WO2015180656A1 - 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用 - Google Patents

侧链含双硫五元环功能基团的碳酸酯聚合物及其应用 Download PDF

Info

Publication number
WO2015180656A1
WO2015180656A1 PCT/CN2015/080000 CN2015080000W WO2015180656A1 WO 2015180656 A1 WO2015180656 A1 WO 2015180656A1 CN 2015080000 W CN2015080000 W CN 2015080000W WO 2015180656 A1 WO2015180656 A1 WO 2015180656A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
membered ring
functional group
disulfide
dox
Prior art date
Application number
PCT/CN2015/080000
Other languages
English (en)
French (fr)
Inventor
孟凤华
邹艳
钟志远
Original Assignee
苏州大学张家港工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院 filed Critical 苏州大学张家港工业技术研究院
Priority to US15/314,296 priority Critical patent/US10072122B2/en
Priority to ES15799082T priority patent/ES2856406T3/es
Priority to CA2950458A priority patent/CA2950458C/en
Priority to JP2017514771A priority patent/JP6246421B2/ja
Priority to EP15799082.1A priority patent/EP3150651B1/en
Priority to KR1020167036422A priority patent/KR101890213B1/ko
Priority to AU2015266506A priority patent/AU2015266506B2/en
Publication of WO2015180656A1 publication Critical patent/WO2015180656A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/64Polyesters containing both carboxylic ester groups and carbonate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • C08G64/0225Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen
    • C08G64/025Aliphatic polycarbonates saturated containing atoms other than carbon, hydrogen or oxygen containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/18Block or graft polymers
    • C08G64/183Block or graft polymers containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D169/00Coating compositions based on polycarbonates; Coating compositions based on derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • the present invention relates to a biodegradable polymer material and an application thereof, and particularly to a carbonate polymer having a side chain containing a disulfide five-membered ring functional group and an application thereof, and belongs to the field of medical materials.
  • Biodegradable polymers have very unique properties. For example, they generally have good biocompatibility and can be degraded in the body. Degradation products can be absorbed by the human body or excreted through the normal physiological pathways of the human body, and are widely used.
  • Various fields of biomedicine such as surgical sutures, bone fixation devices, biological tissue engineering scaffold materials, and drug controlled release carriers.
  • the synthetic biodegradable polymer is particularly attracting attention because of its low immunogenicity and its properties such as degradation property and mechanical properties, which can be easily controlled.
  • the synthetic biodegradable polymers are mainly aliphatic polyesters, polycarbonates, polyamino acids, polyphosphates, polyanhydrides, polyorthoesters and the like. Among them, polycarbonate such as polytrimethylene carbonate
  • PTMC polyglycolide
  • PLA polylactide
  • PLA lactide-glycolide copolymer
  • PCL polycaprolactone
  • biodegradable polymers such as PTMC, PCL, PLA, and PLGA have relatively simple structures, lack functional groups that can be used for modification, and are often difficult to provide a cyclically stable drug nanocarrier or a stable surface-modifying coating. .
  • the degradation products of polycarbonate are mainly carbon dioxide and neutral glycols, and do not produce acidic degradation products.
  • the functional cyclic carbonate monomer can be copolymerized with many cyclic ester monomers such as GA, LA and ⁇ -CL, and other cyclic carbonate monomers to obtain biodegradable polymers of different properties.
  • a polymer having a side chain containing a disulfide five-membered ring functional group the chemical structural formula of which is - in the following structural formula:
  • R 1 is selected from one of the following groups:
  • R4 is selected from one of the following groups:
  • R 2 is selected from one of the following groups:
  • R3 is selected from one of the following groups:
  • the biodegradable polymer having a side chain containing a disulfide five-membered ring functional group has a molecular weight of 800 to 100,000 Da.
  • the number of repeating units containing a disulfide five-membered ring functional group on the molecular chain of the biodegradable polymer having a disulfide five-membered ring functional group in the side chain is from 4 to 50.
  • the above biodegradable polymer having a disulfide five-membered ring functional group in the side chain may be in the presence of an initiator, in a solvent, from a cyclic carbonate monomer containing a disulfide five-membered ring functional group.
  • Cyclic polymerization, or a cyclic carbonate monomer containing a disulfide five-membered ring functional group and other cyclic ester monomers a cyclic carbonate monomer ring
  • the other cyclic carbonate monomers include trimethylene cyclic carbonate (TMC), and the other cyclic ester monomers include caprolactone ( ⁇ -CL) lactide (LA) or glycolide (GA). ;).
  • the above cyclic carbonate monomer can be polymerized in the methylene chloride with polyethylene glycol as an initiator and bis(bistrimethylsilyl)amine zinc as a catalyst to form a block polymer, and its reaction formula as follows:
  • the above-mentioned carbonate polymer having a bisulfur 5-membered ring functional group is biodegradable, and can prepare nanoparticles (particle size 20-250 nm), which can be loaded with an anticancer drug;
  • the particles can form stable chemical cross-linking under the catalysis of a catalytic amount of a reducing agent such as dithiothreitol or glutathione, and long-circulate in the body, but will rapidly enter the cell in the presence of a large amount of reducing substances in the cell. Uncrosslinks, release drugs, and kill cancer cells efficiently.
  • the polymer prepared by the invention for the first time has good biocompatibility, and as a drug carrier, it can increase the circulation time of the anti-tumor drug in the body, increase the enrichment rate of the drug in the tumor site, and avoid the drug to the normal tissue. Damage can effectively kill tumor cells, and the same effect on normal cells is small.
  • the present invention claims the use of a biodegradable polymer having a side chain containing a disulfide five-membered ring functional group in the preparation of a drug controlled release carrier; the side chain containing a disulfide five-membered ring functional group
  • the biodegradable polymer has a molecular weight of 3000 to 70,000 Da.
  • a tumor cell specific target can be coupled to the surface of the crosslinked nanocarrier.
  • a molecule such as an R GD polypeptide, a nucleic acid aptamer, an antibody, folic acid or lactose can greatly increase the uptake of nanomedicine in cancer cells.
  • the biodegradable polymer having a disulfide five-membered ring functional group in the above side chain is biodegradable, can prepare a biological tissue scaffold, and the polymer is in a catalytic amount of a reducing substance such as dithiothreitol. Or in the presence of glutathione, it can promote the reversible cross-linking of the polymer and then prepare the fiber by electrospinning.
  • the fiber can be well adhered to the cell after being modified, and the stability of the fiber can be greatly enhanced by crosslinking.
  • the invention is more stable in the tissue part, and avoids the disadvantage that the stent is unstable and easy to dissociate.
  • the present invention claims to protect the above-mentioned side chain biodegradable polymer containing a disulfide five-membered ring functional group in preparing a biological tissue engineering scaffold material.
  • the biodegradable polymer having a side chain containing a disulfide five-membered ring functional group has a molecular weight of 5000 to 100,000 Da.
  • the present invention also claims the use of a biodegradable polymer having a side chain containing a disulfide five-membered ring functional group in the preparation of a biochip coating; the side chain comprising a disulfide five-membered ring functional group
  • the biodegradable polymer has a molecular weight of 800 to 10,000 Da.
  • the above biodegradable polymer having a bisulfide five-membered ring functional group as a biochip coating similar to a biological tissue scaffold, catalyzed by a catalytic amount of a reducing agent such as dithiothreitol or glutathione
  • a reducing agent such as dithiothreitol or glutathione
  • the present invention has the following advantages compared with the prior art:
  • the present invention utilizes a cyclic carbonate monomer containing a disulfide five-membered ring functional group for the first time to obtain a molecular weight by copolymerization of an active controllable anthracene ring or copolymerization with other carbonate monomers and cyclic ester monomers.
  • a biodegradable polymer with a controlled molecular weight distribution since the sulfur-sulfur five-membered ring group does not affect the anthracene ring polymerization of the cyclic carbonate monomer, the polymerization process does not require the protection and deprotection process in the prior art, and is simplified. The steps.
  • the biodegradable polymer containing a disulfide five-membered ring functional group in the side chain of the present invention has excellent biodegradability, can be used for controlling a drug release system, and can prepare a tumor-targeted reduction sensitivity.
  • the reversibly cross-linked nano drug carrier supports long circulation in the body, rapidly cross-links in cells with high enrichment of cancer cells, releases drugs, and kills cancer cells efficiently and specifically.
  • the cyclocarbonate monomer of the present invention is simple to prepare, and can be conveniently subjected to anthracene ring polymerization to obtain a biodegradable polymer having a side chain containing a disulfide five-membered ring functional group; the polymer can be further Self-assembly for controlling drug delivery systems, tissue engineering and biochip coatings has good application value in biomaterials.
  • Example 1 is a hydrogen nuclear magnetic spectrum of a polymer PEG5k-P (CDC2.5k-co-CL3.9k) in Example 2;
  • FIG. 3 is a particle size distribution diagram of polymer micelle nanoparticles PEG5k-b-PCDC2.8k in Example 16; [0037]
  • FIG. 4 is a crosslinked micelle nanoparticle PEG5k-b in Example 17. -PCDC2.8k particle size change at high dilution Figure
  • Example 5 is a graph showing changes in particle size of crosslinked micelle nanoparticles PEG5k-b-PCDC2.8k in the presence of a reducing substance glutathione in Example 17;
  • Example 6 is a graph showing the toxicity results of the crosslinked micelle nanoparticles PEG5k-b-PCDC2.8k on Raw264.7 and MCF-7 cells in Example 17;
  • Example 7 is a graph showing the in vitro release of DOX crosslinked micelle nanoparticles PEG5k-b-PCDC2.8k in Example 18;
  • Example 8 is a DOX crosslinked micelle nanoparticle PEG5k-b loaded in Example 18.
  • Example 9 is a particle size distribution and electron projection micrograph of crosslinked polymer vesicle nanoparticles PEG5k-P (CDC4.9k-co-TMC19k) in Example 19;
  • Example 10 is a targeted cross-linked vesicle nanoparticle cRGD-PEG6k-P (CDC4.6k-co) in Example 19.
  • FIG. 11 is a diagram showing the toxicity of DOX-targeted cross-linked vesicle nanoparticles of U.S. cells on U87MG cells in Example 19;
  • FIG. 12 is a DOX cross-linked nanoparticle PEG5k-b- Blood circulation diagram of PCDC2.8k in mice;
  • Example 13 is a diagram showing the results of biodistribution of DOX crosslinked nanoparticles PEG5k-b-PCDC2.8k in mice bearing melanoma tumors in Example 21;
  • Figure 14 is a diagram showing the results of treatment of PEG5k-b-PCDC2.8k crosslinked nanoparticles loaded with DOX on mice bearing melanoma tumors in Example 22;
  • Figure 15 is a blood circulation diagram of DOX-targeted cross-linked vesicles in mice in Example Twenty-three;
  • Figure 16 is a diagram showing the biodistribution of DOX-targeted cross-linked vesicles in a human brain malignant glioma mice in Example 24;
  • Example 17 is a therapeutic effect diagram of DOX-targeted cross-linked vesicles in a human brain malignant glioma mice in Example 25;
  • Figure 18 is a graph showing the therapeutic effect of DOX-targeted vesicles on mice bearing melanoma in Example 26;
  • Figure 19 is a DOX-targeted cross-linked vesicle in Example 27 Biodistribution map of lung cancer-bearing mice;
  • Figure 20 TEM image of the nano gold rod surface modified by PEG5k-PLGA7.8k-PCDC1.7k in Example 28;
  • Example 21 is a photographic diagram of the polymer PCL and P (CDC0.8k-co-CL92k) in Example 30 after being immersed in physiological saline for two weeks.
  • reaction is 48 hours.
  • the reactant was distilled off under reduced pressure to remove the solvent DMF, and then diluted with 200 mL of distilled water.
  • Example 3 Synthesis of a polymer of PEG5k-P (CDC2.5k-co-CL3.9k) containing a disulfide five-membered ring in a two-block side chain
  • NMR NMR 400 MHz, CDC1 3 ): 1.40 (m, -COCH; CH 2 CH 2 CH 2 CH 2 -), 1.65 (m, -COCH 2 CH 2 CH 2 CH 2 CH 2 -), 2.30 (t, -COCH 2 CH 2 CH 2 CH 2 CH 2 -), 3.08 (s, -CCH 2 ), 3.30 (m, -OCH 3 ), 4.03 (t, -COCH 2 CH 2 CH 2 CH 2 CH 2 0-), 4.05 (s, -CH 2 OCOCHCH 2 -), 4.07 (s, -OCH 2 CCH 2 0-), 4.31 (m, -CCH 2 ).
  • Example 7 Synthesis of a carbonate polymer iPr-P (CDC0.8k- CO- CL92k) containing a disulfide five-membered ring in a side chain [0077] 0.1 g (0.52 mmol) of CDC monomer under a nitrogen atmosphere And 10 g (87.7 mmol) of caprolactone monomer (CL) dissolved in 10 mL of dichloromethane in ⁇ -CL, added to a sealed reactor, then added isopropanol 6 mg (0.1 mmol) and 1 mL of catalyst A solution of bis(bistrimethylsilyl)amine zinc in dichloromethane (0.1 mol/L).
  • the reactor was sealed, transferred out of the glove box, and placed in a 40 ° C oil bath for 2 days.
  • the reaction was quenched, precipitated in ice diethyl ether, and finally filtered and dried in vacuo to give the product iPr-P (CD C-co-CL (0.8k-92k).
  • TMBPEC 2,4,6-trimethoxybenzaldehyde pentaerythritol carbonate monomer
  • Example 13 Block side chain containing disulfide five-membered ring functional group PEG1.9k-PCL1.8k-PCDC0.7k synthesis
  • TMC trimethylene carbonate
  • the synthesis of the polymer iRGD-PEG6k-P (CDC4.8k-co-TMC19.2k) is divided into two steps.
  • the first step is to synthesize the maleimide functionalized polymer Mal-PEG6k-P (CDC4.
  • the procedure of 8k-co-TMC19.2k) was the same as in Example 11 except that mPEG having a molecular weight of 5000 was replaced with Mal-PEG having a molecular weight of 6000 Da.
  • the second step is a Michael addition reaction of the polypeptide iRGD with the polymer obtained above.
  • the polymer Mal-PEG6k-P (CDC4.8k-co-TMC19.2k) was first dissolved in DMF, added to the nanoparticles by PB buffer solution, and the organic solvent was removed by dialysis. Then, twice the molar amount of iRGD was added, 30 °C. After two days of reaction, the unbound free iRGD was removed by dialysis and lyophilized to obtain the final product iRGD-PEG6k-P (CDC4.8k-co-TMC19.2k). The iRGD graft ratio was 92% as calculated by the nuclear magnetic and BCA protein kits.
  • the synthesis of the polymer cRGD-PEG6k-P is similar to that of Example 12, and is divided into two steps.
  • the first step is to synthesize an N-hydroxysuccinimide-modified polymer.
  • NHS-PEG6k-P (CDC4.6k-co-TMC18.6k) was similar to Example 11 except that mPEG having a molecular weight of 5000 Da was replaced with NHS-PEG having a molecular weight of 6000 Da.
  • the second step is that the polypeptide cRGD is bonded to the obtained polymer by an amidation reaction.
  • the product was dissolved in DMF, and twice the molar amount of cRGD was added. After reacting at 30 °C for two days, the unbound free cRGD was removed by dialysis and lyophilized to obtain the final product cRGD-PEG6k-P (CDC4.6k--TMC18. 6k), calculated by nuclear magnetic and BCA protein kit, the grafting rate of cRGD is 88 ⁇ 3 ⁇ 4.
  • Polymer nanoparticles were prepared by dialysis. 200 PEG5k-b-PCDC2.8k DMF solution (2 mg/mL) was added dropwise to 800 phosphate buffer solution (10 mM pH 7.4 PB), and placed in a dialysis bag (MWCO 3500) for dialysis overnight, five times.
  • Example 17 Polymeric micelle nanoparticles Crosslinking, decrosslinking, cytotoxicity of PEG5k-b-PCDC2.8k
  • micellar nanoparticles was added an aqueous solution of nitrogen for 20 minutes and air catch net, and then to the closed reactor nanoparticle solution (l mL 0.25 mg / mL, 3.21x10 5 mmol) was dissolved in 10 secondary water Dithiothreitol (DTT) (0.007 mg 4.67x10 5 mmol, lipoic acid functional moles 10 ⁇ 3 ⁇ 4
  • DTT Dithiothreitol
  • the disulfide bond can be easily cleaved by a reducing agent such as glutathione (GSH) or DTT.
  • GSH glutathione
  • DTT DTT
  • GSH glutathione
  • NTT DTT
  • the cross-linked nanoparticle solution was passed through nitrogen for 10 minutes at 37 ° C, GSH was added to give a final concentration of 10 mM in the micellar nanoparticle solution.
  • DLS DLS to track the change of the cross-linked particle size of the nanoparticles, as shown in Figure 5, after adding 10 mM to reduce GSH, the particle size of the cross-linked nanoparticles is gradually destroyed with the transition between the turns, indicating that the disulfide ring in the polymer is A large amount of reducing substances will break in the presence of a reducing substance.
  • GSH glutathione
  • the cytotoxicity of the crosslinked nanoparticles was tested by the MTT method.
  • the cells used were MCF-7 (human breast cancer cells) and Raw 264.7 (mouse macrophage) cells.
  • HeLa or Raw 264.7 cells were seeded in 96-well plates at 1 ⁇ 10 4 /mL, each well ⁇ ⁇ , after the cells were attached to the cells, the experimental group was added with culture medium containing different concentrations of micelle nanoparticles, and a cell blank was set up. Holes and media blank wells (parallel 4 replicate wells). After culturing for 24 hours, 96-well plates were taken out, and ⁇ (5.0 mg/mL) 10 ⁇ L was added. After 4 hours of culture, the crystals dissolved in 150 DMSO were added to each well, and the absorbance was measured at 492 nm using a microplate reader ( A), the cell survival rate was calculated by zeroing the blank of the medium.
  • A is the absorbance at 492 nm of the test group
  • a c is the absorbance at 492 nm of the blank control group.
  • the polymer concentrations were 0.1, 0.2, 0.3, 0.4, and 0.5 mg/mL, respectively.
  • Figure 6 is a graph showing the cytotoxicity of nanoparticles. It can be seen that when the concentration of micelle nanoparticles is increased from 0.1 to 0.5.
  • micellar nanoparticles have good biocompatibility.
  • the crosslinking of the drug-loaded nanoparticles was also carried out in accordance with the crosslinking method of Example 17.
  • 100 cross-linked DOX glue The bundle of nanoparticles was freeze-dried, then dissolved in 3.0 mL of DMSO, and tested by fluorescence spectrometry, and the encapsulation efficiency was calculated in conjunction with the DOX standard curve.
  • DLC Drug loading
  • DLE encapsulation efficiency
  • Encapsulation rate ( ⁇ 3 ⁇ 4) (loading drug weight / total drug input) xlOO
  • Table 1 summarizes the loading of DOX by PEG5k-b-PCDC2.8k micellar nanoparticles with efficient loading.
  • the FLS920 fluorometer measures the drug concentration in the solution.
  • Figure 7 is the relationship between the cumulative release of DOX and the enthalpy. It can be seen from the figure that the release of GSH in the simulated tumor cells is significantly faster than that of the sample without GSH, indicating that the drug-loaded micellar nanoparticles are loaded. In the presence of 10 mM GSH, the drug can be effectively released.
  • -PCDC2.8k cross-linked nanoparticles were tested for toxicity to mouse macrophage Raw264.7, human breast cancer cells MCF-7, etc. by MTT assay, drug-loaded uncrosslinked micelle nanoparticles and free drug as controls.
  • the cells were Raw264.7 4 ⁇ 10/11 ⁇ seeded in 96-well plates, each well lOO L, adherent cells were cultured to the experimental groups were added containing 0.01, 0.1, 1, 5, 10, 50 and 100 g/mL of DOX Cross-link the nanoparticle solution and the fresh culture medium of free DOX.
  • the polymer PEG5k-P (CDC4.9k-co-TMC19k) can form nanoparticles, which can be known by TEM and CLSM, and its structure is a polymer vesicle structure, see FIG. As can be seen from Fig. 9A, the formation of nanovesicles by DLS is 100.
  • the vesicles have a hollow structure as measured by TEM. Similar to Example 17, the obtained vesicles are cross-linkable and have a property of reduction-sensitive decrosslinking, which is toxic to MCF-7 human breast cancer cells, U87MG human glioma cells, and A549 lung cancer cells.
  • the experiment was carried out according to the operation of Example 18. When the vesicle concentration was increased from 0.3 mg/mL to 1.5 mg/mL, the survival rate of MCF-7, U87MG and A549 cells was still at SS ⁇ -l lO ⁇ after 24 hours of incubation.
  • DOXflCl The loading of DOXflCl was carried out by pH gradient method, and the hydrophilic DOX was encapsulated by the difference in pH inside and outside the vesicle.
  • the drug-loaded cross-linked vesicles were prepared according to the ratio of the drug dosage of 10%-30 ⁇ 3 ⁇ 4, and the unencapsulated free drug was dialyzed out.
  • the particle size of the cross-linked vesicles was measured by DLS at 105-124.
  • FIG. 12 is a blood circulation diagram of DOX-crosslinked nanoparticles PEG5k-b-PCDC2.8k in mice; the abscissa is the intercondylar point, and the ordinate is the amount of DOX per gram of blood as a total DOX injection. Quantity (ID %/g). As can be seen from the figure, the cycle time of DOX is very short. It is difficult to detect DOX after 2 hours, and the cross-linked nanoparticles still have 4 ID%/g after 24 hours. Its elimination half-life in mice can be calculated as 4.67 ⁇ , while DOX is only 0.21 ⁇ , so the drug-loaded cross-linked nanoparticles are stable in mice and have a long circulation.
  • Example 21 Drug-loading PEG5k-b-PCDC2.8k cross-linked nanoparticles for biodistribution of melanoma-bearing tumor mice
  • the experiment selected C57BL/6 black mice (Chinese Academy of Sciences Laboratory Animal Center of Chinese Academy of Sciences) weighing about 18 ⁇ 20 grams and 4 ⁇ 6 weeks of sputum. After weighing, they were evenly grouped and injected subcutaneously with 1x10 6 B16 melanin. Tumor cells, about two weeks later, the tumor size was 100-200 mm 3 ⁇ , and the drug-loaded nanoparticles and DOX were injected into the mice through the tail vein (DOX dose was 10 mg/kg), at 6, 12, and 24 The rats were sacrificed and the tumors and heart, liver, spleen, lung and kidney tissues were removed.
  • the rats were weighed and added to a 500-Turaton, ground through a homogenizer, and then added with 900 DMF (containing 20 mM DTT). , 1 M of HC1). After centrifugation (20,000 rpm, 20 minutes), the supernatant was taken and the amount of D OX per turn was measured by fluorescence.
  • Figure 13 is a graph showing the biodistribution of DOX-crosslinked nanoparticles PEG5k-b-PCDC2.8k against melanoma-bearing tumor mice; the abscissa is the tissue and organs, and the ordinate is the amount of DOX per gram of tumor or tissue.
  • Total DOX injection volume ID%/g.
  • the tumor accumulation of drug-loaded nanoparticles at 6, 12, and 24 sputum was 3.12, 2.93, and 2.52 ID%/g, respectively, which was 3 to 12 times higher than that of DOX 1.05, 0.52, and 0.29 ID ⁇ 3 ⁇ 4/g. It indicates that the drug-loaded cross-linked nanoparticles accumulate more in the tumor site through the EPR effect and can last longer.
  • the experiment selected C57BL/6 black mice (Chinese Academy of Sciences Laboratory Animal Center, Chinese Academy of Sciences) weighing about 18 ⁇ 20 grams, 4 ⁇ 6 weeks, after weighing, evenly grouped, subcutaneous injection of 1x 10 6 B 16 melanoma tumor cells, about one week later, the tumor size was 30 ⁇ 50 mm 3 ⁇ , and the drug-loaded nanoparticles and DOX were injected into the mice through the tail vein at 0, 2, 4, 6 and 8 days, in which the drug-loaded nanoparticles were loaded.
  • the amount of DOX was 10, 20, 30 mg/kg, and the dose of DOX was 10 mg/kg. From 0 to 15 days, the body weight of each group was weighed daily, and the tumor volume was accurately measured by vernier caliper.
  • FIG. 14 is a graph showing the treatment results of DOX-containing PEG5k-b-PCDC2.8k cross-linked nanoparticles against melanoma-bearing tumor mice, wherein Figure A is a graph showing inhibition of tumor growth, and Figure B is a graph showing changes in body weight of mice, C The picture shows the mouse survival curve.
  • Figure A is a graph showing inhibition of tumor growth
  • Figure B is a graph showing changes in body weight of mice
  • C The picture shows the mouse survival curve.
  • DOX concentration of 30 mg/kg and DOX-loaded nanoparticles for 16 days the tumor was significantly inhibited, while DOX also inhibited tumor growth, but the toxic side effects on mice were great.
  • DOX-loaded nanoparticles were all survived after 46 days, while DOX treatment died all day after 10 days of treatment, while the control PBS group died after 35 days. Therefore, the drug-loaded nanoparticles can effectively inhibit tumor growth, have no toxic side effects on mice, and prolong the survival of tumor-bearing mice.
  • the experiment selected Balb/C nude mice (Chinese Academy of Sciences Laboratory Animal Center of Chinese Academy of Sciences) weighing about 18 ⁇ 20 grams and 4 ⁇ 6 weeks of sputum. After weighing, they were evenly grouped. The vesicles were composed of cRGD-PEG6k-P (CDC4.6k-co-TMC18.6k) and PEG5k-P (CDC4.9k-co-TMC19k) in different proportions. The results of cell experiments showed that the ratio of cRGD was 20% ⁇ . The particle size was 100 nm and the particle size distribution was 0.10. The best results are targeted.
  • Targeted drug-loaded vesicles cRGD20/CLPs, drug-loaded vesicle CLPs, as control-free cross-linking targeting vesicles cR GD20/PEG--PTMC and DOX.HCl were injected into mice via tail vein (DOX dose was 10 mg/kg ), take blood at a fixed point of 0, 0.25, 0.5, 1, 2, 4, 8, 12 and 24, about 10 ⁇ , calculate the blood weight accurately by the difference method, and add a tug of 1% Pass and 500 L DMF extraction (which contains 20 mM DTT, 1 M HCl). After centrifugation (20,000 rpm, 20 minutes), the supernatant was taken and the amount of DOX per turn was measured by fluorescence.
  • Figure 15 shows a blood circulation diagram of DOX-targeted cross-linked vesicles in mice; the abscissa is interturn, and the ordinate is the total DOX injection per gram of blood (ID ⁇ 3 ⁇ 4/g). .
  • the circulation of DOX.HC1 is very short, and it is difficult to detect DOX in 2 hours, while the cross-linked vesicles still have 8 ID%/g after 24 hours.
  • the experiment selected Balb/C nude mice weighing about 18 ⁇ 20 grams and 4 ⁇ 6 weeks of sputum (Chinese Academy of Sciences Shanghai Animal Science Laboratory Animal Center), after weighing, evenly grouped, subcutaneous injection of 5x 10 6 U87MG people Brain malignant glioma cells, after about 3 to 4 weeks, the tumor size is 100 ⁇ 200 mm 3
  • ⁇ In, cRGD20/CLPs, CLPs and DOX.HC1 were injected into mice via tail vein (DOX dose was 10 mg/kg), and mice were sacrificed after 4 hours, tumors and heart, liver, spleen, lung and kidney The tissue was removed, washed and added to 500 ⁇ ⁇ 3 ⁇ 4 of Triton through a homogenizer, and then added to 900 DMF (containing 20 mM DTT, 1 M HCl). After centrifugation (20,000 rpm, 20 minutes), the supernatant was taken and the amount of DOX per turn was measured by fluorescence.
  • Figure 16 shows the biodistribution map of DOX-targeted cross-linked vesicles in mice bearing human malignant glioma; the abscissa is the tissue and organs, and the ordinate is the total DOX injection of DOX per gram of tumor or tissue. Quantity (ID%/g). As can be seen, cRGD20/CLPs, CLPs and DOX, after 4 hours of HCl injection, the amount of DOX accumulated in the tumor was 6.78, 2.15 and 0.82 ID%/g, respectively. The cRGD20/CLPs were 3 and 9 of CLPs and DOX.HCl. Times, indicating that the drug-loaded targeted cross-linked vesicles accumulate more at the tumor site by active targeting.
  • mice were weighed about 18 ⁇ 20 grams and 4 ⁇ 6 weeks of sputum (Chinese Academy of Sciences Shanghai Animal Science Laboratory Animal Center), after weighing, evenly grouped, subcutaneous injection of 5x 10 6 U87MG people Brain malignant glioma cells, about two weeks later, have tumor sizes of 30-50 mm 3 ⁇ , cRGD20/CLPs, CLPs, non-crosslinked targeting nanovesicles (CRGD20/PEG-PTMC), DOX.HC1, and PBS was injected into the mice via the tail vein at 0, 4, 8 and 12 days (DOX dose was 10 mg/kg).
  • the body weight of the mice was weighed every two days, and the tumor volume was accurately measured by a vernier caliper.
  • Figure 17 shows a DOX-targeted cross-linked vesicle cRGD-PEG6k-P (CDC4.6k-co-TMC 18.6k)
  • the tumors treated with CRGD20/PEG-b-PTMC have a certain increase.
  • DOX.HCl also inhibited tumor growth
  • the body weight of mice in the DOX.HC1 group decreased by 21% in 12 days, indicating that it has a great toxic effect on mice.
  • the body weight of mice in the cRGD20/CLPs, CLPs or cRGD20/PEG-b-PTMC groups showed little change, indicating that the drug-loaded nanoparticles had no toxic side effects on mice.
  • the cRGD20/CLPs treatment group survived after 45 days
  • the DOX.HC1 group had all died in 13 days
  • the vesicles are composed of iRGD-PEG6k-P (CDC4.8k-co-TMC19.2k) and PEG5k-P (CDC4.9k-co)
  • the polymer content was 0, 25%, 50% and 100%.
  • the particle size of the vesicles was about 110 nm and the particle size distribution was 0.12.
  • the iRGD molecule not only targets tumor cells but also mediates the function of penetrating tumor cells and tissues. Adding a certain amount of free iRGD molecules also increases the penetration of nanoparticles into tumor tissues.
  • the loading of DOX-HC1 is obtained by a pH gradient method with a typical efficiency of 60-80%.
  • Figure 18 shows a DOX-targeted vesicle iRGD-PEG6k-P (CDC4.8k-co)
  • mice in all groups of iRGD drug-loaded cross-linked vesicles showed little change, indicating that they had no toxic side effects on mice.
  • iRGD50/CLPs group all mice survived after 43 days of treatment, while the DOX.HC1 group died after 10 days of toxicity, while the PBS group died after 29 days. Therefore, targeting drug-loaded cross-linked vesicles can effectively inhibit the growth of tumors, have no toxic side effects on mice, and can prolong the survival of tumor-bearing mice.
  • the synthesis of the polymer cNGQ-PEG6k-P is similar to that of the thirteenth embodiment, that is, the synthesis of NHS-PEG6k-P (CDC4.8k-co-TMC19.2k), Then, the targeting molecule cNGQ amidation reaction was bonded to the polymer PEG terminal, and it was found by the BCA kit that the grafting ratio of cNGQ was 87%.
  • the vesicles were prepared by mixing cNGQ-PEG6k-P (CDC4.8k-co-TMC19.2k)/PEG5k-P (CDC4.9k-co-TMC19k) in different ratios.
  • the loading of DOX.HCl is obtained by a pH gradient method with a general efficiency of 60-80%.
  • the results of in vitro cell experiments show that the cNGQ ratio is 20% ⁇ , the best targeting effect, and the drug-loaded targeting
  • the half-life of cross-linked vesicles (cNGQ20/CLPs) in blood circulation in nude mice was 4.78 hours. Consistent with the twenty-fourth example, a lung cancer A549 tumor model was established under the skin of nude mice, and cNGQ20/CLPs modified by near-infrared molecules were injected through the tail vein. In vivo imaging experiments of small animals showed that cNGQ20/CLPs could accumulate rapidly in the tumor site.
  • A549 lung cancer tumor model and bioluminescence A549 lung cancer in situ tumor model were established by subcutaneous injection with a similar method to Example 25. The latter can monitor bioluminescence by using a live imager to monitor tumor growth. happening. By tail vein injection at 0, 4, 8 and 12 days, the bioluminescence monitored by the live imager showed a significant decrease in the fluorescence of the lungs in the cNGQ20/CLPs treated group, indicating that it is well targeted to lung cancer, and Effectively inhibit the growth of tumors.
  • Drug-modified nano-gold rod drug loading In the polymer modified nano gold rod solution obtained above, 10%, 20%, 30% DOX dissolved in DMSO was added dropwise, and stirred for half a time. After incubation for 12 h at room temperature, the free small molecule drug was removed by dialysis for 12 hours.
  • the dialysis medium was a phosphate buffer solution with a pH of 7.4, and then the fluorescence encapsulation efficiency of DOX was 70-90% by fluorescence detection. It can be seen that the polymer modified nano gold rod can efficiently encapsulate the small molecule hydrophobic drug, FIG. 20 is
  • DOX release of NIR-triggered polymer-modified nanogold rods polymer-modified nanogold rods are dispersed in 10 mL of phosphate buffer solution was irradiated with infrared light with a intensity of 0.2 W/cm 2 and a wavelength of 808 nm for 5 min. The solution was taken out at a specific inter-turn interval, centrifuged, and the supernatant was measured. Fluorescence, thereby analyzing the amount of DOX released.
  • Fluorescence detection showed that the polymer-modified nano-gold rod after light exposure had a drug release rate of 92%, much faster than the unilluminated control group (released only 18%), which shows that such polymer-modified nano-gold rods
  • the material can be applied to near-infrared triggered drug release.
  • Example 29 Polymer PEGl.9k-PCDC0.8k for modifying the surface of a plasma resonator (SPR) sensor
  • the gold surface on the SPR sensor was treated with aqua regia in advance, and then washed with ethanol and dried, and then added to the dissolved triblock polymer PEG1.9k-PCDC0.8k (1 mL, 5 mg/mL). ) in THF. After 24 hours of reaction under slow shaking, the sensor piece was taken out and washed three times.
  • the surface density of PEG1.9k modified on the sensor gold piece was modified by XPS, ellipsometry and SPR to 20 nmol/cm. Compared with traditional chips, the chip can reduce non-specific adsorption and improve measurement stability, and can be widely used in biomedicine and other fields.
  • Example 30 Polymer P (CDC0.8k-co-CL92k) Crosslinked as Biodegradable Scaffold Material
  • Polymer P (CDC0.8k - co-CL92k) was dissolved in chloroform ( 40 mg/mL), filming on lxl cm 2 glass slides (scaffold material), drying in a vacuum oven for 48 hours, completely removing the solvent, heating at 40 °C for 10 minutes to heat-crosslink the sulfur-sulfur five-membered ring. After soaking in physiological saline for two weeks, it was found that the glass piece was still intact, and the PCL film as a control group had fallen off, see Figure 21, polymer PCL and P (CDC0.8k-co-CL92k) film formation. Photographs after soaking in physiological saline for two weeks; it can be seen that the side chain sulphur five-membered ring functional group polymer can enhance the stability of the scaffold material and can be used as a bioscaffold material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Medicinal Preparation (AREA)
  • Polyamides (AREA)
  • Polyethers (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种侧链含双硫五元环功能基团的生物可降解聚合物及其应用。所述聚合物基于含有双硫五元环功能基团的环碳酸酯单体通过活性可控开环聚合得到,其分子量可控、分子量分布较窄,无需保护和脱保护过程;利用本发明所述的环碳酸酯单体开环聚合得到的聚合物具有生物可降解性,可用于控制药物释放体系,制备的肿瘤靶向的还原敏感可逆交联的纳米药物载体支持体内长循环,但在癌细胞高富集并细胞内快速解交联、释放出药物,高效特异性地杀死癌细胞;同时该生物可降解聚合物在组织工程支架和生物芯片涂层等方面具有应用前景。

Description

侧链含双硫五元环功能基团的碳酸酯聚合物及其应用 技术领域
[0001] 本发明涉及一种生物可降解聚合物材料及其应用, 具体涉及一种侧链含双硫五 元环功能基团的碳酸酯聚合物及其应用, 属于医药材料领域。
背景技术
[0002] 生物可降解聚合物具有非常独特的性能, 例如它们通常具有良好的生物相容性 , 能在体内降解, 降解产物可被人体吸收或通过人体正常生理途径排出体外, 而被广泛应用于生物医学的各个领域, 如手术缝合线、 骨固定器械、 生物组织 工程支架材料、 和药物控制释放载体等。 其中, 合成的生物可降解聚合物由于 其免疫原性较低、 其性能含如降解性能和机械性能等均可方便得到控制等而尤 其受到关注。 合成的生物可降解聚合物主要有脂肪族聚酯、 聚碳酸酯、 聚氨基 酸、 聚磷酸酯、 聚酸酐、 聚原酸酯等。 其中, 聚碳酸酯如聚三亚甲基环碳酸酯
(PTMC) 和脂肪族聚酯如聚乙交酯 (PGA) 、 聚丙交酯 (PLA) 、 丙交酯 -乙交 酯共聚物 (PLGA) 、 聚己内酯 (PCL) 等是最常用的生物可降解聚合物, 已获 得美国食品药物管理部门 (FDA) 的许可。
技术问题
[0003] 但是, 现有的生物可降解聚合物如 PTMC、 PCL、 PLA和 PLGA等结构比较单 一, 缺乏可用于修饰的官能团, 往往难以提供循环稳定的药物纳米载体或是稳 定的表面修饰涂层。
[0004] 聚碳酸酯的降解产物主要是二氧化碳和中性的二元醇, 不产生酸性降解产物。
其中功能性环状碳酸酯单体可以和很多环酯类单体, 如 GA、 LA和 ε-CL等, 以及 其它环状碳酸酯单体共聚, 得到不同性能的生物可降解聚合物。
[0005] 另外, 现有技术中, 在幵环聚合过程中, 环碳酸酯单体结构中的活泼基团易反 应, 因此在由环状碳酸酯单体制备功能性聚合物吋都需要通过保护和脱保护步 骤, 这导致制备过程繁琐。
问题的解决方案 技术解决方案
[0006] 本发明的目的是, 提供一种侧链含双硫五元环功能基团的生物可降解聚合物。
[0007] 为达到上述目的, 本发明具体的技术方案为:
[0008] 一种侧链含双硫五元环功能基团的聚合物, 其化学结构式为以下结构式中的- 种:
0
Figure imgf000004_0001
[0009] 其中, Rl选自以下基团中的一种:
[]
o f '
CH:¾、 . :2:
:、: 顯
0、
Sj H 、- [0010] 式中 k = 20-250, R4选自以下基团中的一种:
Figure imgf000005_0001
[0012] R2选自以下基团中的一种:
[]
Figure imgf000005_0002
[0013] R3选自以下基团中的一种:
Figure imgf000005_0003
Figure imgf000005_0004
, 式中 a = 2、 3或者 4; b = 20-250;
[0014] 所述侧链含双硫五元环功能基团的生物可降解聚合物的分子量为 800〜100000 Da。
[0015] 上述技术方案中, 侧链含双硫五元环功能基团的生物可降解聚合物分子链上含 有双硫五元环功能基团的重复单元数为 4〜50。
[0016] 上述侧链含有双硫五元环功能基团的生物可降解聚合物可以在引发剂存在下, 在溶剂中, 由含双硫五元环功能基团的环状碳酸酯单体幵环聚合得到, 或者由 含双硫五元环功能基团的环状碳酸酯单体和其他环酯单体、 环碳酸酯单体幵环 聚合得到; 所述其他环碳酸酯单体包括三亚甲基环碳酸酯 (TMC), 所述其他环 酯单体包括己内酯 (ε-CL) 丙交酯 (LA)或乙交酯 (GA;)。
[0017] 所述含双硫五元环功能基团的环状碳酸酯单体的化学结构式如下:
[0018]
Figure imgf000006_0001
, 其可以通过以下步骤制备得到:
[0019] (1)将一水合硫氢化钠 (NaSH.H 20) 溶解在 Ν,Ν-二甲基甲酰胺 (DMF) 中, 将 二溴新戊二醇用恒压滴液漏斗缓慢滴加, 50°C件下反应 48小吋, 反应结束后, 反 应物减压蒸馏除去溶剂 DMF, 然后用蒸馏水稀释, 用乙酸乙酯萃取四次, 最后 有机相旋蒸得到黄色粘稠状化合物 A;
[0020] 所述化合物 A的化学结构式如下:
Figure imgf000006_0002
(2)将化合物 A保存在四氢呋喃溶液中, 在空气中氧化 24小吋, 得到化合物 B, 所述化合物 B的化学结构式如下:
Figure imgf000006_0003
[0022] (3)氮气气氛中, 将化合物 B与氯甲酸乙酯溶解在干燥过的四氢呋喃中, 然后用 恒压滴液漏斗缓慢滴加三乙胺, 在冰水浴中反应 4小吋, 反应结束后, 过滤, 滤 液经旋转浓缩, 再用乙醚进行 3-5次重结晶, 得到黄色晶体, 即含双硫五元环功 能基团的环状碳酸酯单体。
[0023] 上述环碳酸酯单体在二氯甲烷中可以以聚乙二醇为引发剂、 双 (双三甲基硅基 ) 胺锌为催化剂幵环聚合, 形成嵌段聚合物, 其反应式如下:
Figure imgf000007_0001
[0025] 上述侧链含有双硫五元环功能基团的碳酸酯聚合物具有可生物降解性, 可制备 得到纳米粒子 (粒径 20-250纳米) , 进而可以装载抗癌药物; 聚合物纳米粒子可 以在催化量的还原剂如二硫代苏糖醇或谷胱甘肽催化下形成稳定的化学交联、 在体内长循环, 但进入细胞后在细胞内大量还原性物质存在环境下会快速解交 联, 释放出药物, 高效杀死癌细胞。 本发明首次制备得到的聚合物具有良好的 生物相容性, 作为药物载体应用吋, 可以增加抗肿瘤药物在体内的循环吋间, 增加药物在肿瘤部位的富集率, 避免药物对正常组织的损伤, 可以有效杀死肿 瘤细胞, 同吋对正常细胞影响小。
[0026] 所以本发明请求保护上述侧链含双硫五元环功能基团的生物可降解聚合物在制 备药物控制释放载体中的应用; 所述侧链含双硫五元环功能基团的生物可降解 聚合物的分子量为 3000〜70000 Da。
[0027] 同吋, 上述侧链含双硫五元环功能基团的生物可降解聚合物形成化学交联得到 交联纳米载体后, 在该交联纳米载体表面可以偶联肿瘤细胞特异性靶向分子如 R GD多肽、 核酸适配子、 抗体、 叶酸或乳糖等, 能够大大增加纳米药物在癌细胞 中的摄取量。
[0028] 上述侧链含有双硫五元环功能基团的生物可降解聚合物具有可生物降解性, 可 制备生物组织支架, 聚合物在催化量的还原性物质, 例如二硫代苏糖醇或谷胱 甘肽存在环境下, 可以促使聚合物可逆交联之后通过静电纺丝制备成纤维, 此 类纤维经过修饰后可以很好的粘附细胞, 经过交联可以大大增强纤维的稳定性 , 使其在组织部位更稳定, 避免了支架不稳定易解离的弊端, 所以本发明请求 保护上述侧链含双硫五元环功能基团的生物可降解聚合物在制备生物组织工程 支架材料中的应用; 所述侧链含双硫五元环功能基团的生物可降解聚合物的分 子量为 5000〜 100000 Da。 [0029] 本发明还请求保护上述侧链含双硫五元环功能基团的生物可降解聚合物在制备 生物芯片涂层中的应用; 所述侧链含双硫五元环功能基团的生物可降解聚合物 的分子量为 800〜10000 Da。 上述侧链含有双硫五元环功能基团的生物可降解聚 合物作为生物芯片涂层, 与生物组织支架类似, 其在催化量的还原剂如二硫代 苏糖醇或谷胱甘肽催化下形成稳定的化学交联, 使生物芯片涂层在体内更稳定 , 减少非特异性吸附, 减少生物组分含量的测定噪音。
发明的有益效果
有益效果
[0030] 由于上述方案的实施, 本发明与现有技术相比, 具有以下优点:
[0031] 1.本发明首次利用含双硫五元环功能基团的环状碳酸酯单体通过活性可控幵环 均聚合或和其他碳酸酯单体、 环酯单体的共聚合得到分子量可控、 分子量分布 较窄的生物可降解聚合物, 由于硫硫五元环基团不影响环碳酸酯单体的幵环聚 合, 因此聚合过程无需现有技术中的保护和脱保护过程, 简化了操作步骤。
[0032] 2.本发明公幵的侧链含双硫五元环功能基团的生物可降解聚合物具有优异的生 物可降解性, 可用于控制药物释放体系, 可制备肿瘤靶向的还原敏感可逆交联 的纳米药物载体, 支持体内长循环, 在癌细胞高富集的细胞内快速解交联, 释 放出药物, 高效特异性地杀死癌细胞。
[0033] 3.本发明公幵的环碳酸酯单体制备简单, 由其可以方便的幵环聚合得到侧链含 双硫五元环功能基团的生物可降解聚合物; 该聚合物可进一步进行自组装用于 控制药物释放体系、 组织工程和生物芯片涂层, 在生物材料方面, 具有良好的 应用价值。
对附图的简要说明
附图说明
[0034] 图 1为实施例二中聚合物 PEG5k-P(CDC2.5k- co-CL3.9k)的氢核磁谱图;
[0035] 图 2为实施例十五中聚合物 P(CDC- co-CL)(6.21k)-PEG(0.5k)-P(CDC- co
-CL)(6.21k)的核磁谱图;
[0036] 图 3为实施例十六中聚合物胶束纳米粒 PEG5k- b-PCDC2.8k的粒径分布图; [0037] 图 4为实施例十七中交联胶束纳米粒 PEG5k- b-PCDC2.8k在高度稀释下粒径变化 图;
[0038] 图 5为实施例十七中交联胶束纳米粒 PEG5k- b-PCDC2.8k在还原性物质谷胱甘肽 存在下粒径的变化图;
[0039] 图 6为实施例十七中交联胶束纳米粒 PEG5k- b-PCDC2.8k对 Raw264.7和 MCF-7细 胞的毒性结果图;
[0040] 图 7为实施例十八中载 DOX交联胶束纳米粒 PEG5k- b-PCDC2.8k的体外释放结 果图;
[0041] 图 8为实施例十八中载 DOX交联胶束纳米粒 PEG5k- b
-PCDC2.8k对 Raw264.7和 MCF-7细胞的毒性图;
[0042] 图 9为实施例十九中交联聚合物囊泡纳米粒 PEG5k-P(CDC4.9k- co-TMC19k)的 粒径分布及电子投射显微镜图片图;
[0043] 图 10为实施例十九中靶向交联囊泡纳米粒 cRGD-PEG6k-P(CDC4.6k- co
-TMC18.6k)/PEG5k-P(CDC4.9k- co-TMC19k)对 U87MG细胞的毒性图;
[0044] 图 11为实施例十九中载 DOX的靶向交联囊泡纳米粒对 U87MG细胞的毒性图; [0045] 图 12为实施例二十中载 DOX交联纳米粒 PEG5k- b-PCDC2.8k在小鼠体内的血 液循环图;
[0046] 图 13为实施例二十一中载 DOX交联纳米粒 PEG5k- b-PCDC2.8k对荷黑色素肿 瘤小鼠的生物分布结果图;
[0047] 图 14为实施例二十二中载 DOX的 PEG5k- b-PCDC2.8k交联纳米粒对荷黑色素 肿瘤小鼠的治疗结果图;
[0048] 图 15为实施例二十三中载 DOX靶向交联囊泡在小鼠体内的血液循环图;
[0049] 图 16为实施例二十四中载 DOX靶向交联囊泡在荷人脑恶性胶质瘤小鼠体内生 物分布图;
[0050] 图 17为实施例二十五中载 DOX靶向交联囊泡在荷人脑恶性胶质瘤小鼠的治疗 效果图;
[0051] 图 18为实施例二十六中载 DOX靶向囊泡对荷黑色素瘤小鼠的治疗效果图; [0052] 图 19为实施例二十七中载 DOX靶向交联囊泡在荷肺癌小鼠体内生物分布图; [0053] 图 20 为实施例二十八中 PEG5k-PLGA7.8k-PCDC1.7k表面修饰的纳米金棒的 TEM图;
[0054] 图 21为实施例三十中聚合物 PCL和 P(CDC0.8k- co-CL92k)成膜后在生理盐水浸 泡两星期后的照片图。
本发明的实施方式
[0055] 下面结合实施例和附图对本发明作进一步描述:
[0056] 实施例一含双硫五元环功能基团的环状碳酸酯单体 (CDC) 的合成
Figure imgf000010_0001
[0057] 1、 一水合硫氢化钠 (28.25 g, 381.7 mmol) 溶在 400 mL N, N-二甲基甲酰胺
(DMF) 中, 50°C加热至完全溶解, 逐滴加入二溴新戊二醇 (20 g, 76.4 mmol
) , 反应 48小吋。 反应物减压蒸馏除去溶剂 DMF, 然后用 200mL蒸馏水稀释, 用 250
mL乙酸乙酯萃取四次, 最后有机相旋蒸得到黄色粘稠状化合物 A, 产率: 70%;
[0058] 2、 溶解在 400 mL的四氢呋喃 (THF) 中的化合物 A在空气中放置 24小吋, 分子 间巯基氧化成硫硫键, 得到化合物 B, 产率; >98%;
[0059] 3、 在氮气保护下, 化合物 B (11.7 g, 70.5 mmol) 溶于干燥过的 THF (150 mL ) 中, 搅拌至完全溶解。 接着冷却到 0°C, 加入氯甲酸乙酯 (15.65 mL, 119.8 mmol) , 然后逐滴加入 Et 3N (22.83 mL, 120.0 mmol) 。 待滴加完毕后, 该体 系在冰水浴条件下继续反应 4 h。 反应结束后, 过滤掉产生的 Et 3N.HCl, 滤液经 旋转浓缩, 最后用乙醚进行多次重结晶, 得到黄色晶体, 即含双硫五元环功能 基团的环状碳酸酯单体 (CDC) , 产率: 64%。
[0060] 实施例二两嵌段侧链含双硫五元环功能基团的聚合物 PEG5k- b-PCDC2.8k的合 成
[0061] 在氮气环境下, 将 0.3 g (1.56 mmol) CDC单体、 2 mL二氯甲烷加入密封反应 器里, 然后加入分子量为 5000的聚乙二醇 0.5 g (0. 1 mmol) 和 1 mL的催化剂 双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40。C油浴中反应 1天后, 用冰乙酸终止反应, 在冰乙醚中沉 淀, 最终经过过滤、 真空干燥得到产物 PEG5k- b-PCDC2.8k。
[0062] Ή NMR (400 MHz, CDC1 3): 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 4.05 (s, -CH 2 OCOCHCH 2-), 4.07 (s, -OCH 2CCH 20-), 4.31 (m, -CCH 2)。
Figure imgf000011_0001
[0063] 式中, m=113.6, n=14.6。
[0064] 实施例三两嵌段侧链含双硫五元环的聚合物 PEG5k-P(CDC2.5k-co-CL3.9k)的合 成
[0065] 在氮气环境下, 0.28 g (1.46 mmol) CDC单体和 0.4 g (3.51 mmol) 的己内酯 ( ε-CL) 溶在 3 mL二氯甲烷中, 加入密封反应器里, 然后加入分子量 5000的聚乙 二醇 0.5 g (0.1 mmol) 和 0.1 mol/L的催化剂双 (双三甲基硅基) 胺锌的二氯甲 烷溶液 (O.l mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40°C油浴中反 应 1天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到 产物 PEG5k-P(CDC2.5k-co-CL3.9k)。 GPC测的分子量: 14.0
kDa, 分子量分布: 1.56。
Figure imgf000011_0002
[0066] 式中, m=113.6, x=34.2, y=13.0, n=47.2。
[0067] 附图 1为上述聚合物的核磁图谱。 Ή NMR (400 MHz, CDC1 3): 1.40 (m, -COCH; CH 2CH 2CH 2CH 2-), 1.65 (m, -COCH 2CH 2CH 2CH 2CH 2-), 2.30 (t, -COCH 2CH 2 CH 2CH 2CH 2-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 4.03 (t, -COCH 2CH 2CH 2CH 2 CH 20-), 4.05 (s, -CH 2OCOCHCH 2-), 4.07 (s, -OCH 2CCH 20-), 4.31 (m, -CCH 2)。
[0068] 实施例四两嵌段侧链含双硫五元环的聚合物 PEG5k-P(CDC3.8k- CO-CL14k)的合 成
[0069] 在氮气环境下, 0.5 g (2.6 mmol) CDC单体和 1.5 g (13.2
mmol) 的己内酯 (ε-CL) 溶在 10 mL二氯甲烷中, 加入密封反应器里, 然后加 入分子量 5000的聚乙二醇 0.5 g (0.1 mmol) 和 1 mL的催化剂双 (双三甲基硅基 ) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器密封好, 转移出手套箱, 放 入 40。C油浴中反应 1天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤 、 真空干燥得到产物 PEG5k-P(CDC3.8k- co-CL14k), GPC测的分子量: 30.6 kDa , 分子量分布: 1.34。
Figure imgf000012_0001
[0070] 式中, m=113.6, x=122.8, y=19.8, n=142。
[0071] 实施例五两嵌段侧链含双硫五元环的聚合物 PEG1.9k-P(CDC3.9k- CO-CL3.8k)的 合成
[0072] 在氮气环境下, 0.4 g (2.1 mmol) CDC单体和 0.4 g (3.51
mmol) 的己内酯 (ε-CL) 溶在 3 mL二氯甲烷中, 加入密封反应器里, 然后加入 分子量 1900的聚乙二醇 0.4 g (0.21 mmol) 和 1 mL的催化剂双 (双三甲基硅基 ) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器密封好, 转移出手套箱, 放 入 40。C油浴中反应 1天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤 、 真空干燥得 SJPEG1.9k-P(CDC3.9k- co-CL3.8k)。 GPC测的分子量: 0.96 kDa, 分子量分布: 1.35。
Figure imgf000012_0002
) " ti -' 、、.'■■ Y
[0073] 式中, m=43.2, x=33.3 , y=20.3, n=53.6。 [0074] 实施例六 侧链含双硫五元环功能基团的均聚物 Alk-PCDC2.8k的合成
[0075] 在氮气环境下, 0.3 g (l.6 mmol) CDC单体溶在 1 mL二氯甲烷中, 加入密封反 应器里, 然后加入精制的丙炔醇 l mmol/L和 l mL的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (0.1
mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40°C油浴中反应 1天后, 用 冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到均聚物 Alk-P CDC2.8k。
[0076] 实施例七侧链含双硫五元环的碳酸酯聚合物 iPr-P(CDC0.8k - CO-CL92k)的合成 [0077] 在氮气环境下, 0.1 g (0.52 mmol) CDC单体和 10 g (87.7 mmol) 的己内酯单 体 (CL) 溶在 10 mL二氯甲烷中的 ε-CL, 加入密封反应器里, 然后加入异丙醇 6 mg (0.1 mmol) 和 lmL的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (0.1 mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40°C油浴中反应 2天后, 用 冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到产物 iPr-P(CD C-co-CL (0.8k-92k)。 GPC测的分子量: 102.3 kDa, 分子量分布: 1.36。
Figure imgf000013_0001
[0078] 式中, x=4.2, y=80.7, n=84.9。
[0079] 实施例八 三嵌段侧链含双硫五元环的聚合物 PEG5k-PCDCl.0k-PCL3.2k的合成 [0080] 在氮气环境下, 0.12 g (1.5 mmol) CDC单体溶在 2 mL二氯甲烷中, 加入密封 反应器里, 然后加入分子量 5000的聚乙二醇 0.5 g (0.31 mmol) 和 lmL的催化 剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器密封好 , 转移出手套箱, 放入 40°C油浴中反应 1天后, 再在手套箱氮气保护下加入己内 酯 (ε-CL) 0.35 g (0.31 mmol) , 继续反应一天后, 用冰乙酸终止反应, 在冰乙 醚中沉淀, 最终经过过滤、 真空干燥得到产物三嵌段聚合物 PEG5k-PCDC1.0k-P CL3.2k。 GPC测的分子量: 10.4 kDa, 分子量分布: 1.45。
[0081] Ή NMR (400 MHz, CDC1 3): 1.40 (m, -COCH 2CH 2CH 2CH 2CH 2-), 1.65 (m,
-COCH 2CH 2CH 2CH 2CH 2-), 2.30 (t, -COCH 2CH 2CH 2CH 2CH 2-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 4.03 (t, -COCH 2CH 2CH 2CH 2CH 20-), 4.05 (s, -CH 2
OCOCHCH 2-), 4.07(s, -OCH 2CCH 20-), 4.31 (m, -CCH 2)。
[0082] 实施例九两嵌段侧链含双硫五元环的 PEG5k-P(CDC3.2k- co-TMBPEC3.5k)的 合成
[0083] 在氮气环境下, 0.4 g (2.1 mmol) CDC单体和 0.4 g (1.2 mmol) 的 2,4,6-三甲 氧基苯甲缩醛季戊四醇碳酸酯单体 (TMBPEC) 溶在 5 mL二氯甲烷中, 加入密封反应器里, 然后加入分子量 5000的聚乙二醇 0.5 g (0.1 mmol) 和 lmL 的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器 密封好, 转移出手套箱, 放入 40°C油浴中反应 1天后, 用冰乙酸终止反应, 在冰 乙醚中沉淀, 最终经过过滤、 真空干燥得到两嵌段聚合物 PEG5k-P(CDC3.2k- CO -TMBPEC3.5k)0 GPC测的分子量: 12.4 kDa, 分子量分布: 1.47。
Figure imgf000014_0001
[0084] 式中, m=113.6, x=16.7 , y=10.2, n=26.9。
[0085] 实施例十三嵌段侧链含双硫五元环功能基团 PEG1.9k-PCL1.8k-PCDC0.7k的合 成
[0086] 在氮气环境下, 0.2 g (1.76 mmol) 己内酯 (ε-CL) 溶在 2 mL二氯甲烷中, 力口 入密封反应器里, 然后加入分子量 1900的聚乙二醇 0.19克 (0.1 mmol) 和 lmL的 催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O.l mol/L) , 接着把反应器密 封好, 转移出手套箱, 放入 40°C油浴中反应 1天后, 再在手套箱氮气保护下加入 CDC单体 80 mg (0.42 mmol) , 继续反应一天后, 用冰乙酸终止反应, 在冰乙醚 中沉淀, 最终经过过滤、 真空干燥得到三嵌段聚合物 PEG1.9k-PCL1.8k-PCDC0.7 k。 GPC测的分子量: 0.64 kDa, 分子量分布: 1.32。
[0087] Ή NMR (400 MHz, CDC1 3): 1.40 (m, -COCH 2CH 2CH 2CH 2CH 2-), 1.65 (m, -COCH 2CH 2CH 2CH 2CH 2-), 2.30 (t, -COCH 2CH 2CH 2CH 2CH 2-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 4.03 (t, -COCH 2CH 2CH 2CH 2CH 20-), 4.05 (s, -CH 2
OCOCHCH 2-), 4.07 (s, -OCH 2CCH 20-), 4.31 (m, -CCH 2)。
[0088] 实施例十一两嵌段侧链含双硫五元环聚合物 PEG5k-P(CDC4.9k- co-TMC19k)的 合成
[0089] 在氮气环境下, 0.1 g (0.52 mmol) CDC单体和 0.4 g (3.85 mmol) 的三亚甲基 碳酸酯 (TMC) 溶在 3
mL二氯甲烷中, 加入密封反应器里, 然后加入分子量 5000的聚乙二醇 0.1 g (0.02 mmol) 和 0.1 mol/L的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (0.1 mol/L) , 接着把反应器密封好, 转移出手套箱, 放入 40°C油浴中反应 1天 后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到两嵌 段聚合物 PEG5k-P(CDC4.9k-co-TMC19.0k)。 GPC测的分子量: 34.5 kDa, 分子量 分布: 1.48。
[0090] Ή NMR (400 MHz, CDC1 3): 2.08 (t, -COCH 2CH 2CH 20-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 3.65 (t, -O CH 2 CH 20-) , 4.28 (t, -COCH 2CH 2CH 20-), 4.31 m, -CCH 2)。
Figure imgf000015_0001
[0091] 式中, m=113.6 , x=25.5 , y=186.3, n=211.8。
[0092] 实施例十二
iRGD多肽修饰的两嵌段侧链含双硫五元环的靶向聚合物 iRGD-PEG6k-P(CDC4.8 k- co-TMC19.2k)的合成
[0093] 聚合物 iRGD-PEG6k-P(CDC4.8k- co-TMC19.2k)的合成分为两步, 第一步合成马 来酰亚胺功能化的聚合物 Mal-PEG6k-P(CDC4.8k- co-TMC19.2k)步骤与实施例十 一相同, 只是将分子量为 5000的 mPEG更换为分子量为 6000Da的 Mal-PEG来弓 |发 聚合。 Ή NMR (400 MHz, CDC1 3): 2.08 (t, -COCH 2CH 2CH 20-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 3.65 (t, -O CH 2 CH 20-) , 4.28 (t, -COCH 2CH 2CH 20-)
4.31 (m, -CCH 2) , 6.70 (s , Mai) 。 GPC测的分子量: 38.6
kDa, 分子量分布: 1.42。
Figure imgf000016_0001
[0094] 式中, m=136.4 , x=24.8 , y=188.4, n=213.2。
[0095] 第二步为多肽 iRGD与上述得到聚合物的迈克尔加成反应。 聚合物 Mal-PEG6k-P (CDC4.8k- co-TMC19.2k)先溶解在 DMF, 用 PB缓冲溶液滴加成纳米粒子, 透析 除去有机溶剂后, 加入两倍摩尔量的 iRGD, 30 °C反应两天, 透析除去未键合上 的游离 iRGD, 冷冻干燥, 得到最终产物 iRGD-PEG6k-P(CDC4.8k- co-TMC19.2k) 。 通过核磁和 BCA蛋白试剂盒计算可知, iRGD接枝率为 92%。
[0096] 实施例十三
cRGD多肽修饰的两嵌段侧链含双硫五元环靶向聚合物 cRGD-PEG6k-P(CDC4.6k- co-TMC18.6k)的合成
[0097] 聚合物 cRGD-PEG6k-P(CDC4.6k- co-TMC18.6k)的合成与实施例十二类似, 分 为两步, 第一步合成 N-羟基琥珀酰亚胺修饰的聚合物 NHS-PEG6k-P(CDC4.6k- co -TMC18.6k)与实施例十一类似, 只是将分子量为 5000 Da的 mPEG更换为分子量 为 6000 Da的 NHS-PEG来弓 |发聚合。 Ή NMR (400 MHz, CDC1 3): 2.08 (t, -COCH 2 CH 2CH 20-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3), 3.65 (t, -O CH 2 CH 2
0-) , 4.28 (t, -COCH 2CH 2CH 20-), 4.31 (m, -CCH 2), 2.3 (s , NHS) ; GPC测 的分子量: 37.6 kDa, 分子量分布: 1.38。
Figure imgf000016_0002
[0098] 式中, m=136.4 , x=24.0 , y=178.8, n=202.8。
[0099] 第二步为多肽 cRGD与得到的上述聚合物通过酰胺化反应键合。 先将上述聚合 物溶解在 DMF中, 加入两倍摩尔量的 cRGD, 30 °C反应两天后, 透析除去未键合 上的游离 cRGD, 冷冻干燥, 得到最终产物 cRGD-PEG6k-P(CDC4.6k- -TMC18.6k) , 通过核磁和 BCA蛋白试剂盒计算可知, cRGD接枝率为 88<¾。
[0100] 实施例十四三嵌段侧链含双硫五元环的聚合物 PEG5k-PLA7.8k-PCDCl.7k的合 成
[0101] 在氮气环境下, 0.45 g (3.13 mmol) 丙交酯 (LA) 溶在 3 mL二氯甲烷中, 力口 入密封反应器里, 然后加入分子量 5000的聚乙二醇 0.25 g (0.05 mmol) 和 1 mL 的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O. l mol/L) , 接着把反应器 密封好, 转移出手套箱, 放入 40°C油浴中反应 1天后, 再在手套箱氮气保护下加 入 CDC单体 lOO mg (0.52 mmol) , 继续反应一天后, 用冰乙酸终止反应, 在冰 乙醚中沉淀, 最终经过过滤、 真空干燥得到三嵌段聚合物 PEG5k-PLA7.8k-PCDC 1.7k。 GPC测的分子量: 16.8 kDa, 分子量分布: 1.47。
[0102] Ή NMR (400 MHz, CDC1 3): 1.59 (m, -COCH ( CH 3) 0-), 3.08 (s, -CCH 2), 3.30 (m, -OCH 3) , 3.65 (m, -O CH 2CH 20-) , 4.07 (s, -O CH 2CCH 20-), 5.07 (m, -CO CH (CH 3)。
Figure imgf000017_0001
[0103] 式中, m=113.6 , x= 122.2 , y=8.9, n=131.1。
[0104] 实施例十五三嵌段侧链含双硫五元环的聚合物 P(CDC- co
-CL)(6.21k)-PEG(0.5k)-P(CDC- co-CL)(6.21k)的合成
[0105] 在氮气环境下, 1.5 g ( 13.2 mmol) ε-CL和 0.0625 g (0.325 mmol) CDC单体溶 在 8 mL二氯甲烷中, 加入密封反应器里, 后加入 0.05 g的 PEG500 (0.01 mmol) 和 l mL的催化剂双 (双三甲基硅基) 胺锌的二氯甲烷溶液 (O. l mol/L) , 反应 一天后, 用冰乙酸终止反应, 在冰乙醚中沉淀, 最终经过过滤、 真空干燥得到 三嵌段聚合物 P(CDC-co-CL)(6.21k)-PEG(0.5k)-P(CDC- co-CL)(6.21k)。 GPC测的 分子量: 14.6 kDa, 分子量分布: 1.38。
[0106] 附图 2为上述聚合物的核磁图谱: Ή NMR (400 MHz, CDC1 3): 1.40 (m, -COCH CH 2CH 2CH 2CH 2-), 1.65 (m, -COCH 2CH 2CH 2CH 2CH 2 2.30 (t, -COCH 2CH CH 2CH 2CH 2-), 3.08 (s, -CCH 2), 4.03 (t, -COCH 2CH 2CH 2CH 2CH 20 4.05 (s, -CH 2OCOCHCH 2-), 4.07 (s, -OCH 2CCH 20 4.31 (m, -CCH 2)。
Figure imgf000018_0001
[0107] 式中, m=11.4 x=6.3 , y=43.9, n=51.2
[0108] 由以上结果可知, 通过对一系列聚合物的表征, CDC的幵环聚合和共聚合是可 控的, 并且其分子量与设计相符合, 聚合物的分子量分布较窄。
[0109] 实施例十六聚合物胶束纳米粒 PEG5k- b-PCDC2.8k的制备
[0110] 采用透析法制备聚合物纳米粒。 200 的 PEG5k- b-PCDC2.8k的 DMF溶液 (2 mg/mL) 滴加到 800 磷酸盐缓冲溶液 (10 mM pH 7.4 PB) 中, 装入透析袋 (MWCO 3500) 中透析过夜, 换五次水, 透析介质为 PB (10 mM pH 7.4) 得到的胶束纳米粒的尺寸由动态光散射粒度分析仪 (DLS) 测定为 173 并且 粒径分布很窄, 见附图 3
[0111] 实施例十七聚合物胶束纳米粒子 PEG5k- b-PCDC2.8k的交联、 解交联、 细胞毒 性
[0112] 将胶束纳米粒水溶液通氮气 20分钟, 将空气赶净, 然后向密闭反应器中的纳米 粒溶液 (l mL 0.25 mg/mL, 3.21x10 5 mmol) 中加入 10 溶解在二次水中的 二硫代苏糖醇 (DTT) (0.007 mg 4.67x10 5 mmol, 硫辛酸官能团摩尔数 10 <¾
) , 密闭室温搅拌反应 1天。 透析 1天后测定粒子的尺寸为 150纳米, 比没交联的 粒径小约 15%。 交联后纳米粒在浓度稀释到 CMC以下后, 其粒径和粒径分布几 乎没有变化; 在生理条件下稳定, 由此可以看出, 双硫交联可以很大程度上提 高纳米粒的稳定性, 见附图 4
[0113] 二硫键可以很容易在还原剂如谷胱甘肽 (GSH) 或 DTT作用下断裂。 在氮气保 护和 37 °C条件下, 将交联纳米粒溶液通氮气 10分钟后, 加入 GSH使其在胶束纳 米粒溶液中的最终浓度为 10 mM。 利用 DLS跟踪纳米粒子解交联粒径的变化情况 , 如附图 5, 加 10 mM还原 GSH后, 交联纳米粒的粒径随着吋间推移逐步被破坏 , 说明聚合物中双硫环在大量还原物质存在下会断裂。 在细胞质中也存在高浓 度的 GSH, 因此制备的纳米药物循环稳定, 但被细胞内吞后能快速解离、 释放 药物。
[0114] 采用 MTT法对交联纳米粒子的细胞毒性进行测试。 使用到的细胞为 MCF-7 (人 乳腺癌细胞) 和 Raw 264.7 (小鼠巨噬细胞) 细胞。 以 1x10 4个 /mL将 HeLa或 Raw 264.7细胞种于 96孔板, 每孔 ΙΟΟ μί, 养至细胞贴壁后, 实验组加入含有不同浓 度的胶束纳米粒的培养液, 另设细胞空白对照孔和培养基空白孔 (平行 4个复孔 ) 。 培养 24小吋后取出 96孔板, 加入 ΜΤΤ (5.0 mg/mL) l0 μL, 继续培养 4小吋 后每孔加入 150 DMSO溶解生成的结晶子, 用酶标仪于 492 nm处测吸光度值 (A) , 以培养基空白孔调零, 计算细胞存活率。
" 膽存酵 ^驅
[0115] 式中 A了为试验组 492 nm处的吸光度, A c为空白对照组 492 nm处的吸光度。 聚 合物浓度分别为 0.1、 0.2、 0.3、 0.4和 0.5 mg/mL。 附图 6为纳米粒的细胞毒性结果 , 图中可看出, 当胶束纳米粒的浓度从 0.1增大到 0.5
mg/mL吋, Raw264.7和 MCF-7细胞的存活率仍高于 85<¾, 说明 PEG5k- b
-PCDC2.8k胶束纳米粒具有良好的生物相容性。
[0116] 实施例十八交联纳米粒 PEG5k- b-PCDC2.8k的载药、 体外释放及细胞毒性 [0117] 以阿霉素 (DOX) 作为药物, 整个操作在避光条件下进行。 首先除去阿霉素的 盐酸盐, 其操作为: 1.2 mg (0.002 mmol) DOX溶解在225 μL的DMSO中, 加三乙 胺 0.58 mL (m = 0.419 mg, 0.004 mmol)
搅拌 12小吋, 吸走上层清液。 DOX的 DMSO溶液浓度为 5.0 mg/mL。 将 PEG5k- b -PCDC2.8k溶解在 DMF中, 将其与 DOX的 DMSO溶液按预定的药物与聚合物质量 比混匀, 搅拌下缓慢向其中加入 4倍于其体积的二次水, 然后在水中透析。
[0118] 载药纳米粒的交联也按实施例十七的交联方法进行。 将 100 交联载 DOX的胶 束纳米粒溶液冷冻干燥, 然后溶解于 3.0 mL DMSO中, 利用荧光分光光谱仪测 试, 结合 DOX的标准曲线计算包封率。
[0119] 载药量 (DLC) 和包封率 (DLE) 根据以下公式计算:
[0120] 载药量 (wt.%) = (药物重量 /聚合物重量) xlOO
[0121] 包封率 (<¾) = (装载药物重量 /药物总投入量) xlOO
[0122] 表 1总结了 PEG5k- b-PCDC2.8k胶束纳米粒对 DOX的装载, 其具有高效装载作 用。
[0123] 表 1交联载阿霉素的聚合物纳米粒子中载药量、 包封率的结果
[]
Figure imgf000020_0001
[0124] DOX的体外释放实验是在 37 °C恒温摇床中震荡 (200 rpm) 进行, 每组各有 二个平行样。 第一组, 交联载 DOX的胶束纳米粒在加入 lO mM GSH模拟细胞内 还原环境PB (10 mM, pH 7.4)中的释放; 第二组, 交联载 DOX的胶束纳米粒在 PB (10 mM, pH 7.4)中的释放; 载药胶束纳米粒浓度为 25 mg/L, 取 0.5 mL放入透析 袋 (MWCO: 12,000-14,000) 中, 每个试管中加入相应的透析溶剂 25 mL, 在预 定的吋间间隔, 取出 5.0 mL透析袋外部介质用作测试, 同吋向试管中补加 5.0 mL 相应介质。 使用 EDINBURGH
FLS920荧光仪测定溶液中药物浓度。 附图 7为 DOX累积释放量与吋间的关系, 从 图中可以看出, 加入模拟肿瘤细胞内 GSH后, 其释放明显要快于没加 GSH的样 本, 说明载药交联胶束纳米粒在 10 mM的 GSH的存在下, 能有效的释放药物。
[0125] 载 DOX的 PEG5k- b
-PCDC2.8k交联纳米粒用 MTT法测试其对小鼠巨噬细胞 Raw264.7、 人乳腺癌细胞 MCF-7等的毒性, 载药未交联胶束纳米粒及游离药物作为对照。 以 Raw264.7细 胞为例, 将 Raw264.7细胞以 ^104个/11^接种于96孔板, 每孔 lOO L, 培养至细 胞贴壁后, 实验组分别加入含有 0.01、 0.1、 1、 5、 10、 50和 100 g/mL的载 DOX 交联纳米粒溶液及游离 DOX的新鲜培养液, 培养箱中培养 48小吋后取出 96孔板 , 加入 MTT (5.0 mg/mL) l0 μL, 继续培养 4 h后每孔加入 150 DMSO溶解生 成的结晶子, 用酶标仪于 492 nm处测其吸光度值 (A) , 以培养基空白孔调零, 计算细胞存活率。
[0126] 附图 8是上述载药的交联胶束纳米粒 PEG5k- b-PCDC2.8k对 Raw264.7和 MCF-7 细胞的毒性; 可以看出, 载 DOX的交联胶束纳米粒对 Raw264.7细胞的半致死浓 度为 4.89 g/mL, 对 MCF-7细胞的半致死浓度为 2.31 g/mL, 所以该载 DOX的交 联纳米粒能有效在细胞内释放药物并杀死癌细胞。
[0127] 实施例十九交联聚合物囊泡纳米粒 PEG5k-P(CDC4.9k- co-TMC19k)的形成、 生 物相容性、 载药交联囊泡对 MCF-7、 U87-MG和 A549细胞的毒性
[0128] 与实施例十六类似, 聚合物 PEG5k-P(CDC4.9k- co-TMC19k)可形成纳米粒, 通 过 TEM和 CLSM等测试可知, 其结构为聚合物囊泡结构, 见附图 9; 由图 9A可知 , DLS测的形成的纳米囊泡为 100
nm左右, 并且粒径分布很窄, 由图 9B可知, TEM测得囊泡为中空结构。 与实施 例十七类似, 得到的囊泡可交联, 并具有还原敏感的解交联的性质, 其对 MCF-7 人乳腺癌细胞、 U87MG人脑胶质瘤细胞和 A549肺癌细胞等的毒性试验按照实施 例十八操作, 当囊泡浓度从 0.3 mg/mL增大到 1.5 mg/mL吋, 孵育 24小吋后 MCF-7、 U87MG和 A549细胞的存活率仍在 SS^-l lO^ , 说明该纳米囊泡具有良 好的生物相容性, 见图 10, cRGD靶向载药交联囊泡对 U87MG人脑胶质瘤的毒性 见图 11, 由图可以看出, 当靶向 cRGD聚合物重量比例从 10%增大到 30%吋, 半 致死率从 3.57 g/mL降低到 1.32 g/mL, 接近或低于自由药物, 相比没有靶向的 载药交联囊泡, 降低了 2.3至 6.4倍。
[0129] DOXflCl的装载采用 pH梯度法, 利用囊泡内外 pH的不同来包裹亲水 DOX。 按 1 0%-30<¾不同比例的药物投料量制备载药交联囊泡, 透析出去未被包裹的自由药 物, 通过 DLS测得交联囊泡的粒径在 105- 124
nm, 粒径分布扔人很窄, 在 0.10-0.15, 对亲水 DOX的包裹效率很高 (63<¾-77<¾
[0130] 实施例二十载药的 PEG5k- b-PCDC2.8k交联纳米粒在小鼠体内的血液循环测定 [0131] 实验选用体重为 18~20克左右, 4~6周齢的 C57BL/6小黑鼠 (中科院上海生命科 学院实验动物中心) , 称重后, 均匀分组, 将载药纳米粒和自由药物通过尾静 脉注射小鼠体内, 其中 DOX药量为 10 mg/kg, 在 0, 0.25,0.5, 1, 2, 4, 8, 12和 24小 吋定点取血约 10 μί, 通过差量法准确称取血液重量, 血液加 100 浓度为 1%的 曲拉通和 500 L DMF萃取 (其中含有 20 mM的 DTT, 1
M的 HC1) 。 离心 (20000转 /分钟, 20分钟) 后, 取上层清液, 通过荧光测得每 个吋间点 DOX的量。
[0132] 图 12为载 DOX交联纳米粒 PEG5k- b-PCDC2.8k在小鼠体内的血液循环图; 横坐 标为吋间点, 纵坐标为每克血液中的 DOX量占总的 DOX注射量 (ID %/g) 。 由 图可知, DOX的循环吋间很短 2小吋已很难检测到 DOX, 而交联纳米粒 24小吋后 仍有 4 ID %/g。 其在小鼠体内的消除半衰期可计算为 4.67小吋, 而 DOX仅为 0.21 小吋, 所以载药交联纳米粒在小鼠体内稳定, 有较长的循环吋间。
[0133] 实施例二十一载药 PEG5k- b-PCDC2.8k交联纳米粒对荷黑色素肿瘤小鼠的生物 分布
[0134] 实验选用体重为 18~20克左右, 4~6周齢的 C57BL/6小黑鼠 (中科院上海生命科 学院实验动物中心) , 称重后, 均匀分组, 在皮下注射 1x10 6个 B16黑色素肿瘤 细胞, 大约两周后, 肿瘤大小为 100~200 mm 3吋, 将载药纳米粒和 DOX通过尾 静脉注射小鼠体内 (DOX药量为 10 mg/kg) , 在 6、 12和 24小吋后处死老鼠, 将 肿瘤及心, 肝, 脾, 肺和肾组织取出, 清洗称重后加入 500 的曲拉通、 通 过匀浆机磨碎, 再加入 900 DMF萃取 (其中含有 20 mM的 DTT, 1 M的 HC1) 。 离心 (20000转 /分钟, 20分钟) 后, 取上层清液, 通过荧光测得每个吋间点 D OX的量。
[0135] 图 13为载 DOX交联纳米粒 PEG5k- b-PCDC2.8k对荷黑色素肿瘤小鼠的生物分布 结果图; 横坐标为组织器官, 纵坐标为每克肿瘤或组织中的 DOX量占总的 DOX 注射量 (ID%/g) 。 载药纳米粒在 6、 12和 24小吋的肿瘤积累量分别为 3.12、 2.93 、 2.52 ID%/g, 相对于 DOX的 1.05、 0.52和 0.29 ID<¾/g来说增加了 3~12倍, 说明 载药交联纳米粒通过 EPR效应在肿瘤部位积累较多且能持续吋间较长。
[0136] 实施例二十二载药 PEG5k- b-PCDC2.8k交联纳米粒对荷黑色素肿瘤小鼠的治疗 实验
[0137] 实验选用体重为 18~20克左右, 4~6周齢的 C57BL/6小黑鼠 (中科院上海生命科 学院实验动物中心) , 称重后, 均匀分组, 在皮下注射 1x 10 6个 B 16黑色素肿瘤 细胞, 大约一周后, 肿瘤大小为 30~50 mm 3吋, 将载药纳米粒和 DOX在 0, 2, 4, 6 和 8天通过尾静脉注射小鼠体内, 其中载药纳米粒子中 DOX的量为 10, 20, 30 mg/kg , DOX药量为 10 mg/kg, 从 0~15天, 每天称量各组小鼠的体重, 通过游标 卡尺准确量取肿瘤体积, 其中肿瘤体积计算方法为: V= (LxWxH) 12 , (其中 L为肿瘤的长度, W为肿瘤的宽度, H为肿瘤的厚度) 。 持续观察小鼠的生存, 直到 46天。
[0138] 图 14为载 DOX的 PEG5k- b-PCDC2.8k交联纳米粒对荷黑色素肿瘤小鼠的治疗 结果图, 其中 A图为抑制肿瘤生长曲线, B图为小鼠体重变化曲线, C图为小鼠 生存曲线。 由图 14中可知, 在 DOX浓度为 30 mg/kg, 载 DOX的纳米粒治疗 16天 后, 肿瘤得到明显抑制, 而 DOX虽然也能抑制肿瘤增长, 但对小鼠的毒副作用 很大。 即使当载药纳米粒中 DOX的浓度为 30 mg/kg吋, 小鼠的体重几乎没有发 生改变, 说明载药纳米粒对小鼠没有毒副作用, 而 DOX组的小鼠体重在 7天吋降 低了 23%, 说明 DOX对小鼠副作用很大。 同样是在 DOX浓度为 30
mg/kg , 载 DOX的纳米粒治疗 46天后的这组老鼠全部存活, 而 DOX治疗 10天吋全 部死亡, 而作为对照的 PBS组的老鼠在 35天吋也全部死亡。 因此, 该载药纳米粒 可有效抑制肿瘤增长, 并对小鼠没有毒副作用, 还可延长荷瘤老鼠的生存吋间
[0139] 实施例二十三载药靶向交联囊泡 cRGD-PEG6k-P(CDC4.6k- co
-TMC18.6k)/PEG5k-P(CDC4.9k- co-TMC19k)的血液循环研究
[0140] 实验选用体重为 18~20克左右, 4~6周齢的 Balb/C裸鼠 (中科院上海生命科学院 实验动物中心) , 称重后, 均匀分组。 囊泡由 cRGD-PEG6k-P(CDC4.6k- co -TMC18.6k)和 PEG5k-P(CDC4.9k- co-TMC19k)按不同比例组成, .细胞实验结果 可知, cRGD比例为 20%吋, 粒径为 100纳米, 粒径分布为 0.10。 靶向效果最好。 将靶向载药囊泡 cRGD20/CLPs, 载药囊泡 CLPs, 作为对照的无交联靶向囊泡 cR GD20/PEG--PTMC和 DOX.HCl通过尾静脉注射小鼠体内 (DOX药量为 10 mg/kg ) , 在 0, 0.25,0.5, 1, 2, 4, 8, 12和 24小吋定点取血约 10 μί, 通过差量法准确计算 血液重量, 再加如 ΙΟΟ μί浓度为 1%的曲拉通和 500 L DMF萃取 (其中含有 20 mM的 DTT, 1 M的 HCl) 。 离心 (20000转 /分钟, 20分钟) 后, 取上层清液, 通 过荧光测得每个吋间点 DOX的量。
[0141] 图 15载 DOX靶向交联囊泡在小鼠体内的血液循环图; 横坐标为吋间, 纵坐标为 每克血液中的 DOX占总的 DOX注射量 (ID <¾/g) 。 由图 15可知, DOX.HC1的循 环吋间很短, 2小吋已很难检测到 DOX, 而交联囊泡在 24小吋后仍有 8 ID %/g。 由计算可知, 靶向载药交联囊泡、 载药交联囊泡和无交联的靶向囊泡在小鼠体 内的消除半衰期分别为 4.49、 4.26和 1.45小吋, 而 DOX,HCl仅为 0.27小吋, 所以 靶向载药交联囊泡在小鼠体内稳定, 有较长的循环吋间。
[0142] 实施例二十四载药靶向交联囊泡 cRGD-PEG6k-P(CDC4.6k- co
-TMC18.6k)/PEG5k-P(CDC4.9k- co-TMC19k)在荷人脑恶性胶质瘤的小鼠的体内 生物分布的研究
[0143] 实验选用体重为 18~20克左右, 4~6周齢的 Balb/C裸鼠 (中科院上海生命科学院 实验动物中心) , 称重后, 均匀分组, 在皮下注射 5x 10 6个 U87MG人脑恶性胶质 瘤细胞, 大约 3~4周后, 肿瘤大小为 100~200 mm 3
曰寸, 将 cRGD20/CLPs、 CLPs和 DOX.HC1通过尾静脉注射小鼠体内 (DOX药量为 10 mg/kg) , 4小吋后处死老鼠, 将肿瘤及心, 肝, 脾, 肺和肾组织取出, 清洗 称重后加入 500 μ <¾的曲拉通通过匀浆机磨碎, 再加入 900 DMF萃取 (其中 含有 20 mM的 DTT, 1 M的 HCl) 。 离心 (20000转 /分钟, 20分钟) 后, 取上层清 液, 通过荧光测得每个吋间点 DOX的量。
[0144] 图 16载 DOX靶向交联囊泡在荷人脑恶性胶质瘤小鼠体内生物分布图; 横坐标为 组织器官, 纵坐标为每克肿瘤或组织中的 DOX占总的 DOX注射量 (ID%/g) 。 由图可知, cRGD20/CLPs、 CLPs和 DOX,HCl注射 4小吋后, 在肿瘤积累的 DOX 量分别为 6.78、 2.15和 0.82 ID%/g , cRGD20/CLPs是 CLPs和 DOX.HCl的 3和 9倍, 说明载药靶向交联囊泡通过主动靶向在肿瘤部位积累较多。
[0145] 实施例二十五载药靶向交联囊泡 cRGD-PEG6k-P(CDC4.6k- co
-TMC18.6k)/PEG5k-P(CDC4.9k- co-TMC19k)在治疗荷人脑恶性胶质瘤的小鼠中 的应用
[0146] 实验选用体重为 18~20克左右, 4~6周齢的 Balb/C裸鼠 (中科院上海生命科学院 实验动物中心) , 称重后, 均匀分组, 在皮下注射 5x 10 6个 U87MG人脑恶性胶质 瘤细胞, 大约两周后, 肿瘤大小为 30~50 mm 3吋, 将 cRGD20/CLPs、 CLPs、 无 交联的靶向纳米囊泡 (CRGD20/PEG— PTMC) 、 DOX.HC1以及 PBS分别在 0、 4、 8和 12天通过尾静脉注射小鼠体内 (DOX药量为 10 mg/kg) 。 从 0~18天, 每两天 称量小鼠的体重, 通过游标卡尺准确测量肿瘤体积, 其中肿瘤体积计算方法为 : V= (LxWxH) /2, (其中 L为肿瘤的长度, W为肿瘤的宽度, H为肿瘤的厚度 ) 。 持续观察小鼠的生存, 直到 45天。
[0147] 图 17为载 DOX靶向交联囊泡 cRGD-PEG6k-P(CDC4.6k- co-TMC 18.6k)
/PEG5k-P(CDC4.9k- co-TMC 19k)在荷人脑恶性胶质瘤小鼠的治疗效果, 其中 A 图为抑制肿瘤生长曲线, B图为小鼠体重变化曲线, C图为小鼠生存曲线; 由图 1 7中可知, cRGD20/CLPs治疗组 18天吋, 肿瘤得到明显抑制, 而 CLPs或
CRGD20/PEG- b-PTMC治疗的肿瘤都有一定的增长。 DOX.HCl虽然也能抑制肿瘤 的增长, 但 DOX.HC1组的小鼠体重在 12天吋降低了 21%, 说明其对小鼠的毒副作 用很大。 相比之下 cRGD20/CLPs、 CLPs或 cRGD20/PEG- b-PTMC组别的小鼠体 重几乎没有发生改变, 说明载药纳米粒子对小鼠没有毒副作用。 cRGD20/CLPs 治疗组在 45天后全部存活, DOX.HC1组老鼠在 13天吋已全部死亡, 生理盐水组 老鼠在 28天吋也全部死亡。 因此, 载药靶向交联囊泡可有效抑制肿瘤的增长, 并对小鼠没有毒副作用, 还可以延长荷瘤老鼠的生存吋间。
[0148] 实施例二十六载药靶向交联囊泡 iRGD-PEG6k-P(CDC4.8k- co
-TMC19.2k)/PEG5k-P(CDC4.9k- co-TMC 19k)对荷黑色素瘤小鼠的治疗实验
[0149] 囊泡由 iRGD-PEG6k-P(CDC4.8k- co-TMC19.2k)和 PEG5k-P(CDC4.9k- co
-TMC19k)按不同比例混合而成。 在 iRGD (internalizing
RGD) 聚合物含量为 0、 25%、 50%和 100%吋得到囊泡的粒径分别为 110纳米左 右, 粒径分布为 0.12。 iRGD分子既有靶向肿瘤细胞又有介导穿透肿瘤细胞及组 织的作用, 加入一定量的游离 iRGD分子也会增加纳米粒子穿透肿瘤组织。 DOX- HC1的装载通过 pH梯度法得到, 一般效率为 60-80%。 [0150] 实验选用体重为 18~20克左右, 4~6周齢的 C57BL/6小黑鼠 (中科院上海生命科 学院实验动物中心) , 称重后, 均匀分组, 在皮下注射 1x 10 6个 B 16黑色素肿瘤 细胞, 大约一周后, 肿瘤大小为 30~50 mm 3吋, 将含有 0、 25% ^ 50%和 100% 的 iRGD聚合物载药交联囊泡、 DOX.HC1以及 PBS在 0、 3、 6、 9和 12天分别通过 尾静脉注射荷黑色素瘤小鼠体内 (DOX,HCl药量为 lO mg/kg) 。 从 0~20天, 每天 称量小鼠的体重, 通过游标卡尺准确测量肿瘤体积, 其中肿瘤体积计算方法为 : V= (LxWxH) /2, (其中 L为肿瘤的长度, W为肿瘤的宽度, H为肿瘤的厚度 ) 。 持续观察小鼠的生存, 直到 46天。
[0151] 图 18为载 DOX靶向囊泡 iRGD-PEG6k-P(CDC4.8k- co
-TMC19.2k)/PEG5k-P(CDC4.9k- co-TMC19k)对荷黑色素瘤小鼠的治疗实验, 其 中 A图为抑制肿瘤生长曲线, B图为小鼠体重变化曲线, C图为小鼠生存曲线。 由图 18中可知, 当 iRGD比例为 50%吋, iRGD50/CLPs治疗组经过 20天治疗后, 肿瘤增长得到明显抑制, 而 iRGD比例太高或太低都会影响纳米粒在肿瘤组织的 摄取。 同样地, D0X,HC1虽然也能抑制肿瘤的增长, 但对小鼠的毒副作用很大 , 小鼠体重在 8天吋降低了 20%。 所有比例的 iRGD载药交联囊泡各组中小鼠的体 重几乎没有发生改变, 说明其对小鼠没有毒副作用。 iRGD50/CLPs组在治疗 43天 后, 老鼠仍然全部存活, 而 DOX.HC1组由于毒性大在 10天吋已全部死亡, 而 PBS 组老鼠在 29天吋也全部死亡。 所以, 靶向载药交联囊泡可有效抑制肿瘤的增长 , 并对小鼠没有毒副作用, 还可以延长荷瘤老鼠的生存吋间。
[0152] 实施例二十七载药靶向交联囊泡 cNGQ-PEG6k-P(CDC4.8k- co
-TMC19.2k)/PEG5k-P(CDC4.9k- co-TMC19k)的体内血液循环、 在荷肺癌小鼠的 生物分布及肿瘤抑制实验
[0153] 聚合物 cNGQ-PEG6k-P(CDC4.8k- co-TMC19.2k)的合成与实施例十三类似, 即 先合成 NHS- PEG6k-P(CDC4.8k- co-TMC19.2k), 然后靶向分子 cNGQ酰胺化反应 键合上聚合物 PEG末端, 通过 BCA试剂盒检测可知, cNGQ的接枝率为 87%。 囊 泡由 cNGQ-PEG6k-P(CDC4.8k- co-TMC19.2k)/PEG5k-P(CDC4.9k- co-TMC19k)按 不同比例混合而成。 DOX.HCl的装载通过 pH梯度法得到, 一般效率为 60-80%。 体外细胞实验结果可知, cNGQ比例为 20%吋, 靶向效果最好, 得到的载药靶向 交联囊泡 (cNGQ20/CLPs) 在裸鼠体内血液循环的半衰期为 4.78小吋。 与实施例 二十四一致, 在裸鼠皮下建立肺癌 A549肿瘤模型, 通过尾静脉注射近红外分子 修饰的 cNGQ20/CLPs, 小动物活体成像实验可知, cNGQ20/CLPs可在肿瘤部位 很快积累, 并且在 48小吋后肿瘤部位荧光仍然很强。 生物分布结果可知, cNGQ 20/CLPs在 8小吋后在肿瘤部位的积累达到 9 ID%/g, 高于作为对照的血管靶向交 联纳米粒子 (cRGD20/CLPs) 、 无靶向交联纳米粒子 (CLPs) 和 DOX,HCl, 并 且高于其他脏器, 见图 19载 DOX靶向交联囊泡在荷肺癌小鼠体内生物分布图。
[0154] 通过用与实施例二十五类似方法皮下注射建立了 A549肺癌肿瘤模型, 和带有生 物发光的 A549肺癌原位肿瘤模型, 后者可以利用活体成像仪监测生物发光进而 监测肿瘤生长的情况。 通过在 0、 4、 8和 12天尾静脉注射给药, 活体成像仪监测 的生物发光表现了 cNGQ20/CLPs治疗组老鼠肺部的荧光显著减弱, 说明它能很 好的靶向到肺癌, 并有效抑制肿瘤的增长。
[0155] 实施例二十八载 DOXPEG5k-PLGA7.8k-PCDCl.7k表面修饰纳米金棒及 NIR触 发的药物释放
[0156] 三嵌段聚合物 PEG5k-PLGA7.8k-PCDCl.7k纳米粒修饰的纳米金棒的制备: 在 剧烈搅拌下, 溶解在 DMSO中的聚合物溶液 (2 mL, 5mg/mL) 滴加到纳米金棒 的分散液中 (5 mL, O.lmg/mL) 搅拌 4小吋, 离心两次除去没有接上去的聚合 物, 再次分散在磷酸缓冲溶液中, 通过 TGA来检测修饰上金棒的聚合物产率, 通过与单独的聚合物相比, 聚合物修饰的金棒的产率为 80% (理论按百分之一百 投料) 。
[0157] 聚合物修饰的纳米金棒的载药: 在上述得到的聚合物修饰的纳米金棒溶液中, 逐滴滴加 10%, 20% , 30%的溶解在 DMSO中的 DOX, 搅拌半小吋之后在室温下 孵育 12 h, 并通过透析 12小吋除去游离的小分子药物, 透析介质为 pH为 7.4的磷 酸缓冲溶液, 之后通过荧光检测其对 DOX的包裹效率为 70~90%, 由此可知, 聚 合物修饰的纳米金棒可以高效的包裹小分子疏水药物, 附图 20为
PEG5k-PLGA7.8k-PCDCl.7k表面修饰的纳米金棒的 TEM图; 可知, TEM测得金 棒长度约为 60纳米, 分布均一。
[0158] NIR触发的聚合物修饰的纳米金棒的 DOX释放: 聚合物修饰的纳米金棒分散在 10 mL磷酸缓冲溶液中, 隔一小吋用强度为 0.2 W/cm 2, 波长为 808 nm的红外光 照射 5 min, 在特定的吋间间隔内取 500 溶液出来, 离心, 测上清液的荧光, 由此分析释放出来的 DOX含量。 通过荧光检测可知, 光照过后的聚合物修饰的 纳米金棒的药物释放为 92%, 远远快于没有光照的对照组 (释放仅为 18%) , 由 此可知, 此类聚合物修饰的纳米金棒材料可应用于近红外触发的药物释放。
[0159] 实施例二十九聚合物 PEGl.9k-PCDC0.8k用于修饰等离子共振仪 (SPR) 传感 器表面
[0160] 预先用王水处理 SPR传感器上的金表面, 后用乙醇洗净烘干后, 随即加入到溶 解有的三嵌段聚合物 PEG1.9k-PCDC0.8k (l mL, 5 mg/mL) 的 THF中。 在缓慢 震荡下反应 24小吋后, 取出传感器片, 洗涤三次, 用 XPS、 椭偏仪和 SPR检测修 饰在传感器金片上的 PEG1.9k的表面密度为 20 nmol/cm 用聚合物修饰之后的 传感器芯片与传统芯片相比, 能减少非特异性吸附, 提高测量稳定性等优点, 可在生物医药等方面有广泛的应用。
[0161] 实施例三十聚合物 P(CDC0.8k- co-CL92k)交联后作为生物可降解支架材料 [0162] 将聚合物 P(CDC0.8k - co-CL92k)溶于三氯甲烷 (40 mg/mL) , 在 lxl cm 2的玻 璃片上成膜 (支架材料) , 在真空干燥箱干燥 48小吋完全除去溶剂, 40 °C热风 枪加热 10分钟使得硫硫五元环加热交联, 之后在生理盐水里浸泡二星期, 发现 玻璃片上的仍然完好无损, 而作为对照组的 PCL膜片则已脱落, 见附图 21, 聚合 物 PCL和 P(CDC0.8k- co-CL92k)成膜后在生理盐水浸泡两星期后的照片图; 由此 可知, 侧链含硫五元环功能基团的聚合物可增强其支架材料的稳定性, 可作为 生物支架材料的应用。

Claims

权利要求书
[权利要求 1] 一种侧链含双硫五元环功能基团的碳酸酯聚合物, 其含有含双硫五元 环功能基团的环碳酸酯单体单元, 其特征在于: 所述侧链含双硫五元 环功能基团的碳酸酯聚合物的化学结构式为以下结构式中的一种:
Figure imgf000029_0001
其中, Rl选自以下基团中的一种:
Figure imgf000029_0002
式中 k = 20-250, R4选自以下基团中的一种:
Ο復
Figure imgf000030_0001
R2选自以下基团中的一种:
- '、
H∑ ■ 、 I
Figure imgf000030_0002
R3选自以下基团中的一种:
Figure imgf000030_0003
, 式中 a = 2、 3或者 4; b = 20-250;
所述侧链含双硫五元环功能基团的碳酸酯聚合物的分子量为 800〜100 000 Da。
[权利要求 2] 根据权利要求 1所述侧链含双硫五元环功能基团的碳酸酯聚合物, 其 特征在于: 所述侧链含双硫五元环功能基团的碳酸酯聚合物分子链上 含有双硫五元环功能基团的环碳酸酯单体的单元数为 4〜50。
[权利要求 3] 权利要求 1或者 2所述侧链含双硫五元环功能基团的碳酸酯聚合物在制 备药物控制释放载体中的应用; 所述侧链含双硫五元环功能基团的碳 酸酯聚合物的分子量为 3000〜70000 Da。
[权利要求 4] 权利要求 1或者 2所述侧链含双硫五元环功能基团的碳酸酯聚合物在制 备生物组织工程支架材料中的应用; 所述侧链含双硫五元环功能基团 的碳酸酯聚合物的分子量为 5000〜 100000 Da。
[权利要求 5] 权利要求 1或者 2所述侧链含双硫五元环功能基团的碳酸酯聚合物在制 备生物芯片涂层中的应用; 所述侧链含双硫五元环功能基团的碳酸酯 聚合物的分子量为 800〜 10000 Da。
PCT/CN2015/080000 2014-05-28 2015-05-27 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用 WO2015180656A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/314,296 US10072122B2 (en) 2014-05-28 2015-05-27 Carbonate polymer containing a functional group of disulfide five-membered ring in the side chain and application thereof
ES15799082T ES2856406T3 (es) 2014-05-28 2015-05-27 Polímero de carbonato con un grupo funcional de anillo disulfuro de cinco miembros en la cadena lateral y su aplicación
CA2950458A CA2950458C (en) 2014-05-28 2015-05-27 Carbonate polymer containing a functional group of disulfide five-membered ring in the side chain and application thereof
JP2017514771A JP6246421B2 (ja) 2014-05-28 2015-05-27 側鎖にジチオ五員環官能基を有するカーボネートポリマー及びその応用
EP15799082.1A EP3150651B1 (en) 2014-05-28 2015-05-27 Carbonate polymer with disulfur five-membered ring functional group on side chain and application thereof
KR1020167036422A KR101890213B1 (ko) 2014-05-28 2015-05-27 측쇄에 이황화물 오원환 작용기를 함유한 카보네이트 중합체 및 그 응용
AU2015266506A AU2015266506B2 (en) 2014-05-28 2015-05-27 Carbonate polymer with disulfur five-membered ring functional group on side chain and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410231049.8A CN104031248B (zh) 2014-05-28 2014-05-28 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用
CN201410231049.8 2014-05-28

Publications (1)

Publication Number Publication Date
WO2015180656A1 true WO2015180656A1 (zh) 2015-12-03

Family

ID=51462258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/080000 WO2015180656A1 (zh) 2014-05-28 2015-05-27 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用

Country Status (9)

Country Link
US (1) US10072122B2 (zh)
EP (1) EP3150651B1 (zh)
JP (1) JP6246421B2 (zh)
KR (1) KR101890213B1 (zh)
CN (2) CN104031248B (zh)
AU (1) AU2015266506B2 (zh)
CA (1) CA2950458C (zh)
ES (1) ES2856406T3 (zh)
WO (1) WO2015180656A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097707A (ko) * 2015-12-22 2018-08-31 브라이트제네 바이오-메디컬 테크놀로지 코., 엘티디. 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용
EP3421519A4 (en) * 2016-03-04 2019-03-13 Bright Gene Bio-Medical Technology Co., Ltd. BIODEGRADABLE AMPHIPHIL POLYMER SPECIFICALLY TREATED ON EGGSKIRTS, POLYMERIC VARIETY PRODUCED THEREFROM AND USE THEREOF

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104031248B (zh) 2014-05-28 2016-09-07 博瑞生物医药(苏州)股份有限公司 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用
CN104004001B (zh) 2014-05-28 2016-03-30 苏州大学 含双硫五元环功能基团的环状碳酸酯单体及其制备方法
CN105542141B (zh) * 2015-02-13 2018-01-19 苏州大学 一种侧链含双碘功能基团的生物可降解共聚物及其应用
US10633487B2 (en) 2016-02-12 2020-04-28 Sabic Global Technologies B.V. Inherently healing polycarbonate resins
CN108542885B (zh) * 2016-07-15 2020-08-14 苏州大学 抗肿瘤药物及其制备方法
CN106905292B (zh) * 2017-01-20 2019-01-29 华东理工大学 一种制备杂环碳酸酯的方法
CN107281141B (zh) * 2017-06-26 2021-03-02 苏州大学 生物可降解交联纳米药物冻干粉的制备方法
US11192646B2 (en) * 2018-10-03 2021-12-07 Sarcos Corp. Anchored aerial countermeasures for rapid deployment and neutralizing of target aerial vehicles
CN114085368B (zh) * 2021-12-01 2023-08-11 万华化学集团股份有限公司 一种聚碳酸酯及其制备方法、应用
CN115850135B (zh) * 2022-04-29 2023-11-21 喻国灿 含硫Janus型可离子化脂质体及其用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501905A (en) * 1981-01-30 1985-02-26 Bayer Aktiengesellschaft Cyclic carbonic acid derivatives
US4754017A (en) * 1986-03-07 1988-06-28 Bayer Aktiengesellschaft Process for the preparation of linear aliphatic polycarbonate from cyclic aliphatic carbonate
JPH09194565A (ja) * 1996-01-24 1997-07-29 Sumitomo Bakelite Co Ltd 環状カーボナート樹脂組成物及びその硬化物
CN101239966A (zh) * 2007-06-21 2008-08-13 中国科学院长春应用化学研究所 含有肉桂酰氧基的环状脂肪族碳酸酯及其聚合物的制备方法
CN101891732A (zh) * 2009-04-30 2010-11-24 国际商业机器公司 环状碳酸酯单体及其制备方法
US20140058058A1 (en) * 2011-02-25 2014-02-27 University Of Massachusetts Medical School Monomers and polymers for functional polycarbonates and poly(ester-carbonates) and peg-co-polycarbonate hydrogels
CN104031248A (zh) * 2014-05-28 2014-09-10 苏州大学 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPN980796A0 (en) * 1996-05-13 1996-06-06 Australian Membrane And Biotechnology Research Institute Improved reservoir components
US8012539B2 (en) 2008-05-09 2011-09-06 Kraton Polymers U.S. Llc Method for making sulfonated block copolymers, method for making membranes from such block copolymers and membrane structures
JP5746629B2 (ja) * 2008-10-10 2015-07-08 ポリアクティヴァ・プロプライエタリー・リミテッド 生分解性ポリマー−生物活性部分の複合体
CN102090392B (zh) * 2011-01-14 2013-06-12 浙江大学 一种季胺化的可降解抗菌剂的制备方法
DK2920196T3 (da) * 2012-11-15 2021-06-14 Univ Brandeis Binding af cysteinrester under anvendelse af cykliske disulfider
CN104004001B (zh) 2014-05-28 2016-03-30 苏州大学 含双硫五元环功能基团的环状碳酸酯单体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4501905A (en) * 1981-01-30 1985-02-26 Bayer Aktiengesellschaft Cyclic carbonic acid derivatives
US4754017A (en) * 1986-03-07 1988-06-28 Bayer Aktiengesellschaft Process for the preparation of linear aliphatic polycarbonate from cyclic aliphatic carbonate
JPH09194565A (ja) * 1996-01-24 1997-07-29 Sumitomo Bakelite Co Ltd 環状カーボナート樹脂組成物及びその硬化物
CN101239966A (zh) * 2007-06-21 2008-08-13 中国科学院长春应用化学研究所 含有肉桂酰氧基的环状脂肪族碳酸酯及其聚合物的制备方法
CN101891732A (zh) * 2009-04-30 2010-11-24 国际商业机器公司 环状碳酸酯单体及其制备方法
US20140058058A1 (en) * 2011-02-25 2014-02-27 University Of Massachusetts Medical School Monomers and polymers for functional polycarbonates and poly(ester-carbonates) and peg-co-polycarbonate hydrogels
CN104031248A (zh) * 2014-05-28 2014-09-10 苏州大学 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3150651A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180097707A (ko) * 2015-12-22 2018-08-31 브라이트제네 바이오-메디컬 테크놀로지 코., 엘티디. 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용
EP3392289A4 (en) * 2015-12-22 2018-11-21 Bright Gene Bio-Medical Technology Co., Ltd. Biodegradable amphiphilic polymer, polymer vesicle prepared therefrom and use in preparing target therapeutic medicine for lung cancer
AU2016374669B2 (en) * 2015-12-22 2019-06-20 Brightgene Bio-Medical Technology Co., Ltd. Biodegradable amphiphilic polymer, polymer vesicle prepared therefrom and use in preparing target therapeutic medicine for lung cancer
KR102144749B1 (ko) * 2015-12-22 2020-08-18 브라이트제네 바이오-메디컬 테크놀로지 코., 엘티디. 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용
EP3421519A4 (en) * 2016-03-04 2019-03-13 Bright Gene Bio-Medical Technology Co., Ltd. BIODEGRADABLE AMPHIPHIL POLYMER SPECIFICALLY TREATED ON EGGSKIRTS, POLYMERIC VARIETY PRODUCED THEREFROM AND USE THEREOF
JP2019507190A (ja) * 2016-03-04 2019-03-14 博瑞生物医薬(蘇州)股▲フン▼有限公司. 卵巣癌用の特異的に標的化された生分解性両親媒性ポリマー、それから製造されたポリマーベシクル及びその使用

Also Published As

Publication number Publication date
CA2950458C (en) 2019-01-15
US20170190834A1 (en) 2017-07-06
CN105535983B (zh) 2018-04-24
JP6246421B2 (ja) 2017-12-13
EP3150651B1 (en) 2021-01-06
AU2015266506A1 (en) 2016-12-22
AU2015266506B2 (en) 2017-08-03
KR20170012424A (ko) 2017-02-02
CN105535983A (zh) 2016-05-04
CA2950458A1 (en) 2015-12-03
EP3150651A1 (en) 2017-04-05
CN104031248B (zh) 2016-09-07
KR101890213B1 (ko) 2018-08-21
ES2856406T3 (es) 2021-09-27
JP2017517622A (ja) 2017-06-29
EP3150651A4 (en) 2018-01-10
CN104031248A (zh) 2014-09-10
US10072122B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
WO2015180656A1 (zh) 侧链含双硫五元环功能基团的碳酸酯聚合物及其应用
KR102144749B1 (ko) 생분해성 양친매성 폴리머, 그것에 의해 제조되는 폴리머 베시클, 및 폐암표적 치료제의 제조에 있어서의 사용
JP6677914B2 (ja) 卵巣癌用の特異的に標的化された生分解性両親媒性ポリマー、それから製造されたポリマーベシクル及びその使用
CN104116710A (zh) 靶向肿瘤的pH敏感聚合物胶束组合物
CN107266384B (zh) 基于2-氨基十六烷酸的n-羧基内酸酐单体和聚氨基酸及其制备方法
JP6296381B2 (ja) 二硫黄5員環官能基含有環状カーボネートモノマー及びその調製方法
CN108997575B (zh) 聚乙二醇-b-聚酪氨酸-硫辛酸共聚物、聚多肽胶束及其制备方法与应用
CN105770900B (zh) 侧链含双硫五元环功能基团的碳酸酯聚合物的应用
US10336720B2 (en) Cyclic carbonate monomer containing double iodine, biodegradable polymer prepared thereby and use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15799082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2950458

Country of ref document: CA

Ref document number: 2017514771

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15314296

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015799082

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015799082

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015266506

Country of ref document: AU

Date of ref document: 20150527

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020167036422

Country of ref document: KR