secondary battery using such a silicon material as a negative electrode active material descend. When the amount of fluorine in the silicon material is larger than this range, the capacity of a secondary battery using the silicon material as a negative electrode active material may decrease.
  • the particularly preferred range is 1 to 5% by mass.
  • the silicon material of the present invention preferably has a BET specific surface area of 3 to 100 m 2 / g, and 4 to 80 m 2 / g, in consideration of battery characteristics when used as a negative electrode active material of a secondary battery. Is desirable, and 7 to 60 m 2 / g is particularly desirable. Moreover, as for the silicon material of this invention, it is desirable that the amount of oxygen contained is 20 mass% or less. For example, although the amount of oxygen of silicon obtained by heat-treating the layered silicon compounds described in Non-Patent Documents 1 and 2 is as large as about 33 mass%, the amount of oxygen of silicon material containing fluorine is as small as 30 mass% or less.
  • the silicon material of the present invention can be produced by heat-treating a layered silicon compound obtained by reacting an acid and CaSi 2 at about 350 ° C. to 950 ° C. in a non-oxidizing atmosphere.
  • an acid to be used hydrochloric acid (HCl) may be used as described in Non-patent Document 2, and it is also preferable to use an acid containing at least an anion of fluorine.
  • HCl hydrochloric acid
  • an acid containing fluorine as at least an anion, the amount of oxygen (O) contained in the layered silicon compound and the silicon material can be reduced.
  • fluorine (F) the amount of chlorine (Cl) can be zero or reduced. Therefore, when the fluorine-containing silicon material of the present invention is used as a negative electrode active material of a lithium ion secondary battery or the like, the initial capacity is suitably improved.
  • a layered silicon compound obtained by reacting a chemical solution containing at least an anion with an acid containing fluorine with CaSi 2 is heat-treated at 350 ° C. or higher in a non-oxidizing atmosphere. preferable.
  • hydrofluoric acid tetrafluoroboric acid, hexafluorophosphoric acid, hexafluoroarsenic acid, fluoroantimonic acid, hexafluorosilicic acid, hexafluorogermanic acid, hexafluorotin (IV)
  • acids trifluoroacetic acid, hexafluorotitanic acid, hexafluorozirconate, trifluoromethanesulfonic acid, fluorosulfonic acid and the like.
  • acids may contain other acids.
  • other acids include hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, methanesulfonic acid, nitric acid, phosphoric acid, formic acid, acetic acid and the like.
  • the reaction of a chemical solution containing an acid containing fluorine at least in the anion with CaSi 2 can be carried out under the same conditions as those described in Non-Patent Documents 1 and 2.
  • the reaction is preferably carried out at a low temperature below room temperature, preferably on an ice bath.
  • the obtained layered silicon compound has a smaller amount of oxygen and contains fluorine as compared to the layered silicon compound obtained by the method described in Non-Patent Documents 1 and 2.
  • the process of producing a layered silicon compound may be referred to as a layered silicon compound production process.
  • hydrofluoric acid (HF) is used as an acid containing fluorine at least in the anion in the layered silicon compound production step
  • hydrochloric acid (HCl) is preferable to use in combination.
  • HF hydrofluoric acid
  • HCl hydrochloric acid
  • hydrochloric acid (HCl) it is the same as that of nonpatent literature 1, 2, and only the layered silicon compound with many amounts of oxygen can be obtained.
  • the amount of hydrofluoric acid (HF) exceeds this ratio, many impurities such as CaF 2 and CaSiO may be generated, and it is not preferable because it is difficult to separate the impurities from the layered silicon compound.
  • the amount of hydrofluoric acid (HF) is smaller than this ratio, the etching action on Si-O bond by hydrofluoric acid (HF) is weak, and a large amount of oxygen may remain in the obtained layered silicon compound.
  • the compounding ratio of a mixture of hydrofluoric acid (HF) and hydrochloric acid (HCl) to calcium disilicide (CaSi 2 ) is preferably such that the acid is in excess of the equivalent.
  • the reaction atmosphere is preferably performed under vacuum or under an inert gas atmosphere.
  • reaction time becomes short compared with the manufacturing method of a nonpatent literature 1,2. If the reaction time is too long, Si and HF react further to form SiF 4, so a reaction time of about 0.25 to 24 hours is sufficient.
  • CaCl 2 and the like are produced by the reaction, they can be easily removed by washing with water, and purification of the layered silicon compound is easy.
  • tetrafluoroboric acid HHF 4
  • HCF 4 tetrafluoroboric acid
  • hydrochloric acid HCl
  • HCF 4 tetrafluoroboric acid
  • It can be reacted with calcium disilicide (CaSi 2 ).
  • the reaction conditions can be carried out in the same manner as described above. According to this method, since chlorine (Cl) is not contained in the layered silicon compound and the silicon material to be obtained, the resistance can be further reduced when the silicon material of the present invention is used as the negative electrode active material.
  • the layered silicon compound obtained in the above-described layered silicon compound production process has a Raman shift of 330 ⁇ 20 cm ⁇ 1 , 360 ⁇ 20 cm ⁇ 1 , 498 ⁇ 20 cm ⁇ 1 , 638 ⁇ 20 cm ⁇ 1 , 734 ⁇ 20 cm ⁇ 1 in the Raman spectrum. Peak exists in the This layered silicon compound has as a main component a structure represented by a composition formula (SiH) n in which a plurality of six-membered rings composed of silicon atoms are linked.
  • the layered silicon compound obtained is subjected to a heat treatment.
  • the heat treatment is performed in a non-oxidative atmosphere.
  • the non-oxidizing atmosphere include a reduced pressure atmosphere, a vacuum atmosphere and an inert gas atmosphere.
  • the heat treatment temperature is preferably in the range of 350 ° C. or more and less than 950 ° C., and particularly preferably in the range of 400 ° C. or more and 800 ° C. or less.
  • the layered silicon compound obtained by reacting the acid and CaSi 2 is heat-treated in a non-oxidizing atmosphere to obtain a silicon material. Depending on the conditions, a silicon material containing nano-sized silicon crystallites is obtained.
  • the heat treatment time varies depending on the heat treatment temperature, but can be 1 hour to 48 hours, preferably 2 hours to 12 hours, for heat treatment of 500 ° C. or higher.
  • the silicon material of the present invention can be used as a negative electrode active material in a secondary battery such as a lithium ion secondary battery.
  • the negative electrode active material powder contained in the slurry it is preferable to use one having a particle size classified in the range of 2 ⁇ m to 20 ⁇ m.
  • the particle diameter is less than 2 ⁇ m, the contact interface with the electrolyte increases, and the decomposition product of the electrolyte may increase during use as a secondary battery.
  • particles having a particle size of more than 20 ⁇ m may increase the stress of the outermost shell and may cause breakage or detachment of the negative electrode active material layer.
  • the thickness of the negative electrode active material layer depends on the particle size of the negative electrode active material, which may make it difficult to control the thickness. A known method can be used as the classification method.
  • the binder is required to bind the active material and the like in a small amount as much as possible, but the addition amount thereof is preferably 0.5% by mass to 50% by mass of the total of the active material, the conductive additive and the binder.
  • the binder is less than 0.5% by mass, the formability of the electrode is reduced, and when it is more than 50% by mass, the energy density of the electrode is reduced.
  • any of solvent based binders and aqueous binders can be used.
  • solvent-based binders include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), polyimide (PI), polyamide imide (PAI), polyamide (PA), and poly Examples include vinyl chloride (PVC), polymethacrylic acid (PMA), polyacrylonitrile (PAN), modified polyphenylene oxide (PPO), polyethylene oxide (PEO), polyethylene (PE), polypropylene (PP) and the like.
  • PVdF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • SBR styrene-butadiene rubber
  • PI polyimide
  • PAI polyamide imide
  • PA polyamide
  • PVC vinyl chloride
  • PMA polymethacrylic acid
  • PAN polyacrylonitrile
  • PPO polyphenylene oxide
  • the aqueous binder means a binder to be used by mixing with an active material in a state in which the binder is dispersed or dissolved in water, and representative examples thereof include polyacrylic acid (PAA), styrene butadiene rubber (SBR), sodium alginate, Ammonium alginate can be used.
  • PAA polyacrylic acid
  • SBR styrene butadiene rubber
  • Ammonium alginate can be used.
  • What mixed carboxymethylcellulose (CMC) with these binders can also be used as a water-based binder, and it can change to SBR and / or PAA, and can also use CMC alone as a water-based binder.
  • crosslinked body of water-soluble polymer as an aqueous binder
  • water-soluble cellulose ester crosslinked bodies such as a CMC crosslinked body, a starch / acrylic acid graft polymer, etc. can be used.
  • polyvinylidene fluoride When polyvinylidene fluoride is used as a binder, the potential of the negative electrode can be lowered, and the voltage of the secondary battery can be improved. Moreover, initial efficiency and discharge capacity may be improved by using polyamide imide (PAI) or polyacrylic acid (PAA) as a binder.
  • PAI polyamide imide
  • PAA polyacrylic acid
  • a current collector is a chemically inert electron conductor for keeping current flowing to an electrode during discharge or charge.
  • the current collector may be in the form of a foil, a plate or the like, but is not particularly limited as long as it has a shape according to the purpose.
  • copper foil or aluminum foil can be suitably used as the current collector.
  • the negative electrode active material known materials such as graphite, hard carbon, silicon, carbon fiber, tin (Sn) and silicon oxide can be mixed with the silicon material of the present invention.
  • silicon oxides represented by SiO x (0.3 ⁇ x ⁇ 1.6) are particularly preferable.
  • Each particle of this silicon oxide powder is composed of fine Si by the disproportionation reaction and SiO 2 covering Si.
  • x is less than the lower limit value, the Si ratio increases, so that the volume change at the time of charge and discharge becomes too large, and the cycle characteristics deteriorate. If x exceeds the upper limit value, the Si ratio decreases and the energy density decreases.
  • the range of 0.5 ⁇ x ⁇ 1.5 is preferable, and the range of 0.7 ⁇ x ⁇ 1.2 is more preferable.
  • the negative electrode active material one obtained by compounding a carbon material with 1 to 50% by mass with respect to SiO x can also be used.
  • the composite of the carbon material improves the cycle characteristics of the secondary battery.
  • the composite amount of the carbon material is preferably in the range of 5 to 30% by mass with respect to SiO x , and more preferably in the range of 5 to 20% by mass.
  • a CVD method or the like can be used to complex the carbon material with SiO x .
  • the silicon oxide powder desirably has an average particle size in the range of 1 ⁇ m to 10 ⁇ m.
  • the average particle size is larger than 10 ⁇ m, the durability of the non-aqueous secondary battery is reduced, and when the average particle size is smaller than 1 ⁇ m, the non-aqueous secondary battery also decreases in durability because it is aggregated to form coarse particles. There is a case.
  • a conductive aid is added to enhance the conductivity of the electrode.
  • carbon black fine particles carbon black, natural graphite, granulated graphite, artificial graphite, flame retardant graphite, acetylene black (AB), ketjen black (KB) (registered trademark), vapor grown carbon fiber (Vapor Grown Carbon Fiber: VGCF) etc. may be added alone or in combination of two or more.
  • the use amount of the conductive aid is not particularly limited, but can be, for example, about 20 to 100 parts by mass with respect to 100 parts by mass of the active material.
  • the amount of the conductive additive is less than 20 parts by mass, efficient conductive paths can not be formed, and if it exceeds 100 parts by mass, the formability of the electrode is deteriorated and the energy density is lowered.
  • the addition amount of the conductive support agent can be reduced or eliminated.
  • organic solvent there is no particular limitation on the organic solvent, and a mixture of plural solvents may be used.
  • mixed solvent of N-methyl-2-pyrrolidone, N-methyl-2-pyrrolidone and ester solvent ethyl acetate, n-butyl acetate, butyl cellosolve acetate, butyl carbitol acetate etc.
  • N-methyl-2-pyrrolidone Particularly preferred is a mixed solvent of pyrrolidone and a glyme solvent (diglyme, triglyme, tetraglyme, etc.).
  • the negative electrode can also be predoped with lithium.
  • the negative electrode for example, an electrode forming method in which a half cell is assembled using metallic lithium as a counter electrode and electrochemically dope lithium can be used.
  • the doping amount of lithium is not particularly limited.
  • the secondary battery of the present invention is a lithium ion secondary battery
  • known positive electrodes, electrolytes and separators which are not particularly limited can be used.
  • the positive electrode may be one that can be used in a lithium ion secondary battery.
  • the positive electrode has a current collector and a positive electrode active material layer bound on the current collector.
  • the positive electrode active material layer contains a positive electrode active material and a binder, and may further contain a conductive aid.
  • the positive electrode active material, the conductive additive and the binder are not particularly limited as long as they can be used in a non-aqueous secondary battery.
  • the positive electrode active material metal lithium, LiCoO 2 , Li x Ni a Co b Mn c O 2 , Li x Co b Mn c O 2 , Li x Ni a Mn c O 2 , Li x Ni a Co b O 2 and Li compounds or solid solutions selected from Li 2 MnO 3 (provided that 0.5 ⁇ x ⁇ 1.5, 0.1 ⁇ a ⁇ 1, 0.1 ⁇ b ⁇ 1, 0.1 ⁇ c ⁇ 1), Li 2 MnO 3 , sulfur and the like can be mentioned.
  • the current collector may be any one commonly used for a positive electrode of a lithium ion secondary battery, such as aluminum, nickel, stainless steel and the like.
  • the conductive additive the same one as described in the above-mentioned negative electrode can be used.
  • the electrolytic solution is one in which a lithium metal salt which is an electrolyte is dissolved in an organic solvent.
  • an organic solvent use is made of one or more selected from aprotic organic solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc. Can.
  • a lithium metal salt soluble in an organic solvent such as LiPF 6 , LiBF 4 , LiAsF 6 , LiI, LiClO 4 and LiCF 3 SO 3 can be used.
  • an electrolytic solution for example, 0.5 mol / L to 1.7 mol / L of lithium metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like in an organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate It is possible to use solutions dissolved at a certain concentration.
  • lithium metal salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 and the like
  • organic solvent such as ethylene carbonate, dimethyl carbonate, propylene carbonate, dimethyl carbonate
  • the separator is not particularly limited as long as it can be used for non-aqueous secondary batteries.
  • the separator separates the positive electrode and the negative electrode and holds the electrolytic solution, and a thin microporous film such as polyethylene or polypropylene can be used.
  • the shape of the secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a laminated shape, and a coin shape can be adopted.
  • the separator is interposed between the positive electrode and the negative electrode to form an electrode body, and the distance from the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal leading to the outside is for current collection After connection using a lead or the like, the electrode body is sealed in a battery case together with an electrolytic solution to form a battery.
  • Example 1 65 ml of a 36% by weight aqueous solution of HCl was brought to 0 ° C. in an ice bath, and 3.3 g of calcium disilicide (CaSi 2 ) was added thereto in an argon gas flow and stirred. After confirming that the foaming was completed, the temperature was raised to room temperature, and after stirring for another 2 hours at room temperature, 20 ml of distilled water was added and the mixture was further stirred for 10 minutes. At this time, yellow powder floated. The resulting mixed solution was filtered and the residue was washed with 10 ml of distilled water and then with 10 ml of ethanol and dried under vacuum for 12 hours to obtain 3.5 g of layered silicon compound.
  • CaSi 2 calcium disilicide
  • the Raman spectrum of this layered silicon compound is shown in FIG. There are peaks at 330 ⁇ 10 cm ⁇ 1 , 360 ⁇ 10 cm ⁇ 1 , 498 ⁇ 10 cm ⁇ 1 , 638 ⁇ 10 cm ⁇ 1 , and 734 ⁇ 10 cm ⁇ 1 of the Raman shift.
  • this layered silicon compound was weighed, and heat treatment was carried out by holding it at 500 ° C. for 12 hours in an argon gas with an amount of O 2 of 1 volume% or less to obtain 1.45 g of a brown silicon material.
  • the BET specific surface area of this silicon material was 7.6 m 2 / g.
  • the obtained silicon material was subjected to X-ray diffraction measurement (XRD measurement) using a CuK ⁇ ray. Three peaks derived from silicon crystallite were present in the XRD chart. And, the crystallite size calculated from the Scherrer's equation from the half width of the diffraction peak of the (111) plane (present at a position of 27 ° to 30 °) is in the nm order and the silicon including nanosize silicon crystallite It was a material.
  • the diffuse reflection absorption spectrum of this silicon material was measured, and the band gap was calculated from the absorption edge wavelength. As shown in Table 1, it was 1.6 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.36.
  • Example 2 Using the layered silicon compound produced in the same manner as in Example 1, a silicon material was obtained in the same manner as in Example 1 except that the heat treatment temperature was set to 700 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.4 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.36.
  • Example 3 A layered silicon compound manufactured in the same manner as in Example 1 was used, and a silicon material was obtained in the same manner as in Example 1 except that the heat treatment temperature was 800 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.4 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.34.
  • Example 4 A layered silicon compound manufactured in the same manner as in Example 1 was used, and a silicon material was obtained in the same manner as in Example 1 except that the heat treatment temperature was set to 900 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.3 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.34.
  • Example 5 Using the layered silicon compound produced in the same manner as in Example 1, a silicon material was obtained in the same manner as in Example 1 except that the heat treatment temperature was set to 300 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 2.1 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.36.
  • Example 6 A mixed solution of 2 ml of a 46% by weight aqueous solution of HF and 63 ml of a 36% by weight aqueous solution of HCl is brought to 0 ° C. in an ice bath and 3.3 g of calcium disilicide (CaSi 2 ) there in an argon gas stream was added and stirred. After confirming that the foaming was completed, the temperature was raised to room temperature, and after stirring for another 2 hours at room temperature, 20 ml of distilled water was added and the mixture was further stirred for 10 minutes. At this time, yellow powder floated.
  • CaSi 2 calcium disilicide
  • the resulting mixed solution was filtered, and the residue was washed with 10 ml of distilled water and then with 10 ml of ethanol and vacuum dried to obtain 2.5 g of a layered silicon compound.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.6 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.15.
  • Example 7 Using the layered silicon compound produced in the same manner as in Example 6, a silicon material was obtained in the same manner as in Example 6 except that the heat treatment temperature was set to 700 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.4 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.21.
  • Example 8 A layered silicon compound manufactured in the same manner as in Example 6 was used, and a silicon material was obtained in the same manner as in Example 6 except that the heat treatment temperature was set to 900 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.2 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.12.
  • Example 9 A layered silicon compound manufactured in the same manner as in Example 6 was used, and a silicon material was obtained in the same manner as in Example 6 except that the heat treatment temperature was set to 300 ° C.
  • the band gap of this silicon material was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 2.1 eV.
  • the Si / O atomic ratio calculated by TEM-EDX was 1 / 0.16.
  • Comparative example 1 A commercially available crystalline silicon (manufactured by Rare Metallic Co., Ltd.) was used as Comparative Example 1.
  • the band gap of this crystalline silicon was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.1 eV.
  • the band gap of this SiO x was calculated from the absorption edge wavelength of the light absorption spectrum, and as shown in Table 1, it was 1.8 eV.
  • the Si / O atomic ratio is 1 / 1.1.
  • Each slurry was prepared by mixing 45 parts by mass of each of the silicon materials of Examples and Comparative Examples, 40 parts by mass of natural graphite powder, 5 parts by mass of acetylene black, and 33 parts by mass of a binder solution.
  • a binder solution a solution in which 30% by mass of polyamideimide (PAI) resin is dissolved in N-methyl-2-pyrrolidone (NMP) is used.
  • PAI polyamideimide
  • NMP N-methyl-2-pyrrolidone
  • the current collector and the negative electrode active material layer were firmly and closely bonded by a roll press.
  • the resultant was vacuum-dried at 100 ° C. for 2 hours to form a negative electrode having a basis weight of 2.0 mg / cm 2 and an electrode density of 1.0 g / cm 3 , respectively.
  • Lithium secondary batteries (half cells) were produced using the negative electrode produced according to the above procedure as an evaluation electrode.
  • the counter electrode was a metal lithium foil (thickness 500 ⁇ m).
  • the counter electrode was cut into a diameter of 13 mm, and the evaluation electrode was cut into a diameter of 11 mm, and a separator (a glass filter made by Hoechst Celanese and "Celgard 2400" made by Celgard) was interposed therebetween to obtain an electrode body battery.
  • the electrode battery was housed in a battery case (CR2032 type coin battery member, manufactured by Takasen Co., Ltd.).
  • a non-aqueous electrolytic solution in which LiPF 6 is dissolved at a concentration of 1 M in a mixed solvent in which ethylene carbonate and diethyl carbonate are mixed at a ratio of 1: 1 (volume ratio) is sealed. Obtained a lithium secondary battery.
  • ⁇ Battery characteristic test> For the lithium secondary batteries of Examples and Comparative Examples, 50 cycles of charge and discharge tests were performed under the conditions of current: 0.1 C and voltage: 0.01-0.8 V. The initial charge capacity and the discharge capacity were measured, and the initial efficiency (100 ⁇ discharge capacity / charge capacity) was calculated. The results are shown in Table 1. In addition, the capacity retention ratio, which is the ratio of the discharge capacity after 50 cycles to the initial discharge capacity, was calculated, and is shown in Table 1 as the life. Furthermore, FIG. 2 shows the relationship between the band gap and the capacity retention rate, and FIG. 3 shows the relationship between the band gap and the initial efficiency.
  • FIGS. 2 and 3 black circles indicate silicon materials obtained using only hydrochloric acid (HCl) as acid species, and white circles indicate a mixture of hydrochloric acid (HCl) and hydrofluoric acid (HF) as acid species.
  • HCl hydrochloric acid
  • HF hydrofluoric acid
  • the silicon material of the present invention can be used as a negative electrode active material of a storage device such as a secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • a storage device such as a secondary battery, an electric double layer capacitor, and a lithium ion capacitor.
  • the secondary battery is useful as a non-aqueous secondary battery used for driving motors of electric vehicles and hybrid vehicles, personal computers, mobile communication devices, home appliances, office devices, industrial devices, etc. It can be used optimally for the motor drive of an electric car or hybrid car that requires an output.
  • the degree of freedom of heat treatment temperature is high and the size of the specific surface area can be controlled to be complexed with other materials, it can also be used as a semiconductor material such as CMOS, semiconductor memory, solar cell material, photocatalyst material, etc. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)

Abstract

 負極活物質として有用なシリコン材料を提供する。 Si/O原子比が1/0.5を超えかつ1/0.1以下の範囲にあり、バンドギャップが1.1eVを超えかつ2.1eV以下の範囲にあるシリコン材料。このシリコン材料を負極活物質として用いた二次電池は、寿命が長い。

Description

シリコン材料及び二次電池の負極
 本発明は、リチウムイオン二次電池などの負極活物質として用いられるシリコン材料、そのシリコン材料を含む負極活物質、その負極活物質を用いた二次電池に関するものである。
 リチウムイオン二次電池は、充放電容量が高く、高出力化が可能な二次電池である。現在、主として携帯電子機器用の電源として用いられており、更に、今後普及が予想される電気自動車用の電源として期待されている。リチウムイオン二次電池は、リチウム(Li)を挿入および脱離することができる活物質を正極及び負極にそれぞれ有する。そして、両極間に設けられた電解液内をリチウムイオンが移動することによって動作する。
 リチウムイオン二次電池には、正極の活物質として主にリチウムコバルト複合酸化物等のリチウム含有金属複合酸化物が用いられ、負極の活物質としては多層構造を有する炭素材料が主に用いられている。リチウムイオン二次電池の性能は、二次電池を構成する正極、負極および電解質の材料に左右される。なかでも活物質を形成する活物質材料の研究開発が活発に行われている。例えば負極活物質材料として炭素よりも高容量なケイ素またはケイ素酸化物が検討されている。
 ケイ素を負極活物質として用いることにより、炭素材料を用いるよりも高容量の電池とすることができる。しかしながらケイ素は、充放電時のLiの吸蔵・放出に伴う体積変化が大きい。よって、ケイ素を負極活物質として用いた二次電池においては、ケイ素が充放電中に微粉化して構造変化を起こし、集電体から脱落または剥離するため、電池の充放電サイクル寿命が短いという問題点がある。そこでケイ素酸化物を負極活物質として用いることにより、ケイ素よりも充放電時のLiの吸蔵・放出に伴う体積変化を抑制する技術が検討されている。
 例えば、負極活物質として、酸化ケイ素(SiOx:xは0.5≦x≦1.5程度)の使用が検討されている。SiOxは熱処理されると、SiとSiO2とに分解することが知られている。これは不均化反応といい、固体の内部反応によりSi相とSiO2相の二相に分離する。分離して得られるSi相は非常に微細である。また、Si相を覆うSiO2相が電解液の分解を抑制する働きをもつ。したがって、SiとSiO2とに分解したSiOxからなる負極活物質を用いた二次電池は、サイクル特性に優れる。
 上記したSiOxのSi相を構成するシリコン粒子が微細であるほど、それを負極活物質として用いた二次電池はサイクル特性が向上する。そこで特許第3865033号(特許文献1)には、金属シリコンとSiO2を加熱して昇華させて酸化珪素ガスとし、それを冷却してSiOxを製造する方法が記載されている。
 また特開2009-102219号公報(特許文献2)には、シリコン原料を高温のプラズマ中で元素状態まで分解し、それを液体窒素温度まで急冷してシリコンナノ粒子を得、このシリコンナノ粒子をゾルゲル法などでSiO2-TiO2マトリクス中に固定する製造方法が記載されている。
 ところが特許文献1に記載の製造方法では、原料が昇華性の材料に限られる。さらにSi相を覆うSiO2相がLi吸蔵時にケイ酸リチウムに変化することで、負極に不可逆なLiを生成することが知られており、正極に余剰の活物質を加える必要がある。また特許文献2に記載の製造方法では、プラズマ放電のために高いエネルギーが必要となる。さらにこれらの製造方法で得られたシリコン複合体では、Si相のシリコン粒子の分散性が低く凝集し易いという不具合がある。シリコン粒子どうしが凝集して粒径が大きくなると、それを負極活物質として用いた二次電池は初期容量が低く、サイクル特性も低下する。
 ところで近年、半導体、電気・電子等の各分野への利用が期待されるシリコン材料が開発されている。例えばPhysical Review B(1993),vol.48, PP.8172-8189(非特許文献1)には、塩化水素(HCl)と二ケイ化カルシウム(CaSi2)とを反応させることで層状ポリシランを合成する方法が記載され、こうして得られる層状ポリシランは、発光素子などに利用できることが記載されている。
 またMaterials Research Bulletin, Vol.31, No.3, pp.307-316, 1996(非特許文献2)には、塩化水素(HCl)と二ケイ化カルシウム(CaSi2)とを反応させることで得られた層状ポリシランを900℃で熱処理して板状シリコン結晶を得たことが記載されている。
 そして特開2011-090806号公報(特許文献3)には、層状ポリシランを負極活物質として用いたリチウムイオン二次電池が記載されている。
特許第3865033号公報 特開2009-102219号公報 特開2011-090806号公報
Physical Review B(1993),vol.48, PP.8172-8189 Materials Research Bulletin, Vol.31, No.3, pp.307-316, 1996
 リチウムイオン二次電池などの二次電池において、負極活物質としてシリコンやSiOxを用いることで高容量とすることができる。しかし、負極活物質としてシリコンやSiOxを用いる二次電池は、寿命や初期効率が不十分な場合があり、実用化までには至っていない。そこで上記したシリコン材料を二次電池の負極活物質として用いる場合に、初期効率の向上と寿命の延長とを両立させることが求められている。特に、二次電池の容量を好適に維持し得る、負極活物質として有用な新たなシリコン材料が求められている。
 本願発明者らは、層状シリコン化合物を熱処理することで得られたシリコン材料を負極活物質として用いたリチウムイオン二次電池の特性を鋭意調査した。すると、電池特性の一つである寿命(サイクル特性)にシリコン材料のバンドギャップが大きく影響することを見出し、本発明を完成した。
 すなわち上記課題を解決する本発明のシリコン材料の特徴は、Si/O原子比が1/0.5を超えかつ1/0.1以下の範囲にあり、バンドギャップが1.1eVを超えかつ2.1eV以下の範囲にあることにある。
 そして本発明の二次電池の特徴は、本発明のシリコン材料を用いた負極活物質を含む負極を有することにある。
 本発明のシリコン材料は、非水電解液を用いた二次電池の負極活物質として有用である。そして本発明のシリコン材料を負極活物質として用いた二次電池は、容量を好適に維持でき寿命が長い。
層状シリコン化合物のラマンスペクトルである。 バンドギャップと容量維持率との関係を示すグラフである。 バンドギャップと初期効率との関係を示すグラフである。
 <シリコン材料>
 本発明のシリコン材料は、バンドギャップが1.1eVを超えかつ2.1eV以下の範囲にある。バンドギャップが1.2eV~1.6eVの範囲にあることが特に望ましい。前述した非特許文献2には、バンドギャップを算出したことが記載され、層状シリコン化合物のアニール条件によってシリコン材料のバンドギャップが変化することが記載されている。しかしバンドギャップと電池特性との関係に関しては、記載も示唆もない。
 本願発明者らは、Si/O原子比が1/0.5を超えかつ1/0.1以下の範囲にあると共に、バンドギャップが1.1eVを超えかつ2.1eV以下の範囲にあるシリコン材料を負極活物質として用いることで、その二次電池は初期効率をある程度高く維持しつつ寿命が向上することを見出した。なおバンドギャップは、シリコン材料の光吸収スペクトルの吸収端波長から算出することができる。
 本発明のシリコン材料は、その組成におけるSi/O原子比が1/0.5を超えかつ1/0.1以下の範囲にある。Si/O原子比が1/0.4~1/0.2の範囲にあることがより望ましい。Si/O原子比が1/0.1を超えるシリコン材料を製造するのは難しく、Si/O原子比が1/0.5以下では、そのシリコン材料を負極活物質として用いた二次電池の初期容量及び初期効率が低下する場合がある。なおSi/O原子比は、TEM-EDXデータから算出することができる。
 本発明のシリコン材料は、シリコン結晶子を含むことが好ましい。シリコン結晶子は、結晶子サイズが0.5nm~300nmであるのが好ましく、1nm~30nmであることがさらに好ましく、1nm~10nmの範囲が特に望ましい。結晶子サイズが300nmを超えると、二次電池の負極活物質として用いたときに電池容量が低下する場合がある。なおこの結晶子サイズは、X線回折測定結果の(111)面の回折ピーク(2θが27°~30°の位置に存在)の半値幅からシェラーの式より算出されたものである。
 本発明のシリコン材料は、シリコン結晶子に加えて、非晶質シリコン、酸化ケイ素(SiOx,0<x<2)、又はケイ素化合物の少なくとも一種をさらに含む複合体粒子であってもよい。この複合体粒子においては、シリコン結晶子は非晶質シリコン、酸化ケイ素(SiOx,0<x<2)、又はケイ素化合物の少なくとも一種の表面及び/又は内部に存在する。例えばシリコン結晶子は、非晶質シリコンを主とするマトリクス中に島状に分散していてもよいし、非晶質シリコンを主とする粒子の表面に島状に付着していてもよい。
 複合体粒子におけるシリコン結晶子濃度が低すぎると、二次電池の負極活物質として用いたときに初期容量が低くなってしまう。またシリコン結晶子の濃度が高すぎると活物質全体の膨張収縮量が多くなってしまい、寿命(サイクル特性)が悪くなってしまう場合がある。
 本発明のシリコン材料(複合体粒子)の粒径は特に制限されないが、二次電池の負極活物質として用いる場合には、2μm~20μmの範囲に分級されたものを用いるのが好ましい。
 本発明のシリコン材料には、フッ素(F)が含まれていることも好ましい。フッ素を含むことで塩素(Cl)や酸素(O)の含有量を低減することができ、二次電池の負極活物質として用いた場合に、塩素や酸素とリチウムなどとの反応を低減することができる。シリコン材料におけるフッ素の含有量は、0.01~10質量%の範囲とすることができる。フッ素量がこの範囲より少ないと、塩素(Cl)や酸素(O)の量が多くなるために導電抵抗が大きくなり、そのようなシリコン材料を負極活物質として用いた二次電池の初期効率が低下する。またシリコン材料のフッ素量がこの範囲より多くなると、そのシリコン材料を負極活物質として用いた二次電池の容量が低下する場合がある。特に好ましい範囲は1~5質量%である。
 本発明のシリコン材料は、二次電池の負極活物質として用いた場合の電池特性を考慮すると、BET比表面積が3~100m2/gであることが好ましく、4~80m2/gであることが望ましく、7~60m2/gであることが特に望ましい。また本発明のシリコン材料は、含まれる酸素量が20質量%以下であることが望ましい。例えば非特許文献1,2に記載の層状シリコン化合物を熱処理することで得られたシリコンの酸素量は約33質量%と大きいが、フッ素を含むシリコン材料の酸素量は30質量%以下と小さい。
 <シリコン材料の製造方法>
 本発明のシリコン材料は、酸とCaSi2とを反応させて得られた層状シリコン化合物を非酸化性雰囲気にて350℃~950℃程度で熱処理することで製造することができる。用いる酸としては、非特許文献2に記載されたように塩酸(HCl)を用いてもよいし、少なくともアニオンにフッ素を含む酸を用いることも好ましい。少なくともアニオンにフッ素を含む酸を用いることで、層状シリコン化合物及びシリコン材料に含まれる酸素(O)量を低減することができる。またフッ素(F)を含むことで、塩素(Cl)量をゼロ若しくは低減できる。したがって本発明のフッ素を含むシリコン材料をリチウムイオン二次電池の負極活物質などに用いた場合には、初期容量が好適に向上する。
 よって、シリコン材料の製造方法としては、少なくともアニオンにフッ素を含む酸が含まれた薬液とCaSi2を反応させて得られた層状シリコン化合物を非酸化性雰囲気にて350℃以上で熱処理するのが好ましい。
 少なくともアニオンにフッ素を含む酸としては、フッ化水素酸、テトラフルオロホウ酸、ヘキサフルオロリン酸、ヘキサフルオロヒ素酸、フルオロアンチモン酸、ヘキサフルオロケイ酸、ヘキサフルオロゲルマン酸、ヘキサフルオロスズ(IV)酸、トリフルオロ酢酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコニウム酸、トリフルオロメタンスルホン酸、フルオロスルホン酸などが例示される。
 上記した酸から選ばれる少なくとも一種を含んでいれば、他の酸を含んでいてもよい。他の酸としては、例えば塩酸、臭化水素酸、ヨウ化水素酸、硫酸、メタンスルホン酸、硝酸、リン酸、蟻酸、酢酸などが例示される。
 少なくともアニオンにフッ素を含む酸が含まれた薬液とCaSi2との反応は、非特許文献1,2に記載された条件と同様の条件で行うことができる。室温以下の低温で反応させることが好ましく、氷浴上で行うのが望ましい。得られた層状シリコン化合物は、非特許文献1,2に記載された方法で得られた層状シリコン化合物に比べて、酸素量が少なく、フッ素を含んでいる。
 以下、層状シリコン化合物を製造する工程を層状シリコン化合物製造工程ということがある。
 層状シリコン化合物製造工程において、少なくともアニオンにフッ素を含む酸としてフッ化水素酸(HF)を用いる場合は、塩酸(HCl)を混合して用いることが好ましい。フッ化水素酸(HF)のみを用いた場合でも層状シリコン化合物が得られるものの、得られる層状シリコン化合物は活性が高く微量の空気によって酸化され、酸素量が増大するため好ましくない。また塩酸(HCl)のみを用いた場合は、非特許文献1,2と同様であり、酸素量が多い層状シリコン化合物しか得られない。
 フッ化水素酸(HF)と塩酸(HCl)との組成比は、モル比でHF/HCl=1/1~1/100の範囲が望ましい。フッ化水素酸(HF)の量がこの比より多くなるとCaF2、CaSiO系などの不純物が多く生成する場合があり、この不純物と層状シリコン化合物とを分離するのが困難であるため好ましくない。またフッ化水素酸(HF)の量がこの比より少なくなると、フッ化水素酸(HF)によるSi-O結合に対するエッチング作用が弱く、得られる層状シリコン化合物に酸素が多く残存する場合がある。
 フッ化水素酸(HF)と塩酸(HCl)の混合物と、二ケイ化カルシウム(CaSi2)との配合比は、当量より酸を過剰にすることが望ましい。また反応雰囲気は、真空下又は不活性ガス雰囲気下で行うことが望ましい。またこの層状シリコン化合物製造工程によれば、非特許文献1,2の製造方法に比べて反応時間が短くなることも明らかとなった。反応時間が長すぎるとSiとHFがさらに反応してSiF4が生じてしまうため、反応時間は0.25~24時間程度で充分である。反応によりCaCl2などが生成するが、水洗によって容易に除去することができ、層状シリコン化合物の精製は容易である。
 層状シリコン化合物製造工程において、少なくともアニオンにフッ素を含む酸として例えばテトラフルオロホウ酸(HBF4)を用いる場合は、塩酸(HCl)を混合する必要がなく、テトラフルオロホウ酸(HBF4)のみと二ケイ化カルシウム(CaSi2)とを反応させることができる。反応条件は、上記と同様に行うことができる。この方法によれば、得られる層状シリコン化合物及びシリコン材料に塩素(Cl)が含まれないので、本発明のシリコン材料を負極活物質として用いた場合に抵抗をさらに低減することができる。
 上記した層状シリコン化合物製造工程において得られる層状シリコン化合物は、ラマンスペクトルにおいてラマンシフトの330±20cm-1、360±20cm-1、498±20cm-1、638±20cm-1、734±20cm-1にピークが存在する。この層状シリコン化合物は、ケイ素原子で構成された六員環が複数連なった組成式(SiH)nで示される構造を主成分としている。
 上記層状シリコン化合物製造工程に次いで、得られた層状シリコン化合物に対して熱処理を行う。熱処理は、非酸化性雰囲気で行う。非酸化性雰囲気としては、減圧雰囲気、真空雰囲気、不活性ガス雰囲気が例示される。また熱処理温度は、高すぎると得られるシリコン材料のBET比表面積が低下しすぎ、低すぎるとシリコン材料の生成が困難となる場合がある。よって熱処理温度は、350℃以上かつ950℃未満の範囲が好ましく、400℃以上800℃以下の範囲が特に好ましい。
 酸とCaSi2とを反応させて得られた層状シリコン化合物を非酸化性雰囲気下にて熱処理することにより、シリコン材料が得られる。条件によっては、ナノサイズのシリコン結晶子を含むシリコン材料が得られる。熱処理時間は熱処理温度によって異なるが、500℃以上の熱処理であれば1時間~48時間、好ましくは2時間~12時間とすることができる。
 <二次電池の負極>
 本発明のシリコン材料は、リチウムイオン二次電池などの二次電池における負極活物質として用いることができる。本発明のシリコン材料を用いて、例えば非水系二次電池の負極を作製するには、本発明のシリコン材料を含む負極活物質粉末と、炭素粉末などの導電助剤と、バインダーと、適量の有機溶剤を加えて混合しスラリーにしたものを、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの方法で集電体上に塗布し、バインダーを乾燥あるいは硬化させることによって作製することができる。
 なおスラリーに含まれる負極活物質粉末は、粒径が2μm~20μmの範囲に分級されたものを用いるのが好ましい。粒径が2μm未満のものが含まれると、電解液との接触界面が増加し、二次電池として使用時に電解液の分解生成物が増大する場合がある。また粒径が20μmを超える粒子は最外殻の応力が増大し、負極活物質層の破壊や脱落が生じる場合がある。また負極活物質層の厚みが負極活物質の粒径に依存し、厚みの制御が困難となる場合がある。分級方法は、公知の方法を用いることができる。
 バインダーは、なるべく少ない量で活物質等を結着させることが求められるが、その添加量は活物質、導電助剤、及びバインダーを合計したものの0.5質量%~50質量%が望ましい。バインダーが0.5質量%未満では電極の成形性が低下し、50質量%を超えると電極のエネルギー密度が低くなる。
 バインダーとしては、溶剤系バインダー及び水系バインダーのいずれも用いることができる。溶剤系バインダーとしては、ポリフッ化ビニリデン(PolyVinylidene DiFluoride:PVdF)、ポリ四フッ化エチレン(PTFE)、スチレン-ブタジエンゴム(SBR)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリメタクリル酸(PMA)、ポリアクリロニトリル(PAN)、変性ポリフェニレンオキシド(PPO)、ポリエチレンオキシド(PEO)、ポリエチレン(PE)、ポリプロピレン(PP)等が例示される。
 水系バインダーとは、水にバインダーを分散又は溶解させた状態で活物質と混合して用いるバインダーを意味し、代表的なものとしてポリアクリル酸(PAA)、スチレンブタジエンゴム(SBR)、アルギン酸ナトリウム、アルギン酸アンモニウムを用いることができる。これらのバインダーにカルボキシメチルセルロース(CMC) を混合したものを水系バインダーとすることもできるし、SBR及び/又はPAAに替えてCMC単独で水系バインダーとして用いることもできる。また、水系バインダーとして、水溶性高分子の架橋体を用いることも可能で、CMC架橋体等の水溶性セルロースエステル架橋体、デンプン/アクリル酸グラフト重合体等を用いることができる。
 バインダーとしてポリフッ化ビニリデンを用いると負極の電位を下げることができ二次電池の電圧向上が可能となる。またバインダーとしてポリアミドイミド(PAI)又はポリアクリル酸(PAA)を用いることで初期効率と放電容量が向上する場合がある。
 集電体は、放電或いは充電の間、電極に電流を流し続けるための化学的に不活性な電子高伝導体のことである。集電体は箔、板等の形状を採用することができるが、目的に応じた形状であれば特に限定されない。集電体として、例えば銅箔やアルミニウム箔を好適に用いることができる。
 負極活物質として、本発明のシリコン材料に、グラファイト、ハードカーボン、ケイ素、炭素繊維、スズ(Sn)、酸化ケイ素など公知のものを混合することもできる。
 中でもSiOx(0.3≦x≦1.6)で表されるケイ素酸化物が特に好ましい。このケイ素酸化物粉末の各粒子は、不均化反応によって微細なSiと、Siを覆うSiO2とからなる。xが下限値未満であると、Si比率が高くなるため充放電時の体積変化が大きくなりすぎてサイクル特性が低下する。またxが上限値を超えると、Si比率が低下してエネルギー密度が低下する。0.5≦x≦1.5の範囲が好ましく、0.7≦x≦1.2の範囲がさらに望ましい。
 また負極活物質として、SiOxに対し炭素材料を1~50質量%で複合化したものを用いることもできる。炭素材料を複合化することで、二次電池のサイクル特性が向上する。炭素材料の複合量が1質量%未満では導電性向上の効果が得られず、50質量%を超えるとSiOxの割合が相対的に減少して負極容量が低下してしまう。炭素材料の複合量は、SiOxに対して5~30質量%の範囲が好ましく、5~20質量%の範囲がさらに望ましい。SiOxに対して炭素材料を複合化するには、CVD法などを利用することができる。
 ケイ素酸化物粉末は平均粒径が1μm~10μmの範囲にあることが望ましい。平均粒径が10μmより大きいと非水系二次電池の耐久性が低下し、平均粒径が1μmより小さいと凝集して粗大な粒子となるため同様に非水系二次電池の耐久性が低下する場合がある。
 導電助剤は、電極の導電性を高めるために添加される。導電助剤として、炭素質微粒子であるカーボンブラック、天然黒鉛、造粒黒鉛、人造黒鉛、難燃性黒鉛、アセチレンブラック(AB)、ケッチェンブラック(KB)(登録商標)、気相法炭素繊維(Vapor Grown Carbon Fiber:VGCF)等を単独でまたは二種以上組み合わせて添加することができる。導電助剤の使用量については、特に限定的ではないが、例えば、活物質100質量部に対して、20~100質量部程度とすることができる。導電助剤の量が20質量部未満では効率のよい導電パスを形成できず、100質量部を超えると電極の成形性が悪化するとともにエネルギー密度が低くなる。なお炭素材料が複合化されたケイ素酸化物を活物質として用いる場合は、導電助剤の添加量を低減あるいは無しとすることができる。
 有機溶剤には特に制限はなく、複数の溶剤の混合物でも構わない。例えばN-メチル-2-ピロリドン、N-メチル-2-ピロリドンとエステル系溶媒(酢酸エチル、酢酸n-ブチル、ブチルセロソルブアセテート、ブチルカルビトールアセテート等)との混合溶媒、あるいはN-メチル-2-ピロリドンとグライム系溶媒(ジグライム、トリグライム、テトラグライム等)との混合溶媒が特に好ましい。
 本発明の二次電池がリチウムイオン二次電池の場合、負極にはリチウムをプリドーピングすることもできる。負極にリチウムをドープするには、例えば対極に金属リチウムを用いて半電池を組み、電気化学的にリチウムをドープする電極化成法などを利用することができる。リチウムのドープ量は特に制約されない。
 本発明の二次電池がリチウムイオン二次電池の場合、特に限定されない公知の正極、電解液、セパレータを用いることができる。正極は、リチウムイオン二次電池で使用可能なものであればよい。正極は、集電体と、集電体上に結着された正極活物質層とを有する。正極活物質層は、正極活物質と、バインダーとを含み、さらには導電助剤を含んでも良い。正極活物質、導電助材およびバインダーは、特に限定はなく、非水系二次電池で使用可能なものであればよい。
 正極活物質としては、金属リチウム、LiCoO2、LixNiaCobMncO2、LixCobMncO2、LixNiaMncO2、LixNiaCobO2及びLi2MnO3(但し0.5≦x≦1.5、0.1≦a<1、0.1≦b<1、0.1≦c<1)から選ばれるLi化合物又は固溶体、Li2MnO3、硫黄などが挙げられる。集電体は、アルミニウム、ニッケル、ステンレス鋼など、リチウムイオン二次電池の正極に一般的に使用されるものであればよい。導電助剤は上記の負極で記載したものと同様のものが使用できる。
 電解液は、有機溶媒に電解質であるリチウム金属塩を溶解させたものである。有機溶媒として、非プロトン性有機溶媒、たとえばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等から選ばれる一種以上を用いることができる。また、溶解させる電解質としては、LiPF6、LiBF4、LiAsF6、LiI、LiClO4、LiCF3SO3等の有機溶媒に可溶なリチウム金属塩を用いることができる。
 電解液として、例えば、エチレンカーボネート、ジメチルカーボネート、プロピレンカーボネート、ジメチルカーボネートなどの有機溶媒にLiClO4、LiPF6、LiBF4、LiCF3SO3等のリチウム金属塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を使用することができる。
 セパレータは、非水系二次電池に使用できるものであれば特に限定されな
い。セパレータは、正極と負極とを分離し電解液を保持するものであり、ポリエチレン、ポリプロピレン等の薄い微多孔膜を用いることができる。
 本発明の二次電池はその形状に特に限定はなく、円筒型、積層型、コイン型等、種々の形状を採用することができる。いずれの形状を採る場合であっても、正極および負極にセパレータを挟装させ電極体とし、正極集電体および負極集電体から外部に通ずる正極端子および負極端子までの間を、集電用リード等を用いて接続した後、この電極体を電解液とともに電池ケースに密閉して電池となる。
 以下、実施例及び比較例により本発明の実施態様を具体的に説明する。
 (実施例1)
 濃度36質量%のHCl水溶液65mlを氷浴中で0℃とし、アルゴンガス気流中にてそこへ3.3gの二ケイ化カルシウム(CaSi2)を加えて撹拌した。発泡が完了したのを確認した後に室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに10分間撹拌した。このとき黄色粉末が浮遊した。得られた混合溶液を濾過し、残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄し、真空下で12時間乾燥して3.5gの層状シリコン化合物を得た。
 この層状シリコン化合物のラマンスペクトルを図1に示している。ラマンシフトの330±10cm-1、360±10cm-1、498±10cm-1、638±10cm-1、734±10cm-1にピークが存在している。
 この層状シリコン化合物を2g秤量し、O2の量が1体積%以下のアルゴンガス中にて500℃で12時間保持する熱処理を行い、褐色のシリコン材料1.45gを得た。このシリコン材料のBET比表面積は7.6m2/gであった。
 得られたシリコン材料に対してCuKα線を用いたX線回折測定(XRD測定)を行った。XRDチャートには、シリコン結晶子由来の三つのピークが存在した。そして(111)面の回折ピーク(2θが27°~30°の位置に存在)の半値幅からシェラーの式より算出される結晶子サイズがnmオーダーであり、ナノサイズのシリコン結晶子を含むシリコン材料であった。
 このシリコン材料について、拡散反射吸収スペクトルを測定し、その吸収端波長からバンドギャップを算出したところ、表1にも示すように1.6eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.36であった。
 (実施例2)
 実施例1と同様に製造された層状シリコン化合物を用い、熱処理温度を700℃としたこと以外は実施例1と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.4eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.36であった。
 (実施例3)
 実施例1と同様に製造された層状シリコン化合物を用い、熱処理温度を800℃としたこと以外は実施例1と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.4eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.34であった。
 (実施例4)
 実施例1と同様に製造された層状シリコン化合物を用い、熱処理温度を900℃としたこと以外は実施例1と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.3eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.34であった。
 (実施例5)
 実施例1と同様に製造された層状シリコン化合物を用い、熱処理温度を300℃としたこと以外は実施例1と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように2.1eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.36であった。
 (実施例6)
 濃度46質量%のHF水溶液2mlと、濃度36質量%のHCl水溶液63mlとの混合溶液を氷浴中で0℃とし、アルゴンガス気流中にてそこへ3.3gの二ケイ化カルシウム(CaSi2)を加えて撹拌した。発泡が完了したのを確認した後に室温まで昇温し、室温でさらに2時間撹拌した後、蒸留水20mlを加えてさらに10分間撹拌した。このとき黄色粉末が浮遊した。
 得られた混合溶液を濾過し、残渣を10mlの蒸留水で洗浄した後、10mlのエタノールで洗浄し、真空乾燥して2.5gの層状シリコン化合物を得た。
 この層状シリコン化合物を1g秤量し、O2の量が1体積%以下のアルゴンガス中にて500℃で12時間保持する熱処理を行い、褐色のシリコン材料0.7gを得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.6eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.15であった。
 (実施例7)
 実施例6と同様に製造された層状シリコン化合物を用い、熱処理温度を700℃としたこと以外は実施例6と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.4eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.21であった。
 (実施例8)
 実施例6と同様に製造された層状シリコン化合物を用い、熱処理温度を900℃としたこと以外は実施例6と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.2eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.12であった。
 (実施例9)
 実施例6と同様に製造された層状シリコン化合物を用い、熱処理温度を300℃としたこと以外は実施例6と同様にしてシリコン材料を得た。
 このシリコン材料について、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように2.1eVであった。またTEM-EDXによって算出されたSi/O原子比は1/0.16であった。
 (比較例1)
 市販の結晶シリコン(レアメタリック社製)を比較例1とした。この結晶シリコンについて、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.1eVであった。
 (比較例2)
 市販のSiOx(x=0.5~1.6)(「酸化ケイ素」大阪チタニウム社製)を比較例2とした。このSiOxについて、光吸収スペクトルの吸収端波長からバンドギャップを算出したところ、表1にも示すように1.8eVであった。Si/O原子比は1/1.1である。
 <電池の製造>
 各実施例及び各比較例のシリコン材料それぞれ45質量部と、天然黒鉛粉末40質量部と、アセチレンブラック5質量部と、バインダー溶液33質量部とを混合してそれぞれのスラリーを調製した。バインダー溶液には、ポリアミドイミド(PAI)樹脂がN-メチル-2-ピロリドン(NMP)に30質量%溶解した溶液を用いている。これらのスラリーを、厚さ約20μmの電解銅箔(集電体)の表面にドクターブレードを用いてそれぞれ塗布し、乾燥して銅箔上に負極活物質層を形成した。その後、ロールプレス機により、集電体と負極活物質層を強固に密着接合させた。これを100℃で2時間真空乾燥し、負極活物質層の目付け量が2.0mg/cm2、電極密度が1.0g/cm3の負極をそれぞれ形成した。
 上記の手順で作製した負極を評価極として用い、リチウム二次電池(ハーフセル)をそれぞれ作製した。対極は金属リチウム箔(厚さ500μm)とした。
 対極をφ13mm、評価極をφ11mmに裁断し、セパレータ(ヘキストセラニーズ社製ガラスフィルター及びCelgard社製「Celgard2400」)を両者の間に介装して電極体電池とした。この電極体電池を電池ケース(CR2032型コイン電池用部材、宝泉株式会社製)に収容した。電池ケースには、エチレンカーボネートとジエチルカーボネートとを1:1(体積比)で混合した混合溶媒にLiPF6を1Mの濃度で溶解した非水電解液を注入し、電池ケースを密閉してそれぞれのリチウム二次電池を得た。
 <電池特性試験>
 各実施例及び各比較例のリチウム二次電池について、電流:0.1C、電圧:0.01-0.8Vの条件で、それぞれ50サイクルの充放電試験を行った。初期の充電容量と放電容量を測定し、初期効率(100×放電容量/充電容量)を算出した結果を表1に示す。また初期の放電容量に対する50サイクル後の放電容量の割合である容量維持率を算出し、寿命として表1に示す。さらに、バンドギャップと容量維持率との関係を図2に、バンドギャップと初期効率との関係を図3に示す。
 なお図2,3において、黒丸は酸種に塩酸(HCl)のみを用いて得られたシリコン材料を用いたもの、白丸は酸種に塩酸(HCl)とフッ化水素酸(HF)の混合物を用いて得られたシリコン材料を用いたものを示している。×はSi又はSiOxを示している。
Figure JPOXMLDOC01-appb-T000001
 表1及び図2より、実施例1~5ではバンドギャップが大きくなるほど寿命が延びる傾向が認められる。そして実施例1~9と比較例2のように、バンドギャップが1.1eVを超えかつ2.1eV以下の範囲にあることで、寿命が好適となることがわかる。しかし比較例2のようにSi/O原子比が1/0.5以下では、初期容量が低くなってしまう。一方、図3からはバンドギャップが大きくなるほど初期効率が低下する傾向が認められた。
 本発明のシリコン材料は、二次電池、電気二重層コンデンサ、リチウムイオンキャパシタなどの蓄電装置の負極活物質として利用できる。その二次電池は電気自動車やハイブリッド自動車のモータ駆動用、パソコン、携帯通信機器、家電製品、オフィス機器、産業機器などに利用される非水系二次電池として有用であり、特に、大容量、大出力が必要な電気自動車やハイブリッド自動車のモータ駆動用に最適に用いることができる。
 また、熱処理温度の自由度が高く比表面積の大きさを制御して他の材料と複合化できることから、半導体材料、例えばCMOS、半導体メモリ、太陽電池材料、光触媒材料などとしても利用することができる。

Claims (5)

  1.  Si/O原子比が1/0.5を超えかつ1/0.1以下の範囲にあり、バンドギャップが1.1eVを超えかつ2.1eV以下の範囲にあることを特徴とするシリコン材料。
  2.  ナノサイズのシリコン結晶子を含む請求項1に記載のシリコン材料。
  3.  請求項1又は請求項2に記載のシリコン材料からなることを特徴とする負極活物質。
  4.  請求項3に記載の負極活物質を含むことを特徴とする負極。
  5.  請求項4に記載の負極を有することを特徴とする二次電池。
PCT/JP2015/002653 2014-05-29 2015-05-26 シリコン材料及び二次電池の負極 WO2015182124A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2016151186A RU2650976C1 (ru) 2014-05-29 2015-05-26 Кремниевый материал и отрицательный электрод аккумуляторной батареи
US15/314,246 US10217990B2 (en) 2014-05-29 2015-05-26 Silicon material and negative electrode of secondary battery
CN201580027617.5A CN106414324B (zh) 2014-05-29 2015-05-26 硅材料和二次电池的负极
KR1020167031287A KR101841871B1 (ko) 2014-05-29 2015-05-26 실리콘 재료 및 이차 전지의 부극
CA2950251A CA2950251C (en) 2014-05-29 2015-05-26 Silicon material and negative electrode of secondary battery
JP2016523148A JP6176511B2 (ja) 2014-05-29 2015-05-26 シリコン材料及び二次電池の負極
EP15800022.4A EP3150554B1 (en) 2014-05-29 2015-05-26 Negative electrode of a secondary battery composed of a silicon material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014110835 2014-05-29
JP2014-110835 2014-05-29

Publications (1)

Publication Number Publication Date
WO2015182124A1 true WO2015182124A1 (ja) 2015-12-03

Family

ID=54698471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002653 WO2015182124A1 (ja) 2014-05-29 2015-05-26 シリコン材料及び二次電池の負極

Country Status (8)

Country Link
US (1) US10217990B2 (ja)
EP (1) EP3150554B1 (ja)
JP (1) JP6176511B2 (ja)
KR (1) KR101841871B1 (ja)
CN (1) CN106414324B (ja)
CA (1) CA2950251C (ja)
RU (1) RU2650976C1 (ja)
WO (1) WO2015182124A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111742437A (zh) * 2018-02-27 2020-10-02 松下知识产权经营株式会社 非水电解质二次电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009073A1 (ja) * 2004-07-16 2006-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho シリコンナノシート、ナノシート溶液及びその製造方法、ナノシート含有複合体、並びに、ナノシート凝集体
JP2012244014A (ja) * 2011-05-20 2012-12-10 Osaka Gas Chem Kk 光電変換材料および太陽電池
WO2013066669A2 (en) * 2011-11-01 2013-05-10 Nanogram Corporation Structures incorporating silicon nanoparticle inks, densified silicon materials from nanoparticle silicon deposits and corresponding methods
JP2013191329A (ja) * 2012-03-13 2013-09-26 Toyota Industries Corp 非水電解質二次電池および車両
WO2013163417A1 (en) * 2012-04-26 2013-10-31 King Abdullah University Of Science And Technology Colloidal photoluminescent amorphous porous silicon, methods of making colloidal photoluminescent amorphous porous silicon, and methods of using colloidal photoluminescent amorphous porous silicon
JP2014022319A (ja) * 2012-07-23 2014-02-03 Toyota Industries Corp 二次電池用負極活物質、その製造方法、二次電池用負極、二次電池、及びSi−酸化物固体電解質複合体

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4392011A (en) 1980-04-30 1983-07-05 Rca Corporation Solar cell structure incorporating a novel single crystal silicon material
US5538675A (en) 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
JPH1012889A (ja) 1996-06-18 1998-01-16 Semiconductor Energy Lab Co Ltd 半導体薄膜および半導体装置
JP3865033B2 (ja) 2000-02-04 2007-01-10 信越化学工業株式会社 酸化珪素粉末の連続製造方法及び連続製造装置
JP4938960B2 (ja) 2003-11-07 2012-05-23 哲雄 碇 光電変換装置の製造方法及び光電変換装置
US8231810B2 (en) * 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
KR100851969B1 (ko) * 2007-01-05 2008-08-12 삼성에스디아이 주식회사 음극 활물질, 그 제조 방법 및 이를 채용한 음극과 리튬전지
JP4915262B2 (ja) * 2007-03-23 2012-04-11 株式会社豊田中央研究所 非水系蓄電デバイス及びそれに用いられる電極
JP2009102219A (ja) 2007-10-02 2009-05-14 Hitachi Ltd 光学ガラス
US8053382B2 (en) 2007-10-02 2011-11-08 Hitachi, Ltd. Optical glass
US20090186267A1 (en) 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
JP5446699B2 (ja) * 2008-10-28 2014-03-19 株式会社豊田中央研究所 シリコンナノシート、その製法及びリチウムイオン二次電池
JP5417859B2 (ja) * 2009-01-22 2014-02-19 日産自動車株式会社 ポリマーブレンドフィルムを含む電極
JP5471284B2 (ja) 2009-10-20 2014-04-16 株式会社豊田中央研究所 リチウム二次電池用電極及びそれを備えたリチウム二次電池
JPWO2012057253A1 (ja) 2010-10-27 2014-05-12 国立大学法人 東京大学 蛍光シリコンナノ粒子及びその製造方法
KR101453967B1 (ko) 2012-02-20 2014-10-29 고려대학교 산학협력단 다중 밴드갭 적층형 태양전지 및 다중 밴드갭 적층형 태양전지 형성 방법
JP6065678B2 (ja) 2013-03-18 2017-01-25 株式会社豊田自動織機 負極活物質とその製造方法及び蓄電装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009073A1 (ja) * 2004-07-16 2006-01-26 Kabushiki Kaisha Toyota Chuo Kenkyusho シリコンナノシート、ナノシート溶液及びその製造方法、ナノシート含有複合体、並びに、ナノシート凝集体
JP2012244014A (ja) * 2011-05-20 2012-12-10 Osaka Gas Chem Kk 光電変換材料および太陽電池
WO2013066669A2 (en) * 2011-11-01 2013-05-10 Nanogram Corporation Structures incorporating silicon nanoparticle inks, densified silicon materials from nanoparticle silicon deposits and corresponding methods
JP2013191329A (ja) * 2012-03-13 2013-09-26 Toyota Industries Corp 非水電解質二次電池および車両
WO2013163417A1 (en) * 2012-04-26 2013-10-31 King Abdullah University Of Science And Technology Colloidal photoluminescent amorphous porous silicon, methods of making colloidal photoluminescent amorphous porous silicon, and methods of using colloidal photoluminescent amorphous porous silicon
JP2014022319A (ja) * 2012-07-23 2014-02-03 Toyota Industries Corp 二次電池用負極活物質、その製造方法、二次電池用負極、二次電池、及びSi−酸化物固体電解質複合体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150554A4 *
SHUNSUKE KASASHIMA ET AL.: "Low concentrator hetero-junction microcrystalline silicon solar cells", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 358, no. 17, pages 2260 - 2263, XP028452078, ISSN: 0022-3093 *

Also Published As

Publication number Publication date
CN106414324A (zh) 2017-02-15
CA2950251A1 (en) 2015-12-03
CN106414324B (zh) 2019-08-16
JPWO2015182124A1 (ja) 2017-04-20
KR101841871B1 (ko) 2018-03-23
US20170194623A1 (en) 2017-07-06
EP3150554B1 (en) 2018-07-11
US10217990B2 (en) 2019-02-26
RU2650976C1 (ru) 2018-04-18
JP6176511B2 (ja) 2017-08-09
KR20160143791A (ko) 2016-12-14
CA2950251C (en) 2019-06-25
EP3150554A1 (en) 2017-04-05
EP3150554A4 (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2014080608A1 (ja) ナノシリコン材料及び負極活物質とその製造方法及び蓄電装置
JP6288257B2 (ja) ナノシリコン材料とその製造方法及び二次電池の負極
JP6318859B2 (ja) 銅含有シリコン材料及びその製造方法と負極活物質及び二次電池
JP5756781B2 (ja) シリコン複合体及びその製造方法と負極活物質及び非水系二次電池
JP5660403B2 (ja) 負極活物質とその製造方法及び蓄電装置
JP6176510B2 (ja) シリコン材料及び二次電池の負極
JP6011313B2 (ja) 負極活物質とその製造方法及び蓄電装置
JP6065678B2 (ja) 負極活物質とその製造方法及び蓄電装置
JP5534368B2 (ja) 負極活物質及び蓄電装置
JP6176511B2 (ja) シリコン材料及び二次電池の負極
JP5737447B2 (ja) 銅含有層状ポリシランと負極活物質及び蓄電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15800022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523148

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167031287

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015800022

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015800022

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2950251

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15314246

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016027448

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016151186

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016027448

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161123