WO2015180276A1 - 像素单元驱动电路、方法、像素驱动电路和amoled显示装置 - Google Patents

像素单元驱动电路、方法、像素驱动电路和amoled显示装置 Download PDF

Info

Publication number
WO2015180276A1
WO2015180276A1 PCT/CN2014/085388 CN2014085388W WO2015180276A1 WO 2015180276 A1 WO2015180276 A1 WO 2015180276A1 CN 2014085388 W CN2014085388 W CN 2014085388W WO 2015180276 A1 WO2015180276 A1 WO 2015180276A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
transistor
oled
reverse bias
control
Prior art date
Application number
PCT/CN2014/085388
Other languages
English (en)
French (fr)
Inventor
吴博
祁小敬
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2015180276A1 publication Critical patent/WO2015180276A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • Pixel unit driving circuit, method, pixel driving circuit and AMOLED display device
  • the present disclosure relates to the field of display technology, and in particular to -
  • an electric field of a dc driving voltage for a long time causes polarization of ions inside the OLED to form a built-in electric field, thereby making the OLED
  • the threshold voltage is increased, which greatly reduces the luminous efficiency of the OLED and shortens the lifetime of the OLED.
  • the conventional 2T1C pixel unit driving circuit includes a driving transistor DTFT, a storage capacitor C1, and an input transistor T.
  • the DTFT and the NMOS used in FIG. 1A are n-type transistors, and the DTFT and T in FIG. P-type transistor, C1 is the storage capacitor, V SCAN is the scan voltage, DTFT is 3 ⁇ 4 to drive the organic light-emitting diode Di, the data voltage V DAIA is input to the DTFT through T, VDD is high level, and VSS is low level.
  • the 2T1C pixel unit driving circuit shown in Figure IB is added to the data voltage V DAm through the data line, and is always illuminated for one frame time.
  • the OLED is in a DC biased state for a long time.
  • the polarization of the material is accelerated, which causes the built-in electric field of the OLED to be enhanced, and the threshold voltage of the OLED is increased, which greatly reduces the luminous efficiency of the OLED and shortens the OLED. life.
  • the 2T1C pixel unit driving circuit shown in Figure 1 is affected by the drive tube Vth drift and OLED aging.
  • the present disclosure provides a pixel unit driving circuit including a driving unit for driving an OLED connected to a scan line, and a reverse bias control unit, wherein the driving unit passes the reverse bias
  • the control unit is connected to the OLED;
  • the reverse bias control unit is configured to control disconnection of the driving unit and the OLED and control the reverse bias of the OLED during a reverse bias period;
  • the reverse bias period is a period of time selected in advance during a period in which the scan line is turned off in each scan period.
  • the reverse bias control unit includes a driving control transistor and a bias control transistor; the driving unit is connected to an anode of the OLED through the driving control transistor; and a bias voltage is connected through the bias control transistor Connecting a connection point of the driving control transistor and the OLED;
  • the drive control transistor is turned off during the reverse bias period, and the bias control transistor is turned on during the reverse bias period;
  • the bias voltage is less than a first driving voltage directly connected to a cathode of the OLED; the type of the driving control transistor and the type of the bias control transistor are complementary.
  • the reverse bias control unit includes a driving control transistor and a bias control transistor; the driving unit is connected to a cathode of the OLED through the driving control transistor; and a bias voltage is connected through the bias control transistor Into the drive control transistor and the
  • the drive control transistor is turned off during the reverse bias period, and the bias control transistor is turned on during the reverse bias i ⁇ ;
  • the bias voltage is greater than a first driving voltage directly connected to an anode of the OLED;
  • the type of the drive control transistor is complementary to the type of the bias control transistor.
  • the driving unit includes a data input module and a driving module
  • the reverse bias control unit is configured to control to turn on the driving module and the OLED when the scan line is turned on and when the scan line is off and not in a reverse bias period, and Determining the reverse bias period to control disconnection of the driving module and the OLED;
  • the data input module is connected to the scan line, and is configured to write a data voltage to the driving module when the scan line is turned on;
  • the driving module is configured to store the data voltage when the scan line is turned on and drive the OLED according to the data voltage, and pass the stored data voltage when the scan line is turned off and not in a reverse bias period Continue to drive the OLED.
  • the driving module includes a driving transistor connected between the second driving voltage input terminal and the reverse bias control unit;
  • the pixel unit driving circuit further includes: a compensation unit, configured to control a threshold voltage of the driving transistor by a threshold voltage of the driving transistor during a reverse bias period, and when the scan line is turned on, and Controlling a threshold voltage of the driving transistor with a gate-source voltage of the driving transistor when the scan line is turned off and not in a reverse bias period.
  • a compensation unit configured to control a threshold voltage of the driving transistor by a threshold voltage of the driving transistor during a reverse bias period, and when the scan line is turned on, and Controlling a threshold voltage of the driving transistor with a gate-source voltage of the driving transistor when the scan line is turned off and not in a reverse bias period.
  • the compensation unit includes a compensation storage capacitor and a compensation control module
  • the first end of the compensation storage capacitor is connected to the gate of the driving transistor, and the second driving voltage is accessed through the compensation control module;
  • the second end of the compensation storage capacitor is connected to the source of the driving transistor through the compensation control module;
  • the compensation control module is configured to control a first end of the compensation storage capacitor to be connected to a second driving voltage during a reverse bias period, and control a second end of the compensation storage capacitor and a source of the driving transistor Connecting, and controlling a voltage difference between the first end and the second end of the compensation storage capacitor to be a threshold voltage of the driving transistor, and also for when the scan line is turned on and when the scan line is turned off and not in reverse
  • the first end of the compensation storage capacitor is disconnected from the second driving voltage input terminal during the biasing period, and the connection between the second end of the compensation storage capacitor and the source of the driving transistor is controlled to be
  • the gate-source voltage of the drive transistor is caused to compensate for a threshold voltage of the drive transistor.
  • the reverse bias period in each scan period is immediately adjacent to the time period in which the scan lines in the next next scan period are turned on.
  • the present disclosure further provides a pixel unit driving method, which is characterized by the above-mentioned pixel unit driving circuit, and includes:
  • the reverse bias control unit controls the conduction driving unit and the OLED when the scan line is turned on and when the scan line is off and not in the reverse bias period;
  • the reverse bias control unit controls to disconnect the drive unit and the OLED and control the OLED reverse bias.
  • the present disclosure also provides a pixel driving circuit comprising N stages of the above pixel unit driving circuit; N is an integer greater than 1;
  • the bias control signal of each stage of the pixel unit driving circuit is delayed by one clock period from the bias control signal of the adjacent upper stage pixel unit driving circuit.
  • the present disclosure also provides an AM0LED display device including the above pixel driving circuit.
  • the pixel unit driving circuit, the method, the pixel driving circuit and the AMOLED display device of the present disclosure preselect a time period as a reverse period in a period in which the scanning line is turned off in each scanning period.
  • the reverse bias control unit controls the disconnection of the driving unit from the OLED, and controls the reverse bias of the OLED to prevent the OLED from being in a DC biased state for a long time.
  • the built-in electric field of the OLED is reduced, thereby reducing the threshold voltage of the OLED, improving the luminous efficiency of the OLED, and improving the lifetime of the OLED.
  • FIG. 1A and FIG. 1B are circuit diagrams of a conventional 2T1C pixel unit driving circuit
  • FIG. 2 is a structural block diagram of a pixel unit driving circuit according to a first embodiment of the present disclosure
  • FIG. 3A is a schematic structural diagram of a pixel unit driving circuit according to a second embodiment of the present disclosure.
  • FIG. 3B is a third embodiment of the present disclosure.
  • FIG. 3C is a block diagram showing the structure of a pixel unit driving circuit according to a fourth embodiment of the present disclosure.
  • FIG. 4 is a block diagram showing the structure of a pixel unit driving circuit according to a fifth embodiment of the present disclosure;
  • a block diagram of a pixel unit driving circuit according to a sixth embodiment of the present disclosure; 6 is a block diagram showing a structure of a pixel unit driving circuit according to a seventh embodiment of the present disclosure;
  • FIG. 7 is a circuit diagram of a pixel unit driving circuit according to an eighth embodiment of the present disclosure;
  • FIGS. 9a, 9b, and 9c are respectively a pixel unit driving circuit according to the eighth embodiment in the first stage and the second stage; , the equivalent circuit diagram of the third stage;
  • FIG. 10 is a structural block diagram of a pixel driving circuit according to an embodiment of the present disclosure.
  • Figure 11 is a signal timing diagram of the pixel driving circuit of the embodiment of the present disclosure.
  • the transistors employed in all of the embodiments of the present disclosure may be thin film transistors or field effect transistors or other devices having the same characteristics.
  • one of the poles is referred to as a source and the other pole is referred to as a drain.
  • the transistor can be classified into an N-type transistor or a P-type transistor according to the characteristics of the transistor.
  • an N-type transistor or a P-type transistor when an N-type transistor or a P-type transistor is specifically implemented, those skilled in the art can easily think of it without making creative work, and thus are also within the protection scope of the embodiments of the present disclosure.
  • the first pole of the N-type transistor may be a source, and the second pole of the N-type transistor may be a drain; the first pole of the P-type transistor may be a drain, and the second pole of the P-type transistor Can be the source.
  • the pixel unit driving circuit of the embodiment of the present disclosure includes:
  • the driving unit 21 is connected to the OLED through the reverse bias control unit 22;
  • the reverse bias control unit 22 is configured to control disconnection of the driving unit 21 and the OLED during a reverse bias period Connecting and controlling the reverse bias of the OLED;
  • the reverse bias period is a preselected period of time during a period in which the scan line SCAN is turned off during each scan period;
  • VI is the first drive voltage that is directly connected to the cathode of the OLED.
  • the pixel unit driving circuit of the embodiment of the present disclosure is also applicable to a top-emitting OLED structure.
  • the scan line SCAN is turned on and off in each scan period.
  • a time period is selected in advance as a reverse bias time period.
  • the reverse bias control unit controls disconnection of the driving unit 21 from the OLED, and controls the OLED reverse bias to avoid OLEDs. It is in a DC biased state for a long time to weaken the polarity of the organic material of the OLED, reduce the built-in electric field of the OLED, thereby reducing the threshold voltage of the OLED, improving the luminous efficiency of the OLED, and improving the lifetime of the OLED.
  • the pixel unit driving circuit described in the embodiment of the present disclosure is easy to implement, and is applicable to both the top emitting OLED structure and the bottom emitting OLED structure.
  • the reverse bias control unit may include a driving control transistor TQ and a bias control transistor TP;
  • the driving unit 21 is connected to the anode of the OLED through the driving control transistor TQ;
  • a bias voltage VP is connected to the connection point of the driving control transistor TQ and the OLED through the bias control transistor;
  • the driving control transistor TQ is turned off during the reverse bias period, and the bias control transistor TP is turned on during the reverse bias period;
  • the bias voltage VP is smaller than the first driving voltage VI directly connected to the cathode of the OLED;
  • TQ is complementary to the type of TP.
  • both the gate of the TP and the gate of the TQ are connected to the bias control signal Ctrl, TQ is an n-type transistor, and TP is a p-type transistor.
  • ffi can make TQ a p-type transistor and TP an 11-type transistor, but when both TP and TQ use a bias control signal Ctrl to access the pole to control on and off,
  • the type of TQ and the type of TP need to be complementary.
  • the The bias voltage VP is smaller than the first driving voltage VI directly connected to the cathode of the OLED, then in the reverse bias period, the driving control transistor TQ is turned off, and the bias control transistor TP is turned on, thereby OLED
  • the voltage of the anode is VP
  • the cathode voltage of the OLED is VI
  • the VP is less than VI, so the OLED is reverse biased.
  • the reverse bias control unit may include a driving control transistor TQ and a bias control transistor TP. ;
  • the driving unit 21 is connected to the cathode of the OLED through the driving control transistor TQ;
  • a bias voltage VP is connected to the connection point of the driving control transistor TQ and the OLED through the bias control transistor;
  • the driving control transistor TQ is turned off during the reverse bias period, and the bias control transistor TP is turned on during the reverse bias period;
  • the bias voltage VP is greater than a first driving voltage V1U directly connected to an anode of the OLED
  • TQ is complementary to the type of TP
  • TQ is an I-type transistor and TP is a p-type transistor.
  • the driving unit may include a data input module 211 and a driving module 212;
  • the reverse bias control unit 22 is configured to control to turn on the driving module and the OLED when the scan line SCAN is turned on and when the scan line SCAN is turned off and not in a reverse bias period. And controlling to disconnect the driving module and the OLED during the reverse bias period;
  • the data input module 211 is connected to the scan line SCA for writing a data voltage Vdata to the drive module 212 when the scan line SCAN is turned on;
  • the driving module 2i2 is configured to store the data voltage Vdata when the scan line SCAN is turned on and drive the OLED according to the data voltage Vdata, and when the scan line SCAN is off and not in a reverse bias period The OLED is continuously driven by the stored data voltage Vdata.
  • the driving module 212 includes a driving transistor DTFT connected between a second driving voltage input terminal for inputting the second driving voltage V2 and the reverse bias control unit 22:
  • the pixel unit driving circuit further includes: a compensation unit 23, configured to control a threshold voltage of the driving transistor DTFT by a threshold voltage of the driving transistor DTFT during a reverse bias period, and in the scan line SCAN The threshold voltage of the driving transistor DTFT is controlled to be compensated with the »source voltage of the driving transistor DTFT when turned on and when the scan line SCAN is turned off and not in the reverse bias period.
  • the compensation unit includes a compensation storage capacitor Cs and a compensation control module 231;
  • the first end of the compensation storage capacitor Cs is connected to the cabinet of the driving transistor DTFT, and is connected to the second driving voltage V2 through the compensation control module 231;
  • the second end of the compensation storage capacitor Cs is connected to the source of the driving transistor DTTT through the compensation control module 231;
  • the compensation control module 231 is configured to control the first end of the compensation storage capacitor Cs to access the second driving voltage V2 during the reverse bias period, and control the second end of the compensation storage capacitor Cs and the driving a source of the transistor DTFT is connected, and a voltage difference between the first end and the second end of the compensation storage capacitor Cs is controlled to be a threshold voltage of the driving transistor DTFT, and is also used when the scan line SCAN is turned on and in the
  • the first end of the compensating storage capacitor Cs is disconnected from the first driving voltage input terminal of the second driving voltage V2 when the scan line SCAN is turned off and not in the reverse bias period, and the compensation storage is disconnected.
  • a second end of the capacitor Cs is coupled to a source of the driving transistor DTFT such that a gate-source voltage of the driving transistor DTFT compensates a threshold voltage of the driving transistor DTFT.
  • the driving unit includes a data input transistor TD, a driving transistor DTFT, and a driving storage capacitor C;
  • the reverse bias control unit includes a drive control transistor TQ and a bias control transistor TP;
  • the compensation unit includes a compensation storage capacitor Cs, a first compensation control transistor Ti, and a second compensation control transistor T2;
  • the data input transistor TD the gate is connected to the scan line SCA, the first pole is connected to the data voltage Vdata, and the second pole is connected to the first low level VSS by driving the storage capacitor C;
  • the driving transistor DTFT the cabinet is connected to the second pole of the data input transistor TD through the compensation storage capacitor Cs, and the first pole passes through the driving control transistor TQ and the OLED
  • the anode is connected, and the second pole is connected to a high level VDD;
  • the anode of the OLED is connected to the second low level VSS2 through the bias control transistor TP, and the cathode of the OLED is connected to the first low level VSS;
  • the gate of the driving control transistor T'Q and the » pole of the bias control transistor TP are both connected to the bias control signal Ctri;
  • the first compensation control transistor T1 the cabinet is connected to the bias control signal CtxL, the first pole is connected to the high level VUD, and the second pole is connected to the cabinet of the driving transistor DTFT;
  • the second compensation control transistor T2 the first pole of the cabinet is connected to the bias control signal CtxL is connected to the first pole of the driving transistor DTTT, and the second pole is connected to the second pole of the data input transistor TD .
  • the data input transistor TD, the driving transistor DTFT, and the driving control transistor TQ are N-type transistors, a bias control transistor TP, a first compensation control transistor T1, and a second compensation control transistor ⁇ 2.
  • the ⁇ point is the connection node of the gate of Cs and DTFT
  • the point B is the connection node between Cs and TD.
  • the compensation phase and the reverse bias time period are the same time period, and the reverse bias time period of each scan cycle is adjacent to the time period of the scan line of the adjacent next cycle. , that is, the data input is performed immediately after the compensation to ensure the effect of the ⁇ value compensation.
  • Fig. 9a, Fig. 9 and Fig. 9c are circuit diagrams showing an equivalent circuit of the pixel unit drive circuit shown in Fig. 7 in the first stage, the second stage, and the third stage.
  • the voltage at point A is VA VDD
  • the voltage at point B is VB-VDD ⁇ Vth
  • the voltage across Cs is VCs VA VB VDD- (VDD-Vth) -Vth
  • TQ is off, and the conduction path of DTFT and OLED is turned off
  • TP Turn on the anode of the OLED is connected to VSS2, the cathode of the OLED is connected to VSS, and VSS2 ⁇ VSS, so that the OLED is in a reverse bias state;
  • the OLED illumination holding phase Ctrl is high, V SCAN is low, Tl, ⁇ 2 and TD are off, T'Q is on, TP is off, Cs and C are not charging.
  • the path of discharge according to the principle of conservation of charge, there is no circuit that consumes charge, so the charge of Cs and C, the voltage at both ends remains unchanged, VOVdaia, VCs-Vth, VB-Vdata, Y-Vdata+Vth, point A voltage It does not change, so the current flowing through the OLED remains K (Vdata-Voled) 2 , and the OLED maintains the light-emitting state when the data voltage is written.
  • the present disclosure also provides a pixel unit driving method, which is to be driven by the pixel unit described above, and includes:
  • the reverse bias control unit controls the conduction driving unit and the OLED when the scan line is turned on and when the scan line is off and not in the reverse bias period;
  • the reverse bias control unit controls to disconnect the drive unit and the OLED and control the OLED reverse bias.
  • the present disclosure further provides a pixel driving circuit including N stages of the above pixel unit driving circuit; N is an integer greater than 1; Ctrl1 is a bias control signal for accessing the driving circuit of the first stage pixel unit Ctrl2 is a bias control signal for accessing the second-stage pixel unit driving circuit, and CtrlN is a bias control signal for accessing the N-th pixel unit driving circuit.
  • the bias control signal Ctrln of each stage of the pixel unit driving circuit is smaller than the bias control signal of the adjacent upper-level pixel unit driving circuit.
  • Ctrln-l is delayed by one clock cycle
  • n is an integer greater than 1 and less than or equal to N
  • Ctrln is the bias control signal of the access: n-level pixel unit driving circuit
  • Ctrln 1 is the accessing the first-level pixel unit driving circuit
  • the bias control signal, SCA ii is a scan line connected to the n-th pixel unit drive circuit
  • SCA n-1 is a scan line connected to the (n 1)-th pixel unit drive circuit.
  • the bias control signal in Figure 11 is exemplified when the bias control transistor is a P-type transistor. If the bias control transistor is an N-type transistor, the bias control signal should be active high.
  • the present disclosure also provides an AMOLED display device including the above pixel driving circuit.
  • the above is an alternative embodiment of the present disclosure, and it should be noted that those skilled in the art can make improvements and refinements without departing from the principles of the present disclosure. Retouching should also be considered as the scope of protection of this disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种像素单元驱动电路、方法、像素驱动电路和AMOLED显示装置。所述像素单元驱动电路,包括与扫描线(SCAN)连接的用于驱动OLED的驱动单元(21)和反向偏置控制单元(22),所述驱动单元(21)还通过所述反向偏置控制单元(22)与OLED连接;所述反向偏置控制单元(22),用于在反向偏置时间段控制断开所述驱动单元(21)和OLED的连接并控制所述OLED反向偏置;所述反向偏置时间段为在每一扫描周期内的所述扫描线(SCAN)关闭的阶段内预先选取的时间段。

Description

像素单元驱动电路、 方法、 像素驱动电路和 AMOLED显示装置
本申请主张在 2014 年 05 月 29 日在中国提交的中国专利申请号 No. 201410234435.2的优先权, 其全部内容通过引用包含于此。
本公开涉及显示技术领域, 尤其涉及-
Figure imgf000002_0001
素驱动电路和 AMOLED显示装置。
在现有技术中, ¾于 OLED (Organic Lighi-Emitting Diode, 有机发光二 极管) 在直流驱动发光显示中, 长时间直流驱动电压的电场造成 OLED内部 离子极性化,形成内建电场,从而使 OLED阈值电压增大,大大降低了 OLED 的发光效率, 缩短了 OLED寿命。
如图 1A、 图 IB所示, 现有的 2T1C像素单元驱动电路包括驱动晶体管 DTFT、 存储电容 C1和输入晶体管 T, 图 1A采用的 DTFT和 Τ为 η型晶体 管, 图 IB采 的 DTFT和 T为 p型晶体管, C1为存储电容, VSCAN为扫描 电压, DTFT )¾于驱动有机发光二极管 Di ,数据电压 VDAIA通过 T输入 DTFT, VDD为高电平, VSS为低电平。
如图 iA所示的 2T1C像素单元驱动电路在工作时,当 VSCAN为高电平时, 驱动数据电压 VDAIA通过 T输入 DTFT, DTFT导通, 此时 A点 (与 D: [的阳 极连接的节点) 的电位为 VDATA Vth- bled (Vth为 DTFT的阖值电压), 当 VSc^N为低电平时, 存储在 C1中的电压仍能使得 DTFT处于导通状态, 此时 A点的电位仍为 VDAIA- Vth Voled, Voled为 OLED的阳极和 OLED的阴极之 间的电压差。 由上可知, 如图: 1A、 图 IB所示的 2T1C像素单元驱动电路通 过数据线加入数据电压 VDAm后, 就在一帧的时间内一直发光显示, OLED 长期处于直流偏置发光状态, 有机材料的极性化加速, 造成 OLED的内建电 场增强, OLED阈值电压增大,大大降低了 OLED的发光效率,缩短了 OLED 寿命。 图 1所示的 2T1C像素单元驱动电路受驱动管 Vth漂移和 OLED老化
本公开的 要目的在于提供一种像素单元驱动电路、 方法、 像素驱动电 路和 AMOLED显示装置, 以避免 OLED长期处于直流偏置发光状态, 以减 弱 OLED的有机材料的极性化。
为了达到上述目的, 本公开提供了一种像素单元驱动电路, 包括与扫描 线连接的用于驱动 OLED的驱动单元, 还包括反向偏置控制单元, 所述驱动 单元通过所述反向偏置控制单元与 OLED连接;
所述反向偏置控制单元, 用于在反向偏置时间段控制断开所述驱动单元 和 OLED的连接并控制所述 OLED反向偏置;
所述反向偏置时间段为在每一扫描周期内的所述扫描线关闭的阶段内预 先选取的时间段。
实施时,所述反向偏置控制单元包括驱动控制晶体管和偏置控制晶体管; 所述驱动单元通过所述驱动控制晶体管与所述 OLED的阳极连接; 偏置电压通过所述偏置控制晶体管接入所述驱动控制晶体管与所述 OLED的连接点;
所述驱动控制晶体管在所述反向偏置时间段断开, 所述偏置控制晶体管 在所述反向偏置时间段导通;
所述偏置电压小于直接接入所述 OLED的阴极的第一驱动电压; 所述驱动控制晶体管的类型和所述偏置控制晶体管的类型互补。
实施时,所述反向偏置控制单元包括驱动控制晶体管和偏置控制晶体管; 所述驱动单元通过所述驱动控制晶体管与所述 OLED的阴极连接; 偏置电压通过所述偏置控制晶体管接入所述驱动控制晶体管与所述
OLED的连接点;
所述驱动控制晶体管在所述反向偏置时间段断开, 所述偏置控制晶体管 在所述反向偏置 i吋间段导通;
所述偏置电压大于直接接入所述 OLED的阳极的第一驱动电压; 所述驱动控制晶体管的类型和所述偏置控制晶体管的类型互补。
实施时, 所述驱动单元包括数据输入模块和驱动模块;
所述反向偏置控制单元, 用于在所述扫描线开启时以及在所述扫描线关 闭并不处于反向偏置时间段时控制导通所述驱动模块和所述 OLED, 并在所 述反向偏置时间段控制断开所述驱动模块和所述 OLED;
所述数据输入模块, 与所述扫描线连接, 用于在所述扫描线开启时向所 述驱动模块写入数据电压;
所述驱动模块, 用于在所述扫描线开启时存储该数据电压并根据该数据 电压驱动所述 OLED, 并在所述扫描线关闭并不处于反向偏置时间段时通过 存储的数据电压继续驱动所述 OLED。
实施时, 所述驱动模块包括连接于第二驱动电压输入端和所述反向偏置 控制单元之间的驱动晶体管;
所述像素单元驱动电路还包括: 补偿单元, )¾于通过在反向偏置时间段 控制所述驱动晶体管的栅源电压为所述驱动晶体管的阈值电压, 而在所述扫 描线开启时以及在所述扫描线关闭并不处于反向偏置时间段时控制以所述驱 动晶体管的栅源电压补偿所述驱动晶体管的阈值电压。
实施时, 所述补偿单元包括补偿存储电容和补偿控制模块;
所述补偿存储电容的第一端, 与所述驱动晶体管的栅极连接, 并通过所 述补偿控制模块接入第二驱动电压;
所述补偿存储电容的第二端, 通过所述补偿控制模块与所述驱动晶体管 的源极连接;
所述补偿控制模块, 用于在反向偏置时间段控制所述补偿存储电容的第 一端接入第二驱动电压, 控制所述补偿存储电容的第二端与所述驱动晶体管 的源极连接, 并控制所述补偿存储电容的第一端和第二端的电压差为所述驱 动晶体管的阈值电压, 还用于在所述扫描线开启时以及在所述扫描线关闭并 不处于反向偏置时间段时控制所述补偿存储电容的第一端断开与第二驱动电 压输入端的连接, 控制断开所述补偿存储电容的第二端与所述驱动晶体管的 源极的连接, 以使得所述驱动晶体管的栅源电压补偿所述驱动晶体管的阈值 电压。 实施时, 每一扫描周期中的反向偏置时间段与相邻下一扫描周期中的扫 描线开启的时间段紧邻。
本公开还提供一种像素单元驱动方法,应 ffi于上述的像素单元驱动电路, 其特征在于, 包括:
在扫描线开启时以及在所述扫描线关闭并不处于反向偏置时间段时, 反 向偏置控制单元控制导通驱动单元和 OLED;
在反向偏置时间段, 反向偏置控制单元控制断开所述驱动单元和所述 OLED, 并控制所述 OLED反向偏置。
本公开还提供了一种像素驱动电路,包括 N级上述的像素单元驱动电路; N为大于 1的整数;
除了第一级像素单元驱动电路, 每一级像素单元驱动电路的偏置控制信 号比相邻的上一级像素单元驱动电路的偏置控制信号延迟一时钟周期。
本公开还提供了一种 AM0LED显示装置, 包括上述的像素驱动电路。 与现有技术相比, 本公开所述的像素单元驱动电路、 方法、 像素驱动电 路和 AMOLED显示装置, 在每一扫描周期中的扫描线关闭的时间段内, 预 先选取一时间段作为反向偏置时间段, 在反向偏置时间段内, 反向偏置控制 单元控制断开驱动单元与 OLED的连接, 并控制 OLED反向偏置, 丛而避免 OLED长期处于直流偏置发光状态, 以减弱 OLED的有机材料的极性化, 降 低 OLED的内建电场, 从而减小 OLED的阈值电压, 提升了 OLED的发光效 率, 提高了 OLED的寿命。
图 1A、 图 IB是现有的 2T1C像素单元驱动电路的电路图;
图 2是本公开第一实施例所述的像素单元驱动电路的结构框图; 图 3A是本公开第二实施例所述的像素单元驱动电路的结构示意图 图 3B是本公开第三实施例所述的像素单元驱动电路的结构示意图 图 3C是本公开第四实施例所述的像素单元驱动电路的结构示意图 图 4是本公开第五实施例所述的像素单元驱动电路的结构框图; 图 5是本公开第六实施例所述的像素单元驱动电路的结构框图; 图 6是本公开第七实施例所述的像素单元驱动电路的结构框图; 图 7是本公开第八实施例所述的像素单元驱动电路的电路图;
图 8是本公开第八实施例所述的像素单元驱动电路的信号时序图; 图 9a、 图 9b、 图 9c分别是第八实施例所述的像素单元驱动电路在第一 阶段、 第二阶段、 第三阶段的等效电路图;
图 10是本公开实施例所述的像素驱动电路的结构框图;
图 11是本公开该实施例所述的像素驱动电路的信号时序图。
下面将结合本公开实施例中的 图, 对本公开实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例汉仅是本公开一部分实施例, 而 不是全部的实施例。 基于本公开中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本公开保护的范围。
本公开所有实施例中采用的晶体管均可以为薄膜晶体管或场效应管或其 他特性相同的器件。 在本公开实施例中, 为区分晶体管除栅极之外的两极, 将其中一极称为源极, 另一极称为漏极。 此外, 按照晶体管的特性区分可以 将晶体管分为 N型晶体管或 P型晶体管。在本公开实施例中, 具体采用 N型 晶体管或 P型晶体管实现时是本领域技术人员可在没有做出创造性劳动前提 下轻易想到的, 因此也在本公开的实施例保护范围内。
在本公开实施例中, N型晶体管的第一极可以是源极, N型晶体管的第 二极可以是漏极; P型晶体管的第一极可以是漏极, P型晶体管的第二极可以 是源极。
如图 2所示, 本公开实施例所述的像素单元驱动电路, 包括;
与扫描线 SCAN连接的用于驱动 OLED的驱动单元 21 ;
以及, 反向偏置控制单元 22;
所述驱动单元 21通过所述反向偏置控制单元 22与 OLED连接; 所述反向偏置控制单元 22, ]¾于在反向偏置时间段控制断开所述驱动单 元 21和 OLED的连接并控制所述 OLED反向偏置; 所述反向偏置时间段为在每一扫描周期内的所述扫描线 SCAN关闭的阶 段内预先选取的时间段;
在图 2中, VI是直接接入 OLED的阴极的第一驱动电压。
图 2是以底发光型 OLED结构为例, 本公开实施例所述的像素单元驱动 电路同样也适用于顶发光型 OLED结构。
在实际操作时, 扫描线 SCAN在每一扫描周期内, 先开启再关闭, 在本 公开实施例所述的像素单元驱动电路中, 在每一扫描周期中的扫描线 SCAN 关闭的时间段内, 预先选取一时间段作为反向偏置时间段, 在反向偏置时间 段内,反向偏置控制单元控制断开驱动单元 21与 OLED的连接,并控制 OLED 反向偏置, 从而避免 OLED长期处于直流偏置发光状态, 以减弱 OLED的有 机材料的极性化, 降低 OLED的内建电场, 从而减小 OLED的阈值电压, 提 升了 OLED的发光效率, 提高了 OLED的寿命。
本公开实施例所述的像素单元驱动电路易于实现, 对顶发光 OLED结构 和底发光 OLED结构均适用。
如图 3A所示, 具体的, 所述反向偏置控制单元可包括驱动控制晶体管 TQ和偏置控制晶体管 TP;
所述驱动单元 21通过所述驱动控制晶体管 TQ与所述 OLED的阳极连 接;
偏置电压 VP通过所述偏置控制晶体管接入所述驱动控制晶体管 TQ与所 述 OLED的连接点;
所述驱动控制晶体管 TQ在所述反向偏置时间段断开, 所述偏置控制晶 体管 TP在所述反向偏置时间段导通;
所述偏置电压 VP小于直接接入所述 OLED的阴极的第一驱动电压 VI;
TQ的类型和 TP的类型互补。
在图 3A中, TP的栅极和 TQ的栅极都接入偏置控制信号 Ctrl, TQ是 n 型晶体管, TP是 p型晶体管。在实际操作时, 如图 3B所示, ffi可以使得 TQ 为 p型晶体管, TP为 11型晶体管,但是当 TP和 TQ都采用偏置控制信号 Ctrl 接入極极来控制开启和关断时, TQ的类型和 TP的类型需互补。
如图 3A所示的本公开实施例所述的像素单元驱动电路在工作时, 所述 偏置电压 VP小于直接接入所述 OLED的阴极的第一驱动电压 VI,那么在反 向偏置时间段,所述驱动控制晶体管 TQ断开,所述偏置控制晶体管 TP导通, 从而 OLED 的阳极的电压为 VP, OLED的阴极电压为 VI, VP小于 V I, 因 此 OLED反向偏置。
如图 3C所示,具体的, 当本公开实施例所述的像素单元驱动电路应用于 顶发光型 OLED结构时, 所述反向偏置控制单元可包括驱动控制晶体管 TQ 和偏置控制晶体管 TP;
所述驱动单元 21通过所述驱动控制晶体管 TQ与所述 OLED的阴极连 接;
偏置电压 VP通过所述偏置控制晶体管接入所述驱动控制晶体管 TQ与所 述 OLED的连接点;
所述驱动控制晶体管 TQ在所述反向偏置时间段断开, 所述偏置控制晶 体管 TP在所述反向偏置时间段导通;
所述偏置电压 VP大于直接接入所述 OLED的阳极的第一驱动电压 V1U
TQ的类型和 TP的类型互补;
在如图 3C所示的实施例中, TQ是 I型晶体管, TP是 p型晶体管。 如图 4所示, 具体的, 所述驱动单元可以包括数据输入模块 211和驱动 模块 212;
所述反向偏置控制单元 22,用于在所述扫描线 SCAN开启时以及在所述 扫描线 SCAN关闭并不处于反向偏置时间段时控制导通所述驱动模块和所述 OLED, 并在所述反向偏置时间段控制断开所述驱动模块和所述 OLED;
所述数据输入模块 211 , 与所述扫描线 SCA 连接, 用于在所述扫描线 SCAN开启时向所述驱动模块 212写入数据电压 Vdata;
所述驱动模块 2i2, 用于在所述扫描线 SCAN 开启时存储该数据电压 Vdata并根据该数据电压 Vdata驱动所述 OLED,并在所述扫描线 SCAN关闭 并不处于反向偏置时间段时通过存储的数据电压 Vdata继续驱动所述 OLED。
如图 5所示, 具体的, 所述驱动模块 212包括连接于用于输入第二驱动 电压 V2的第二驱动电压输入端和所述反向偏置控制单元 22之间的驱动晶体 管 DTFT: 所述像素单元驱动电路还包括: 补偿单元 23, 用于通过在反向偏置时间 段控制所述驱动晶体管 DTFT的栅源电压为所述驱动晶体管 DTFT的阈值电 压, 而在所述扫描线 SCAN开启时以及在所述扫描线 SCAN关闭并不处于反 向偏置时间段时控制以所述驱动晶体管 DTFT的»源电压补偿所述驱动晶体 管 DTFT的阈值电压。
如图 6所示, 具体的, 所述补偿单元包括补偿存储电容 Cs和补偿控制模 块 231 ;
所述补偿存储电容 Cs的第一端, 与所述驱动晶体管 DTFT的櫥极连接, 并通过所述补偿控制模块 231接入所述第二驱动电压 V2;
所述补偿存储电容 Cs的第二端,通过所述补偿控制模块 231与所述驱动 晶体管 DTTT的源极连接;
所述补偿控制模块 231, 用于在反向偏置时间段控制所述补偿存储电容 Cs的第一端接入第二驱动电压 V2, 控制所述补偿存储电容 Cs的第二端与所 述驱动晶体管 DTFT的源极连接,并控制所述补偿存储电容 Cs的第一端和第 二端的电压差为所述驱动晶体管 DTFT 的阈值电压, 还用于在所述扫描线 SCAN开启时以及在所述扫描线 SCAN关闭并不处于反向偏置时间段时控制 所述补偿存储电容 Cs的第一端断开与输入第二驱动电压 V2的第二驱动电压 输入端的连接, 控制断开所述补偿存储电容 Cs 的第二端与所述驱动晶体管 DTFT的源极的连接, 以使得所述驱动晶体管 DTFT的栅源电压补偿所述驱 动晶体管 DTFT的阖值电压。
如图 7所示, 具体的, 所述驱动单元包括数据输入晶体管 TD、 驱动晶体 管 DTFT和驱动存储电容 C;
所述反向偏置控制单元包括驱动控制晶体管 TQ和偏置控制晶体管 TP; 所述补偿单元包括补偿存储电容 Cs、 第一补偿控制晶体管 Ti和第二补 偿控制晶体管 T2;
所述数据输入晶体管 TD, 栅极与扫描线 SCA 连接, 第一极接入数据 电压 Vdata, 第二极通过驱动存储电容 C接入第一低电平 VSS;
所述驱动晶体管 DTFT, 櫥极通过所述补偿存储电容 Cs与所述数据输入 晶体管 TD的第二极连接, 第一极通过所述驱动控制晶体管 TQ与 OLED的 阳极连接, 第二极接入高电平 VDD;
OLED的阳极通过所述偏置控制晶体管 TP接入第二低电平 VSS2, OLED 的阴极接入第一低电平 VSS ;
所述驱动控制晶体管 T'Q的栅极和所述偏置控制晶体管 TP的 »极均接入 偏置控制信号 Ctri;
所述第一补偿控制晶体管 Tl, 櫥极接入所述偏置控制信号 CtxL 第一极 接入高电平 VUD, 第二极与所述驱动晶体管 DTFT的櫥极连接;
所述第二补偿控制晶体管 T2, 櫥极接入所述偏置控制信号 CtxL 第一极 与所述驱动晶体管 DTTT 的第一极连接, 第二极与所述数据输入晶体管 TD 的第二极连接。
在如图 7所示的像素单元驱动电路中, 数据输入晶体管 TD、驱动晶体管 DTFT和驱动控制晶体管 TQ为 N型晶体管, 偏置控制晶体管 TP、 第一补偿 控制晶体管 T1和第二补偿控制晶体管 Τ2为 Ρ型晶体管, Α点为 Cs与 DTFT 的栅极的连接节点, B点为 Cs与 TD之间的连接节点。
图 8 是如图 7 所示的像素单元驱动电路的偏置控制信号 CM, 扫描线 SCAN输出的扫描电压 VSCAN、 数据电压 Vdata的时序图。 可选的, 由于在本 公开实施例中, 补偿阶段和反向偏置时间段是同一时间段, 每一扫描周期的 反向偏置时间段与相邻下一周期的扫描线开启的时间段相邻, 即补偿完立即 进行数据输入, 以保证阖值补偿的效果。
图 9a、 图%、 图 9c是如图 7所示的像素单元驱动电路在第一阶段、 第 二阶段、 第三阶段的等效电路的电路图。
如图 9a所示,在第一阶段,即 OLED偏置和阈值补偿阶段, Ctrl和 VSCAN 为低电平, Tl、 T2、 TP开启, TD和 TQ关闭, DTFT实为一个二极管进入 饱和状态, VDD通过 DTFT对 C进行充电, 直至 DTFT的欐源电压 (即 A 点和 B点之间的电压差值) 为 Vtb。 此时 A点的电压 VA VDD, B点的电压 VB-VDD~Vth, Cs两端的电压 VCs VA VB VDD- (VDD-Vth) -Vth; TQ关 闭, DTFT与 OLED的导通路径关断; TP开启, OLED的阳极接入 VSS2, OLED的阴极接入 VSS , VSS2<VSS, 使得 OLED处于反向偏置状态;
如图 9b所示,在第二阶段, 即 OLED发光阶段, Ctrl和¥^^为高电平, Tl和 T2关闭, TD和 TQ开启, TP关闭, Vdata写入, VB Vdata, C两端的 电压 VOVB=Vdata, 由于 Cs的电压不能突变, 故 ^VB+VCs=Vdata+Vth, Cs 的 A 端电压驱动 DTFT, 使得 OLED 开始发光, DTTT 的櫥源电压 Vgs-VA~\¾1ed-Vdata+Vtlv Voled , Voied为 OLED的阳极和 OLED的阴极之间 的电压差, 流过 OLED的电流 lole (Vgs-Vth)2-K(Vdata-i-Vth-Voled~Vth)2- (Vdata-Voled) 2
如图 9c所示,在第三阶段,即 OLED发光保持阶段, Ctrl为高电平, VSCAN 为低电平, Tl、 Τ2和 TD关闭, T'Q开启, TP关闭, Cs和 C没有充电或放 电的路径, 根据电荷守恒原理, 没有消耗电荷的回路, 故 Cs和 C的电荷, 两端的电压均保持不变, VOVdaia, VCs-Vth, VB- Vdata, Y -Vdata+Vth, A点电压不变, 因此流过 OLED的电流保持为 K( Vdata- Voled) 2, OLED保持 数据电压写入时的发光状态。
丛以上对图 7所示本公开所述的像素单元驱动电路的典型实施例的工作 原理分析中, 可以看出, 通过增加控制 OLED 发光的驱动控制晶体管和使 OLED 反向的偏置控制晶体管, 通过控制连接驱动控制晶体管和偏置控制晶 体管的偏置控制信号, 使得 OLED在每一扫描周期内的所述扫描线关闭的阶 段内预先选取的时间段实现反向偏置, 大大提高 OLED的寿命。
本公开还提供了一种像素单元驱动方法, 应 于上述的像素单元驱动电 路, 包括:
在扫描线开启时以及在所述扫描线关闭并不处于反向偏置时间段时, 反 向偏置控制单元控制导通驱动单元和 OLED;
在反向偏置时间段, 反向偏置控制单元控制断开所述驱动单元和所述 OLED, 并控制所述 OLED反向偏置。
如图 10所示, 本公开还提供了一种像素驱动电路, 包括 N级上述的像 素单元驱动电路; N为大于 1的整数; Ctrll是接入第 1级像素单元驱动电路 的偏置控制信号, Ctrl2 是接入第 2 级像素单元驱动电路的偏置控制信号, CtrlN是接入第 N级像素单元驱动电路的偏置控制信号。
如图 11所示, 除了第一级像素单元驱动电路, 每一级像素单元驱动电路 的偏置控制信号 Ctrln 比相邻的上一级像素单元驱动电路的偏置控制信号 Ctrln-l延迟一时钟周期, n为大于 1而小于等于 N的整数, Ctrln是接入第: n 级像素单元驱动电路的偏置控制信号, Ctrln 1是接入第 1 )级像素单元驱 动电路的偏置控制信号, SCA ii是与第 n级像素单元驱动电路连接的扫描线, SCA n-1是与第 (n 1 ) 级像素单元驱动电路连接的扫描线。
图 11中的偏置控制信号是以偏置控制晶体管是 P型晶体管时为例的,若 偏置控制晶体管是 N型晶体管, 偏置控制信号应是高电平有效的。
本公开还提供了一种 AMOLED显示装置, 包括上述的像素驱动电路。 以上所述是本公开的可选实施方式, 应当指出, 对于本技术领域的普通 技术人员来说, 在不脱离本公开所述原理的前提下, 还可以作出若千改进和 润饰, 这些改进和润饰也应视为本公开的保护范围。

Claims

】、一种像素单元驱动电路,包括与扫描线连接的用于驱动 0LED的驱动 单元, 还包括反向偏置控制单元, 所述驱动单元通过所述反向偏置控制单元 与 OLED连接;
所述反向偏置控制单元, 用于在反向偏置时间段控制断开所述驱动单元 和 OLED的连接并控制所述 OLED反向偏置;
所述反向偏置时间段为在每一扫描周期内的所述扫描线关闭的阶段内预 先选取的时间段。
2、 如权利要求〗所述的像素单元驱动电路, 其中, 所述反向偏置控制单 元包括驱动控制晶体管和偏置控制晶体管;
所述驱动单元通过所述驱动控制晶体管与所述 OLED的阳极连接; 偏置电压通过所述偏置控制晶体管接入所述驱动控制晶体管与所述 OLED的连接点;
所述驱动控制晶体管在所述反向偏置时间段断开, 所述偏置控制晶体管 在所述反向偏置时间段导通;
所述偏置电压小于直接接入所述 OLED的阴极的第一驱动电压; 所述驱动控制晶体管的类型和所述偏置控制晶体管的类型互补。
3、 如权利要求 1所述的像素单元驱动电路, 其中, 所述反向偏置控制单 元包括驱动控制晶体管和偏置控制晶体管;
所述驱动单元通过所述驱动控制晶体管与所述 OLED的阴极连接; 偏置电压通过所述偏置控制晶体管接入所述驱动控制晶体管与所述 OLED的连接点;
所述驱动控制晶体管在所述反向偏置时间段断开, 所述偏置控制晶体管 在所述反向偏置时间段导通;
所述偏置电压大于直接接入所述 OLED的阳极的第一驱动电压; 所述驱动控制晶体管的类型和所述偏置控制晶体管的类型互补。
4、 如权利要求 1至 3中任一权利要求所述的像素单元驱动电路, 其中, 所述驱动单元包括数据输入模块和驱动模块; 所述反向偏置控制单元, 用于在所述扫描线开启时以及在所述扫描线关 闭并不处于反向偏置时间段时控制导通所述驱动模块和所述 OLED, 并在所 述反向偏置时间段控制断开所述驱动模块和所述 OLED;
所述数据输入模块, 与所述扫描线连接, 用于在所述扫描线开启时向所 述驱动模块写入数据电压;
所述驱动模块, 用于在所述扫描线开启时存储该数据电压并根据该数据 电压驱动所述 OLED, 并在所述扫描线关闭并不处于反向偏置时间段时通过 存储的数据电压继续驱动所述 OLED。
5、 如权利要求 4所述的像素单元驱动电路, 其中,
所述驱动模块包括连接于第二驱动电压输入端和所述反向偏置控制单元 之间的驱动晶体管;
所述像素单元驱动电路还包括: 补偿单元, ffi于通过在反向偏置时间段 控制所述驱动晶体管的栅源电压为所述驱动晶体管的阈值电压, 而在所述扫 描线开启时以及在所述扫描线关闭并不处于反向偏置时间段时控制以所述驱 动晶体管的栅源电压补偿所述驱动晶体管的阈值电压。
6、 如权利要求 5所述的像素单元驱动电路, 其中, 所述补偿单元包括补 偿存储电容和补偿控制模块;
所述补偿存储电容的第一端, 与所述驱动晶体管的栅极连接, 并通过所 述补偿控制模块接入第二驱动电压;
所述补偿存储电容的第二端, 通过所述补偿控制模块与所述驱动晶体管 的源极连接;
所述补偿控制模块, 用于在反向偏置时间段控制所述补偿存储电容的第 一端接入第二驱动电压, 控制所述补偿存储电容的第二端与所述驱动晶体管 的源极连接, 并控制所述补偿存储电容的第一端和第二端的电压差为所述驱 动晶体管的阈值电压, 还用于在所述扫描线开启时以及在所述扫描线关闭并 不处于反向偏置时间段时控制所述补偿存储电容的第一端断开与第二驱动电 压输入端的连接, 控制断开所述补偿存储电容的第二端与所述驱动晶体管的 源极的连接, 以使得所述驱动晶体管的栅源电压补偿所述驱动晶体管的阈值 电压。
Ί、 如权利要求 5所述的像素单元驱动电路, 其中, 每一扫描周期中的反 向偏置时间段与相邻下一扫描周期中的扫描线开启的时间段紧邻。
8、 如权利要求 2所述的像素单元驱动电路, 其中,
所述驱动单元包括数据输入晶体管、 驱动晶体管和驱动存储电容。
9、 如权利要求 8所述的像素单元驱动电路, 其中,
还包括: 补偿单元, 其包括补偿存储电容、 第一补偿控制晶体管和第二 补偿控制晶体管。
10、 如权利要求 9所述的像素单元驱动电路, 其中,
所述数据输入晶体管, 栅极与扫描线连接, 第一极接入数据电压, 第二 极通过驱动存储电容接入第一低电平;
驱动晶体管, 栅极通过所述补偿存储电容与所述数据输入晶体管的第二 极连接, 第一极通过所述驱动控制晶体管与 OLED的阳极连接, 第二极接入 高电平;
OLED 的阳极通过所述偏置控制晶体管接入第二低电平, OLED 的阴极 接入第一低电平;
所述驱动控制晶体管的栅极和所述偏置控制晶体管的栅极均接入偏置控 制信号;
所述第一补偿控制晶体管, 栅极接入所述偏置控制信号, 第一极接入高 电平, 第二极与所述驱动晶体管的栅极连接;
所述第二补偿控制晶体管, 栅极接入所述偏置控制信号, 第一极与所述 驱动晶体管的第一极连接, 第二极与所述数据输入晶体管的第二极连接。
1 一种像素单元驱动方法, 应用于如权利要求 1至 10中任一权利要求 所述的像素单元驱动电路, 该像素单元驱动方法包括:
在扫描线开启时以及在所述扫描线关闭并不处于反向偏置时间段时, 反 向偏置控制单元控制导通驱动单元和 OLED;
在反向偏置时间段, 反向偏置控制单元控制断开所述驱动单元和所述 OLED, 并控制所述 OLED反向偏置。
12、 一种像素驱动电路, 包括 N级如权利要求 1至 10中任一权利要求 所述的像素单元驱动电路; N为大于 1的整数; 除了第一级像素单元驱动电路, 每一级像素单元驱动电路的偏置控制信 号比相邻的上一级像素单元驱动电路的偏置控制信号延迟一时钟周期。
】3、一种 AMOLED显示装置,包括如权利要求 12所述的像素驱动电路。
PCT/CN2014/085388 2014-05-29 2014-08-28 像素单元驱动电路、方法、像素驱动电路和amoled显示装置 WO2015180276A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410234435.2 2014-05-29
CN201410234435.2A CN104217674B (zh) 2014-05-29 2014-05-29 像素单元驱动电路、方法、像素驱动电路和amoled显示装置

Publications (1)

Publication Number Publication Date
WO2015180276A1 true WO2015180276A1 (zh) 2015-12-03

Family

ID=52099097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085388 WO2015180276A1 (zh) 2014-05-29 2014-08-28 像素单元驱动电路、方法、像素驱动电路和amoled显示装置

Country Status (2)

Country Link
CN (1) CN104217674B (zh)
WO (1) WO2015180276A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104751803B (zh) * 2015-04-21 2017-10-31 合肥鑫晟光电科技有限公司 像素驱动电路及驱动方法、移位寄存器、显示面板和装置
KR102518746B1 (ko) * 2016-06-01 2023-04-07 삼성디스플레이 주식회사 표시 장치
CN106097965B (zh) * 2016-08-23 2019-07-09 上海天马微电子有限公司 像素驱动电路、像素驱动方法及显示装置
CN106373528B (zh) * 2016-10-28 2019-02-19 上海天马微电子有限公司 显示装置、像素驱动电路与像素驱动方法
CN108962127A (zh) * 2017-05-23 2018-12-07 Tcl集团股份有限公司 一种qled器件及其反向驱动模式
CN106940979B (zh) * 2017-05-23 2019-01-25 京东方科技集团股份有限公司 像素补偿电路及其驱动方法、显示装置
CN112992061A (zh) 2017-07-17 2021-06-18 京东方科技集团股份有限公司 像素单元电路、像素电路、驱动方法和显示装置
CN107424569A (zh) 2017-08-03 2017-12-01 京东方科技集团股份有限公司 像素单元电路、驱动方法、像素电路和显示装置
CN107591126A (zh) 2017-10-26 2018-01-16 京东方科技集团股份有限公司 一种像素电路的控制方法及其控制电路、显示装置
CN107994060B (zh) * 2017-11-28 2021-07-20 武汉天马微电子有限公司 一种有机发光显示面板及显示装置
CN108492783B (zh) * 2018-03-29 2020-12-22 深圳市华星光电半导体显示技术有限公司 Amoled显示装置的像素驱动电路及amoled显示装置的驱动方法
CN109584803B (zh) * 2019-01-04 2021-01-26 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板
CN109584795A (zh) * 2019-01-29 2019-04-05 京东方科技集团股份有限公司 像素驱动电路、像素驱动方法和显示装置
CN115482786B (zh) * 2022-10-26 2023-07-07 惠科股份有限公司 像素驱动电路和显示面板
CN116543702B (zh) * 2023-05-31 2024-04-05 惠科股份有限公司 显示驱动电路、显示驱动方法及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440010A (zh) * 2002-02-18 2003-09-03 三洋电机株式会社 内部多个晶体管工作特性各不相同的显示装置
CN1886773A (zh) * 2003-12-02 2006-12-27 索尼株式会社 晶体管电路、象素电路、显示设备及其驱动方法
US20080111809A1 (en) * 2006-11-14 2008-05-15 Wintek Corporation Driving circuit and method for AMOLED using power pulse feed-through technique
CN101976545A (zh) * 2010-10-26 2011-02-16 华南理工大学 Oled显示器的像素驱动电路及其驱动方法
US20110279433A1 (en) * 2010-05-12 2011-11-17 Samsung Mobile Display Co., Ltd. Organic light emitting diode display device and driving method thereof
CN102651194A (zh) * 2011-09-06 2012-08-29 京东方科技集团股份有限公司 电压驱动像素电路及其驱动方法、显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440010A (zh) * 2002-02-18 2003-09-03 三洋电机株式会社 内部多个晶体管工作特性各不相同的显示装置
CN1886773A (zh) * 2003-12-02 2006-12-27 索尼株式会社 晶体管电路、象素电路、显示设备及其驱动方法
US20080111809A1 (en) * 2006-11-14 2008-05-15 Wintek Corporation Driving circuit and method for AMOLED using power pulse feed-through technique
US20110279433A1 (en) * 2010-05-12 2011-11-17 Samsung Mobile Display Co., Ltd. Organic light emitting diode display device and driving method thereof
CN101976545A (zh) * 2010-10-26 2011-02-16 华南理工大学 Oled显示器的像素驱动电路及其驱动方法
CN102651194A (zh) * 2011-09-06 2012-08-29 京东方科技集团股份有限公司 电压驱动像素电路及其驱动方法、显示面板

Also Published As

Publication number Publication date
CN104217674A (zh) 2014-12-17
CN104217674B (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015180276A1 (zh) 像素单元驱动电路、方法、像素驱动电路和amoled显示装置
CN103700338B (zh) 像素电路及其驱动方法及采用该电路的有机发光显示装置
US9514683B2 (en) Gate driving circuit, gate driving method, gate on array (GOA) circuit and display device
US10565933B2 (en) Pixel circuit, driving method thereof, array substrate, display device
KR101528147B1 (ko) 발광표시장치
WO2015196603A1 (zh) 像素电路及其驱动方法和显示装置
US10262593B2 (en) Light emitting drive circuit and organic light emitting display
CN103050080B (zh) 有机发光显示器的像素电路及其驱动方法
US10504436B2 (en) Pixel driving circuits, pixel driving methods and display devices
WO2016011711A1 (zh) 像素电路、像素电路的驱动方法和显示装置
WO2020143234A1 (zh) 像素驱动电路、像素驱动方法和显示装置
WO2017117940A1 (zh) 像素驱动电路、像素驱动方法、显示面板和显示装置
WO2018157442A1 (zh) 像素补偿电路及驱动方法、显示装置
WO2016086626A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
WO2016155183A1 (zh) 像素电路、显示装置及其驱动方法
JP2015026051A (ja) 走査駆動装置、および有機発光表示装置
WO2013123795A1 (zh) 一种像素单元驱动电路和方法、像素单元以及显示装置
WO2015014025A1 (zh) 像素驱动电路及其驱动方法、显示装置
WO2019095441A1 (zh) Oled驱动电路及amoled显示面板
WO2016119316A1 (zh) 像素电路及其驱动方法、显示面板及显示装置
WO2014134869A1 (zh) 像素电路、有机电致发光显示面板以及显示装置
WO2019047584A1 (zh) 像素补偿电路单元、像素电路和显示装置
WO2015180280A1 (zh) 像素电路及其驱动方法、显示装置
TW202027056A (zh) 畫素電路及其驅動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS (EPO FORM 1205A DASTED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14893622

Country of ref document: EP

Kind code of ref document: A1