WO2015180511A1 - 接触器驱动电路 - Google Patents

接触器驱动电路 Download PDF

Info

Publication number
WO2015180511A1
WO2015180511A1 PCT/CN2015/072569 CN2015072569W WO2015180511A1 WO 2015180511 A1 WO2015180511 A1 WO 2015180511A1 CN 2015072569 W CN2015072569 W CN 2015072569W WO 2015180511 A1 WO2015180511 A1 WO 2015180511A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
processor
driving
switching unit
contact
Prior art date
Application number
PCT/CN2015/072569
Other languages
English (en)
French (fr)
Inventor
黄伯宁
杨靖
张鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15767072.0A priority Critical patent/EP2993680B1/en
Priority to ES15767072T priority patent/ES2711304T3/es
Priority to BR112016027598-5A priority patent/BR112016027598B1/pt
Priority to US14/956,881 priority patent/US20160104592A1/en
Publication of WO2015180511A1 publication Critical patent/WO2015180511A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/002Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/226Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil for bistable relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H2047/009Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current with self learning features, e.g. measuring the attracting current for a relay and memorising it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H51/00Electromagnetic relays
    • H01H51/22Polarised relays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/16Indicators for switching condition, e.g. "on" or "off"
    • H01H9/167Circuits for remote indication

Definitions

  • the present invention relates to the field of driving, and in particular to a contactor driving circuit.
  • Contactors are often used as a weak current device to control other high voltage devices.
  • Contactors include normally closed contactors, bistable contactors, and the like.
  • the normally closed contactor is normally closed, and after the normally closed contactor is changed from the closed state to the open state, the external state is required to maintain the disconnected state.
  • the bistable contactor the bistable contactor can work both normally open and normally closed, and maintains the normally open state or the normally closed state without externally providing electrical energy.
  • a contactor drive circuit for driving a normally closed contactor cannot normally drive a bistable contactor, and a bistable contactor is driven.
  • the contactor drive circuit typically cannot drive a normally closed contactor.
  • a contactor drive circuit is provided that is capable of driving a bistable contactor and a normally closed contactor.
  • a contactor driving circuit for driving a bistable contactor or a normally closed contactor, the contactor driving circuit comprising a power supply, a processor, a line connection control unit, a first driving end, and a second driving end, the first driving end and the second driving end are for driving the bistable contactor or a normally closed contactor, and the processor is electrically connected to the line control unit when When the contactor is connected between the first driving end and the second driving end, the processor determines the connection between the first driving end and the second driving end according to the magnitude of the current flowing through the contactor Type of the contactor, and controlling the line connection control unit according to the judgment result to electrically connect the first driving end to the a positive pole of the power source, and controlling the second driving end to be electrically connected to a negative pole of the power source; or controlling the line connection control unit to connect the second driving end to a positive pole of the power source, and controlling the first A drive end is coupled to the negative terminal of the power source.
  • the contactor driving circuit further includes a first switching unit and a second switching unit, the first switching unit and the second switching unit are electrically connected to the processor, and the processing Controlling that the second switching unit is turned on, the first switching unit is turned off to control the second driving end to be electrically connected to a negative pole of the power source; or the processor controls the first switching unit And the second switch unit is disconnected to control the first driving end to connect the negative pole of the power source.
  • the line connection control unit is a relay
  • the relay includes a first normally closed contact, a second normally closed contact, a first normally open contact, and a first a second normally open contact, a first common contact, a second common contact, and a coil, wherein the first normally closed contact and the second normally open contact are connected to a positive pole of the power source, the first normally open The contact is connected to the negative pole of the power source through the first switch unit, the second normally closed contact is connected to the negative pole of the power source through the second switch unit, and the first common contact is connected to the first drive end
  • the second common contact is connected to the second driving end, one end of the coil is electrically connected to the processor, and the other end of the coil is grounded, when the first driving end and the second driving end are
  • the processor determines the type of the contactor connected between the first driving end and the second driving end according to the magnitude of the current flowing through the contactor, and controls the first according to the judgment result.
  • a common contact electrically connecting the first normally closed contact and the second
  • the common contact electrically connects the second normally closed contact to electrically connect the first driving end to the positive pole of the power source, or to control the first common contact to electrically connect the first normally open contact and
  • Two common contacts electrically connect the second normally open contacts to electrically connect the second drive end to the positive pole of the power source.
  • the bistable contactor includes an auxiliary contact indicating a current operating state of the bistable contactor, the processor controlling according to a current operating state of the bistable contactor
  • the first common contact electrically connects the first normally closed contact and the second common contact to electrically connect the second normally closed contact, and controls the second switching unit to be turned on, and the first switching unit is turned off Controlling the bistable contactor to switch from the first working body to the second working state; when the processor controls the first common contact electrical connection according to the current working state of the bistable contactor
  • the first normally open contact and the second common touch When the second normally open contact is electrically connected, and the first switching unit is controlled to be turned on and the second switching unit is turned off, thereby controlling the bistable contactor to be switched from the second working body to the second working body A working state.
  • the processor controls the signal of the first switching unit to be a first control signal, when the first control signal is controlled
  • a start time of the first control signal is a first start time
  • an end time of the first control signal is a first end time
  • the processor controls a signal of the relay a third control signal, when the third control signal controls the first male contact to electrically connect the first normally open contact and the second common contact to electrically connect the signal of the second normally open contact
  • the start time of the third control signal is a second start time
  • the end time of the third control signal is a second end time
  • the first start time lags the second start time by a first time interval
  • the second end time lags the first end time by a second time interval.
  • the first time interval is equal to the second time interval.
  • the first time interval and the second time interval are 200 ms.
  • a seventh possible implementation manner when the processor determines the first driving end and the second When the type of the contactor connected between the driving ends is a normally closed contactor, the processor controls the first common contact to electrically connect the first normally closed contact and the second common contact to electrically connect the second When the contact is normally closed, and the second switching unit is controlled to be turned on, the first switching unit is turned off, so that the second driving end is connected to the negative pole of the power source to drive the normally closed contactor; Or controlling the first common contact to electrically connect the first normally open contact and the second common contact to electrically connect the second normally open contact, and controlling the first switching unit to be turned on, the second switching unit Disconnecting to connect the first driving end to the negative pole of the power source to drive the normally closed contactor.
  • the processor controls a signal of the first switching unit to be a first control signal, and when the first control signal controls the first When the switch unit is turned on, the start time of the first control signal is a third start time; the processor controls the signal of the relay to be a third control signal, and when the third control signal controls the first common contact Electrically connecting the first normally open contact and the second common contact to electrically connect the second normally open contact
  • the start time of the third control signal is a fourth start time, and the third start time lags the fourth start time by a third time interval.
  • the third time interval is 200 ms.
  • the contactor driving circuit further includes a first resistor and a first sampling circuit, One end of the first resistor is connected to the negative pole of the power source, the other end is connected to one end of the first sampling circuit, the other end of the sampling circuit is connected to the processor, and the node between the first resistor and the first sampling circuit is connected to the anode of the power source,
  • a first sampling circuit detects a magnitude of a current value flowing through the first resistor and transmits a magnitude of a current value detected to flow through the first resistor to the processor, the processor according to flowing through the The magnitude of the current value of the first resistor determines whether the contactor currently driven by the contactor drive circuit is a normally closed contactor or a bistable contactor.
  • the first switching unit includes a first control end, a first conductive end, and a second conductive
  • the first control terminal is connected to the processor, and controls the first conductive terminal and the second conductive terminal to be turned on or off under the control of the processor to implement the guiding of the first switching unit.
  • the first conductive end is connected to the first normally open contact, and the second conductive end is connected to a negative pole of the power source.
  • the contactor driving circuit further includes a first voltage regulator and a second voltage regulator, and the anode of the first voltage regulator is connected. a node between the first normally open contact and the first conductive end, a positive pole of the first Zener diode is connected to a positive pole of the second Zener diode, and a negative pole of the second Zener diode Connect the negative pole of the power supply.
  • the first switching unit is an N-channel field effect transistor
  • the first control end is A gate of the N-channel field effect transistor
  • the first conductive terminal is a drain of the N-channel field effect transistor
  • the second conductive terminal is a source of the N-channel field effect transistor.
  • the second switching unit includes a second control terminal, a third conductive terminal, and a fourth conductive terminal
  • the second control terminal is connected to the processor, and controls the third conductive terminal and the fourth conductive terminal to be turned on or off under the control of the processor to implement the guiding of the second switching unit. Pass or disconnect, the third conductive end
  • the second normally closed contact is connected, and the fourth conductive end is connected to a negative pole of the power source.
  • the contactor driving circuit further includes a third voltage regulator and a fourth voltage regulator, and the cathode of the third voltage regulator Connecting a node between the second normally closed contact and the third conductive end, a positive pole of the third voltage regulator tube is connected to a positive pole of the fourth voltage regulator tube, and the fourth voltage regulator tube is The negative electrode is connected to the negative electrode of the power source.
  • the second switching unit is an N-channel field effect transistor
  • the second control terminal is an N-channel field effect transistor a gate
  • the third conductive terminal is a drain of the N-channel field effect transistor
  • the fourth conductive terminal is a source of the N-channel field effect transistor.
  • the contactor driving circuit further includes a first diode, The anode of the first diode is connected to the first driving end, and the cathode of the first diode is connected to the anode of the power source.
  • the contactor driving circuit further includes a second diode, the The anode of the diode is connected to the second driving end, and the cathode of the second diode is connected to the anode of the power source.
  • the contactor driving circuit further includes a second sampling circuit, and the second sampling circuit is electrically connected to Between the node between the first switch unit and the first conductive terminal and the processor, to collect a first voltage signal at a node between the first normally open contact and the first switch unit And transmitting the first voltage signal to the processor, the processor comparing the first voltage signal with a first preset voltage signal pre-stored in the processor to determine the first switch Whether the unit is faulty, wherein the first preset voltage signal is a voltage signal that indicates that the first switch unit is working normally.
  • the contactor driving circuit further includes a third sampling circuit, the third sampling circuit is electrically connected Between the node between the second switching unit and the second normally closed contact and the processor, to collect a second voltage at a node between the second normally closed contact and the second switching unit Signaling and transmitting the second voltage signal to the processor and pre-existing the second voltage signal with the processor The second preset voltage signal is compared to determine whether the second switch unit is faulty, wherein the second preset voltage signal is a voltage signal that indicates that the second switch unit is working normally.
  • the contactor driving circuit provided by the present invention first determines the type of the contactor connected between the first driving end and the second driving end by the processor. And then controlling the line connection control unit according to the determination result to electrically connect the first driving end to the positive pole of the power source, and controlling the second driving end to be connected to the negative pole of the power source, when the first driving end When the contactor is connected between the second driving ends, a current flowing from the first driving end to the second driving end is formed.
  • the processor controls the line connection control unit to electrically connect the second driving end to the positive pole of the power source, and when the first driving end is electrically connected to the negative pole of the power source, when the When a contactor is connected between the first driving end and the second driving end, a current flowing from the second driving end to the first driving end is formed.
  • FIG. 1 is a schematic structural view of a contactor driving circuit according to a preferred embodiment of the present invention
  • FIG. 2 is a waveform diagram of a first control signal and a third control signal when the contactor driving circuit of the present invention drives the bistable contactor;
  • FIG. 3 is a schematic view showing a current flow direction of the contactor driving circuit of the present invention under the control of the control signal shown in FIG. 2;
  • FIG. 4 is a waveform diagram of a second control signal and a third control signal when the contactor driving circuit of the present invention drives the bistable contactor;
  • FIG. 5 is a schematic diagram of current flow direction of the contactor driving circuit of the present invention under the control of the control signal shown in FIG. 4;
  • FIG. 6 is a waveform diagram of a first control signal and a third control signal when the contactor driving circuit of the present invention drives a normally closed contactor;
  • FIG. 1 is a schematic structural diagram of a contactor driving circuit according to a preferred embodiment of the present invention.
  • the contactor driving circuit 100 includes a power source 110, a processor 120, a line connection control unit 130, a first driving end LVD+, and a second driving end LVD-.
  • the power source 110 includes a positive pole RTN and a negative pole NEG-, and the power source 110 is configured to generate electrical energy and output through the positive pole RTN and the negative pole NEG-.
  • the first driving end LVD+ and the second driving end LVD- are used to connect a flip-flop or a normally-off type flip-flop.
  • the processor 120 is electrically connected to the line connection control unit 130.
  • the processor 120 When the contactor is connected between the first driving end LVD+ and the second driving end LVD-, the processor 120 is configured to flow according to the contactor.
  • the magnitude of the current determines the type of the contactor connected between the first driving end LVD+ and the second driving end LVD-, and controls the line connection control unit 130 according to the determination result to electrically connect the first driving end LVD+ To the positive terminal RTN of the power source 110, and controlling the second driving terminal LVD- to be electrically connected to the negative electrode NEG- of the power source 110; or the processor 120 controls the line connection control unit 130 to make the
  • the second driving end LVD- is connected to the positive terminal RTN of the power source 110, and controls the first driving end LVD+ to be electrically connected to the negative electrode NEG- of the power source 110.
  • the contactor driving circuit 100 further includes a first switching unit Q1 and a second switching unit Q2.
  • the first switching unit Q1 and the second switching unit Q2 are electrically connected to the processor 120, respectively, and are turned on or off under the control of the processor 120.
  • the processor 120 controls the second switching unit Q2 to be turned on, and controls the first switching unit Q1 to be turned off, the second driving end LVD- is electrically connected to the negative electrode NEG- of the power source 110;
  • the processor 120 controls the first switching unit Q1 to be turned on to control the second switching unit Q2 to be disconnected, and the first driving end LVD- is electrically connected to the negative terminal NEG- of the power source 110.
  • the processor 120 controls the first common contact 135 to electrically connect the first normally open contact 133 and the second common contact 136 to electrically connect the second common point according to the current working state of the bistable contactor
  • the bistable contactor is controlled to be switched from the second working body to the first working state. Since the bistable contactor includes an auxiliary contact, the auxiliary contact is for indicating the The current operating state of the bistable contactor and the current operational state of the bistable contactor are sent to the processor 120.
  • the first working state is an open state
  • the second working state is a closed state
  • the first operational state is a closed state
  • the second operational state is an open state
  • the first working state is an open state (correspondingly, the second working state is a closed state) or a closed state (correspondingly, the second working state is an open state) and the bistable state
  • the positive and negative poles of the driving coil of the trigger are related to the connection relationship between the first driving end LVD+ and the second driving end LVD-.
  • the anode of the driving coil of the flip-flop when the anode of the driving coil of the flip-flop is electrically connected to the first driving end LVD+, and the anode of the driving coil of the flip-flop is electrically connected to the second driving end LVD-, The first working state is an open state, and the second working state is a closed state.
  • the anode of the driving coil of the flip-flop is electrically connected to the first driving end LVD+, and the anode of the driving coil of the flip-flop is electrically connected to the second driving end LVD-
  • the One working state is a closed state
  • the second working state is an open state.
  • the following is an example in which the first working state is an open state and the second working state is a closed state.
  • the specific driving process for driving the contactor driving circuit 100 to drive the bistable contactor is as follows.
  • the driver driving circuit 100 drives the bistable contactor J1
  • the anode of the driving coil of the flip-flop J1 is electrically connected to the first driving end LVD+
  • the flip-flop J1 The negative pole of the drive coil is electrically connected to the second drive end LVD-.
  • the processor 120 controls the first switch unit Q1 to be turned on, controls the second switch unit Q2 to be turned off, and controls the first common contact 135 to electrically connect the first normally open contact 133, and A second common contact 136 is electrically coupled to the second normally open contact 134.
  • the first driving end LVD+ is electrically connected to the negative electrode NEG- of the power source 110.
  • a current formed via a drive coil of the bistable contactor J1 flows from the second drive terminal LVD- to the first drive terminal LVD+, and the bistable contactor J1 is switched from a closed state to an open state.
  • the first switching unit Q1 includes a first control end g1, a first conduction end d1 and a second conduction end s1.
  • the first control terminal g1 is connected to the processor 120, and controls the conduction between the first conductive terminal d1 and the second conductive terminal s1 to be turned on or off under the control of the processor 120.
  • the conduction or disconnection of the first switching unit Q1 is achieved.
  • the first control terminal g1 receives the first control signal to control the first conductive terminal d1 and the second conductive terminal s1 to be turned on or off.
  • the first conductive end d1 is connected to the first normally open contact 133, and the second conductive end s1 is connected to the negative electrode NEG- of the power supply 110.
  • the second switching unit Q2 includes a second control end g2, a third conduction end d2, and a fourth conduction end s2.
  • the second control terminal g2 is connected to the processor 120, and controls the conduction between the third conduction terminal d2 and the fourth conduction terminal s2 to be turned on or off under the control of the processor 120.
  • the conduction or disconnection of the second switching unit Q2 is achieved.
  • the second control terminal g2 receives the second control signal to control the third conductive terminal d2 and the fourth conductive terminal s2 to be turned on or off.
  • the third conductive end d2 is connected to the second normally closed contact 132, and the fourth conductive end s2 is connected to the negative electrode NEG- of the power supply 110.
  • FIG. 2 is a waveform diagram of the first control signal and the third control signal when the contactor driving circuit of the present invention drives the bistable contactor.
  • 3 is a schematic view showing the current flow direction of the contactor drive circuit of the present invention under the control of the control signal shown in FIG. 2.
  • the first control signal controls the first switching unit Q1 to be turned on
  • the first control signal is a high level signal with a duration of T A
  • a start time of the first control signal is a first start. Time, the end time of the first control signal is the first end time.
  • the third control is when the third control signal controls the first common contact 135 to electrically connect the first normally open contact 133 and the second common contact 136 to electrically connect the second normally open contact 134
  • the signal is a high level signal of duration T C
  • the start time of the third control signal is a second start time
  • the end time of the third control signal is a second end time.
  • the first start time lags the second start time by a first time interval
  • the second end time lags the first end time by a second time interval.
  • the third control signal controls the first common contact 135 to electrically connect the first normally open contact 133 and the second common contact 136 After electrically connecting the second normally open contact 134, the first control signal controls the first switching unit Q1 to be turned on. At this time, the damage of the line connection control unit 130 caused by the ignition when the two common contacts of the line connection control unit 130 are electrically connected to the corresponding normally open contacts is avoided. And the first end time and the second time interval after the second end time, therefore, the line connection control caused by the ignition when the two common contacts of the relay are electrically connected to the corresponding normally closed contacts are avoided Damage to unit 130. It can be understood that the first time interval and the second time interval can be set and adjusted according to actual conditions.
  • the first control signal is a high-level pulse signal having a duration T A of 500 ms
  • the third control signal is a high-level pulse signal having a duration T C of 900 ms.
  • the first time interval is equal to the second time interval being 200 ms.
  • the first control unit Q1 When the first control signal is at a high level, the first control unit Q1 is controlled to be turned on at the first control signal; and when the third control signal is at a high level, the third control signal controls the first common contact
  • the first normally open contact 133 and the second common contact 136 are electrically connected to the second normally open contact 134.
  • the coil of the bistable contactor When the coil of the bistable contactor is connected between the first driving end LVD+ and the second driving end LVD-, specifically, when the first driving end LVD+ is connected to the driving coil of the bistable contactor J1 a positive pole, the second driving end LVD-connecting the negative pole of the driving coil of the bistable contactor J1, at this time, the positive pole RTN of the power source 110, the second normally open contact 134, the second a common contact 136, the second driving end LVD-, the first driving end LVD+, the first common contact 135, the first normally open contact 133, and the first switching unit Q1 to The negative electrode NEG of the power source 110 forms a loop. At this time, as shown in Fig.
  • the processor 120 determines that the type of the contactor connected between the first driving end LVD+ and the second driving end LVD- is a normally closed contactor
  • the driving principle of driving the normally closed contactor is introduced. as follows.
  • the coil of the normally closed contactor J2 is electrically connected to the first Between the driving end LVD+ and the second driving end LVD-.
  • FIG. 6 is a waveform diagram of a first control signal and a third control signal when the contactor driving circuit of the present invention drives a normally closed contactor.
  • FIG. 7 is a schematic view showing the current flow direction of the contactor driving circuit of the present invention under the control of the control signal shown in FIG. 6.
  • the first control signal and the third control signal are both continuous high level signals.
  • the first control signal controls the first switching unit Q1 to be turned on.
  • the third control signal controls the first common contact 135 to electrically connect the first normally open contact 133 and the second common contact 136 to electrically connect the second normally open contact 134.
  • the contactor drive circuit 100 drives the normally closed contactor J2.
  • the second driving end LVD-, the first driving end LVD+, the first common contact 135, the first normally open contact 133, the first switching unit Q1, and the power source The negative electrode NEG of 110 forms a loop. At this time, as shown in FIG. 7, the current in the loop flows from the second driving terminal LVD- to the first driving terminal LVD+.
  • the specific judgment principle of the processor 120 for determining whether the type of the driver connected between the first driving terminal LVD+ and the second driving terminal LVD- is a bistable contactor or a normally closed contactor is as follows.
  • the contactor driving circuit 100 further includes a first resistor R1 and a first sampling circuit 150 .
  • One end of the first resistor R1 is connected to the negative electrode NEG- of the power source 110, the other end of the first resistor R1 is connected to one end of the first sampling circuit 150, and the other end of the sampling circuit 150 is connected to the processor. 120.
  • the third pin pin3 and the fifth pin pin5 of the connector 140 are electrically connected to connect the node between the first resistor R1 and the first sampling circuit 150.
  • the positive terminal RTN of the power source 110 is the positive terminal RTN of the power source 110.
  • the third pin pin 3 and the fifth pin pin 5 of the connector 140 may be electrically connected by a metal wire. Since the fifth pin pin 5 of the connector 140 is electrically connected to the second driving terminal LVD-, after the third pin pin3 of the connector 140 is electrically connected to the fifth pin pin 5, that is, the third pin pin3 and The voltages applied to the second driver LVD- are equal.
  • the specific detection principle is as follows.
  • the contactor driving circuit 100 drives a bistable contactor, that is, a bistable connection is connected between the first driving end LVD+ and the second driving end LVD-.
  • the contactor since the third pin pin3 of the connector 140 is connected to the fifth pin pin5 of the connector 140, and the fifth pin pin5 of the connector 140 is connected to the second driving end LVD-, the first A voltage value of a voltage applied to a node between the resistor R1 and the first sampling circuit 150 and a voltage value of a voltage applied to the second driving terminal LVD- are equal.
  • the current value flowing through the first resistor R1 is equal to the voltage value of the second driving terminal LVD-subtracted minus the voltage value of the negative electrode of the power source 110 and then divided by the resistance value of the first resistor R1.
  • the contactor driving circuit 100 drives a normally closed contactor, that is, when a normally closed contactor is connected between the first driving end LVD+ and the second driving end LVD-, due to the connector 140
  • the third pin pin3 is connected to the fifth pin pin5 of the connector, and the fifth pin pin5 of the connector 140 is connected to the second driving end LVD-, and the second driving end LVD- is connected to the positive pole of the power source 110.
  • the voltage value of the second driving terminal LVD- (at this time, the voltage value applied to the second driving terminal LVD- is the voltage of the positive terminal RTN of the power source 110). Therefore, when the contactor driving circuit 100 drives the bistable contactor, a current value flowing through the first resistor R1 is smaller than when the contactor driving circuit 100 drives the normally closed contactor. The current of the first resistor R1. Therefore, in an embodiment, a preset current value may be pre-stored in the processor 120, and the preset current value is equal to a size of the contactor driving circuit 100 when the bistable contactor is driven.
  • the current value of the first resistor R1 or the preset current value is equal to the current flowing through the first resistor R1 when the contactor driving circuit 100 drives the normally closed contactor.
  • the processor receives the current value indicated by the first sampling circuit 150 and flows through the first resistor R1, the representation output by the first sampling circuit 150 may flow through the first resistor R1.
  • the current value is compared with the preset current value to determine whether the current contactor driven by the driving circuit 100 is a bistable contactor or a normally closed contactor.
  • the driver trigger circuit 100 further includes a first diode D1 and a second diode D2,
  • the anode of the first diode D1 is connected to the first driving terminal LVD+, and the cathode of the first diode D1 is connected to the anode RTN of the power source 110.
  • the anode of the second diode D2 is connected to the second driving terminal LVD-, and the cathode of the second diode D2 is connected to the anode RTN of the power source 110.
  • the first diode D1 When the voltage of the anode of the first diode D1 is greater than the voltage of the anode of the first diode D1, the first diode D1 is turned on; when the anode of the first diode D1 is When the voltage is less than the voltage of the negative terminal of the first diode D1, the first diode D1 is turned off.
  • the second diode D2 when the voltage of the anode of the second diode D2 is greater than the voltage of the cathode of the second diode D2, the second diode D2 is turned on; when the second diode When the voltage of the positive electrode of D2 is smaller than the voltage of the negative electrode of the second diode D2, the second diode D2 is turned off.
  • the diode Since the diode has a unidirectional conduction characteristic, that is, when the voltage of the anode of the diode is greater than the voltage of the anode of the diode, the diode is turned on; when the voltage of the anode of the diode is less than the voltage of the cathode of the diode, the diode is turned off.
  • the first diode D1 disconnects the positive electrode RTN of the power source 110 to the first driving end LVD+ due to the unidirectional conduction characteristic of the diode
  • the second diode The tube D2 disconnects the path from the positive terminal RTN of the power source 110 to the second driving end LVD-, thereby preventing the voltage of the positive terminal RTN of the power source 110 from being directly loaded on the first driving end LVD+ and the second driving end LVD. - further avoiding damage to components located between the first drive end LVD+ and the second drive end LVD-.
  • the driver trigger circuit 100 further includes a first voltage regulator D3, a second voltage regulator D4, a third voltage regulator D5, and a fourth voltage regulator D6.
  • a cathode of the first Zener diode D3 is connected to a node between the first normally open contact 133 and the first conductive terminal d1, and a positive pole of the first Zener diode D3 is connected to the second stable
  • the anode of the pressure tube D4 and the cathode of the second voltage regulator D4 are connected to the anode NEG- of the power source 110.
  • the first Zener diode D3 and the second voltage regulator The tube D4 is first broken down to protect the first switching unit Q1 in parallel with the first Zener diode D3 and the second Zener diode D4 so as not to be loaded when the first switch unit Q1 is loaded.
  • the first switching unit Q1 is burned out.
  • the third Zener diode D5 and the first The fourth voltage regulator D6 first breaks down, thereby protecting the second switching unit Q2 connected in parallel with the third voltage regulator tube D5 and the fourth voltage regulator tube D6, so as not to be loaded when the second switching unit Q2 is loaded.
  • the second switching unit Q2 is burned out.
  • the contactor driving circuit 100 further includes a second sampling circuit 160 and a third sampling circuit 170.
  • One end of the second sampling circuit 160 is connected to a node between the first normally open contact 133 and the first conduction end d1 of the first switching unit Q1, and the other end of the sampling circuit 160 is connected
  • the processor 120 is described.
  • the second sampling circuit 160 collects a voltage signal at a node between the first normally open contact 133 and the first conductive end d1 of the first switching unit Q1 to obtain a first voltage signal, and Transmitting the first voltage signal to the processor 120.
  • the third sampling circuit 170 is connected at one end to a node between the second normally closed contact 132 and the third conductive end d2 of the second switching unit Q2, and the other end is connected to the processor 120.
  • the third collecting circuit 170 collects a voltage signal at a node between the second normally closed contact 132 and the third conductive end d2 of the second switching unit Q2 to obtain a second voltage signal. And transmitting the second voltage signal to the processor 120.
  • the processor 120 compares the first voltage signal with a first preset voltage signal pre-stored in the processor 120 to determine whether the first switch unit Q1 is faulty, and the second The voltage signal is compared with a second preset voltage signal pre-stored in the processor 120 to determine whether the second switching unit Q2 has failed.
  • the first preset voltage signal is a voltage signal that indicates that the first switch unit Q1 is working normally
  • the second preset voltage signal is a voltage signal that indicates that the switch unit Q2 is working normally.
  • the processor 120 adjusts the first control signal, the second control signal, and the third control signal to cut off the drive station.
  • the second switch unit Q2 fails, the third conductive terminal d2 and the fourth conductive terminal d3 are short-circuited, at this time, the positive terminal RTN of the power source 110 and the negative terminal NEG of the power source 110 form a loop.
  • the first switching unit Q1 is judged as early as possible by collecting the voltage signals of the first switching unit Q1 and the second switching unit Q2. Whether the second switch unit Q2 is faulty, and when it is determined that the first switch unit Q1 or the second switch unit Q2 is faulty, the circuit required to drive the contactor is cut off, and the first drive end LVD+ and the second are protected. Contactor between the drive terminals LVD-.
  • the contactor driving circuit 100 further includes a second resistor R2 and a capacitor C.
  • the second resistor R2 is connected to the first driving end LVD+ at one end and the capacitor C to the other end. Two drive LVD-.
  • the second resistor R2 and the capacitor C are used to protect a contactor disposed between the first driving end LVD+ and the second driving end LVD-.
  • the contactor driving circuit 100 of the present invention first detects the type of the contactor between the first driving end LVD+ and the second driving end LVD-, and then according to the first driving end LVD+ and The contactor of the second drive end LVD- is a bistable contactor or a normally closed contactor for corresponding drive. Specifically, when the processor 120 in the driving circuit 100 of the present invention detects that the contactor at the first driving end LVD+ and the second driving end LVD- is a normally closed contactor, according to the foregoing, the normally closed type The drive strategy of the contactor is driven.
  • the processor 120 in the driving circuit 100 detects that the contactor at the first driving end LVD+ and the second driving end LVD- is a bistable contactor, since the bistable contactor further includes an auxiliary a contact (not shown), the auxiliary contact of the bistable contactor indicates whether the current working state of the bistable contactor is a closed state or an open state, and transmits the working state of the current bistable contactor to the
  • the processor 120 further controls the bistable contactor according to actual application requirements and the current working state of the bistable contactor.
  • the contactor driving circuit 100 provided by the present invention first determines the type of the contactor connected between the first driving end LVD+ and the second driving end LVD- through the processor 120. Then, according to the judgment result, the line connection control unit 130 is controlled to electrically connect the first driving end LVD+ to the positive RTN of the power source 110, and control the second driving end LVD- to be connected to the negative terminal RTN of the power source 110, When a contactor is connected between the first driving end LVD+ and the second driving end LVD-, a current flowing from the first driving end LVD+ to the second driving end LVD- is formed. Or the processor 120 controls the line connection control unit 130 to electrically connect the second driving end LVD- to the power source 110.
  • the contactor driving circuit 100 can further determine whether the first driving terminal LVD+ and the second driving terminal LVD-the currently driven contactor are bistable contacts or according to the magnitude of the current flowing through the first resistor R1.
  • the normally closed contactor achieves the technical effect of being able to determine the type of contactor currently being driven.
  • the voltage values of the first switching unit Q1 and the second switching unit Q2 are respectively collected by the second electrical sampling circuit 160 and the third sampling circuit 170 to determine the first Whether the switching unit Q1 and the second switching unit Q2 have failed. And when the first switch unit Q1 and the second switch unit Q2 are faulty, the processor 120 adjusts the first control signal, the second control signal, and the third control signal to cut off the driving signal. a loop generated to protect the contactor between the first driving end LVD+ and the second driving end LVD-, thereby achieving protection when the first switching unit Q1 or the second switching unit Q2 fails The technical effect of the contactor between the first driving end LVD+ and the second driving end LVD-.

Landscapes

  • Electronic Switches (AREA)
  • Relay Circuits (AREA)
  • Keying Circuit Devices (AREA)

Abstract

一种接触器驱动电路(100),用于驱动双稳态接触器(J1)或常闭型接触器(J2),包括电源(110)、处理器(120)、线路连接控制单元(130)、第一驱动端(LVD+)及第二驱动端(LVD-),第一驱动端(LVD+)及第二驱动端(LVD-)用于驱动双稳态接触器(J1)或常闭型接触器(J2),处理器(120)电连接线路连接控制单元(130),当第一驱动端(LVD+)及第二驱动端(LVD-)之间连接接触器时,处理器(120)根据流经接触器的电流的大小判断第一驱动端(LVD+)及第二驱动端(LVD-)之间连接的接触器的类型,并根据判断结果控制线路连接控制单元(130)以使第一驱动端(LVD+)电连接至电源(110)的正极,且控制第二驱动端(LVD-)电连接至电源(110)的负极;或处理器(120)控制线路连接控制单元(130)以使第二驱动端(LVD-)连接至电源(110)的正极,且控制第一驱动端(LVD+)电连接至电源(110)的负极。接触器驱动电路(100)能够驱动两种接触器。

Description

接触器驱动电路
本发明要求2014年5月27日递交的发明名称为“接触器驱动电路”的申请号201410228099.0的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及驱动领域,尤其涉及一种接触器驱动电路。
背景技术
在目前的工业控制应用中,通常用弱电器件控制强电器件,用小电流设备控制大电流设备。接触器作为一个弱电器件常常被用到控制其他强电器件。接触器包括常闭型接触器及双稳态型接触器等等。常闭型接触器在通常情况下为闭合状态,常闭型接触器由闭合状态变为断开状态后,维持断开状态需要外界提供电能。而对于双稳态型接触器而言,双稳态接触器既可以工作在常开又可以工作在常闭两种状态,并且维持常开状态或常闭状态不需要外界提供电能。现有技术中,对于一般的接触器驱动电路通常只能驱动单一类型的接触器,比如驱动常闭型接触器的接触器驱动电路通常不能驱动双稳态接触器,而驱动双稳态接触器的接触器驱动电路通常不能驱动常闭型接触器。
发明内容
提供一种接触器驱动电路,能够驱动双稳态接触器及常闭型接触器。
第一方面,提供了一种接触器驱动电路,用于驱动双稳态接触器或常闭型接触器,所述接触器驱动电路包括电源、处理器、线路连接控制单元、第一驱动端及第二驱动端,所述第一驱动端及所述第二驱动端用于驱动所述双稳态接触器或常闭型接触器,所述处理器电连接所述线路控制单元,当所述第一驱动端及所述第二驱动端之间连接接触器时,所述处理器根据流经所述接触器的电流的大小判断所述第一驱动端及所述第二驱动端之间连接的接触器的类型,并根据判断结果控制所述线路连接控制单元以使所述第一驱动端电连接至所述 电源的正极,且控制所述第二驱动端电连接至所述电源的负极;或控制所述线路连接控制单元以使所述第二驱动端连接至所述电源的正极,且控制所述第一驱动端连接至所述电源的负极。
在第一种实施方式中,所述接触器驱动电路还包括第一开关单元及第二开关单元,所述第一开关单元及所述第二开关单元电连接至所述处理器,所述处理器控制所述第二开关单元导通、所述第一开关单元断开,以控制所述第二驱动端电连接至所述电源的负极;或所述处理器控制所述第一开关单元导通、所述第二开关单元断开,以控制所述第一驱动端连接所述电源的负极。
结合第一种实施方式,在第二种实施方式中,所述线路连接控制单元为继电器,所述继电器包括第一常闭触点、第二常闭触点、第一常开触点、第二常开触点、第一公共触点、第二公共触点及线圈,所述第一常闭触点及所述第二常开触点连接所述电源的正极,所述第一常开触点通过所述第一开关单元连接至电源的负极,所述第二常闭触点通过所述第二开关单元连接至电源的负极,所述第一公共触点连接所述第一驱动端,所述第二公共触点连接所述第二驱动端,所述线圈一端电连接所述处理器,所述线圈的另一端接地,当所述第一驱动端及所述第二驱动端之间连接接触器时,所述处理器根据流经所述接触器的电流的大小判断所述第一驱动端及所述第二驱动端之间连接的接触器的类型,并根据判断结果控制第一公共触点电连接所述第一常闭触点及第二公共触点电连接所述第二常闭触点,以使所述第一驱动端电连接至所述电源的正极,或控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点,以使所述第二驱动端电连接至所述电源的正极。
结合第二种实施方式,在第三种可能的实施方式中,当所述处理器判断出所述第一驱动端及所述第二驱动端之间连接的接触器的类型是双稳态接触器时,所述双稳态接触器包括辅助触点,所述辅助触点指示所述双稳态接触器的当前工作状态,所述处理器根据所述双稳态接触器的当前工作状态控制第一公共触点电连接所述第一常闭触点及第二公共触点电连接所述第二常闭触点时,且控制所述第二开关单元导通、第一开关单元断开时,从而控制所述双稳态接触器由第一工作状体切换到第二工作状态;当所述处理器根据所述双稳态接触器的当前工作状态控制第一公共触点电连接所述第一常开触点及第二公共触 点电连接所述第二常开触点时,且控制所述第一开关单元导通、第二开关单元断开时,从而控制所述双稳态接触器由第二工作状体切换到第一工作状态。
结合第二种或第三种可能的实施方式,在第四种可能的实施方式中,所述处理器控制所述第一开关单元的信号为第一控制信号,当所述第一控制信号控制所述第一开关单元导通时,所述第一控制信号的开始时间为第一开始时间,所述第一控制信号的结束时间为第一结束时间;所述处理器控制所述继电器的信号为第三控制信号,当所述第三控制信号控制所述第一公触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点的信号时,所述第三控制信号的开始时间为第二开始时间,所述第三控制信号的结束时间为第二结束时间,所述第一开始时间滞后所述第二开始时间一第一时间间隔,所述第二结束时间滞后所述第一结束时间一第二时间间隔。
结合第四种可能的实施方式,在第五种可能的实施方式中,所述第一时间间隔等于所述第二时间间隔。
结合第五种可能的实施方式,在第六种可能的实施方式中,第一时间间隔及第二时间间隔为200ms。
结合第二种至第六种可能的实施方式中的任意一种可能的实施方式,在第七种可能的实施方式中,当所述处理器判断出所述第一驱动端及所述第二驱动端之间连接的接触器的类型是常闭型接触器时,所述处理器控制第一公共触点电连接所述第一常闭触点及第二公共触点电连接所述第二常闭触点时,且控制所述第二开关单元导通、第一开关单元断开,以使所述第二驱动端连接至所述电源的负极,以驱动所述常闭型接触器;或控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点时,且控制所述第一开关单元导通、第二开关单元断开,以使所述第一驱动端连接至所述电源的负极,以驱动所述常闭型接触器。
结合第七种可能的实施方式,在第八种可能的实施方式中,所述处理器控制所述第一开关单元的信号为第一控制信号,当所述第一控制信号控制所述第一开关单元导通时,所述第一控制信号的开始时间为第三开始时间;所述处理器控制所述继电器的信号为第三控制信号,当所述第三控制信号控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点时,所 述第三控制信号的开始时间为第四开始时间,所述第三开始时间滞后所述第四开始时间第三时间间隔。
结合第八种可能的实施方式,在第九种可能的实施方式中,所述第三时间间隔为200ms。
结合第一方面,以及第一种至第九种任意一种可能的实施方式,在第十种可能的实施方式中,所述接触器驱动电路还包括第一电阻及第一采样电路,所述第一电阻一端连接电源负极,另一端连接第一采样电路的一端,所述采样电路的另一端连接所述处理器,第一电阻与第一采样电路之间的节点连接电源的正极,所述第一采样电路检测流经所述第一电阻的电流值的大小,并将检测到流经所述第一电阻的电流值的大小传输至所述处理器,所述处理器根据流经所述第一电阻的电流值的大小判断所述接触器驱动电路当前驱动的接触器为常闭型接触器还是双稳态型接触器。
结合第第二种至第十种任意一种可能的实施方式,在第十一种可能的实施方式中,所述第一开关单元包括第一控制端、第一导通端及第二导通端,所述第一控制端连接所述处理器,并在所述处理器的控制下控制第一导通端及第二导通端导通或截止,以实现所述第一开关单元的导通或断开,所述第一导通端连接所述第一常开触点,所述第二导通端连接所述电源的负极。
结合十一种可能的实施方式,在第十二种可能的实施方式中,所述接触器驱动电路还包括第一稳压管及第二稳压管,所述第一稳压管的负极连接所述第一常开触点与所述第一导通端之间的节点,所述第一稳压管的正极连接所述第二稳压管的正极,所述第二稳压管的负极连接所述电源的负极。
结合第十一种可能的实施方式或第十二种可能的实施方式,在第十三种可能的实施方式中,所述第一开关单元为N沟道场效应晶体管,所述第一控制端为N沟道场效应晶体管的栅极,所述第一导通端为所述N沟道场效应晶体管的漏极,所述第二导通端为所述N沟道场效应晶体管的源极。
结合第二种至第十三种任意一种可能的实施方式,在第十四种可能的实施方式中,所述第二开关单元包括第二控制端、第三导通端及第四导通端,所述第二控制端连接所述处理器,并在所述处理器的控制下控制第三导通端及第四导通端导通或截止,以实现所述第二开关单元的导通或断开,所述第三导通端 连接所述第二常闭触点,所述第四导通端连接电源的负极。
结合第十四种可能的实施方式,在第十五种可能的实施方式中,所述接触器驱动电路还包括第三稳压管及第四稳压管,所述第三稳压管的负极连接所述第二常闭触点与所述第三导通端之间的节点,所述第三稳压管的正极连接所述第四稳压管的正极,所述第四稳压管的负极连接所述电源的负极。
结合第十四种或第十五种可能的实施方式,在第十六种可能的实施方式中,第二开关单元为N沟道场效应晶体管,所述第二控制端为N沟道场效应晶体管的栅极,所述第三导通端为所述N沟道场效应晶体管的漏极,所述第四导通端为所述N沟道场效应晶体管的源极。
结合第一方面,以及第一种至第十六种任意一种可能的实施方式中,在第十七种可能的实施方式中,所述接触器驱动电路还包括第一二极管,所述第一二极管的正极连接所述第一驱动端,所述第一二极管的负极连接所述电源的正极。
结合第一方面,以及第一种至第十七种任意一种可能的实施方式,在第十八种可能的实施方式中,所述接触器驱动电路还包括第二二极管,所述第二二极管的正极连接所述第二驱动端,所述第二二极管的负极连接所述电源的正极。
结合第二种至第十八种任意一种可能的实施方式,在第十九种可能的实施方式中,所述接触器驱动电路还包括第二采样电路,所述第二采样电路电连接在所述第一开关单元与第一导通端之间的节点以及所述处理器之间,以采集所述第一常开触点与所述第一开关单元之间节点处的第一电压信号,并将所述第一电压信号传输至所述处理器,所述处理器将第一电压信号与预存在所述处理器中的第一预设电压信号进行比较,以判断所述第一开关单元是否发生故障,其中,所述第一预设电压信号为表征所述第一开关单元正常工作的电压信号。
结合第二种至第十九种任意一种可能的实施方式,在第二十种可能的实施方式中,所述接触器驱动电路还包括第三采样电路,所述第三采样电路电连接在所述第二开关单元与第二常闭触点之间的节点以及所述处理器之间,以采集所述第二常闭触点与所述第二开关单元之间节点处的第二电压信号,并将所述第二电压信号传输至所述处理器,并将第二电压信号与预存在所述处理器中的 第二预设电压信号进行比较,以判断所述第二开关单元是否发生故障,其中,所述第二预设电压信号为表征所述第二开关单元正常工作的电压信号。
本发明提供的接触器驱动电路通过处理器先判断出第一驱动端及第二驱动端之间连接的接触器的类型。然后根据判断结果控制线路连接控制单元以使所述第一驱动端电连接至所述电源的正极,且控制所述第二驱动端连接至所述电源的负极,当所述第一驱动端及第二驱动端之间连接接触器时,从而形成由所述第一驱动端流向所述第二驱动端的电流。或者所述处理器控制所述线路连接控制单元以使所述第二驱动端电连接至所述电源的正极,且控制所述第一驱动端电连接至所述电源的负极时,当所述第一驱动端及第二驱动端之间连接接触器时,从而形成由所述第二驱动端流向所述第一驱动端的电流。从而可以驱动双稳态接触器及常闭型接触器两种不同类型的接触器。因此,实现了一种驱动电路驱动两种不同类型的接触器的技术效果。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一较佳实施方式的接触器驱动电路结构示意图;
图2为本发明接触器驱动电路驱动双稳态接触器时第一控制信号及第三控制信号的波形图;
图3为本发明接触器驱动电路在图2所示的控制信号的控制下的电流流动方向示意图;
图4为本发明接触器驱动电路驱动双稳态接触器时第二控制信号及第三控制信号的波形图;
图5为本发明接触器驱动电路驱动在图4所示的控制信号的控制下的电流流动方向示意图;
图6为本发明接触器驱动电路驱动常闭型接触器时第一控制信号及第三控制信号的波形图;
图7为本发明接触器驱动电路在图6所示的控制信号的控制下的电流流动方向示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,其为本发明一较佳实施方式的接触器驱动电路结构示意图。所述接触器驱动电路100包括电源110、处理器120、线路连接控制单元130、第一驱动端LVD+及第二驱动端LVD-。所述电源110包括正极RTN及负极NEG-,所述电源110用于产生电能,并经由所述正极RTN及负极NEG-输出。所述第一驱动端LVD+及第二驱动端LVD-用于连接双稳态触发器或常闭型触发器。所述处理器120电连接所述线路连接控制单元130,当所述第一驱动端LVD+及第二驱动端LVD-之间连接接触器时,所述处理器120根据流经所述接触器的电流的大小判断所述第一驱动端LVD+及第二驱动端LVD-之间连接的接触器的类型,并根据判断结果控制所述线路连接控制单元130以使所述第一驱动端LVD+电连接至所述电源110的正极RTN,且控制所述第二驱动端LVD-电连接至所述电源110的负极NEG-;或者所述处理器120控制所述线路连接控制单元130以使所述第二驱动端LVD-连接至所述电源110的正极RTN,且控制所述第一驱动端LVD+电连接至所述电源110的负极NEG-。
所述接触器驱动电路100还包括第一开关单元Q1以及第二开关单元Q2。所述第一开关单元Q1及所述第二开关单元Q2分别电连接至所述处理器120,并在所述处理器120的控制下导通或断开。当所述处理器120控制所述第二开关单元Q2导通,且控制所述第一开关单元Q1断开时,所述第二驱动端LVD-电连接至所述电源110的负极NEG-;或所述处理器120控制所述第一开关单元Q1导通,控制所述第二开关单元Q2断开,所述第一驱动端LVD-电连接至所述电源110的负极NEG-。
所述线路连接控制单元130为继电器,其包括第一常闭触点131、第二常 闭触点132、第一常开触点133、第二常开触点134、第一公共触点135、第二公共触点136及线圈137。所述第一常闭触点131及所述第二常开触点134连接所述电源110的正极RTN。所述第一常开触点133连接所述第一开关单元Q1连接至所述电源110的负极NEG-,所述第二常闭触点132通过所述第二开关单元Q2连接至所述电源110的负极NEG-。所述第一公共触点135连接所述第一驱动端LVD+,所述第二公共触点136连接所述第二驱动端LVD-。所述线圈137的一端连接所述处理器120,所述线圈137的另一端接地。所述处理器120还连接所述第一开关单元Q1及所述第二开关单元Q2。当所述第一驱动端LVD+及所述第二驱动端LVD-之间连接接触器时,所述的处理器120根据流经所述接触器的电流的大小判断所述第一驱动端LVD+及第二驱动端LVD-之间连接的接触器的类型,并根据判断结果控制第一公共触点135电连接所述第一常闭触点131及第二公共触点136电连接所述第二常闭触点132,以使所述第一驱动端LVD+电连接至所述电源110的正极RTN;且控制所述第二开关单元Q2导通、第一开关单元Q1断开,以使所述第二驱动端LVD-连接至所述电源110的负极NEG-。或根据判断结果控制第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134,以使所述第二驱动端LVD-电连接至所述电源110的正极RTN,且控制所述第一开关单元Q1导通、第二开关单元Q2断开,以使所述第一驱动端LVD+连接至所述电源110的负极NEG-。在一实施方式中,所述电源110的电压值为48V。
当所述处理器120判断出所述第一驱动端LVD+及所述第二驱动端LVD-连接的接触器的类型是双稳态触发器时,所述处理器120根据所述双稳态触发器的当前工作状态控制所述第一公共触点135电连接所述第一常闭触点131及第二公共触点136电连接所述第二常闭触点132时,且控制所述第二开关单元Q2导通、第一开关单元Q1断开,从而控制所述双稳态接触器由第一工作状体切换到第二工作状态。当所述处理器120根据所述双稳态接触器的当前工作状态控制第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134时,且控制所述第一开关单元Q1导通、第二开关单元Q2断开,从而控制所述双稳态接触器由第二工作状体切换到第一工作状态。由于所述双稳态接触器包括辅助触点,所述辅助触点用于指示所述 双稳态接触器的当前工作状态,并将所述双稳态接触器的当前工作状态发送至所述处理器120。
在本实施方式中,所述第一工作状态为断开状态,所述第二工作状态为闭合状态。在其他实施方式中,所述第一工作状态为闭合状态,所述第二工作状态为断开状态。所述第一工作状态为断开状态(相应地,此时,第二工作状态为闭合状态)还是闭合状态(相应地,此时,第二工作状态为断开状态)与所述双稳态触发器的驱动线圈的正负极与所述第一驱动端LVD+及所述第二驱动端LVD-的连接关系相关。具体地,当所述双稳态触发器的驱动线圈的正极电连接所述第一驱动端LVD+,所述双稳态触发器的驱动线圈的负极电连接所述第二驱动端LVD-时,所述第一工作状态为断开状态,所述第二工作状态为闭合状态。当所述双稳态触发器的驱动线圈的负极电连接所述第一驱动端LVD+,所述双稳态触发器的驱动线圈的正极电连接所述第二驱动端LVD-时,所述第一工作状态为闭合状态,所述第二工作状态为断开状态。
下面以所述第一工作状态为断开状态,所述第二工作状态为闭合状态为例,对所述接触器驱动电路100驱动所述双稳态接触器具体驱动过程介绍如下。
当所述驱动器驱动电路100驱动所述双稳态接触器J1时,所述双稳态触发器J1的驱动线圈的正极电连接所述第一驱动端LVD+,所述双稳态触发器J1的驱动线圈的负极电连接所述第二驱动端LVD-。所述处理器120控制所述第一开关单元Q1导通,控制所述第二开关单元Q2断开,且控制所述第一公共触点135电连接所述第一常开触点133,且第二公共触点136电连接所述第二常开触点134。此时,所述第一驱动端LVD+电连接至所述电源110的负极NEG-。经由所述双稳态接触器J1的驱动线圈形成的电流由所述第二驱动端LVD-流向所述第一驱动端LVD+,所述双稳态接触器J1从闭合状态切换至断开状态。
当所述接触器驱动电路驱动所述双稳态接触器J1时,所述双稳态接触器J1的驱动线圈的正极连电连接所述第一驱动端LVD+,所述双稳态触发器J1的驱动线圈的负极电连接所述第二驱动端LVD-。所述处理器120控制所述第一开关单元Q1断开,控制所述第二开关单元Q2导通,且控制所述第一公共 触点135电连接所述第一常闭触点131,及第二公共触点136电连接所述第二常闭触点132。所述第二驱动端LVD-电连接至所述电源110的负极NEG-。经由所述双稳态接触器J1的驱动线圈形成的电流由所述第一驱动端LVD+流向所述第二驱动端LVD-,所述双稳态接触器J1从断开状态切换至闭合状态。
为方便描述,以下将所述处理器120控制所述第一开关单元Q1、第二开关单元Q2及所述继电器Q3的信号分别命名为第一控制信号、第二控制信号及第三控制信号。
所述第一开关单元Q1包括第一控制端g1,第一导通端d1及第二导通端s1。所述第一控制端g1连接所述处理器120,并在所述处理器120的控制下控制所述第一导通端d1及所述第二导通端s1之间导通或截止,以实现所述第一开关单元Q1的导通或断开。具体地,所述第一控制端g1接收所述第一控制信号以控制所述第一导通端d1及第二导通端s1导通或截止。所述第一导通端d1连接所述第一常开触点133,所述第二导通端s1连接所述电源110的负极NEG-。所述第二开关单元Q2包括第二控制端g2,第三导通端d2及第四导通端s2。所述第二控制端g2连接所述处理器120,并在所述处理器120的控制下控制所述第三导通端d2及所述第四导通端s2之间导通或截止,以实现所述第二开关单元Q2的导通或断开。具体地,所述第二控制端g2接收第二控制信号以控制所述第三导通端d2及所述第四导通端s2导通或者截止。所述第三导通端d2连接所述第二常闭触点132,所述第四导通端s2连接所述电源110的负极NEG-。
在本实施方式中,所述第一开关单元Q1及所述第二开关单元Q2为N沟道场效应晶体管(N Metal Oxide Semiconductor Field Effect Transistor,NMOSFET),所述第一控制端g1及所述第二控制端g2为所述NMOSFET的栅极,所述第一导通端d1及所述第三导通端d2为所述NMOSFET的漏极,所述第二导通端s1及所述第四导通端s2为所述NMOSFET的源极。
请参阅图2及图3,图2为本发明接触器驱动电路驱动双稳态接触器时第一控制信号及第三控制信号的波形图。图3为本发明接触器驱动电路在图2所示的控制信号的控制下的电流流动方向示意图。所述第一控制信号控制所述第一开关单元Q1导通时,所述第一控制信号为持续时间为TA的高电平信号, 且所述第一控制信号的开始时间为第一开始时间,所述第一控制信号的结束时间为第一结束时间。当所述第三控制信号控制第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134时,所述第三控制信号为持续时间为TC的高电平信号,所述第三控制信号的开始时间为第二开始时间,所述第三控制信号的结束时间为第二结束时间。所述第一开始时间滞后所述第二开始时间一第一时间间隔,所述第二结束时间滞后所述第一结束时间一第二时间间隔。由于所述第一开始时间滞后所述第二开始时间,因此,所述第三控制信号控制所述第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134之后,所述第一控制信号再控制所述第一开关单元Q1导通。此时,避免了所述线路连接控制单元130的两个公共触点电连接到相应常开触点时打火而造成的线路连接控制单元130的损坏。而第二结束时间之后所述第一结束时间一第二时间间隔,因此,所述避免了所述继电器的两个公共触点电连接到相应常闭触点时打火而造成的线路连接控制单元130的损坏。可以理解地,所述第一时间间隔与所述第二时间间隔可以根据实际情况进行设置和调整。
具体地,在本实施方式中,所述第一控制信号为持续时间TA为500ms的高电平脉冲信号,所述第三控制信号为持续时间TC为900ms的高电平脉冲信号。所述第一时间间隔等于所述第二时间间隔均为200ms。在所述第三控制信号产生T0=200ms后,所述第一控制信号的高电平产生;所述第一控制信号结束后,所述第三控制信号再持续T0=200ms才结束。当第一控制信号为高电平时,在所述第一控制信号控制所述第一开关单元Q1导通;当第三控制信号为高电平时,所述第三控制信号控制第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134。当所述第一驱动端LVD+及所述第二驱动端LVD-之间连接双稳态接触器的线圈时,具体地,当所述第一驱动端LVD+连接双稳态接触器J1的驱动线圈的正极,所述第二驱动端LVD-连接双稳态接触器J1的驱动线圈的负极时,此时,所述电源110的正极RTN、所述第二常开触点134、所述第二公共触点136、所述第二驱动端LVD-、所述第一驱动端LVD+、所述第一公共触点135、所述第一常开触点133、所述第一开关单元Q1至所述电源110的负极NEG-形成一个回路。此时,如 图3所示,该回路中的电流由第二驱动端LVD-流向所述第一驱动端LVD+。此时,所述双稳态接触器J1的驱动线圈上的电流从驱动线圈的负极流向驱动线圈的正极,此时,双稳态接触器J1从闭合状态变为断开状态。
请参阅图4和图5,图4为本发明接触器驱动电路驱动双稳态接触器时第二控制信号及第三控制信号的波形图。图5为本发明接触器驱动电路驱动在图4所示的控制信号的控制下的电流流动方向示意图。如图4所示,所述第二控制信号为持续时间为TB的高电平脉冲信号,而所述第三控制信号为低电平信号。在本实施方式中,所述第二控制信号的持续时间TB为500ms。此时,所述线路连接控制单元130在第三控制信号的控制下控制第一公共触点135电连接所述第一常闭触点131及第二公共触点136电连接所述第二常闭触点132。此时,所述第二开关单元Q2导通,第一开关单元Q1处于断开状态。当所述第一驱动端LVD+及所述第二驱动端LVD-之间连接双稳态接触器J1的驱动线圈时,具体地,当所述第一驱动端LVD+连接双稳态接触器J1的驱动线圈的正极,所述第二驱动端LVD-连接双稳态接触器J1的驱动线圈的负极时,所述电源110的正极RTN、所述第一常闭触点131、所述第一公共触点135、第一驱动端LVD+、第二驱动端LVD-、第二公共触点136、第二常闭触点132、所述第二开关单元Q2及所述电源110的负极NEG-形成一个回路。此时,如图5所示,该回路中的电流由所述第一驱动端LVD+流向所述第二驱动端LVD-。此时,双稳态接触器J1的驱动线圈上的电流从所述驱动线圈的正极流向所述驱动线圈的负极,此时,双稳态接触器J1由断开状态变为闭合状态。由图2至图5的介绍可见,所述接触器驱动电路100可以驱动双稳态接触器。
当所述处理器120控制第一公共触点135电连接所述第一常闭触点131及第二公共触点136电连接所述第二常闭触点132时,且控制所述第二开关单元Q2导通、第一开关单元Q1断开,从而控制所述常闭型接触器由第三工作状态切换到第四工作状态。以及当所述处理器120控制第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134时,且控制所述第一开关单元Q1导通、第二开关单元Q2断开,从而控制所述常闭型接触器由第三工作状态切换到第四工作状态。所述第三工作状态为闭合状态,第四工作状态为断开状态。
当所述处理器120判断出所述第一驱动端LVD+及所述第二驱动端LVD-之间连接的接触器的类型为常闭型接触器时,驱动常闭型接触器的驱动原理介绍如下。
当所述第一驱动端LVD+及所述第二驱动端LVD-之间连接的接触器的类型为常闭型接触器J2时,所述常闭型接触器J2的线圈电连接所述第一驱动端LVD+及所述第二驱动端LVD-之间。所述第二驱动端LVD-连接所述电源110的正极RTN,第一控制信号控制所述第一开关单元Q1导通,第二控制信号控制第二开关单元Q2断开,且第三控制信号控制第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134时,所述驱动信号经由所述常闭型接触器J2形成的电流由所述第二驱动端流向所述第一驱动端,所述常闭型接触器J2由闭合状态变为断开状态。
所述第一控制信号的开始时间为第三开始时间,所述第三控制信号的开始时间为第四开始时间,所述第三开始时间滞后所述第四开始时间第三时间间隔。
具体地,请一并参阅图6和图7。图6为本发明接触器驱动电路驱动常闭型接触器时第一控制信号及第三控制信号的波形图。图7为本发明接触器驱动电路在图6所示的控制信号的控制下的电流流动方向示意图。如图6所示,所示第一控制信号及所述第三控制信号均为持续的高电平信号,此时,所述第一控制信号控制所述第一开关单元Q1导通,所述第三控制信号控制所述第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134。如图6所示,当所述接触器驱动电路100驱动常闭型接触器J2时。此时,所述第二驱动端LVD-、所述第一驱动端LVD+、所述第一公共触点135、所述第一常开触点133、所述第一开关单元Q1及所述电源110的负极NEG-形成一个回路。此时,如图7所示,该回路中的电流由所述第二驱动端LVD-流向所述第一驱动端LVD+。由于所述第一驱动端LVD+及所述第二驱动端LVD-之间驱动的是常闭型接触器,常闭型接触器的驱动线圈在没有电流通过的情况下,常闭型接触器为闭合状态;当常闭型接触器的线圈在有电流通过的情况下,则常闭型接触器由闭合状态转换为断开状态;当常闭型接触器的线圈再次断电时,则常闭型接触器再次恢复到闭合状态。由图6和图7的介绍 可见,所述接触器驱动电路100可以驱动常闭型接触器。在本实施方式中,所述第一控制信号的开始时间为第三开始时间,所述第三控制信号的开始时间为第四开始时间,所述第三开始时间滞后所述第四开始时间一第三时间间隔。所述第三控制信号控制所述第一公共触点135电连接所述第一常开触点133及第二公共触点136电连接所述第二常开触点134之后经过所述第三时间间隔所述第一控制信号再控制所述第一开关单元Q1导通,因此,避免了所述线路连接控制单元130的两个公共触点电连接相应常开触点时打火而造成的线路连接控制单元130的损坏。可以理解地,所述第三时间间隔可以根据实际情况进行设置和调整。在本实施方式中,所述第三时间间隔为200ms。
由上述介绍可见,所述接触器驱动电路100能够驱动两种不同类型的接触器。
所述处理器120判断所述第一驱动端LVD+及第二驱动端LVD-之间连接的驱动器的类型是双稳态接触器还是常闭型接触器的具体的判断原理介绍如下。
请再次参阅图1,图3,图5,所述接触器驱动电路100还包括第一电阻R1及第一采样电路150。所述第一电阻R1一端连接所述电源110的负极NEG-,所述第一电阻R1的另一端连接所述第一采样电路150的一端,所述采样电路150的另一端连接所述处理器120。在图1、图3及图5中,将连接器140的第三引脚pin3和第五引脚pin5电连接以将所述第一电阻R1与所述第一采样电路150之间的节点连接电源110的正极RTN。在一实施方式中,连接器140的第三引脚pin3和第五引脚pin5可以通过金属线电连接。由于连接器140的第五引脚pin5是与第二驱动端LVD-电连接的,再将连接器140的第三引脚pin3与第五引脚pin5电连接之后,即第三引脚pin3和第二驱动端LVD-上加载的电压相等。所述第一采样电路150检测流经所述第一电阻R1的电流值的大小,且将检测到的所述第一电阻R1的电流值的大小传输至所述处理器120,所述处理器120根据流经所述第一电阻R1的电流值的大小判定所述第一驱动端LVD+及所述第二驱动端LVD-之间连接的是常闭型接触器还是双稳态接触器。
具体检测原理介绍如下,当所述接触器驱动电路100驱动的是双稳态接触器时,即在所述第一驱动端LVD+及所述第二驱动端LVD-之间连接双稳态接 触器时,由于连接器140的第三引脚pin3连接连接器140的第五引脚pin5,而连接器140的第五引脚pin5连接所述第二驱动端LVD-,因此,所述第一电阻R1与所述第一采样电路150之间的节点所加载电压的电压值和所述第二驱动端LVD-所加载电压的电压值相等。此时,流经所述第一电阻R1的电流值等于所述第二驱动端LVD-所加载的电压值减去电源110负极的电压值之后再除以第一电阻R1的阻值。当所述接触器驱动电路100驱动的是常闭型接触器时,即在所述第一驱动端LVD+及所述第二驱动端LVD-之间连接常闭型接触器时,由于连接器140的第三引脚pin3连接连接器的第五引脚pin5,而连接器140的第五引脚pin5连接所述第二驱动端LVD-,而第二驱动端LVD-连接的是电源110的正极RTN。此时,流经所述第一电阻R1的电流值等于所述电源110的正极RTN的电压值减去所述电源110的负极NEG-的电压值之后再除以所述第一电阻的电阻值。所述第一采样电路150将检测到流经所述第一电阻R1的电流值的大小传输至所述处理器120。所述处理器120根据流经所述第一电阻R1的电流值的大小判断所述接触器驱动电路100当前驱动的接触器为常闭型接触器还是双稳态型接触器。可以理解地,所述驱动电路100驱动所述双稳态接触器时加载在所述第二驱动端LVD-的电压值小于所述驱动电路100驱动所述常闭型接触器时加载在所述第二驱动端LVD-的电压值(此时,加载在第二驱动端LVD-的电压值为电源110的正极RTN的电压)。因此,所述接触器驱动电路100驱动所述双稳态接触器时流经所述第一电阻R1的电流值小于所述接触器驱动电路100驱动所述常闭型接触器时流经所述第一电阻R1的电流。因此,在一实施方式中,所述处理器120内可预存一预设电流值,所述预设电流值的大小等于所述接触器驱动电路100驱动所述双稳态接触器时流经所述第一电阻R1的电流值,或者所述预设电流值等于所述接触器驱动电路100驱动所述常闭型接触器时流经所述第一电阻R1的电流。当所述处理器接收到所述第一采样电路150输出的表示流经所述第一电阻R1的电流值时,可以将所述第一采样电路150输出的表示流经所述第一电阻R1的电流值与所述预设电流值进行比较,以判断当前驱动电路100驱动的接触器是双稳态接触器还是常闭型接触器。
所述驱动器触发电路100还包括第一二极管D1及第二二极管D2,所述 第一二极管D1的正极连接所述第一驱动端LVD+,所述第一二极管D1的负极连接所述电源110的正极RTN。所述第二二极管D2的正极连接所述第二驱动端LVD-,所述第二二极管D2的负极连接所述电源110的正极RTN。当所述第一二极管D1的正极的电压大于所述第一二极管D1的负极的电压时,所述第一二极管D1导通;当所述第一二极管D1的正极的电压小于所述第一二极管D1负极的电压时,所述第一二极管D1截止。同样地,当所述第二二极管D2的正极的电压大于所述第二二极管D2的负极的电压时,所述第二二极管D2导通;当所述第二二极管D2的正极的电压小于所述第二二极管D2负极的电压时,所述第二二极管D2截止。由于二极管具有单向导通特性,即当二极管的正极的电压大于二极管负极的电压时,二极管导通;当二极管的正极的电压小于二极管负极的电压时,二极管截止。在本实施方式中,由于二极管的单向导通特性,所述第一二极管D1使所述电源110的正极RTN至所述第一驱动端LVD+的通路断开,及所述第二二极管D2使得所述电源110正极RTN至所述第二驱动端LVD-的通路断开,从而避免所述电源110的正极RTN的电压直接加载在所述第一驱动端LVD+及第二驱动端LVD-,进而避免对位于所述第一驱动端LVD+及第二驱动端LVD-之间的元件的损坏。
所述驱动器触发电路100还包括第一稳压管D3、第二稳压管D4、第三稳压管D5及第四稳压管D6。所述第一稳压管D3的负极连接所述第一常开触点133与所述第一导通端d1之间的节点,所述第一稳压管D3的正极连接所述第二稳压管D4的正极,所述第二稳压管D4的负极连接所述电源110的负极NEG-。当加载在所述第一开关单元Q1的所述第一导通端d1及所述第二导通端s1两端的电压过大时,所述第一稳压管D3及所述第二稳压管D4首先击穿,从而保护与所述第一稳压管D3和所述第二稳压管D4并联的第一开关单元Q1,以免当加载在所述第一开关单元Q1的所述第一导通端d1及所述第二导通端s1两端的电压过大时将所述第一开关单元Q1烧坏。所述第三稳压管D5的负极连接所述第二常闭触点132与所述第三导通端d2之间的节点,所述第三稳压管D5的正极连接所述第四稳压管D6的正极,所述第四稳压管D6的负极连接所述电源110的负极NEG-。当加载在所述第二开关单元Q2的第三导通端d2及第四导通端s2两端的电压过大时,所述第三稳压管D5和所述第 四稳压管D6首先击穿,从而保护与所述第三稳压管D5及所述第四稳压管D6并联的第二开关单元Q2,以免当加载在所述第二开关单元Q2的第三导通端d2及第四导通端s2两端的电压过大时将所述第二开关单元Q2烧坏。
所述接触器驱动电路100还包括第二采样电路160和第三采样电路170。所述第二采样电路160一端连接在所述第一常开触点133与所述第一开关单元Q1中的第一导通端d1之间的节点,所述采样电路160的另一端连接所述处理器120。所述第二采样电路160采集所述第一开关单元Q1的所述第一常开触点133与所述第一导通端d1之间节点处的电压信号,以得到第一电压信号,并将所述第一电压信号传输至所述处理器120。所述第三采样电路170一端连接所述第二常闭触点132与所述第二开关单元Q2中的第三导通端d2之间的节点,另一端连接所述处理器120。所述第三采集电路170采集所述第二常闭触点132与所述第二开关单元Q2中的所述第三导通端d2之间节点处的电压信号,以得到第二电压信号,并将所述第二电压信号传输至所述处理器120。所述处理器120将所述第一电压信号与预存在所述处理器120中的第一预设电压信号进行比较,以判断所述第一开关单元Q1是否发生故障,并将所述第二电压信号与预存在所述处理器120中的第二预设电压信号进行比较,以判断所述第二开关单元Q2是否发生故障。其中,所述第一预设电压信号为表征所述第一开关单元Q1正常工作的电压信号,所述第二预设电压信号为表征所述开关单元Q2正常工作的电压信号。当检测到所述第一开关单元Q1或者所述第二开关单元Q2发生故障时,则所述处理器120调整所述第一控制信号、第二控制信号及第三控制信号,以切断驱动所述接触器所需要形成的回路,以保护所述第一驱动端LVD+及所述第二驱动端LVD-之间连接的接触器。举例而言,当所述第二开关单元Q2发生故障,第三导通端d2及第四导通端d3短路时,此时,电源110的正极RTN及电源110的负极NEG-形成一个回路,由于双稳态接触器或常闭型接触器的电阻很小,很容易烧坏,现在通过采集第一开关单元Q1及第二开关单元Q2的电压信号以尽早判断所述第一开关单元Q1及所述第二开关单元Q2是否发生故障,在判断出第一开关单元Q1或第二开关单元Q2发生故障时,切断驱动所述接触器所需要形成的回路,保护第一驱动端LVD+及第二驱动端LVD-之间的接触器。
在一实施方式中,所述接触器驱动电路100还包括第二电阻R2和电容C,所述第二电阻R2一端连接所述第一驱动端LVD+,另一端连接所述电容C至所述第二驱动端LVD-。所述第二电阻R2与所述电容C用于保护设置在所述第一驱动端LVD+及第二驱动端LVD-之间的接触器。
在本实施方式中,所述电源110、所述处理器120、所述线路连接控制单元130、所述第一电阻R1、所述第二电阻R2、所述电容C、所述第一开关单元Q1、所述第二开关单元Q2、所述第一二极管D1、所述第二二极管D2、所述第一稳压管D3、所述第二稳压管D4、所述第三稳压管D5、所述第四稳压管D6集成在一电路板上。所述第一驱动端LVD+及所述第二驱动端LVD-为该电路板上的两个插孔,所述常闭型接触器或者双稳态型接触器通过连接器140连接至所述电路板上的第一驱动端LVD+及第二驱动端LVD-这两个插孔上。
在实际应用时,本发明接触器驱动电路100首先检测位于所述第一驱动端LVD+及所述第二驱动端LVD-之间的接触器的类型,再根据位于所述第一驱动端LVD+及所述第二驱动端LVD-的接触器是双稳态接触器还是常闭型接触器进行相应的驱动。具体地,本发明驱动电路100中的处理器120检测出位于所述第一驱动端LVD+及所述第二驱动端LVD-的接触器是常闭型接触器时,根据前面对常闭型接触器的驱动策略进行驱动。当驱动电路100中的处理器120检测出位于所述第一驱动端LVD+及所述第二驱动端LVD-的接触器是双稳态接触器时,由于所述双稳态接触器还包括辅助触点(图未示),所述双稳态接触器的辅助触点指示当前双稳态接触器的工作状态是闭合状态还是开启状态,并将当前双稳态接触器的工作状态传输至所述处理器120,所述处理器120再根据实际应用需要及双稳态接触器当前的工作状态控制双稳态接触器。
本发明提供的接触器驱动电路100通过处理器120先判断出第一驱动端LVD+及第二驱动端LVD-之间连接的接触器的类型。然后根据判断结果控制线路连接控制单元130以使所述第一驱动端LVD+电连接至所述电源110的正极RTN,且控制所述第二驱动端LVD-连接至所述电源110的负极RTN,当所述第一驱动端LVD+及第二驱动端LVD-之间连接接触器时,从而形成由所述第一驱动端LVD+流向所述第二驱动端LVD-的电流。或者所述处理器120控制所述线路连接控制单元130以使所述第二驱动端LVD-电连接至所述电源110 的正极RTN,且控制所述第一驱动端LVD+电连接至所述电源110的负极NEG-时,当所述第一驱动端LVD+及第二驱动端LVD-之间连接接触器时,从而形成由所述第二驱动端LVD-流向所述第一驱动端LVD+的电流。从而可以驱动双稳态接触器及常闭型接触器两种不同类型的接触器。因此,实现了一种驱动电路驱动两种不同类型的接触器的技术效果。
进一步地,本发明提供的接触器驱动电路100还可以根据流经第一电阻R1的电流的大小判断第一驱动端LVD+及第二驱动端LVD-当前驱动的接触器是双稳态接触器还是常闭型接触器,达到了能够判断当前所驱动的接触器的类型的技术效果。
再进一步地,本发明提供的接触器驱动电路100中通过第二电采样电路160和第三采样电路170分别采集第一开关单元Q1及第二开关单元Q2的电压值,以判断所述第一开关单元Q1及所述第二开关单元Q2是否发生故障。并在所述第一开关单元Q1及所述第二开关单元Q2发生故障时,所述处理器120调整所述第一控制信号、第二控制信号及第三控制信号,以切断所述驱动信号产生的回路,以保护位于所述第一驱动端LVD+及所述第二驱动端LVD-之间的接触器,从而达到了在所述第一开关单元Q1或第二开关单元Q2发生故障时保护第一驱动端LVD+及所述第二驱动端LVD-之间的接触器的技术效果。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (21)

  1. 一种接触器驱动电路,用于驱动双稳态接触器或常闭型接触器,其特征在于,所述接触器驱动电路包括电源、处理器、线路连接控制单元、第一驱动端及第二驱动端,所述第一驱动端及所述第二驱动端用于驱动所述双稳态接触器或常闭型接触器,所述处理器电连接所述线路连接控制单元,当所述第一驱动端及所述第二驱动端之间连接接触器时,所述处理器根据流经所述接触器的电流的大小判断所述第一驱动端及所述第二驱动端之间连接的接触器的类型,并根据判断结果控制所述线路连接控制单元以使所述第一驱动端电连接至所述电源的正极,且控制所述第二驱动端电连接至所述电源的负极;或所述处理器控制所述线路连接控制单元以使所述第二驱动端连接至所述电源的正极,且控制所述第一驱动端电连接至所述电源的负极。
  2. 如权利要求1所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第一开关单元及第二开关单元,所述第一开关单元及所述第二开关单元电连接至所述处理器,所述处理器控制所述第二开关单元导通、所述第一开关单元断开,以控制所述第二驱动端电连接至所述电源的负极;或所述处理器控制所述第一开关单元导通、所述第二开关单元断开,以控制所述第一驱动端连接所述电源的负极。
  3. 如权利要求2所述的触器驱动电路,其特征在于,所述线路连接控制单元为继电器,所述继电器包括第一常闭触点、第二常闭触点、第一常开触点、第二常开触点、第一公共触点、第二公共触点及线圈,所述第一常闭触点及所述第二常开触点连接所述电源的正极,所述第一常开触点通过所述第一开关单元连接至电源的负极,所述第二常闭触点通过所述第二开关单元连接至电源的负极,所述第一公共触点连接所述第一驱动端,所述第二公共触点连接所述第二驱动端,所述线圈一端电连接所述处理器,所述线圈的另一端接地,当所述第一驱动端及所述第二驱动端之间连接接触器时,所述处理器根据流经所述接触器的电流的大小判断所述第一驱动端及所述第二驱动端之间连接的接触器 的类型,并根据判断结果控制第一公共触点电连接所述第一常闭触点及第二公共触点电连接所述第二常闭触点,以使所述第一驱动端电连接至所述电源的正极,或控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点,以使所述第二驱动端电连接至所述电源的正极。
  4. 如权利要求3所述的接触器驱动电路,其特征在于,当所述处理器判断出所述第一驱动端及所述第二驱动端之间连接的接触器的类型是双稳态接触器时,所述双稳态接触器包括辅助触点,所述辅助触点指示所述双稳态接触器的当前工作状态,所述处理器根据所述双稳态接触器的当前工作状态控制第一公共触点电连接所述第一常闭触点及第二公共触点电连接所述第二常闭触点时,且控制所述第二开关单元导通、第一开关单元断开时,从而控制所述双稳态接触器由第一工作状体切换到第二工作状态;当所述处理器根据所述双稳态接触器的当前工作状态控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点时,且控制所述第一开关单元导通、第二开关单元断开时,从而控制所述双稳态接触器由第二工作状体切换到第一工作状态。
  5. 如权利要求3或4所述的接触器驱动电路,其特征在于,所述处理器控制所述第一开关单元的信号为第一控制信号,当所述第一控制信号控制所述第一开关单元导通时,所述第一控制信号的开始时间为第一开始时间,所述第一控制信号的结束时间为第一结束时间;所述处理器控制所述继电器的信号为第三控制信号,当所述第三控制信号控制所述第一公触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点时,所述第三控制信号的开始时间为第二开始时间,所述第三控制信号的结束时间为第二结束时间,所述第一开始时间滞后所述第二开始时间一第一时间间隔,所述第二结束时间滞后所述第一结束时间一第二时间间隔。
  6. 如权利要求5所述的接触器驱动电路,其特征在于,所述第一时间间隔等于所述第二时间间隔。
  7. 如权利要求6所述的接触器驱动电路,其特征在于,第一时间间隔及第二时间间隔为200ms。
  8. 如权利要求3至7任一项所述的接触器驱动电路,其特征在于,当所述处理器判断出所述第一驱动端及所述第二驱动端之间连接的接触器的类型是常闭型接触器时,所述处理器控制第一公共触点电连接所述第一常闭触点及第二公共触点电连接所述第二常闭触点时,且控制所述第二开关单元导通、第一开关单元断开,以使所述第二驱动端连接至所述电源的负极,以驱动所述常闭型接触器;或控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点时,且控制所述第一开关单元导通、第二开关单元断开,以使所述第一驱动端连接至所述电源的负极,以驱动所述常闭型接触器。
  9. 如权利要求8所述的接触器驱动电路,其特征在于,所述处理器控制所述第一开关单元的信号为第一控制信号,当所述第一控制信号控制所述第一开关单元导通时,所述第一控制信号的开始时间为第三开始时间;所述处理器控制所述继电器的信号为第三控制信号,当所述第三控制信号控制第一公共触点电连接所述第一常开触点及第二公共触点电连接所述第二常开触点时,所述第三控制信号的开始时间为第四开始时间,所述第三开始时间滞后所述第四开始时间第三时间间隔。
  10. 如权利要求9所述的接触器驱动电路,其特征在于,所述第三时间间隔为200ms。
  11. 如权利要求1至10任意一项所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第一电阻及第一采样电路,所述第一电阻一端连接电源负极,另一端连接第一采样电路的一端,所述采样电路的另一端连接所述处理器,第一电阻与第一采样电路之间的节点连接电源的正极,所述第一采样电路检测流经所述第一电阻的电流值的大小,并将检测到流经所述第一电阻的 电流值的大小传输至所述处理器,所述处理器根据流经所述第一电阻的电流值的大小判断所述接触器驱动电路当前驱动的接触器为常闭型接触器还是双稳态型接触器。
  12. 如权利要求3至11任意一项所述的接触器驱动电路,其特征在于,所述第一开关单元包括第一控制端、第一导通端及第二导通端,所述第一控制端连接所述处理器,并在所述处理器的控制下控制第一导通端及第二导通端导通或截止,以实现所述第一开关单元的导通或断开,所述第一导通端连接所述第一常开触点,所述第二导通端连接所述电源的负极。
  13. 如权利要求12所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第一稳压管及第二稳压管,所述第一稳压管的负极连接所述第一常开触点与所述第一导通端之间的节点,所述第一稳压管的正极连接所述第二稳压管的正极,所述第二稳压管的负极连接所述电源的负极。
  14. 如权利要求12或13所述的接触器驱动电路,其特征在于,第一开关单元为N沟道场效应晶体管,所述第一控制端为N沟道场效应晶体管的栅极,所述第一导通端为所述N沟道场效应晶体管的漏极,所述第二导通端为所述N沟道场效应晶体管的源极。
  15. 如权利要求3至14任意一项所述的接触器驱动电路,其特征在于,所述第二开关单元包括第二控制端、第三导通端及第四导通端,所述第二控制端连接所述处理器,并在所述处理器的控制下控制第三导通端及第四导通端导通或截止,以实现所述第二开关单元的导通或断开,所述第三导通端连接所述第二常闭触点,所述第四导通端连接电源的负极。
  16. 如权利要求15所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第三稳压管及第四稳压管,所述第三稳压管的负极连接所述第二常闭触点与所述第三导通端之间的节点,所述第三稳压管的正极连接所述第四 稳压管的正极,所述第四稳压管的负极连接所述电源的负极。
  17. 如权利要求15或16所述的接触器驱动电路,其特征在于,所述第二开关单元为N沟道场效应晶体管,所述第二控制端为N沟道场效应晶体管的栅极,所述第三导通端为所述N沟道场效应晶体管的漏极,所述第四导通端为所述N沟道场效应晶体管的源极。
  18. 如权利要求1至17任意一项所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第一二极管,所述第一二极管的正极连接所述第一驱动端,所述第一二极管的负极连接所述电源的正极。
  19. 如权利要求1至18任意一项所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第二二极管,所述第二二极管的正极连接所述第二驱动端,所述第二二极管的负极连接所述电源的正极。
  20. 如权利要求3至19任意一项所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第二采样电路,所述第二采样电路电连接在所述第一开关单元与第一常开触点之间的节点以及所述处理器之间,以采集所述第一常开触点与所述第一开关单元之间节点处的第一电压信号,并将所述第一电压信号传输至所述处理器,所述处理器将第一电压信号与预存在所述处理器中的第一预设电压信号进行比较,以判断所述第一开关单元是否发生故障,其中,所述第一预设电压信号为表征所述第一开关单元正常工作的电压信号。
  21. 如权利要求3至20任意一项所述的接触器驱动电路,其特征在于,所述接触器驱动电路还包括第三采样电路,所述第三采样电路电连接在所述第二开关单元与第二常闭触点之间的节点以及所述处理器之间,以采集所述第二常闭触点与所述第二开关单元之间节点处的第二电压信号,并将所述第二电压信号传输至所述处理器,并将第二电压信号与预存在所述处理器中的第二预设电压信号进行比较,以判断所述第二开关单元是否发生故障,其中,所述第二 预设电压信号为表征所述第二开关单元正常工作的电压信号。
PCT/CN2015/072569 2014-05-27 2015-02-09 接触器驱动电路 WO2015180511A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15767072.0A EP2993680B1 (en) 2014-05-27 2015-02-09 Contactor driving circuit
ES15767072T ES2711304T3 (es) 2014-05-27 2015-02-09 Circuito de accionamiento de contactor
BR112016027598-5A BR112016027598B1 (pt) 2014-05-27 2015-02-09 Circuito de acionamento de contator
US14/956,881 US20160104592A1 (en) 2014-05-27 2015-12-02 Contactor Drive Circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410228099.0A CN103996567B (zh) 2014-05-27 2014-05-27 接触器驱动电路
CN201410228099.0 2014-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/956,881 Continuation US20160104592A1 (en) 2014-05-27 2015-12-02 Contactor Drive Circuit

Publications (1)

Publication Number Publication Date
WO2015180511A1 true WO2015180511A1 (zh) 2015-12-03

Family

ID=51310694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072569 WO2015180511A1 (zh) 2014-05-27 2015-02-09 接触器驱动电路

Country Status (6)

Country Link
US (1) US20160104592A1 (zh)
EP (1) EP2993680B1 (zh)
CN (1) CN103996567B (zh)
BR (1) BR112016027598B1 (zh)
ES (1) ES2711304T3 (zh)
WO (1) WO2015180511A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996567B (zh) * 2014-05-27 2016-06-22 华为技术有限公司 接触器驱动电路
US20170062793A1 (en) * 2015-08-24 2017-03-02 Elitise Llc Contactor assembly for battery module
FR3060832B1 (fr) * 2016-12-16 2019-05-17 Airbus Group Sas Contacteur electrique de puissance et vehicule comportant un tel contacteur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186052A (ja) * 2002-12-04 2004-07-02 Mitsubishi Electric Corp 電磁接触器のコイル駆動回路
CN202363371U (zh) * 2011-12-08 2012-08-01 北京四方华能电气设备有限公司 交流高压双稳态永磁接触器
CN202888081U (zh) * 2012-08-27 2013-04-17 关平 一种具节能作用的交流接触器智能控制装置
CN103996567A (zh) * 2014-05-27 2014-08-20 华为技术有限公司 接触器驱动电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961230A (en) * 1974-05-23 1976-06-01 Hartley Controls Corporation Current relay actuated by multistage amplifier's total current drains
US4682801A (en) * 1984-08-31 1987-07-28 Securitron-Magnalock Corp. Electromagnet access control circuit
US5256973A (en) * 1991-06-28 1993-10-26 Michael Thee Relay tester having a circuit to sense the voltage spihe caused by the armature movement
DE102005014122A1 (de) * 2005-03-22 2006-09-28 Pilz Gmbh & Co. Kg Sicherheitsschaltvorrichtung zum sicheren Abschalten eines elektrischen Verbrauchers
CN2793906Y (zh) * 2005-04-06 2006-07-05 姜琦善 一种交流接触器驱动电路
JP2012016091A (ja) * 2010-06-29 2012-01-19 Oki Data Corp 電源制御回路及び画像形成装置
CN202749304U (zh) * 2012-07-16 2013-02-20 苏州工业园区和顺电气股份有限公司 用于继电器的控制电路
DE102012107953B3 (de) * 2012-08-29 2014-02-13 Sma Solar Technology Ag Schaltungsanordnung zum Ansteuern eines bistabilen Relais
KR101832835B1 (ko) * 2013-07-11 2018-02-28 삼성전자주식회사 영상 처리 모듈, 초음파 영상 장치, 영상 처리 방법 및 초음파 영상 장치의 제어 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186052A (ja) * 2002-12-04 2004-07-02 Mitsubishi Electric Corp 電磁接触器のコイル駆動回路
CN202363371U (zh) * 2011-12-08 2012-08-01 北京四方华能电气设备有限公司 交流高压双稳态永磁接触器
CN202888081U (zh) * 2012-08-27 2013-04-17 关平 一种具节能作用的交流接触器智能控制装置
CN103996567A (zh) * 2014-05-27 2014-08-20 华为技术有限公司 接触器驱动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2993680A4 *

Also Published As

Publication number Publication date
CN103996567A (zh) 2014-08-20
BR112016027598A2 (zh) 2017-08-15
EP2993680B1 (en) 2018-11-21
ES2711304T3 (es) 2019-05-03
EP2993680A1 (en) 2016-03-09
EP2993680A4 (en) 2016-07-13
BR112016027598B1 (pt) 2022-10-11
US20160104592A1 (en) 2016-04-14
CN103996567B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
WO2016185579A1 (ja) 電源制御装置及びその方法
CN109342973B (zh) 直流电源输入状态监测电路及系统
TWI610513B (zh) 充放電控制電路及電池裝置
TWI493207B (zh) Battery status monitoring circuit and battery device
US10186854B2 (en) Circuit protection device with self fault detection function
US8508898B2 (en) Diagnosable reverse-voltage protection for high power loads
TW201438362A (zh) 電子保險絲裝置及其操作方法
JP2013027273A (ja) バッテリ保護icおよびバッテリ装置
CN103490374A (zh) 一种量产测试设备及其短路过流保护电路
KR20180056733A (ko) 단락 방지 검출 장치 및 사용자 단말기
JP2016531535A (ja) 電気系統を保護するためのインタロック回路
JP6385310B2 (ja) バッテリ装置
WO2015180511A1 (zh) 接触器驱动电路
CN102983556A (zh) 具有放电过流保护后自恢复功能的电池保护电路
CN104137371A (zh) 用于保护车辆的电流回路的设备和方法以及电流回路
US7800249B1 (en) Power supply system
KR20140078540A (ko) 충방전 제어 회로 및 배터리 장치
JP6685465B2 (ja) 電子式回路遮断器
TWI502853B (zh) 用於高電流脈衝電源供應器的短路控制
EP2482412B1 (en) Switch control circuit for power supply and power supplying circuit
CN104716704B (zh) 电池状态监视电路以及电池装置
US8618774B2 (en) Charge and discharge battery control circuit
JP2010220277A (ja) 異常電圧保護回路
KR20150098849A (ko) 배터리의 0v 배터리 충전방지 제어회로
CN111262225A (zh) 电源输出保护装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2015767072

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15767072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016027598

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016027598

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161124