WO2015178458A1 - Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material - Google Patents

Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material Download PDF

Info

Publication number
WO2015178458A1
WO2015178458A1 PCT/JP2015/064635 JP2015064635W WO2015178458A1 WO 2015178458 A1 WO2015178458 A1 WO 2015178458A1 JP 2015064635 W JP2015064635 W JP 2015064635W WO 2015178458 A1 WO2015178458 A1 WO 2015178458A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
water
membrane
polymer
group
Prior art date
Application number
PCT/JP2015/064635
Other languages
French (fr)
Japanese (ja)
Inventor
祐貴 立花
圭介 森川
寛 山村
義公 渡辺
Original Assignee
株式会社クラレ
学校法人 中央大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014106855A external-priority patent/JP2017124341A/en
Application filed by 株式会社クラレ, 学校法人 中央大学 filed Critical 株式会社クラレ
Publication of WO2015178458A1 publication Critical patent/WO2015178458A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to a membrane fouling-causing substance adsorbing material that adsorbs a membrane fouling-causing substance (hereinafter sometimes simply referred to as a fouling-causing substance), a water treatment method using the same, and a method for regenerating the adsorbing material.
  • DOC Dissolved Organic Carbon
  • Patent Document 1 DOC is a term encompassing organic carbon, organic colorants, and natural organic substances, and humic acid and fulvic acid, which is a mixture of organic compounds formed by decomposition of plant residues. This term also includes such humic substances.
  • the main compounds and materials constituting DOC are soluble, they cannot be easily separated from water. And in patent document 1, a.
  • the present invention proposes a method for removing dissolved organic carbon from water by separating the cationic resin loaded with the dissolved organic carbon from the water.
  • Non-Patent Document 1 the causative substance of physically irreversible membrane fouling is hydrophobic having an aromatic ring such as humic acid or fulvic acid. It has been reported that biopolymers such as polysaccharides and proteins, which are dissolved organic substances having relatively higher hydrophilicity than substances, are the main causes.
  • Patent Document 2 As for the adsorption removal technique of the causative substance of physically irreversible membrane fouling, for example, in Patent Document 2, zeolite or activated carbon is exemplified as an adsorbent, and the treated water from which TEP (transparent exopolymer particles) has been removed is heated, A method for regenerating an adsorbent used as washing water has also been proposed.
  • Patent Document 2 since the scale component contained in the treated water adheres to an inorganic substance such as zeolite, the inorganic substance cannot be washed as a result.
  • Patent Document 3 particles made of a cationic polymer are added to water to be treated and adsorbed, and the water to be treated having been adsorbed is separated by a separation membrane. A method of separation processing has been proposed.
  • Patent Document 4 includes a pretreatment device having a pretreatment membrane that filters turbid components in raw water, and a reverse osmosis membrane device that produces fresh water by removing salt from the filtered water from the pretreatment device.
  • a method is described in which the pretreatment membrane is back-washed using the produced fresh water and chlorine.
  • the particles made of the cationic polymer disclosed in Patent Document 3 have a particle size in water of about 10 to 200 times (that is, 1000 to 200000%) with respect to the particle size when not swollen with water. Since it has extremely large swellability, it is not easy to handle during adsorption and regeneration.
  • Patent Document 4 it is only described as a pretreatment membrane for filtering the pollutant, and no specific treatment membrane is described.
  • An object of the present invention is to provide a membrane fouling-causing substance adsorbent and a water treatment method for efficiently adsorbing membrane fouling-causing substances in membrane filtration, particularly biopolymers such as polysaccharides and proteins, in treated water. is there.
  • Another object of the present invention is to adsorb membrane fouling causative substances that efficiently adsorb membrane fouling causative substances in membrane filtration, particularly biopolymers such as polysaccharides and proteins, even when the water to be treated contains salts. It is to provide a material and a water treatment method.
  • Still another object of the present invention is to provide a method for regenerating an adsorbent that can efficiently regenerate the adsorbent at a low cost.
  • the present inventors have found the following points. That is, generally used cationic adsorbents can adsorb organic substances in water that are negatively charged in nature, but these cationic adsorbents increase the density of cationic groups. There has been no study on the effect of such density on the adsorption of membrane fouling substances. However, surprisingly, in the adsorbent, the density of the cationic group is 10 mmol / g to 30 mmol / g (the content of the cationic group is 10 to 30 mmol per gram of the dry weight.
  • Cationic groups function cooperatively in the treated water, so membrane fouling-causing substances, especially biopolymers such as polysaccharides and proteins, can be efficiently Adsorption materials having a region where the density of the cationic group is 10 mmol / g to 30 mmol / g can be adsorbed, and the cationic group is cooperative even in treated water that contains salts and competes for adsorption of ionic components.
  • membrane fouling-causing substances especially biopolymers such as polysaccharides and proteins. It was completed a light.
  • the first configuration of the present invention is an adsorbent containing a first polymer (or cation group-containing polymer) containing a cationic group, and the adsorbent has a cationic group density of 10 mmol.
  • the film fouling-causing substance adsorbent has a region of / g to 30 mmol / g, preferably 11 mmol / g to 28 mmol / g, and has an adsorption ability for the film fouling-causing substance.
  • the cationic group is, for example, at least one selected from an amino group, a quaternary ammonium group, an imino group, an amidine group, a guanidino group, an imidazole group, a quaternary imidazolium group, a pyridyl group, and a quaternary pyridinium group. It may be a functional group.
  • the first polymer may be at least one polymer selected from polyethyleneimine, polyallylamine, polyvinylamine, polyamidine, polyguanidine, polyamino acid, polypyridine, and salts thereof. .
  • the adsorbent may be an adsorbent in which the first polymer is introduced into the base material.
  • the adsorbent may be an adsorbent in which a first polymer is introduced into a base material having a predetermined shape by coating, impregnation, or the like; It may be an adsorbent introduced by being copolymerized as a copolymerization component; or it may be introduced by alloying the first polymer with a base material by mixing, kneading or the like. It may be an adsorbent.
  • the adsorbent may contain a second polymer in addition to the first polymer.
  • the adsorbent may be a polymer adsorbent in which the first polymer is introduced into a base material made of the second polymer.
  • the second polymer constituting the base material may be a hydrophilic polymer, and particularly preferably, the second polymer may be an ethylene-vinyl alcohol copolymer.
  • the degree of swelling in water at 25 ° C. may be 20 to 500%, preferably 30 to 250%.
  • the membrane fouling-causing substance may contain a biopolymer.
  • the biopolymer is A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, retention time by LC-OCD is 25 minutes or more and 38 minutes or less. May be a component.
  • the water to be treated containing the membrane fouling cause substance is brought into contact with the adsorbent at the first contact temperature, and the film fouling cause substance contained in the water to be treated is adsorbed by the adsorbent.
  • a water treatment method comprising at least a process.
  • the water treatment method may further include a membrane filtration step for subjecting the adsorption treated water obtained by the adsorption step to a membrane filtration treatment.
  • the membrane filtration step includes an ultrafiltration (UF) membrane, a microfiltration ( MF) membranes, nanofiltration (NF) membranes, and reverse osmosis (RO) membranes may be used in one or more stages using at least one membrane selected from the group consisting of.
  • the water to be treated may be water containing 0.1% by mass or more of salts.
  • the salts include various alkali metal salts and alkaline earth metal salts, and sodium chloride may be particularly preferable.
  • the salt concentration of the water to be treated may be, for example, 60% by mass or less. Alternatively, the sodium chloride concentration may be 27% by mass or less.
  • the water treatment method may further include a regeneration step in which the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step is brought into contact with and regenerated at the second contact temperature.
  • the second contact temperature may be higher than the first contact temperature.
  • the second contact temperature may be 40 ° C. or higher.
  • a membrane fouling causative substance that regenerates the adsorbent by bringing the adsorbent adsorbing the membrane fouling causative substance into contact with a cleaning fluid heated to 40 ° C. or higher. This is a method for regenerating the adsorbent.
  • Various fluids can be used as the cleaning fluid, and for example, an aqueous solution containing metal ions may be used.
  • the adsorbent of the present invention With the adsorbent of the present invention, it has been difficult to remove membrane fouling from the water to be treated, particularly polysaccharides and proteins that are considered to cause physical irreversible membrane fouling.
  • the biopolymer can be efficiently adsorbed and removed in the water to be treated. Accordingly, it is possible to suppress the occurrence of membrane fouling, particularly physically irreversible membrane fouling, and maintain the water permeability of the filtration membrane for a long period of time.
  • the adsorbent of the present invention is advantageous in that membrane fouling-causing substances can be removed even from water to be treated containing salts that has been difficult to adsorb.
  • the adsorbent when having a predetermined degree of swelling, can also be efficiently packed into a column.
  • the water permeability of the filtration membrane can be maintained over a long period of time by a simple method by combining the causative substance removal step using a column and the membrane filtration step.
  • the adsorbent according to the first aspect of the present invention includes a cationic group-containing polymer containing a cationic group as the first polymer, and the adsorbent has a density of the cationic group of 10 mmol / g to It has a region that is 30 mmol / g. Since this adsorbent has an adsorbing ability for a membrane fouling-causing substance, it is useful as a membrane fouling-causing substance adsorbent.
  • the adsorbent of the present invention contains a cation group-containing polymer as the first polymer, and has a region where the density of the cationic group is 10 mmol / g to 30 mmol / g derived from the first polymer. is doing. Although the mechanism by which the adsorbent of the present invention acts is not clear, the following mechanism is presumed. (I) Many organic substances in water that are normally present in nature are negatively charged and can be removed with an adsorbent having a cationic group. (Ii) Commonly used cationic adsorption The material cannot remove organic matter in water efficiently even if it has a cationic group because the density of the cationic group is not high.
  • the adsorbent of the present invention contains a cation group-containing polymer as the first polymer, and the adsorbent of the present invention is derived from the cation group-containing polymer and has a density of cationic groups of 10 mmol / g to It has at least a part of a region (that is, a cationic group high concentration phase) that is 30 mmol / g (the content of cationic groups per gram of dry weight is 10 to 30 mmol).
  • a nitrogen atom-containing cationic group for example, amino group (primary amino group, secondary amino group, tertiary amino group), quaternary ammonium group, imino group, amidine group, guanidino group, imidazole group Quaternary imidazolium group, pyridyl group, quaternary pyridinium group], sulfonium group, phosphonium group and the like. They may exist in a salt state.
  • These functional groups may be present alone or in combination of two or more.
  • preferred functional groups include nitrogen atom-containing cationic groups, and more preferred functional groups include amino groups, quaternary ammonium groups, and salts thereof.
  • the cationic group-containing polymer is not particularly limited as long as a specific cationic group density region can be formed in the adsorbent, and is preferably composed of a typical element, more preferably a carbon atom, a hydrogen atom, or a nitrogen atom.
  • a sulfur atom, a phosphorus atom, and an oxygen atom and more preferably a carbon atom, a hydrogen atom, a nitrogen atom, and an oxygen atom.
  • preferable cationic group-containing polymers include polyethyleneimine, polyallylamine, polyvinylamine, polyamidine, polyguanidine, polyamino acid, polypyridine, and salts thereof. Such polymers may be used alone or in combination of two or more.
  • more preferred cationic group-containing polymers include polyethyleneimine, polyallylamine, and polyvinylamine
  • particularly preferred cationic group-containing polymers include polyethyleneimine and polyallylamine.
  • the density of the cationic group can be calculated based on, for example, the number of cationic groups (N) per unit molecular weight (M) (g / mol) of the polymer from the skeleton structure of the cationic group-containing polymer (the following formula) ).
  • Cationic group density (N / M) ⁇ 1000 (mmol / g)
  • the density of the cationic group is not particularly limited as long as it is 10 mmol / g to 30 mmol / g, but is preferably 11 mmol / g to 28 mmol / g, and particularly preferably 12 mmol / g to 25 mmol / g.
  • the density of the cationic group is less than 10 mmol / g, the cationic group cannot function cooperatively in the water to be treated (especially, the water to be treated containing salts). There is a possibility that the adsorption rate of the substance is insufficient and the water permeability of the filtration membrane is poor. When it exceeds 30 mmol / g, it becomes difficult to produce a cationic group-containing polymer.
  • the adsorbent is formed of a copolymer having a cationic group-containing polymer as a polymer component (for example, a block copolymer or a graft copolymer), the cationic group density is determined based on the polymer component. It can be calculated based on the skeletal structure.
  • a method for estimating the cationic group density in addition to the above calculation based on the skeleton structure of the cationic group-containing polymer, a method according to the following procedure is also possible.
  • the adsorbent samples of a given amount was added to 4% NaOH aqueous solution, after stirring, a cationic group OH - replacing the mold cationic groups.
  • this adsorbent is added to 4% HCl aqueous solution, and after stirring, the cationic groups are exchanged with Cl ⁇ type cationic groups. To do.
  • TEM transmission electron microscope
  • EDX X-ray spectroscopy
  • the cationic group concentration per molecular weight may be calculated by the following formula.
  • Cationic group density 1 / [(1 / X) x (atomic weight of carbon atom) + ⁇ (molar ratio of target atom to carbon atom) x (total weight of target atom) ⁇ ]
  • various analysis methods may be used as long as the molar ratio of the target atom to carbon atoms can be calculated.
  • TEM-EDX mass spectrometry
  • You may determine the molar ratio of the object atom with respect to a carbon atom by various analyzes, such as an infrared absorption spectrum, a Raman scattering spectrum, and NMR.
  • the cationic group concentration can be estimated by the following formula.
  • Cationic group density 1 / ⁇ (1 / X) ⁇ C C + (Y / X) ⁇ C N + (Z / X) ⁇ C H ⁇ ⁇ 1000 (Wherein C C is the atomic weight of the carbon atom, C N is the atomic weight of the nitrogen atom, and C H is the atomic weight of the hydrogen atom) It is possible to estimate with.
  • the cationic group is Cl - polyethylene imine exchanged to mold cationic group (Cl / C molar ratio 0.5, N / C molar ratio 0.5, H / C molar ratio 2.5)
  • the cationic group density calculated from this is 23.21, which is substantially the same value as described above.
  • the cation group density may be calculated by the following formula using the ion exchange capacity of the adsorbent, and may be used as an alternative value.
  • Cationic group density ion exchange capacity (meq / ml) ⁇ resin dry weight per volume (ml / g)
  • the present invention is an adsorbent including the first polymer containing a cationic group as one aspect, adsorbent, a cationic group Cl - in a state where the exchanged type cationic groups, on sections of a predetermined shape, a transmission electron microscope (TEM) - energy dispersive X-ray spectroscopy Cl measured by (EDX) /
  • TEM transmission electron microscope
  • EDX energy dispersive X-ray spectroscopy Cl measured by (EDX) /
  • a film fouling-causing substance adsorbent having at least a region having a C molar ratio of 0.2 to 0.65 and having an adsorption ability for the film fouling-causing substance may also be included.
  • the Cl / C molar ratio may be about 0.2 to 0.65, preferably about 0.25 to 0.6, and more preferably about 0.28 to 0.55.
  • the unit skeleton has a carbon atom and a hydrogen atom as main elements other than the cationic group, and preferably has other elements as desired.
  • other elements for the carbon atom for example, , Oxygen atoms, etc.
  • the region having the predetermined range of Cl / C molar ratio may be about 1 to 70% as a ratio of the high concentration phase to the entire measurement area in the Cl mapping. Alternatively, it may be about 5 to 65%, more preferably about 8 to 60%.
  • the form of the adsorbent of the present invention is not particularly limited as long as it contains a cationic group-containing polymer.
  • the adsorbent may be a polymer adsorbent in which the cation group-containing polymer itself has both a base material function and an adsorptive function and constitutes the adsorbent as a simple substance.
  • such an adsorbent may be a polymer adsorbent obtained by insolubilizing a liquid or solid containing a cationic group-containing polymer by crosslinking or the like.
  • Crosslinking can be carried out by known or conventional means, and for example, it may be carried out using a crosslinking agent described later.
  • the adsorbent may be formed in combination with a cationic group-containing polymer and a base material or another substance.
  • the adsorbent of the present invention is derived from the cationic group-containing polymer and has at least a part of a region where the density of the cationic group is 10 mmol / g to 30 mmol / g (that is, a cationic group high concentration phase).
  • the cation group-containing polymer contained in the adsorbent may be applied or introduced as a mixture of a cation group-containing polymer and another substance, or a cation group-containing polymer as long as a predetermined cationic group density can be achieved. It may be a material that has been removed.
  • the adsorbent of the present invention may be an adsorbent containing a cation group-containing polymer and a substrate.
  • the adsorbent may be an adsorbent in which a cation group-containing polymer is introduced into a substrate by coating, impregnation, or the cation group-containing polymer is copolymerized or alloyed in a substrate. It may be an adsorbent introduced by, for example.
  • the substrate is not particularly limited as long as it can be combined with the cationic group-containing polymer, and may be, for example, an inorganic substrate or a polymer substrate.
  • the inorganic substrate examples include silica, alumina, hydroxyapatite, clay, molecular sieves and the like. These inorganic substrates may be used alone or in combination of two or more. Of these, silica is more preferable.
  • the cationic group-containing polymer may be applied to the inorganic substrate by coating, impregnation, or the like. If necessary, the cation group-containing polymer may be fixed to the inorganic base material by chemical bonding using a silane coupling agent or a crosslinking agent.
  • the substrate is preferably a polymer substrate used as the second polymer.
  • the introduction method in this case includes a cation group-containing polymer (or a monomer capable of forming the polymer) and a polymer group.
  • the material or the monomer capable of forming the base material
  • the material may be copolymerized (preferably block copolymerization or graft copolymerization) by a known method, respectively, as a polymer component, or alloyed (for example, Alternatively, the cationic group-containing polymer and the polymer base material may be mixed or kneaded). If necessary, the introduced cationic group-containing polymer (and polymer base material) may be post-modified by crosslinking or the like.
  • Crosslinking can be carried out by known or conventional means, and for example, it may be carried out using a crosslinking agent described later. From the viewpoint of ease of introduction and imparting physical properties such as strength and swelling degree of the resulting polymer adsorbent, it is more preferable to introduce the polymer by alloying the cation group-containing polymer and the polymer substrate.
  • the alloying may be performed by, for example, (i) a method of preparing a mixed solution using a cation group-containing polymer, a polymer substrate, an optional component as necessary, and an appropriate solvent, and (ii) You may carry out by the method (solution shaping
  • the polymer substrate may be a hydrophobic polymer or a hydrophilic polymer.
  • Hydrophobic polymers generally have a solubility parameter ( ⁇ ) of less than 22 calculated using the following formula using the cohesive energy density (Ecoh) and molar molecular volume (V) calculated by the Fedor estimation method. It refers to a polymer.
  • [ ⁇ Ecoh / ⁇ V] 1/2
  • hydrophobic polymer examples include styrene polymers such as polystyrene; polyolefin polymers such as polyethylene and polypropylene; poly (meth) acrylates such as polymethyl methacrylate; polysulfone and polyether. Examples thereof include polysulfone polymers such as sulfone; halogen vinyl polymers such as polyvinylidene fluoride. These polymers may be used alone or in combination of two or more. Of these, styrenic polymers and poly (meth) acrylic acid esters are preferred.
  • the weight average molecular weight of the hydrophobic polymer can be appropriately set in accordance with the type of polymer, but for example, the weight average molecular weight of the hydrophobic polymer is at least 5000 or more (for example, 5000 to 100,000), preferably 10,000 or more.
  • a weight average molecular weight can be calculated
  • the polymer substrate may preferably be a hydrophilic polymer.
  • the polymer adsorbent whose polymer substrate is a hydrophilic polymer has a membrane fouling-causing substance (especially polysaccharides) contained in raw water compared to a polymer adsorbent whose polymer substrate is a hydrophobic polymer. From the viewpoint of the adsorptivity of the substance causing the membrane fouling, it is excellent in the adsorptivity of biopolymers such as protein and protein.
  • the polymer adsorbent whose polymer substrate is a hydrophilic polymer, is superior in adsorbability of substances that cause membrane fouling, is not clear, but by making the polymer substrate a hydrophilic polymer, it becomes wet with water. As a result, at least some of the components that cause membrane fouling, especially biopolymers such as polysaccharides and proteins, penetrate into the adsorbent, and the polymer substrate becomes a polymer adsorbent that is a hydrophobic polymer. In comparison, it is presumed that the cationic group-containing polymer acts effectively.
  • the hydrophilic polymer generally refers to a polymer having a solubility parameter ( ⁇ ) calculated by the following formula of Fedor's estimation method of 22 or more. Preferably it is 23 or more, More preferably, it is 24 or more, 25 or more is still more preferable.
  • the upper limit of the solubility parameter is not particularly limited, but may be about 35, for example.
  • [ ⁇ Ecoh / ⁇ V] 1/2
  • the hydrophilic polymer is not particularly limited as long as it satisfies the above-described solubility parameter.
  • the polymer having a hydrophilic group such as a hydroxyl group, an ether group, a cationic group, an anionic group, or an amide group in the repeating unit. Etc.
  • vinyl acetate derivative polymer eg, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl alcohol acetalized product with various aldehydes such as formaldehyde, acetaldehyde, butyraldehyde)
  • Polyvinyl alkyl alcohol polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth) acrylamide, polyacrylonitrile, cationic polymer (eg, polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine , Polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethyla Monium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydroch
  • These polymers may have other comonomer units (eg, monomer units having unsaturated carboxylic acid units such as maleic acid, itaconic acid, acrylic acid, silanol groups, aldehyde groups, or sulfonic acid groups). Good.
  • hydrophilic polymers include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, cation.
  • Polymer anionic polymer, phenol resin, polyvinyl pyrrolidone, dextrin, chitin, and chitosan are preferable, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal are more preferable, polyvinyl alcohol, ethylene-vinyl alcohol copolymer Combined and polyvinyl formal are particularly preferred, not only having water resistance, but also from the viewpoint of excellent durability, moldability and hydrophilicity Ethylene - vinyl alcohol copolymer is most preferable.
  • the weight average molecular weight of the hydrophilic polymer can be appropriately set in accordance with the type of the polymer.
  • the weight average molecular weight of the hydrophilic polymer is at least 5000 or more (for example, from 5000 to 100,000), preferably 10,000 or more.
  • a weight average molecular weight can be calculated
  • the molecular weight of polyvinyl alcohol may be defined by the viscosity average degree of polymerization, and the viscosity average degree of polymerization determined from the viscosity of a 30 ° C. aqueous solution can be selected from a wide range of about 100 to 15,000, for example. From the viewpoint of improving durability, those having a high degree of polymerization are preferably used. In this case, for example, the viscosity average degree of polymerization is preferably about 800 to 13000, and more preferably about 1000 to 10,000.
  • the degree of saponification of polyvinyl alcohol can be appropriately selected according to the purpose and is not particularly limited. For example, it may be 88 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. Good. In particular, from the viewpoint of improving durability, those having a saponification degree of 98 mol% or more are preferred.
  • the content of ethylene units is preferably 20 to 60 mol%, more preferably 25 to 55 mol% in all monomer units. If the ethylene content is too small, the durability may deteriorate. On the other hand, when there is too much ethylene content, there exists a possibility that hydrophilicity may fall.
  • the ratio of the cation group-containing polymer to the polymer substrate may be, for example, about 1/99 to 70/30, in terms of mass ratio, cation group-containing polymer / polymer substrate. Preferably, it may be about 5/95 to 65/45, more preferably about 8/92 to 60/40. If the amount of the cation group-containing polymer is too much, the water resistance may be lowered, and if the amount of the cation group-containing polymer is too small, the adsorption performance tends to be lowered.
  • the cationic group-containing polymer is preferably dispersed in the polymer substrate.
  • an adsorbent having an adsorptivity to a membrane fouling-causing substance contained in raw water in particular, a biopolymer such as a polysaccharide or a protein, for example, a cross-linking agent, an antioxidant, etc.
  • a biopolymer such as a polysaccharide or a protein
  • a cross-linking agent such as a cross-linking agent, an antioxidant, etc.
  • additives such as stabilizers, lubricants, processing aids, antistatic agents, colorants, antifoaming agents, and dispersing agents may be included.
  • the cross-linking agent can be appropriately determined according to the type of the cationic group-containing polymer and the cross-linking reactive group of the substrate, for example, epoxy group, carboxyl group, halogen group, acid anhydride group, acid halide group, At least one or two or more functional groups selected from a formyl group, N-chloroformyl group, chloroformate group, amidinyl group, isocyanate group, vinyl group, aldehyde group, azetidine group, carbodiimide group, and the like Including compounds.
  • zirconyl-based crosslinking agents zirconyl nitrate, zirconium ammonium carbonate, zirconyl chloride, zirconyl acetate, zirconyl sulfate
  • titanium-based crosslinking agents titanium lactate, titanium diisopropoxybis (triethanolamate)
  • Such a cross-linking agent can use various commercially available cross-linking agents, and is not particularly limited, but is selected from epoxy groups, halogen groups, isocyanate groups, vinyl groups, aldehyde groups, azetidine groups, carbodiimide groups, and the like.
  • a compound containing at least two functional groups of at least one kind or two or more kinds is preferred.
  • the introduction of the crosslinked structure by the crosslinking agent may be introduced by adding the crosslinking agent to the aqueous solution of the cationic group-containing polymer.
  • a crosslinked structure may be introduced by using a copolymer component such as divinyl monomer during the synthesis of the adsorbent.
  • melt kneading method in which the constituent components of the adsorbent, the crosslinking agent, and if necessary, optional components are melt kneaded using a biaxial kneader or the like can be mentioned. According to the melt kneading method, there is an advantage that it is easy to obtain an adsorbent in which each component is uniformly dispersed.
  • the adsorbent material may be once molded by melt molding, solution molding, etc. to form molded bodies of various shapes, and then the crosslinked structure may be introduced by immersing the molded body in a solution containing a crosslinking agent. .
  • the adsorbent material excluding at least the cross-linking agent is melt-kneaded using a biaxial kneader or the like, and molded articles of various shapes are obtained by extrusion molding, injection molding, or the like. After that, the molded body may be subjected to a crosslinking treatment by immersing it in a crosslinking agent-containing solution.
  • a mixed solution is prepared from an adsorbent material excluding at least a cross-linking agent using an appropriate solvent, and cast film formation or dry spinning, wet spinning, etc. are performed using this mixed solution.
  • the shaped body may be subjected to a crosslinking treatment by immersing it in a crosslinking agent-containing solution.
  • the adsorbent can have various shapes as long as it can be used for adsorption treatment of membrane fouling-causing substances from treated water, in particular, biopolymers such as polysaccharides and proteins, for example, particulate, fibrous, Various three-dimensional shapes may be used. From the viewpoint of improving the adsorption efficiency, the adsorbent is preferably in the form of particles or fibers, and considering the method of packing and using the column, particles are more preferred from the viewpoint of the volume filling rate.
  • the adsorbent of the present invention is, for example, an adsorbent having a swelling degree of 20 to 500% (for example, 20 to 400%) in water at 25 ° C. from the viewpoint of the permeability of water to be treated and the handleability in the adsorption treatment. It may be.
  • the degree of swelling is preferably 30 to 450% (eg, 30 to 250%), more preferably about 40 to 350% (eg, 40 to 300%), and even more preferably 40 to It may be about 250%, particularly preferably about 50 to 250% (for example, 50 to 200%). If the degree of swelling is too low, the adsorptivity of the adsorbent may be reduced, and if the degree of swelling is too high, the adsorbent may be deformed.
  • the swellability of the adsorbent may be controlled by cross-linking with a cross-linking agent, or the cationic group-containing polymer may be controlled with a hydrophobic polymer substrate or with a hydrophilic high or low swellable or non-swellable. It may be controlled as an alloy material introduced into a molecular (eg, ethylene-vinyl alcohol copolymer, polyamide, etc.) substrate. Moreover, you may bridge
  • a molecular eg, ethylene-vinyl alcohol copolymer, polyamide, etc.
  • the adsorbent of the present invention is preferably an adsorbent that is excellent in packing properties in a column.
  • the packing property to the column can be evaluated by the volume change rate of the adsorbent at a high temperature of 80 ° C.
  • the volume change rate is preferably 1.2 times or less from the viewpoint of not affecting the column.
  • the volume change rate was determined by filling the adsorbent sufficiently swollen into a chromatographic column tube (made by Shibata Kagaku Co., Ltd.) with an inner diameter of 15.4 mm so that the height is 5 cm, and passing the acid solution through the washing.
  • volume change rate (times) Adsorbent height after heating at 80 ° C. (cm) / 5 cm
  • the adsorbent preferably has hot water solubility at the use temperature of the regeneration medium used in the regeneration process.
  • the hot water solubility means that the solubility (X) represented by the following formula when the adsorbent is immersed in hot water at a predetermined temperature for 1 hour is 5% or less. It may be.
  • X [(Y ⁇ Z) / (Y)] ⁇ 100 (%)
  • Y is the dry weight of the adsorbent dried and weighed at 105 ° C. for 4 hours before immersing the adsorbent in hot water
  • Z is 1 in hot water at a predetermined temperature. (This is the dry weight measured after soaking for 4 hours and drying at 105 ° C. for 4 hours.)
  • the fouling-causing substances that have been difficult to be adsorbed by the adsorbent of the present invention can be adsorbed and removed.
  • the adsorbent of the present invention efficiently adsorbs organic substances having a particle size of 0.45 ⁇ m or less (for example, aromatic-containing organic substances such as humic acid and fulvic acid, synthetic chemical substances such as surfactants, biopolymers, etc.). It is possible.
  • the fouling-causing substance means a substance that causes fouling.
  • the fouling-causing substances include, for example, organic carbon, various bacteria, inorganic particles, and the like.
  • organic carbon means carbon constituting organic substances existing in water [for example, dissolved organic carbon (DOC); particulate organic carbon (POC) such as TEP].
  • DOC dissolved organic carbon
  • POC particulate organic carbon
  • organic carbon includes, for example, biopolymers such as polysaccharides and proteins, humic acid, fulvic acid, uronic acid, cuturonic acid, odor components (geosmin, 2-methylisoborneol), and the like.
  • the fouling-causing substance may be a substance that is difficult to remove by means such as physical backwashing when performing membrane filtration.
  • specific causative substances are still under study, when the treated water that has undergone the adsorption process of the present invention is supplied to the membrane treatment process, the treated water is supplied to the membrane treatment process without going through the adsorption process. Thus, the lifetime of the film in the film processing step can be improved. Therefore, even if the causative substance is not specifically identified, it is possible to confirm that the amount of causative substance that causes physically irreversible membrane fouling can be reduced by the adsorption process.
  • the adsorbent of the present invention is particularly excellent in removing biopolymers having high hydrophilicity among fouling-causing substances.
  • a biopolymer is a kind of organic carbon present in various raw waters, and is generally a polysaccharide and protein having an apparent molecular weight of 100,000 Da or more.
  • an index for distinguishing other organic carbons from biopolymers for example, in LC-OCD in which a wet total organic carbon measuring instrument is connected to high performance liquid chromatography, from the retention time at which a humic signal peak appears. It may be defined as a substance that exhibits a signal peak in a short holding time.
  • the biopolymer has an A fraction measured by the method described in Stefan A.
  • the humic substance may be a B fraction in the measurement under the same conditions, for example, a component exceeding the holding time of 38 minutes and not more than 50 minutes.
  • Biopolymers are mainly composed of organic substances with few hydrophobic structures such as benzene rings and mainly high hydrophilicity.
  • biopolymers are composed of organic substances exhibiting an SUVA value of 1.0 [L / (m ⁇ mg)] or less. May be.
  • the humic substance contains not only a UV-absorbing structure because it contains a benzene ring, but also has a high hydrophobicity, for example, an SUVA value of 2.0 [L / (m ⁇ mg)] or more It may be composed of an organic material showing.
  • SUVA (L / mg-C ⁇ m) UV (m ⁇ 1 ) / DOC (mg-C / L)
  • each parameter for calculating the SUVA value was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, and "area value" The area value obtained by LC-OCD is expressed, “UV” indicates the absorbance at a wavelength of 254 nm, and “DOC” indicates the DOC concentration (mg-C / L) in the test sample.
  • Humin Quality UV UV of the entire test sample ⁇ area value of humic substance in the spectrum (holding time th: 38 minutes ⁇ th ⁇ 50 minutes) / area value of the whole spectrum
  • DOC of biopolymer DOC of whole test sample ⁇ area value of biopolymer in spectrum (holding time tb: 25 minutes ⁇ tb ⁇ 38 minutes) / area value of whole spectrum
  • Humin DOC of the quality DOC of the entire test sample ⁇ Area value of humic substance in the spectrum (holding time th: 38 minutes ⁇ th ⁇ 50 minutes) / Area value of the whole spectrum
  • the adsorbent used in the present invention may have a biopolymer removal rate (or adsorption rate) from the water to be treated of, for example, 15% or more, preferably 20% or more, more preferably 30% or more. More preferably, it may be 50% or more, more preferably 80% or more, further preferably 85% or more, and particularly preferably 90% or more.
  • a removal rate shows the value measured by the method described in the Example mentioned later.
  • the adsorbent used in the present invention is particularly excellent in biopolymer absorbability, and biopolymer model water at 25 ° C. (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) and humic substances
  • sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution
  • sodium alginate is used as the biopolymer model
  • sodium humate is used as the humic model.
  • each adsorption rate shows the value measured by the method described in the Example mentioned
  • the adsorbent used in the present invention has an adsorption rate (A) of sodium alginate in biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) at 25 ° C., for example, 30 % Or more (for example, 30 to 100%), preferably 35% or more, more preferably 45% or more, still more preferably 60% or more, and particularly preferably 80% or more. Good. About the adsorption rate, the value measured by the method described in the Example mentioned later is shown.
  • the adsorbent used in the present invention has an adsorption rate (A) of sodium humate in humic model water (sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution) at 25 ° C.
  • A adsorption rate of sodium humate in humic model water (sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution) at 25 ° C.
  • it may be 25% or more (for example, 25 to 90%), preferably 35% or more, more preferably 45% or more, and further preferably 50% or more.
  • About the adsorption rate the value measured by the method described in the Example mentioned later is shown.
  • the present invention includes a water treatment method as another embodiment.
  • the water treatment method includes at least an adsorption step in which water to be treated containing a membrane fouling-causing substance is brought into contact with the adsorbent of the present invention and the membrane fouling-causing substance contained in the water to be treated is adsorbed by the adsorbent.
  • the water treatment method may further include a membrane filtration step of subjecting the adsorption treated water obtained in the adsorption step to membrane filtration treatment, as necessary. Further, the membrane filtration step uses at least one membrane selected from the group consisting of an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane.
  • the water treatment method may be performed in one or more stages.
  • the water to be treated in the water treatment method of the present invention is not particularly limited as long as various raw waters obtained in a natural environment and an artificial environment can be used as the water to be treated and contains a fouling-causing substance.
  • the raw water includes general river water, lake water, seawater, soil elution water, irrigation water, biological treatment water, pretreatment of these (for example, sand filtration treatment, rough filtration treatment using a water treatment membrane, coagulation sedimentation treatment, ozone Treated water after treatment, adsorption treatment using existing adsorbent or activated carbon, biological treatment) and the like.
  • the adsorption pretreatment for example, water from which particles having a particle diameter of 5 ⁇ m or more, preferably 1 ⁇ m or more, more preferably larger than 0.45 ⁇ m are excluded is used as the adsorption treated water. preferable.
  • the water to be treated is raw water containing fouling-causing substances, particularly polysaccharides and proteins that are considered to cause physically irreversible membrane fouling, and containing 0.1% by mass or more of sodium chloride. May be.
  • raw water include seawater (sodium chloride concentration of 2 to 4% by mass), brackish water (sodium chloride concentration of 0.5 to 2% by mass), and accompanying water generated when mining oil fields and gas fields. It may also be water with higher sodium chloride concentration obtained by treating these, and water containing various salts obtained from raw water in the natural environment is used as treated water May be.
  • the raw water may have a sodium chloride concentration of 0.1% by mass or more (for example, about 0.5 to 30% by mass), 1% by mass or more, or 2% by mass or more.
  • the water to be treated may contain alkali metal salts such as potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate.
  • the temperature of the water to be treated in the adsorption treatment may be the first contact temperature (for example, near room temperature).
  • the vicinity of room temperature may be, for example, 0 ° C. or more and less than 40 ° C.
  • the temperature may be preferably 5 to 38 ° C, more preferably 10 to 35 ° C.
  • the adsorption process it is not particularly limited as long as the water to be treated and the adsorbent can be brought into contact with each other.
  • the adsorbent is added to the water to be treated and, if necessary, stirred by a known method.
  • the adsorbing treatment may be carried out by a method in which the water to be treated is passed through a column filled with an adsorbent as a continuous type. Further, the adsorption step may be a single step or a multi-step.
  • the amount of adsorbent used for the water to be treated can be appropriately selected according to the type of water to be treated, the form of the adsorbent, etc.
  • the amount of adsorbent is The amount may be about 0.05 to 30 g, preferably about 0.1 to 10 g, per liter of treated water.
  • the adsorbent when the adsorbent is immersed in the water to be treated and stirred, the adsorbent may be stirred by mechanical stirring or bubble stirring.
  • the peripheral speed When performing mechanical stirring, the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 15 m / s.
  • the flow rate of the water to be treated to the column is, for example, the superficial velocity that is a value obtained by dividing the treated water flow rate by the adsorbent volume. it may be about 0.5 ⁇ 200h -1, preferably about 1 ⁇ 150h -1.
  • the membrane fouling-causing substance in the water to be treated can be efficiently adsorbed, and in particular, the above-described biopolymer can be adsorbed efficiently.
  • the removal rate (or adsorption rate) of the biopolymer from the water to be treated may be, for example, 15% or more, preferably 20% or more, more preferably 25% or more.
  • a removal rate shows the value measured by the method described in the Example mentioned later.
  • the adsorption-treated water (or supply water) subjected to the adsorption treatment is subjected to membrane filtration in the membrane filtration step as necessary.
  • the membrane filtration step may be a single step or multiple steps. About the kind of film
  • the membrane filtration step is appropriately performed using a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), a reverse osmosis (RO) membrane, etc., depending on the purpose of water treatment. be able to.
  • these membranes may be used alone or in one or more stages for membrane filtration, or a plurality of types of membranes may be combined, and each one or more stages may be used for membrane filtration.
  • the membrane water may be further filtered with an NF membrane or a reverse osmosis (RO) membrane after membrane filtration treatment of the treated water supplied with the MF membrane or UF membrane.
  • the membrane material of the filtration membrane in the membrane filtration step is not particularly limited, and any known material can be applied.
  • the film material for the UF film and the MF film include cellulose acetate, polyacrylonitrile, polyethylene, polyethersulfone, polysulfone, polypropylene, polyvinylidene fluoride, and ceramic.
  • the film material of the NF film include polyamide-based, polypiperazine amide-based, polyester amide-based, or water-soluble vinyl polymer crosslinked.
  • Examples of the membrane material for the RO membrane include cellulose acetate and polyamide.
  • the membrane form is not particularly limited, and may be any shape such as a flat membrane, a tubular membrane, and a hollow fiber membrane.
  • the film thickness may be in the range of 10 ⁇ m to 1 mm, and in the case of a hollow fiber membrane, the inner diameter may be about 0.2 to 2 mm and the outer diameter may be about 0.4 to 5 mm.
  • the filtration membrane may have a fine porous structure such as a network structure, a honeycomb structure, or a fine gap structure.
  • filtration membranes may be modularized. For example, in the case of a flat membrane, a spiral type, a pleat type, a plate-and-frame type, or a disc type in which discs are stacked may be used. It may be a hollow fiber membrane type bundled in an I shape and stored in a container.
  • the filtration flow rate can be set as appropriate according to the type of water supplied to the membrane, the type of filtration membrane, and the like. For example, when filtration is performed by the cross flow method, the filtration flow rate is flux 0.5 to 5 .0 (m 3 / m 2 / day) may be liquid passing respect filtration membrane, preferably may be Flux1.0 ⁇ 4.0 (m 3 / m 2 / day).
  • the adsorbent of the present invention functions effectively even if the water to be treated contains salts
  • the water to be treated containing salts is adsorbed with the adsorbent of the present invention, and then the RO membrane or the like. It may be supplied to a membrane treatment to remove salts in water.
  • membrane fouling-causing substances particularly biopolymers such as polysaccharides and proteins
  • membrane fouling-causing substances particularly biopolymers such as polysaccharides and proteins
  • the amount of the causative substance in the supply water can be reduced, it is possible to suppress the deterioration of the filtration membrane due to membrane fouling, thereby prolonging the service life of the membrane.
  • the amount of the causative substance in the supply water can be reduced, the frequency of cleaning the filtration membrane and the amount of cleaning chemicals used can also be reduced.
  • the water treatment using the adsorbent of the present invention may be combined with an existing water treatment method as necessary within a range not impairing the effects of the invention.
  • the existing water treatment method include sand filtration treatment, coarse filtration treatment, coagulation sedimentation treatment, ozone treatment, adsorption treatment using an existing adsorbent or activated carbon, biological treatment, and the like. These treatments may be performed singly or in combination of two or more. In addition, these water treatments may be appropriately performed before and / or after the adsorption treatment.
  • the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step is separated by a known filtering means as necessary and is supplied to the regeneration step.
  • the adsorption-treated water that has been subjected to solid-liquid separation by filtering the adsorbent may be used in a membrane filtration step as needed, and membrane filtered in the filtration step.
  • the water treatment method of the present invention may include a regeneration step in which the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step is regenerated by contacting with the cleaning fluid.
  • the regeneration process is not particularly limited as long as the adsorbent adsorbing the membrane fouling-causing substance can be regenerated, and various regeneration processes can be performed.
  • the present invention may include a method for regenerating the adsorbent.
  • the regeneration step may be performed independently as a regeneration method.
  • the adsorbent regeneration method for regenerating the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step by bringing it into contact with the cleaning fluid may be performed independently.
  • the adsorbent regeneration method may be performed by bringing the adsorbent adsorbing the membrane fouling-causing substance into contact with a cleaning fluid heated to 40 ° C. or more and regenerating the adsorbent. .
  • the cleaning fluid may be a medium composed of a liquid containing water as a main component (for example, 60% by mass or more).
  • a liquid containing water for example, 60% by mass or more
  • purified water water that has been purified by an appropriate treatment operation on raw water, For example, tap water, etc.
  • pure water RO water, deionized water, distilled water, etc.
  • various raw waters described above in the adsorption step or related waters may be used, and these waters (purified water, pure water, raw water) are used as chemicals.
  • an aqueous solution added to the related water may be used.
  • the drug for example, various acidic substances and salts thereof, various alkaline substances and the like can be used.
  • various inorganic acids for example, hydrochloric acid, hypochlorous acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, carbonic acid, phosphoric acid, hypobromous acid, hypoiodous acid, etc.
  • various organic acids for example, formic acid, acetic acid, propionic acid, butyric acid, stearic acid, citric acid, oxalic acid, lactic acid, maleic acid, tartaric acid, fumaric acid, malonic acid, succinic acid, malic acid, adipic acid, oleic acid, linoleic acid, linolenic acid And benzoic acid).
  • the acidic substance salt may be, for example, an alkali metal salt such as a sodium salt or a potassium salt, or an organic salt such as an ammonium salt.
  • alkaline substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and ammonia water.
  • the concentration of the drug in the cleaning fluid may be, for example, about 0.1 to 60% by mass, preferably about 0.1 to 30% by mass, more preferably 0.5 to 20%, as the ratio of the solute to water. It may be about mass%.
  • the cleaning fluid is not limited to a liquid, and may be a gas such as air or heated steam, for example.
  • the cleaning fluid may be any fluid that can clean the adsorbent of the present invention and remove the fouling-causing substance attached to the surface.
  • the contact with the cleaning fluid in the regeneration step may be one stage or multiple stages. In the case of multiple stages, a plurality of types of cleaning fluids may be used separately.
  • a metal ion-containing aqueous solution is preferably used as the cleaning fluid.
  • the metal ions used in the aqueous solution containing metal ions are not particularly limited as long as the causative substance can be eliminated, but typically, alkali metal ions such as lithium ions, sodium ions, and potassium ions are listed.
  • an aqueous solution containing an alkali metal hydroxide, an alkali metal organic acid salt, or an alkali metal inorganic acid salt may be used.
  • the alkali metal hydroxide, organic acid and inorganic acid various substances used as the above-mentioned chemicals may be used.
  • Preferred metal ion-containing aqueous solutions include alkali metal salt aqueous solutions of inorganic acids, and specific examples include sodium chloride aqueous solution, potassium chloride aqueous solution, lithium chloride aqueous solution, sodium carbonate aqueous solution, potassium carbonate aqueous solution, lithium carbonate aqueous solution and the like. It is done.
  • the cleaning fluid may be a metal ion-containing aqueous solution containing the same type of metal ions as the salts present in the water to be treated.
  • the concentration of the metal ion-containing aqueous solution may be, for example, about 0.1 to 60% by mass, preferably about 0.1 to 30% by mass, more preferably 0.5 to 20% by mass as a solute ratio with respect to water. % May be sufficient.
  • the aqueous medium as the cleaning fluid may have a sodium chloride concentration of 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 2% by mass or more.
  • sodium chloride concentration may be 27 mass% or less, for example, and may be 20 mass% or less.
  • the cleaning fluid may contain alkali metal salts such as potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate.
  • raw water the various raw waters described above in the adsorption process may be used, or a part of the raw water used in the adsorption process may be separated and used in the regeneration process.
  • raw water different from the raw water used in the adsorption step may be used as a regeneration medium.
  • raw water-related water include non-permeate water (for example, concentrated water obtained after RO membrane treatment) generated when various membrane treatments of raw water, treated water obtained after the raw water adsorption step, and the like.
  • the pH of the cleaning fluid may be, for example, about 5 to 14, preferably about 5.5 to 12, and more preferably about 6 to 11.
  • pH is in the neutral range (pH 6 to 8)
  • the temperature of the cleaning fluid used in the regeneration process is not particularly limited as long as the adsorbent can be regenerated. Depending on the type of cleaning fluid, it may be near room temperature, at the same temperature as the water to be treated, or at a temperature equal to or higher than the temperature of the water to be treated in the adsorption process. Preferably, it may be set to be higher than the temperature of the water to be treated in the adsorption step.
  • the water to be treated containing the fouling-causing substance is brought into contact at the first contact temperature, and the film fouling-causing substance contained in the water to be treated is adsorbed. May be brought into contact with various cleaning fluids at a second contact temperature higher than the first contact temperature, and the adsorbent may be regenerated.
  • the first contact temperature and the second contact temperature may differ from each other by, for example, 10 ° C. or more (eg, about 10 to 90 ° C.), preferably about 15 to 80 ° C., more preferably 20 to 70 ° C. It may be different by about ° C.
  • the temperature of the cleaning fluid in the regeneration process can be selected as an appropriate temperature as the second contact temperature.
  • it may be 40 to 110 ° C. (eg 50 to 110 ° C.), preferably 45 to 105 ° C. (eg 60 to 105 ° C.), more preferably 50 to 100 ° C. (eg 70 ° C.). ⁇ 100 ° C).
  • the cleaning fluid may have a temperature within the predetermined range, and the temperature of the cleaning fluid may decrease during the regeneration process. Or you may perform a reproduction
  • the heating means any heat source can be targeted, such as heat pumps, electric heating means, combustion means using combustion heat such as gas or petroleum, natural heat sources such as solar heat and geothermal heat, etc.
  • a secondary heat source derived from a heat source (for example, a heating heat medium heated by the heat source) may be used. These heat sources may be used alone or in combination of two or more.
  • Examples of the heating mode include a system in which piping through which the cleaning fluid flows is heated with various heat sources, and a system in which the cleaning fluid is stored in a heating tank provided with a heat source outside or inside. These methods may be used alone or in combination of two or more.
  • piping and a heating tank may be heated directly using a heat source, or may be heated using a secondary heat source such as steam used in a factory.
  • the heating tank that heats the cleaning fluid may be a container that performs a regeneration process, or may be a container that stores the cleaning fluid before the regeneration process. When the regeneration time is long (for example, 1 hour or longer), it is preferable to heat the container for performing the regeneration process in order to maintain the temperature of the cleaning fluid.
  • the treatment time is not particularly limited as long as the adsorbent can be regenerated, and can be set as appropriate according to the state and amount of the adsorbent and the regeneration medium.
  • the regeneration treatment time may be, for example, 10 minutes or more, preferably 15 minutes or more, more preferably 20 minutes or more, and further preferably 30 minutes or more.
  • the regeneration processing time may be 36 hours or less, preferably 25 hours or less, from the viewpoint of improving the efficiency of the regeneration process.
  • the amount of the cleaning fluid used for the adsorbent can be appropriately selected according to the type of the cleaning fluid, the form of the adsorbent, the type of regeneration process (batch type or continuous type), and the like.
  • the adsorbent may be stirred by mechanical stirring, bubble stirring, or the like.
  • the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 18 m / s.
  • the regeneration step is not particularly limited as long as the cleaning fluid and the adsorbent can be brought into contact with each other.
  • the adsorbent is added to the cleaning fluid, and if necessary, stirred by a known method.
  • the regeneration process may be carried out; as a continuous system, the regeneration process may be carried out by passing a washing fluid through a column filled with an adsorbent. Further, the regeneration step may be a single step or multiple steps.
  • the adsorbent regenerated by the regeneration step may be separated by a known filtering means as necessary and may be provided again to the adsorption step.
  • the adsorbent can be efficiently regenerated by contact with the cleaning fluid.
  • the adsorption rate of the adsorbent before and after the regeneration treatment can be evaluated as regeneration efficiency.
  • the regeneration efficiency may be 30% or more, preferably 50% or more, more preferably May be 80% or more, particularly preferably 90% or more. Note that the regeneration efficiency is a value measured by a method described in Examples described later.
  • the present invention may include the following contents as application examples. That is, in the first application example of the present invention, water to be treated (for example, raw water) containing organic carbon (for example, a substance causing membrane fouling) and various adsorbents (preferably polymer adsorbents) are used.
  • a regeneration step of regenerating the adsorbent by bringing the adsorbent adsorbed with the component into contact with a cleaning fluid (eg, an aqueous medium) heated to a second contact temperature of 40 ° C. or higher, which is higher than the first contact temperature.
  • a cleaning fluid eg, an aqueous medium
  • a water treatment method comprising at least
  • the regeneration medium since the regeneration medium is used by paying attention to the temperature of the aqueous medium, various cleaning fluids such as purified water, metal ion-containing aqueous solution, raw water (in particular, an aqueous medium containing organic carbon to be adsorbed) are used.
  • the adsorbent can be efficiently regenerated.
  • various adsorbents preferably polymer adsorbents
  • the adsorbed material can be regenerated by desorbing from the adsorbent. Then, the regenerated adsorbent can be effectively used again for the adsorption process.
  • the regeneration step included in the water treatment method according to the first application example may be performed independently as a method for regenerating the adsorbent. That is, as a regeneration method, a regeneration method including regeneration in which an adsorbent adsorbing organic carbon is regenerated by bringing it into contact with a cleaning fluid may be performed independently.
  • Various processing conditions performed in this regeneration step (or regeneration method) include the various conditions described above in the present invention (type of cleaning fluid, temperature condition of cleaning fluid, heating means, regeneration processing time, cleaning fluid usage conditions, etc.). May be used as appropriate, or playback conditions described later may be used separately.
  • a second application example of the present invention is a water treatment method in which the component adsorbed in the adsorption step in the water treatment method according to the first application example includes a biopolymer.
  • the polymer adsorbent in the water treatment method according to the first or second application example, has at least one functional group selected from the group consisting of an amino group and a salt thereof. It has a water treatment method.
  • the fourth application example of the present invention is the water treatment method according to any one of the first to third application examples, wherein a polymer having a hydrophilic polymer as a main skeleton is used as a polymer adsorbent. It is.
  • the hydrophilic polymer that is the main skeleton of the polymer adsorbent is polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, polyvinyl acetal. , Polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth) acrylamide, polyacrylonitrile, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinyl pyrrolidone, dextrin, chitin, and chitosan
  • a water treatment method comprising at least one selected from the group.
  • the sixth application example of the present invention is the water treatment method according to any one of the first to fifth application examples, wherein the adsorption treated water obtained by the adsorption step is further subjected to membrane filtration by membrane filtration treatment.
  • the membrane filtration step includes an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and
  • the water treatment method is carried out in one or more stages using at least one membrane selected from the group consisting of reverse osmosis (RO) membranes.
  • the polymer adsorbent used in the first to seventh application examples is not particularly limited as long as it is an adsorbent that is formed of a polymer and adsorbs at least a part of organic carbon, and various polymer adsorbents. Can be used.
  • the polymer adsorbent used in the application example includes a polymer adsorbent having a bond-forming group for causing causative substances that cause membrane fouling contained in raw water to be adsorbed to the adsorbent.
  • the bond-forming group can form various bonds (for example, hydrogen bond, coordination bond, ionic bond, etc.) with the adsorbing component.
  • examples of the bond-forming group include a hydrogen bond-forming group, a chelate-forming group, a cationic ion-exchange group, and an anionic ion-exchange group. These bond-forming groups can be used alone or in combination of two or more. May be. Preferably, it may have at least a cationic ion exchange group.
  • the bond-forming group may be a functional group containing at least one element selected from the group consisting of N, S, P and O, for example.
  • functional groups include amino groups (primary amino groups, secondary amino groups, tertiary amino groups), quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups.
  • These functional groups may be present alone or in combination of two or more.
  • preferred functional groups are primary amino group, secondary amino group, tertiary amino group, quaternary ammonium group, iminium group, imidazole group, quaternary imidazolium group, pyridyl group, and quaternary pyridinium group.
  • an amino group primary amino group, secondary amino group, tertiary amino group and salts thereof.
  • the polymer adsorbent may have a hydrophobic polymer as a main skeleton together with the bond-forming group, or may have a hydrophilic polymer as a main skeleton.
  • hydrophobic polymer adsorbent having a hydrophobic polymer as a main skeleton examples include a polymer adsorbent in which the above functional group is introduced with respect to the above-described hydrophobic polymer.
  • the amount to be introduced may be, for example, 2 to 100 mol%, preferably 3 to 95 mol%, more preferably 5 to 90 mol% in all monomer units.
  • Such hydrophobic polymer adsorbents are, for example, “Purolite (registered trademark)” series from Purolite Co., Ltd .; “Sumichelate (registered trademark)” series, “Duolite (registered trademark)” from Sumika Chemtex Co., Ltd. Series: Launched as “Diaion (registered trademark)” series by Mitsubishi Chemical Corporation.
  • the hydrophilic polymer adsorbent has a hydrophilic polymer as a main skeleton, and the hydrophilic polymer itself may have a bond-forming group in its structure.
  • a bond forming group may be introduced.
  • the bond-forming group may be introduced by copolymerizing a monomer (or a derivative thereof) containing the bond-forming group when the hydrophilic polymer is produced, or the hydrophilic polymer is produced. Thereafter, a bond-forming group may be introduced by post-modification.
  • the introduced bond-forming group may be a different type of functional group from the hydrophilic group of the hydrophilic polymer.
  • the amount to be introduced may be 2 to 100 mol%, preferably 3 to 95 mol%, more preferably 5 to 90 mol%, based on all monomer units.
  • the polymer adsorbent is composed of the above hydrophilic polymer or hydrophobic polymer as a matrix component and alloyed with a component having a bond-forming functional group (bond-forming group), thereby making the bond-forming group highly hydrophilic. It may be introduced into a molecule or a hydrophobic polymer. From the viewpoint of ease of introduction and imparting physical properties such as strength and swelling degree of the resulting polymer adsorbent, the polymer adsorbent is a polymer alloy of a bond-forming group-containing polymer and a matrix polymer (B). Is preferred.
  • the bond-forming group-containing polymer is an anionic polymer such as polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, and polyamic acid.
  • PSS polystyrene sulfonic acid
  • PVS polyvinyl sulfate
  • PAA polyacrylic acid
  • PMA polymethacrylic acid
  • polymaleic acid polyamic acid
  • Polyethyleneimine polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride It may also be a cationic polymer such as a polynucleotide. Such polymers may be used alone or in combination of two or more.
  • the above-mentioned cationic polymer is preferable, Amino group-containing polymers, quaternary ammonium group-containing polymers, and quaternary pyridinium group-containing polymers are more preferred, and polymers having a high cation density (for example, polyethyleneimine, polyallylamine, etc.) are particularly preferred.
  • the matrix polymer may be either a hydrophobic matrix polymer or a hydrophilic matrix polymer as long as it can be polymerized with the bond-forming group-containing polymer. It may be a blend polymer.
  • the hydrophobic matrix polymer and the hydrophilic matrix polymer the hydrophobic polymer and the hydrophilic polymer described in the above-described polymer base material may be used, respectively.
  • raw water or the like may be used as a cleaning fluid.
  • an aqueous medium containing organic carbon to be adsorbed is used as the cleaning fluid, reduction in water production cost and improvement in water production rate in the water treatment method are achieved.
  • a cleaning fluid derived from non-purified water non-fresh water
  • the cleaning fluid used in the regeneration process for the adsorbent has a second contact temperature heated to a specific temperature higher than the first contact temperature, It has been found that even if it is not purified water, it can be used as a cleaning fluid and recontamination by organic carbon can be suppressed. Since it is not necessary to use purified water as the cleaning fluid, the water treatment method of the present invention can reduce water production costs.
  • purified water here is the water which performed the purification act by appropriate processing operation with respect to raw
  • the cleaning fluid it is possible to use the above-described various raw waters or related waters in the adsorption process.
  • raw water-related water include non-permeate water (for example, concentrated water obtained after RO membrane treatment) generated when various membrane treatments of raw water, treated water obtained after the raw water adsorption step, and the like.
  • the raw water may be used in the regeneration process by partially separating the raw water used in the adsorption process.
  • raw water different from the raw water used in the adsorption process may be used as the cleaning fluid.
  • the aqueous medium used as the cleaning fluid may have a total organic carbon (TOC) concentration of 0.01 mg-C / L or more, 0.05 mg-C / L or more, and 0. It may be 1 mg-C / L or more, 3.1 mg-C / L or more.
  • concentration means the TOC prescribed
  • the TOC concentration is not particularly limited as long as it can be used as a cleaning fluid, but may be, for example, 20 mg-C / L or less.
  • the aqueous medium used as the cleaning fluid is not particularly limited as long as the organic carbon component adsorbed in the adsorption step can be desorbed from the adsorbent.
  • the turbidity of the aqueous medium used as the cleaning fluid is 200 NTU. (For example, 1 to 200 NTU), preferably 150 NTU or less (for example, 5 to 150 NTU), more preferably 100 NTU or less (for example, 10 to 100 NTU).
  • the turbidity of the aqueous medium is a value measured by a transmitted scattering light measurement method using formazine as a turbidity standard solution.
  • the aqueous medium used as the cleaning fluid may preferably be raw water from which particles having a particle size of 5 ⁇ m or more, preferably 1 ⁇ m or more, and more preferably 0.45 ⁇ m or more are excluded.
  • the cleaning fluid may be an aqueous solution in which a chemical is added to the raw water (for example, raw water containing organic carbon, particularly a causative substance that causes physically irreversible membrane fouling).
  • a chemical for example, raw water containing organic carbon, particularly a causative substance that causes physically irreversible membrane fouling.
  • the drug for example, various acidic substances and salts thereof, various alkaline substances and the like can be used.
  • various inorganic acids for example, hydrochloric acid, hypochlorous acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, carbonic acid, phosphoric acid, hypobromous acid, hypoiodous acid, etc.
  • various organic acids for example, formic acid, acetic acid, propionic acid, butyric acid, stearic acid, citric acid, oxalic acid, lactic acid, maleic acid, tartaric acid, fumaric acid, malonic acid, succinic acid, malic acid, adipic acid, oleic acid, linoleic acid, linolenic acid And benzoic acid).
  • the acidic substance salt may be, for example, an alkali metal salt such as a sodium salt or a potassium salt, or an organic salt such as an ammonium salt.
  • alkaline substance examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and ammonia water. These drugs may be used alone or in combination of two or more.
  • the cleaning fluid may be raw water containing metal ions (hereinafter referred to as metal ion-containing raw water).
  • metal ions used in the metal ion-containing raw water are not particularly limited as long as the causative substances can be eliminated, but typically, alkali metal ions such as lithium ions, sodium ions, potassium ions and the like can be mentioned.
  • an aqueous solution containing an alkali metal hydroxide, an alkali metal organic acid salt, or an alkali metal inorganic acid salt may be used.
  • the alkali metal hydroxide organic acid and inorganic acid, various substances used as the above-mentioned chemicals may be used.
  • Preferred metal ion-containing raw water includes alkali metal salt-containing raw water of inorganic acid, specifically, sodium chloride-containing raw water, potassium chloride-containing raw water, lithium chloride-containing raw water, sodium carbonate-containing raw water, potassium carbonate-containing raw water, Examples include raw water containing lithium carbonate.
  • the concentration of the drug in the raw water may be, for example, about 0.1 to 60% by mass, preferably about 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, as a solute ratio with respect to water. It may be a degree.
  • the cleaning fluid may be an aqueous medium containing organic carbon, particularly a causative substance that causes physically irreversible film fouling, and containing 0.1% by mass or more of salts.
  • aqueous medium examples include seawater (sodium chloride concentration of 2 to 4% by mass), brackish water (sodium chloride concentration of 0.5 to 2% by mass), and accompanying water generated when oil fields and gas fields are mined.
  • water containing various salts obtained from raw water in the natural environment such as water with a higher salt concentration obtained by treating them, may be used as the cleaning fluid.
  • the aqueous medium as the cleaning fluid may have a sodium chloride concentration of 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 2% by mass or more.
  • sodium chloride concentration may be 27 mass% or less, for example, and may be 20 mass% or less.
  • the cleaning fluid may contain alkali metal salts such as potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate.
  • the pH of the cleaning fluid may remain as an aqueous medium or may be adjusted using a pH adjuster with respect to the aqueous medium.
  • the pH of the cleaning fluid may be, for example, about 5 to 14, preferably about 5.5 to 12, and more preferably about 6 to 11.
  • pH is in the neutral range (pH 6 to 8)
  • the aqueous medium used in the regeneration step may be repeatedly used a plurality of times.
  • the concentration of organic carbon in the cleaning fluid may be concentrated to reduce the volume of the cleaning fluid as waste.
  • Biopolymer adsorption rate (sodium alginate concentration before adsorption evaluation ⁇ sodium alginate concentration after adsorption evaluation) / sodium alginate concentration before adsorption evaluation ⁇ 100 (%)
  • the obtained adsorption treatment liquid was passed through a filtration membrane with Flux 2.0 (m 3 / m 2 / day) and reversely with pure water of Flux 3.0 m 3 / m 2 / day) once every 30 minutes. Washing was performed, the pressure change when passing through the membrane was evaluated, the time (min) until reaching 60 kPa was determined, and long-term water permeability was evaluated according to the following criteria.
  • B 600 minutes or more and less than 900 minutes
  • C Less than 600 minutes
  • the adsorbent was dried at 105 ° C. for 4 hours, and its weight was weighed as Yg. The weighed adsorbent was recovered after being immersed in hot water maintained at a predetermined temperature at a bath ratio of 1/30 for 1 hour. The collected adsorbent was further dried at 105 ° C. for 4 hours, and its weight was weighed as Zg. did.
  • Example 1-1 Polyethyleneimine having a cationic group density of 23.2 (mmol / g) (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) and an epoxy compound (“Denacol EX-810” manufactured by Nagase ChemteX Corp.) After being used and cross-linked, it was crushed. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the target adsorbent 1-1 as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-1 in 25 ° C. water was 276%.
  • the obtained adsorbent 1-1 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the long-term water permeability was A.
  • the volume change rate of the adsorbent 1-1 with 80 ° C. hot water was B. The results are shown in Table 2.
  • polyethyleneimine Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.
  • ethylene-105 ethylene-vinyl alcohol copolymer
  • this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C.
  • the target adsorbent 1-2 was obtained as shown in Table 1.
  • the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water.
  • the degree of swelling of the obtained adsorbent 1-2 in 25 ° C. water was 80%.
  • the obtained adsorbent 1-2 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh, and after the adsorption treatment, a UF membrane made of polyacrylonitrile (PAN) ( As a result of evaluating the water permeability of Asahi Kasei Co., Ltd., molecular weight cut-off 100 kDa), the long-term water permeability was A.
  • the volume change rate of the adsorbent 1-2 with 80 ° C. hot water was A.
  • Table 2 When this adsorbent was analyzed by TEM-EDX, the high concentration phase Cl / C molar ratio was 0.45.
  • polyethyleneimine Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.
  • F-101 ethylene-vinyl alcohol copolymer
  • this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C. did.
  • the obtained washed product was immersed in hydrochloric acid to obtain an adsorbent 1-3 substituted with a hydrochloride type.
  • the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water.
  • the degree of swelling of the obtained adsorbent 1-3 in 25 ° C. water was 40%.
  • the obtained adsorbent 1-3 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the long-term water permeability was A.
  • the volume change rate of the adsorbent 1-3 in 80 ° C. hot water was A. The results are shown in Table 2.
  • the particles were subjected to a crosslinking treatment with a 25% solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) for 1 hour, filtered and then immersed in a large amount of hot water at 80 ° C.
  • the target adsorbent 1-4 was obtained by stirring and washing as shown in Table 1.
  • the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water.
  • the degree of swelling of the obtained adsorbent 1-4 in 25 ° C. water was 93%.
  • the obtained adsorbent 1-4 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the long-term water permeability was A.
  • the volume change rate of the adsorbent 1-4 in 80 ° C. hot water was A.
  • Table 2 When this adsorbent was analyzed by TEM-EDX, the Cl / C molar ratio of the high concentration phase was 0.3.
  • Example 1-5 A polyallylamine (Nitto Bo Medical Co., Ltd., “PAA-15C”) having a cationic group density of 17.5 (mmol / g) was used with an epoxy compound (Nagase ChemteX Co., Ltd., “Denacol EX-810”). After cross-linking, pulverization was performed. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the target adsorbent 1-5 as shown in Table 1. The adsorbent 1-5 had hot water solubility in 80 ° C. hot water. The degree of swelling of the obtained adsorbent 1-5 in 25 ° C. water was 346%.
  • the obtained adsorbent 1-5 was immersed and stirred in model seawater, and a sodium alginate adsorption test was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and the resulting treated water was used to make a PE MF membrane (Mitsubishi Rayon Co., Ltd.).
  • the long-term water permeability was A.
  • the volume change rate of the adsorbent 1-5 in 80 ° C. hot water was B. The results are shown in Table 2.
  • Example 1-6 Polymethyl methacrylate (manufactured by Kuraray Co., Ltd., “Parapet G”) was dissolved in DMSO to prepare a 5% solution.
  • Polyethyleneimine having a cationic group density of 23.2 (mmol / g) was dissolved in DMSO (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) to prepare a 5% solution.
  • 75 parts by mass of a 5% polymethyl methacrylate solution and 25 parts by mass of a 5% polyethyleneimine solution were mixed, and the resulting mixed solution was cast on a polyethylene film and dried to obtain a desired film.
  • the intended adsorbent 1-6 was obtained by immersing in 80 ° C. hot water and washing with stirring.
  • the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water.
  • the degree of swelling of the obtained adsorbent 1-6 in 25 ° C. water was 40%.
  • the obtained adsorbent 1-6 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the long-term water permeability was B.
  • the volume change rate of the adsorbent 1-6 in 80 ° C. hot water was A. The results are shown in Table 2.
  • this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C.
  • the target adsorbent 1-7 was obtained as shown in Table 1.
  • the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water.
  • the degree of swelling of the obtained adsorbent 1-7 in 25 ° C. water was 70%.
  • the obtained adsorbent 1-7 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the long-term water permeability was A.
  • the volume change rate of the adsorbent 1-7 in 80 ° C. hot water was A.
  • Table 2 When this adsorbent was analyzed by TEM-EDX, the high concentration phase Cl / C molar ratio was 0.4.
  • Example 1-8 12 g of commercially available fumed silica (manufactured by Aldrich, Silica, fumed, model number: S5505-100G) was dispersed in methanol to prepare a 10% methanol sol. While stirring 10% methanol sol, 3 mL of a silane coupling agent (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) was added, reacted at 60 ° C. for 6 hours, Washing three times gave an epoxy-modified silica substrate.
  • a silane coupling agent 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403
  • An epoxy-modified silica group was obtained by heating 25 g of a 60 mass% aqueous solution of polyethyleneimine (Nippon Shokubai Co., Ltd., “Epomin SP-200”) having a cationic group density of 23.2 (mmol / g) to 80 ° C. 5 g of the material was gradually added and reacted for 1 h. The obtained particles were filtered, immersed in a large amount of hot water at 80 ° C., washed with stirring, and the target adsorbent 1-8 was obtained as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-8 in 25 ° C. water was 90%.
  • the amount of polyethyleneimine added to the adsorbent 1-8 obtained was calculated from the weight increase before and after the polyethyleneimine addition reaction, and the mass ratio of polyethyleneimine to the epoxy-modified silica substrate was 10/90.
  • the obtained adsorbent 1-8 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • An adsorbent 1-9 was obtained by immersing a commercially available magnetic ion exchange resin (manufactured by Maezawa Kogyo Co., Ltd., “MIEX resin”) in a large amount of hot water at 80 ° C. and washing with stirring.
  • the cationic group density of the adsorbent 1-9 was 4.9 (mmol / g) as a result of calculation based on the polymer skeleton structure described in Japanese Patent Application Laid-Open No. 10-504959.
  • the degree of swelling in water was 170%.
  • the obtained adsorbent 1-9 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the water permeability of the pore diameter of 0.1 ⁇ m the long-term water permeability was C.
  • the volume change rate of the adsorbent 1-9 in 80 ° C. hot water was A. The results are shown in Table 2.
  • the obtained adsorbent 1-10 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed.
  • an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used.
  • the water permeability of the pore diameter of 0.1 ⁇ m the long-term water permeability was C.
  • the volume change rate of the adsorbent 1-10 in 80 ° C. hot water was A. The results are shown in Table 2.
  • the adsorbent 1- 1 is obtained by immersing crosslinked chitosan particles having an amino group density of 6.2 (mmol / g) (“Kimikakitosan F”, manufactured by Kimika Co., Ltd.) in a large amount of hot water at 80 ° C. and washing with stirring. 11 was obtained. The degree of swelling in water at 25 ° C. was 166%.
  • the obtained adsorbent 1-11 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed.
  • an adsorption test for sodium alginate was performed.
  • the long-term water permeability was C.
  • the volume change rate of the adsorbent 1-11 in 80 ° C. hot water was A. The results are shown in Table 2.
  • Example 1-9 According to Example 1-2, after adsorbing sodium alginate on the adsorbent 1-2, the adsorbent was filtered off. Subsequently, the adsorbent separated by filtration was immersed in pure water adjusted to 80 ° C., and regenerated by stirring for 1 hour. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was determined again in the same manner as in Example 1-2. The evaluation results are shown in Table 3.
  • Example 1-10 According to Example 1-3, after adsorbing sodium alginate on the adsorbent 1-3, the adsorbent was filtered off. Subsequently, the adsorbent separated by filtration was immersed in the above-described model seawater adjusted to 60 ° C. and regenerated by stirring for 24 hours. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was determined again in the same manner as in Example 1-3. The evaluation results are shown in Table 3.
  • Biopolymer adsorption rate (sodium alginate concentration before adsorption evaluation ⁇ sodium alginate concentration after adsorption evaluation) / sodium alginate concentration before adsorption evaluation ⁇ 100 (%)
  • Ratio of adsorption rate of biopolymer and humic substance adsorption rate of biopolymer / adsorption rate of humic substance
  • Example 2-2 Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200”) was crosslinked using an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”), and then pulverized. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the intended adsorbent 2-2 as shown in Table 4. The adsorbent 2-2 was soluble in hot water with respect to 80 ° C. hot water. The degree of swelling of the obtained adsorbent in 25 ° C. water was 276%.
  • the obtained adsorbent 2-2 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent was filtered, immersed in the model river water 1 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration. The regenerated adsorbent collected by filtration was again immersed and stirred in the model river water 1, and an adsorption test for sodium alginate was performed.
  • Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
  • Example 2-3 75 parts by mass of an ethylene-vinyl alcohol copolymer (“E-105” manufactured by Kuraray Co., Ltd.) and polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) 25 as hydrophilic polymers as the main skeleton A mass part was melt-kneaded at 180 ° C. with a lab plast mill, and the obtained kneaded product was cooled and then pulverized to obtain particles.
  • E-105 ethylene-vinyl alcohol copolymer manufactured by Kuraray Co., Ltd.
  • polyethyleneimine Epomin SP-200 manufactured by Nippon Shokubai Co., Ltd.
  • this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C.
  • the intended adsorbent 2-3 was obtained as shown in Table 4. Note that the adsorbent 2-3 had solubility in hot water with respect to 80 ° C. hot water. The degree of swelling of the obtained adsorbent in 25 ° C. water was 80%.
  • the obtained adsorbent 2-3 was immersed and stirred in each of model seawater 1 and model seawater 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent was filtered off, immersed in model water 1 adjusted to 90 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration. The regenerated adsorbent collected by filtration was again immersed and stirred in the model seawater 1, and an adsorption test for sodium alginate was performed.
  • Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
  • Example 2-4 As shown in Table 6, the adsorption and regeneration were evaluated in the same manner as in Example 2-3, except that the model seawater 2 was used as the water for regeneration of the adsorbent 2-3. The evaluation results are shown in Table 5.
  • Example 2-5 As shown in Table 6, the adsorption and regeneration were evaluated in the same manner as in Example 2-3, except that the water used for regeneration of the adsorbent 2-2 was changed to model river water 1 at 50 ° C. The evaluation results are shown in Table 5.
  • Example 2-6 70 parts by mass of an ethylene-vinyl alcohol copolymer (“F-101” manufactured by Kuraray Co., Ltd.) and polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) 30 as hydrophilic polymers as the main skeleton A mass part was melt-kneaded at 210 ° C. for 3 minutes in a lab plast mill, and the obtained kneaded product was cooled and then pulverized to obtain particles.
  • F-101 ethylene-vinyl alcohol copolymer
  • Epomin SP-200 manufactured by Nippon Shokubai Co., Ltd.
  • this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C.
  • an epoxy compound manufactured by Nagase ChemteX Corporation, “Denacol EX-810”
  • the intended adsorbent 2-4 was obtained.
  • the adsorbent 2-4 had hot water solubility in hot water at 80 ° C.
  • the degree of swelling of the obtained adsorbent in 25 ° C. water was 101%.
  • the obtained adsorbent 2-4 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent was filtered, immersed in the model river water 2 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration. The regenerated adsorbent collected by filtration was again immersed and stirred in the model river water 1, and an adsorption test for sodium humate was performed.
  • Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
  • Adsorbent 2 is obtained by immersing styrene-based strongly basic anion exchange resin (organo Co., Ltd., “IRA400”) having a degree of swelling of 85% in water at 25 ° C. with a large amount of hot water at 80 ° C., stirring and washing. -5 was obtained. The adsorbent 2-5 had hot water solubility in 80 ° C. hot water. Using the adsorbent 2-5, the model river water 1 and the model river water 2 were immersed and stirred, respectively, and an adsorption test for sodium alginate and sodium humate was performed. The results are shown in Table 5.
  • Example 2-8 Polyallylamine (Nitto Bo Medical Co., Ltd., “PAA-15C”) was crosslinked using an epoxy compound (Nagase ChemteX Co., Ltd., “Denacol EX-810”), and then pulverized. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the intended adsorbent 2-6 as shown in Table 4. The adsorbent 2-6 had hot water solubility in 80 ° C. hot water. The degree of swelling of the obtained adsorbent in 25 ° C. water was 346%.
  • the obtained adsorbent 2-6 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent was filtered, immersed in the model river water 1 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
  • the regenerated adsorbent collected by filtration was again immersed in each model river water 1 and stirred, and an adsorption test for sodium alginate was performed.
  • Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
  • the adsorbent of the present invention suggests that the biopolymer can be adsorbed efficiently even when, for example, more humic substances are present than the biopolymer. Also, it was found that both model river water and model seawater function in regeneration. Reproduction efficiency was 90% or more in Reference Example 2-1 and Examples 2-2 to 2-4, 2-6 and 2-8, and Reference Example 2-7, and 40% or more in 2-5. In addition, when the temperature of the aqueous medium used in the regeneration treatment is 60 ° C. or higher, the regeneration efficiency tends to be high.
  • TMP-2 stainless mesh cartridge filter
  • TMP-2 stainless mesh cartridge filter
  • TMP-2 stainless mesh cartridge filter
  • an adsorbent that has an ability to adsorb a membrane fouling-causing substance and can efficiently treat water to be treated having the membrane fouling-causing substance. Further, the feed water treated with the adsorbent can suppress the deterioration of the filtration membrane due to membrane fouling, thereby prolonging the useful life of the membrane.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

 Provided are: an adsorption material for adsorbing membrane-fouling-causing substances, the adsorption material efficiently adsorbing membrane-fouling-causing substances for membrane filtration, particularly biopolymers such as polysaccharides and proteins; a water treatment method in which the adsorption material is used; and a method for regenerating the adsorption material. The adsorption material includes a first polymer which contains a cationic group, wherein the adsorption material is used for adsorbing membrane-fouling-causing substances, has a region in which the cationic group density is 10-30 mmol/g, and has adsorptive capacity with regards to membrane-fouling-causing substances. The water treatment method is provided with at least an adsorption step for bringing water to be treated, which contains a membrane-fouling-causing substance, into contact with an adsorption material and causing the membrane-fouling-causing substance contained in the water to be treated to be adsorbed by the adsorption material. In the method for regenerating an adsorption material, an adsorption material to which a membrane-fouling-causing substance is adsorbed is brought into contact with a cleaning fluid heated to 40°C or above and regenerated.

Description

膜ファウリング原因物質吸着材およびそれを用いた水処理方法ならびに吸着材の再生方法Membrane fouling causative adsorbent, water treatment method using the same, and adsorbent regeneration method 関連出願Related applications
 本願は、2014年5月23日に出願した特願2014-106855の優先権および2014年10月3日に出願した特願2014-204547の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2014-106855 filed on May 23, 2014 and the priority of Japanese Patent Application No. 2014-204547 filed on October 3, 2014. Cited as part of this application.
 本発明は、膜ファウリング原因物質(以下、単にファウリング原因物質と称する場合がある)を吸着する膜ファウリング原因物質吸着材およびそれを用いた水処理方法、ならびに吸着材の再生方法に関する。 The present invention relates to a membrane fouling-causing substance adsorbing material that adsorbs a membrane fouling-causing substance (hereinafter sometimes simply referred to as a fouling-causing substance), a water treatment method using the same, and a method for regenerating the adsorbing material.
 自然環境下または人工環境下から得られる原水に対して水処理を行う場合、そのような原水には、通常、有機体炭素が存在しており、これらの有機体炭素には水中に溶解した溶存有機炭素(溶存性有機体炭素、以下DOC:Dissolved Organic carbonと記載する)などが含まれる。特許文献1によると、DOCは、有機炭素、有機着色剤、及び天然の有機物質を包含する用語であるとともに、植物残留物の分解により形成される有機化合物の混合物であるフミン酸及びフルボ酸のようなフミン質をも包含する用語である。特許文献1には、DOCを構成する主要な化合物及び材料は可溶性であるため、水から容易に分離できないとされている。そして特許文献1では水処理の方法としてa.溶解された有機炭素を含む水にカチオン性基を有するイオン交換樹脂を添加し;b.前記樹脂上への前記溶解された有機炭素の吸着を可能にするために前記水に前記樹脂を分散し;そしてc.前記溶解された有機炭素により負荷されたカチオン性樹脂を前記水から分離する工程により、溶解された有機炭素を水から除去する方法を提案している。 When water treatment is performed on raw water obtained from a natural environment or an artificial environment, organic carbon usually exists in such raw water, and dissolved in water dissolved in these organic carbon. Organic carbon (dissolved organic carbon, hereinafter referred to as DOC: Dissolved Organic Carbon) is included. According to Patent Document 1, DOC is a term encompassing organic carbon, organic colorants, and natural organic substances, and humic acid and fulvic acid, which is a mixture of organic compounds formed by decomposition of plant residues. This term also includes such humic substances. According to Patent Document 1, since the main compounds and materials constituting DOC are soluble, they cannot be easily separated from water. And in patent document 1, a. Adding an ion exchange resin having a cationic group to water containing dissolved organic carbon; b. Dispersing the resin in the water to allow adsorption of the dissolved organic carbon onto the resin; and c. The present invention proposes a method for removing dissolved organic carbon from water by separating the cationic resin loaded with the dissolved organic carbon from the water.
 一方、膜ろ過においては、供給される水中に存在する物質が膜表面や膜中の細孔に付着する、膜ファウリングという現象が問題になっている。近年、膜ろ過におけるファウリング物質に関する詳細な解析がなされており、非特許文献1では、物理的に不可逆な膜ファウリングの原因物質は、フミン酸やフルボ酸などの芳香族環を有する疎水性物質よりも、比較的親水性が高い溶存有機物である多糖やたんぱく質などのバイオポリマーが主因であることが報告されている。 On the other hand, in membrane filtration, a phenomenon called membrane fouling, in which substances present in the supplied water adhere to the membrane surface and pores in the membrane, is a problem. In recent years, detailed analysis on fouling substances in membrane filtration has been made. In Non-Patent Document 1, the causative substance of physically irreversible membrane fouling is hydrophobic having an aromatic ring such as humic acid or fulvic acid. It has been reported that biopolymers such as polysaccharides and proteins, which are dissolved organic substances having relatively higher hydrophilicity than substances, are the main causes.
 物理的に不可逆な膜ファウリングの原因物質の吸着除去技術については、例えば、特許文献2ではゼオライトや活性炭が吸着材として例示され、TEP(transparent exopolymer particles)が除去された処理水を加熱し、洗浄水として用いる吸着材の再生方法も提案されている。
 しかしながら、特許文献2の発明では、処理水中に含まれるスケール成分がゼオライトなどの無機物に付着するため、結果的に無機物の洗浄を行うことができなくなってしまう。
As for the adsorption removal technique of the causative substance of physically irreversible membrane fouling, for example, in Patent Document 2, zeolite or activated carbon is exemplified as an adsorbent, and the treated water from which TEP (transparent exopolymer particles) has been removed is heated, A method for regenerating an adsorbent used as washing water has also been proposed.
However, in the invention of Patent Document 2, since the scale component contained in the treated water adheres to an inorganic substance such as zeolite, the inorganic substance cannot be washed as a result.
 糖類やたんぱく質などのバイオポリマーの除去技術については、例えば、特許文献3では、カチオン性ポリマーからなる粒子を被処理水に添加して吸着処理し、該吸着処理した被処理水を分離膜により膜分離処理する方法が提案されている。 Regarding the removal technology of biopolymers such as saccharides and proteins, for example, in Patent Document 3, particles made of a cationic polymer are added to water to be treated and adsorbed, and the water to be treated having been adsorbed is separated by a separation membrane. A method of separation processing has been proposed.
 一方で、特許文献4には、原水中の濁質分を濾過する前処理膜を有する前処理装置と、前処理装置からの濾過水から塩分を除去して淡水を生産する逆浸透膜装置を備えた淡水化装置に関し、前記前処理膜を、生産された淡水と塩素を用いて逆洗浄する方法が記載されている。 On the other hand, Patent Document 4 includes a pretreatment device having a pretreatment membrane that filters turbid components in raw water, and a reverse osmosis membrane device that produces fresh water by removing salt from the filtered water from the pretreatment device. Regarding the desalination apparatus provided, a method is described in which the pretreatment membrane is back-washed using the produced fresh water and chlorine.
特表平10-504995号公報Japanese National Patent Publication No. 10-504995 特開2013-56286号公報JP 2013-56286 A 特許第5282864号公報Japanese Patent No. 5282864 特開2011-31121号公報JP 2011-31121 A
 しかし特許文献1および3の発明のいずれのカチオン性吸着材においても、特定のカチオン基濃度に着目して、膜ファウリング原因物質を吸着させることについては、何ら記載されていない。また、特許文献1および3に記載されているカチオン性吸着材では、カチオン性基濃度を高濃度にすることができない。 However, in any of the cationic adsorbents of the inventions of Patent Documents 1 and 3, there is no description of adsorbing a membrane fouling-causing substance by paying attention to a specific cation group concentration. Moreover, in the cationic adsorbents described in Patent Documents 1 and 3, the cationic group concentration cannot be increased.
 さらに、特許文献3に開示されているカチオン性ポリマーからなる粒子は、水で膨潤していない時の粒子径に対して水中での粒子径は10~200倍(すなわち1000~200000%)程度という極めて大きな膨潤性を有しているため、吸着および再生処理の際の取扱い性が悪い。 Further, the particles made of the cationic polymer disclosed in Patent Document 3 have a particle size in water of about 10 to 200 times (that is, 1000 to 200000%) with respect to the particle size when not swollen with water. Since it has extremely large swellability, it is not easy to handle during adsorption and regeneration.
 また、特許文献4の発明では、汚濁分をろ過する前処理膜と記載されているのみであり、具体的な処理膜については、何ら記載されていない。 Further, in the invention of Patent Document 4, it is only described as a pretreatment membrane for filtering the pollutant, and no specific treatment membrane is described.
 本発明の目的は、膜ろ過の膜ファウリング原因物質、特に多糖やタンパク質などのバイオポリマーを、被処理水中で効率的に吸着する膜ファウリング原因物質吸着材および水処理方法を提供することにある。
 本発明の別の目的は、被処理水が塩類を含有する場合にも、膜ろ過における膜ファウリング原因物質、特に多糖やタンパク質などのバイオポリマーを、効率的に吸着する膜ファウリング原因物質吸着材および水処理方法を提供することにある。
 本発明のさらに別の目的は、吸着材を、低コストで、効率よく再生しうる吸着材の再生方法を提供することにある。
An object of the present invention is to provide a membrane fouling-causing substance adsorbent and a water treatment method for efficiently adsorbing membrane fouling-causing substances in membrane filtration, particularly biopolymers such as polysaccharides and proteins, in treated water. is there.
Another object of the present invention is to adsorb membrane fouling causative substances that efficiently adsorb membrane fouling causative substances in membrane filtration, particularly biopolymers such as polysaccharides and proteins, even when the water to be treated contains salts. It is to provide a material and a water treatment method.
Still another object of the present invention is to provide a method for regenerating an adsorbent that can efficiently regenerate the adsorbent at a low cost.
 本発明者らは上記課題を解決するために鋭意検討した結果、以下の点を見出した。すなわち、一般的に用いられるカチオン性吸着材は、自然界に存在する負電荷を帯びている水中有機物を吸着することが可能であるが、これらのカチオン性吸着材では、カチオン性基の密度を高めることと、そのような密度が膜ファウリング物質の吸着に与える影響について何ら検討されていなかった。しかしながら、驚くべきことに、吸着材において、カチオン性基の密度が10mmol/g~30mmol/g(絶乾重量1グラムあたり、カチオン性基の含有量が10~30mmol。以降、gおよびmgは絶乾重量を示す。)である領域を有する吸着材を適用すると、被処理水中でカチオン性基が協同的に機能するため、膜ファウリング原因物質、特に多糖やタンパク質などのバイオポリマーを効率的に吸着できること、特にカチオン性基の密度が10mmol/g~30mmol/gである領域を有する吸着材では、塩類を含有し、イオン成分が吸着競合する被処理水中であっても、カチオン性基が協同的に機能するため、膜ファウリング原因物質、特に多糖やタンパク質などのバイオポリマーを効率的に吸着できることを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors have found the following points. That is, generally used cationic adsorbents can adsorb organic substances in water that are negatively charged in nature, but these cationic adsorbents increase the density of cationic groups. There has been no study on the effect of such density on the adsorption of membrane fouling substances. However, surprisingly, in the adsorbent, the density of the cationic group is 10 mmol / g to 30 mmol / g (the content of the cationic group is 10 to 30 mmol per gram of the dry weight. Applying an adsorbent with a region that is dry weight.) Cationic groups function cooperatively in the treated water, so membrane fouling-causing substances, especially biopolymers such as polysaccharides and proteins, can be efficiently Adsorption materials having a region where the density of the cationic group is 10 mmol / g to 30 mmol / g can be adsorbed, and the cationic group is cooperative even in treated water that contains salts and competes for adsorption of ionic components. Have been found to be able to efficiently adsorb membrane fouling-causing substances, especially biopolymers such as polysaccharides and proteins. It was completed a light.
 すなわち、本発明の第1の構成は、カチオン性基を含有する第1の高分子(またはカチオン基含有高分子)を含む吸着材であって、前記吸着材は、カチオン性基の密度が10mmol/g~30mmol/g、好ましくは11mmol/g~28mmol/gである領域を有し、膜ファウリング原因物質に対して吸着能を有する膜ファウリング原因物質吸着材である。 That is, the first configuration of the present invention is an adsorbent containing a first polymer (or cation group-containing polymer) containing a cationic group, and the adsorbent has a cationic group density of 10 mmol. The film fouling-causing substance adsorbent has a region of / g to 30 mmol / g, preferably 11 mmol / g to 28 mmol / g, and has an adsorption ability for the film fouling-causing substance.
 前記カチオン性基は、例えば、アミノ基、4級アンモニウム基、イミノ基、アミジン基、グアニジノ基、イミダゾール基、4級イミダゾリウム基、ピリジル基、および4級ピリジニウム基から選択される少なくとも1種類の官能基であってもよい。 The cationic group is, for example, at least one selected from an amino group, a quaternary ammonium group, an imino group, an amidine group, a guanidino group, an imidazole group, a quaternary imidazolium group, a pyridyl group, and a quaternary pyridinium group. It may be a functional group.
 具体的には、第1の高分子が、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミジン、ポリグアニジン、ポリアミノ酸、ポリピリジン、およびそれらの塩から選択される少なくとも1種類の高分子であってもよい。 Specifically, the first polymer may be at least one polymer selected from polyethyleneimine, polyallylamine, polyvinylamine, polyamidine, polyguanidine, polyamino acid, polypyridine, and salts thereof. .
 前記吸着材は、第1の高分子が基材に導入されている吸着材であってもよい。例えば、前記吸着材は、第1の高分子が、所定形状を有する基材に、塗布、含浸などにより導入された吸着材であってもよく;第1の高分子が、基材に対し、それぞれ共重合成分として共重合されることにより導入された吸着材であってもよく;または、第1の高分子が、基材に対し、それぞれ混合、混練などによりアロイ化されることにより導入された吸着材であってもよい。 The adsorbent may be an adsorbent in which the first polymer is introduced into the base material. For example, the adsorbent may be an adsorbent in which a first polymer is introduced into a base material having a predetermined shape by coating, impregnation, or the like; It may be an adsorbent introduced by being copolymerized as a copolymerization component; or it may be introduced by alloying the first polymer with a base material by mixing, kneading or the like. It may be an adsorbent.
 前記吸着材は、前記第1の高分子に加え、第2の高分子を含んでいてもよい。例えば、吸着材は、前記第1の高分子が、前記第2の高分子からなる基材に導入された高分子吸着材であってもよい。
 好ましくは、基材を構成する第2の高分子は親水性高分子であってもよく、特に好ましくは、第2の高分子がエチレン-ビニルアルコール系共重合体であってもよい。
The adsorbent may contain a second polymer in addition to the first polymer. For example, the adsorbent may be a polymer adsorbent in which the first polymer is introduced into a base material made of the second polymer.
Preferably, the second polymer constituting the base material may be a hydrophilic polymer, and particularly preferably, the second polymer may be an ethylene-vinyl alcohol copolymer.
 前記吸着材においては、25℃水中における膨潤度が20~500%、好ましくは30~250%であってもよい。 In the adsorbent, the degree of swelling in water at 25 ° C. may be 20 to 500%, preferably 30 to 250%.
 前記吸着材においては、膜ファウリング原因物質が、バイオポリマーを含んでいてもよい。ここで、バイオポリマーとは、Stefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定したAフラクション、例えばLC-OCDによる保留時間が、25分以上38分以下の成分であってもよい。 In the adsorbent, the membrane fouling-causing substance may contain a biopolymer. Here, the biopolymer is A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, retention time by LC-OCD is 25 minutes or more and 38 minutes or less. May be a component.
 本発明の第2の構成は、膜ファウリング原因物質を含む被処理水を吸着材と第1の接触温度で接触させ、吸着材により被処理水中に含まれる膜ファウリング原因物質を吸着させる吸着工程を少なくとも備える水処理方法である。
 前記水処理方法は、さらに、吸着工程により得られた吸着処理水を、膜ろ過処理する膜ろ過工程を含んでいてもよく、前記膜ろ過工程は、限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、および逆浸透(RO)膜からなる群から選択される少なくとも一種の膜を用いて、一段または多段にて行われてもよい。
In the second configuration of the present invention, the water to be treated containing the membrane fouling cause substance is brought into contact with the adsorbent at the first contact temperature, and the film fouling cause substance contained in the water to be treated is adsorbed by the adsorbent. A water treatment method comprising at least a process.
The water treatment method may further include a membrane filtration step for subjecting the adsorption treated water obtained by the adsorption step to a membrane filtration treatment. The membrane filtration step includes an ultrafiltration (UF) membrane, a microfiltration ( MF) membranes, nanofiltration (NF) membranes, and reverse osmosis (RO) membranes may be used in one or more stages using at least one membrane selected from the group consisting of.
 上記水処理方法において、前記被処理水は0.1質量%以上の塩類を含む水であってもよい。塩類としては、各種アルカリ金属塩、アルカリ土類金属塩が挙げられ、特に好ましくは塩化ナトリウムであってもよい。被処理水の塩類濃度は、例えば、60質量%以下であってもよい。または、塩化ナトリウム濃度として、27質量%以下であってもよい。 In the above water treatment method, the water to be treated may be water containing 0.1% by mass or more of salts. Examples of the salts include various alkali metal salts and alkaline earth metal salts, and sodium chloride may be particularly preferable. The salt concentration of the water to be treated may be, for example, 60% by mass or less. Alternatively, the sodium chloride concentration may be 27% by mass or less.
 上記水処理方法は、さらに、吸着工程における膜ファウリング原因物質を吸着した吸着材を第2の接触温度で接触させて再生する再生工程を備えていてもよい。前記第2の接触温度は、前記第1の接触温度より高温であってもよい。また、第2の接触温度は、40℃以上であってもよい。 The water treatment method may further include a regeneration step in which the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step is brought into contact with and regenerated at the second contact temperature. The second contact temperature may be higher than the first contact temperature. The second contact temperature may be 40 ° C. or higher.
 さらに、本発明の第3の構成は、膜ファウリング原因物質が吸着している吸着材を、40℃以上に加温した洗浄流体と接触させ、前記吸着材を再生する、膜ファウリング原因物質吸着材の再生方法である。 Further, according to a third configuration of the present invention, a membrane fouling causative substance that regenerates the adsorbent by bringing the adsorbent adsorbing the membrane fouling causative substance into contact with a cleaning fluid heated to 40 ° C. or higher. This is a method for regenerating the adsorbent.
 前記洗浄流体は、各種流体を使用することができるが、例えば、金属イオン含有水溶液であってもよい。 Various fluids can be used as the cleaning fluid, and for example, an aqueous solution containing metal ions may be used.
 本発明の吸着材により、従来、被処理水中からの除去が困難であった膜ファウリング原因物質、特に物理的に不可逆な膜ファウリングを生じる原因物質と考えられている多糖類やタンパク質などのバイオポリマーを、被処理水中で効率的に吸着除去することが可能である。それにより、膜ろ過工程において、膜ファウリング、特に物理的に不可逆な膜ファウリングが生じるのを抑制し、ろ過膜の透水性を長期にわたり維持することが可能である。特に本発明の吸着材によれば、従来、吸着が困難であった、塩類を含む被処理水からであっても膜ファウリング原因物質を除去することができる点で有利である。 With the adsorbent of the present invention, it has been difficult to remove membrane fouling from the water to be treated, particularly polysaccharides and proteins that are considered to cause physical irreversible membrane fouling. The biopolymer can be efficiently adsorbed and removed in the water to be treated. Accordingly, it is possible to suppress the occurrence of membrane fouling, particularly physically irreversible membrane fouling, and maintain the water permeability of the filtration membrane for a long period of time. In particular, the adsorbent of the present invention is advantageous in that membrane fouling-causing substances can be removed even from water to be treated containing salts that has been difficult to adsorb.
 また、所定の膨潤度を有する場合、前記吸着材はカラムへ効率よく充填することも可能である。例えば、その場合、水処理方法では、カラム使用による前記原因物質除去工程と、膜ろ過工程を組み合わせることにより、簡便な方法によって、長期にわたりろ過膜の透水性を維持することができる。 In addition, when having a predetermined degree of swelling, the adsorbent can also be efficiently packed into a column. For example, in that case, in the water treatment method, the water permeability of the filtration membrane can be maintained over a long period of time by a simple method by combining the causative substance removal step using a column and the membrane filtration step.
 以下、本発明を実施形態に基づいて詳細に説明する。なお、以下に説明する実施形態は本発明を限定するものではない。 Hereinafter, the present invention will be described in detail based on embodiments. In addition, embodiment described below does not limit this invention.
[膜ファウリング原因物質に対する吸着能を有する吸着材]
 本発明の第1の態様に係る吸着材は、カチオン性基を含有するカチオン基含有高分子を第1の高分子として含み、前記吸着材は、前記カチオン性基の密度が、10mmol/g~30mmol/gである領域を有している。この吸着材は、膜ファウリング原因物質に対する吸着能を有するため、膜ファウリング原因物質吸着材として有用である。
[Adsorbents capable of adsorbing substances that cause membrane fouling]
The adsorbent according to the first aspect of the present invention includes a cationic group-containing polymer containing a cationic group as the first polymer, and the adsorbent has a density of the cationic group of 10 mmol / g to It has a region that is 30 mmol / g. Since this adsorbent has an adsorbing ability for a membrane fouling-causing substance, it is useful as a membrane fouling-causing substance adsorbent.
(吸着材)
 本発明の吸着材は、第1の高分子としてカチオン基含有高分子を含み、この第1の高分子に由来して、カチオン性基の密度が10mmol/g~30mmol/gである領域を有している。
 本発明の吸着材が作用するメカニズムは定かではないが、以下のようなメカニズムが推測される。(i)通常自然界に存在する水中有機物は、負電荷を帯びているものが多く、カチオン性基を有する吸着材で除去することが可能であるが、(ii)一般的に用いられるカチオン性吸着材はカチオン性基の密度が高くないためか、カチオン性基を有している場合であっても効率的に水中有機物を除去できない。(iii)一方、本発明者らは、カチオン性基の密度が10mmol/g~30mmol/gである領域を有する吸着材を適用すると、カチオン性基の高濃度相においてカチオン性基が協同的に機能するためか、膜ファウリング原因物質、特に多糖やタンパク質などのバイオポリマーを効率的に吸着できる。(iv)特に、このようなカチオン性基の密度が高い領域が存在すると、塩類を含有し、イオン成分が吸着競合するような被処理水中であっても、カチオン性基が協同的に機能するためか、前述の膜ファウリング原因物質(特に多糖やタンパク質などのバイオポリマー)を効率的に吸着できる。
(Adsorbent)
The adsorbent of the present invention contains a cation group-containing polymer as the first polymer, and has a region where the density of the cationic group is 10 mmol / g to 30 mmol / g derived from the first polymer. is doing.
Although the mechanism by which the adsorbent of the present invention acts is not clear, the following mechanism is presumed. (I) Many organic substances in water that are normally present in nature are negatively charged and can be removed with an adsorbent having a cationic group. (Ii) Commonly used cationic adsorption The material cannot remove organic matter in water efficiently even if it has a cationic group because the density of the cationic group is not high. (Iii) On the other hand, when the present inventors applied an adsorbent having a region where the density of the cationic group is 10 mmol / g to 30 mmol / g, the cationic group cooperates in a high concentration phase of the cationic group. Because of its function, it can efficiently adsorb membrane fouling-causing substances, especially biopolymers such as polysaccharides and proteins. (Iv) In particular, when there is a region where the density of the cationic group is high, the cationic group functions cooperatively even in treated water that contains salts and competes for adsorption of ionic components. For this reason, the aforementioned membrane fouling-causing substances (particularly biopolymers such as polysaccharides and proteins) can be adsorbed efficiently.
[カチオン基含有高分子]
 本発明の吸着材は、第1の高分子としてカチオン基含有高分子を含んでおり、本発明の吸着材は、カチオン基含有高分子に由来して、カチオン性基の密度が10mmol/g~30mmol/g(絶乾重量1グラムあたり、カチオン性基の含有量が10~30mmol)である領域(すなわち、カチオン性基高濃度相)を少なくとも一部に有している。
 カチオン性基としては、窒素原子含有カチオン性基[例えば、アミノ基(1級アミノ基、2級アミノ基、3級アミノ基)、4級アンモニウム基、イミノ基、アミジン基、グアニジノ基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基]、スルホニウム基、ホスホニウム基などが挙げられる。それらは塩の状態で存在していても良い。これらの官能基は、単独でまたは二種類以上組み合わせて存在しても良い。これらのうち、好ましい官能基としては、窒素原子含有カチオン性基が挙げられ、より好ましい官能基としては、アミノ基、4級アンモニウム基およびそれらの塩が挙げられる。
[Cationic group-containing polymer]
The adsorbent of the present invention contains a cation group-containing polymer as the first polymer, and the adsorbent of the present invention is derived from the cation group-containing polymer and has a density of cationic groups of 10 mmol / g to It has at least a part of a region (that is, a cationic group high concentration phase) that is 30 mmol / g (the content of cationic groups per gram of dry weight is 10 to 30 mmol).
As the cationic group, a nitrogen atom-containing cationic group [for example, amino group (primary amino group, secondary amino group, tertiary amino group), quaternary ammonium group, imino group, amidine group, guanidino group, imidazole group Quaternary imidazolium group, pyridyl group, quaternary pyridinium group], sulfonium group, phosphonium group and the like. They may exist in a salt state. These functional groups may be present alone or in combination of two or more. Among these, preferred functional groups include nitrogen atom-containing cationic groups, and more preferred functional groups include amino groups, quaternary ammonium groups, and salts thereof.
 カチオン基含有高分子は、特定のカチオン性基密度領域を吸着材において形成することができる限り特に限定されず、好ましくは、典型元素から構成され、より好ましくは、炭素原子、水素原子、窒素原子、硫黄原子、リン原子、酸素原子で構成され、さらに好ましくは、炭素原子、水素原子、窒素原子および酸素原子で構成されてもよい。
 例えば、好ましいカチオン基含有高分子としては、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミジン、ポリグアニジン、ポリアミノ酸、ポリピリジン、およびそれらの塩などが挙げられる。このような高分子は、単独でまたは二種以上組み合わせて使用してもよい。これらのうち、より好ましいカチオン基含有高分子としては、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミンが挙げられ、特に好ましいカチオン基含有高分子としてはポリエチレンイミン、ポリアリルアミンが挙げられる。
The cationic group-containing polymer is not particularly limited as long as a specific cationic group density region can be formed in the adsorbent, and is preferably composed of a typical element, more preferably a carbon atom, a hydrogen atom, or a nitrogen atom. , A sulfur atom, a phosphorus atom, and an oxygen atom, and more preferably a carbon atom, a hydrogen atom, a nitrogen atom, and an oxygen atom.
For example, preferable cationic group-containing polymers include polyethyleneimine, polyallylamine, polyvinylamine, polyamidine, polyguanidine, polyamino acid, polypyridine, and salts thereof. Such polymers may be used alone or in combination of two or more. Among these, more preferred cationic group-containing polymers include polyethyleneimine, polyallylamine, and polyvinylamine, and particularly preferred cationic group-containing polymers include polyethyleneimine and polyallylamine.
 カチオン性基の密度は、例えば、カチオン基含有高分子の骨格構造から、高分子の単位分子量(M)(g/mol)あたりのカチオン性基数(N)に基づき算出することができる(下式)。
 カチオン性基密度=(N/M)×1000(mmol/g)
 カチオン性基の密度は、10mmol/g~30mmol/gであれば特に限定されないが、11mmol/g~28mmol/gであることが好ましく、12mmol/g~25mmol/gであることが特に好ましい。カチオン性基の密度が10mmol/g未満であれば、被処理水(特に塩類を含む被処理水)ではカチオン性基が協同的に機能できないため、バイオポリマーなどの分子サイズの大きな膜ファウリング原因物質の吸着率が不十分であり、ろ過膜の透水性が劣る虞がある。30mmol/gを超える場合は、カチオン基含有高分子の製造が困難となる。
 なお、吸着材が、カチオン基含有高分子を重合体成分として有する共重合体(例えば、ブロック共重合体やグラフト共重合体)で形成される場合、カチオン性基密度は、前記重合体成分の骨格構造に基づいて算出することができる。
The density of the cationic group can be calculated based on, for example, the number of cationic groups (N) per unit molecular weight (M) (g / mol) of the polymer from the skeleton structure of the cationic group-containing polymer (the following formula) ).
Cationic group density = (N / M) × 1000 (mmol / g)
The density of the cationic group is not particularly limited as long as it is 10 mmol / g to 30 mmol / g, but is preferably 11 mmol / g to 28 mmol / g, and particularly preferably 12 mmol / g to 25 mmol / g. If the density of the cationic group is less than 10 mmol / g, the cationic group cannot function cooperatively in the water to be treated (especially, the water to be treated containing salts). There is a possibility that the adsorption rate of the substance is insufficient and the water permeability of the filtration membrane is poor. When it exceeds 30 mmol / g, it becomes difficult to produce a cationic group-containing polymer.
In addition, when the adsorbent is formed of a copolymer having a cationic group-containing polymer as a polymer component (for example, a block copolymer or a graft copolymer), the cationic group density is determined based on the polymer component. It can be calculated based on the skeletal structure.
 ポリエチレンイミンを用いた場合の、カチオン性基密度の計算例を示す。ポリエチレンイミンは、アジリジンの開環重合により合成されるため、アジリジンの組成式(C)に基づいて、単位構造の単位分子量を算出できる。単位構造に存在するカチオン性基数(N)は1である。よって、カチオン性基密度は、以下の式で算出することができる。
ポリエチレンイミンのカチオン性基密度=
   (1/43.070)×1000(mmol/g)=23.218(mmol/g)
The calculation example of the cationic group density at the time of using a polyethyleneimine is shown. Since polyethyleneimine is synthesized by ring-opening polymerization of aziridine, the unit molecular weight of the unit structure can be calculated based on the composition formula (C 2 H 5 N 1 ) of aziridine. The number of cationic groups (N) present in the unit structure is 1. Therefore, the cationic group density can be calculated by the following formula.
Polyethyleneimine cationic group density =
(1 / 43.070) x 1000 (mmol / g) = 23.218 (mmol / g)
 一方、キトサンを用いた場合の、カチオン性基密度の計算例を示す。下記一般式(1)にキトサンの構造式を示している。キトサンは単位構造の組成式がC11であり、カチオン性基であるアミノ基を各単位構造につき1つずつ有している。そのため、単位分子量(M)は161.1558g/molであり、カチオン性基数(N)は1である。よって、カチオン性基密度は、以下の式で算出することができる。
キトサンのカチオン性基密度=
   (1/161.1558)×1000(mmol/g)=6.205(mmol/g)
On the other hand, a calculation example of the cationic group density when chitosan is used is shown. The structural formula of chitosan is shown in the following general formula (1). Chitosan has a composition formula of unit structure of C 6 H 11 O 4 N 1 and has one amino group as a cationic group for each unit structure. Therefore, the unit molecular weight (M) is 161.1558 g / mol, and the number of cationic groups (N) is 1. Therefore, the cationic group density can be calculated by the following formula.
Chitosan cationic group density =
(1 / 161.1558) x 1000 (mmol / g) = 6.205 (mmol / g)
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 カチオン性基密度の見積もり手法については、カチオン基含有高分子の骨格構造に基づく上記の算出に加えて、以下の手順による方法でも可能である。例えば、所定量の吸着材試料を、4%のNaOH水溶液に添加し、攪拌後、カチオン性基をOH型カチオン性基に交換する。次に、OH型に交換後の樹脂をイオン交換水で十分に洗浄した後、この吸着材を4%のHCl水溶液に添加し、攪拌後、カチオン性基をCl型カチオン性基に交換する。交換後の吸着材をイオン交換水で十分に洗浄した後、該吸着材の断面を切り出し、所定のサイズを有する切片を作製する。該切片を、透過型電子顕微鏡(TEM)-エネルギー分散型X線分光法(EDX)(例えば、JEOL製JEM-2100F、JED-2300T)により分析し、Clをマッピングした際に、Clの分布が均一であれば任意の5点を、相分離構造であれば高濃度相をランダムに5点選択し、Cl/Cモル比を算出する。 Regarding the method for estimating the cationic group density, in addition to the above calculation based on the skeleton structure of the cationic group-containing polymer, a method according to the following procedure is also possible. For example, the adsorbent samples of a given amount was added to 4% NaOH aqueous solution, after stirring, a cationic group OH - replacing the mold cationic groups. Next, after thoroughly washing the resin after the exchange to OH type with ion exchange water, this adsorbent is added to 4% HCl aqueous solution, and after stirring, the cationic groups are exchanged with Cl type cationic groups. To do. After the exchanged adsorbent is sufficiently washed with ion-exchanged water, a cross section of the adsorbent is cut out to produce a section having a predetermined size. The section was analyzed by transmission electron microscope (TEM) -energy dispersive X-ray spectroscopy (EDX) (for example, JEM-2100F, JED-2300T manufactured by JEOL). If it is uniform, arbitrary 5 points are selected, and if it is a phase separation structure, 5 high concentration phases are selected at random, and the Cl / C molar ratio is calculated.
 吸着材試料中の、炭素原子以外の元素については、上述した5点(または選択部位に相当する5点)において、各原子の炭素原子に対するモル比を把握し、これらのモル比に基づいて単位分子量当たりのカチオン性基濃度を下記式により算出してもよい。
 カチオン性基密度
 =1/[(1/X)×(炭素原子の原子量)+{(炭素原子に対する対象原子のモル比)×(対象原子の原子量)の総和}]
Regarding the elements other than carbon atoms in the adsorbent sample, the molar ratio of each atom to carbon atom is grasped at the above-mentioned 5 points (or 5 points corresponding to selected sites), and the unit is based on these molar ratios. The cationic group concentration per molecular weight may be calculated by the following formula.
Cationic group density = 1 / [(1 / X) x (atomic weight of carbon atom) + {(molar ratio of target atom to carbon atom) x (total weight of target atom)}]
 炭素原子以外の元素については、炭素原子に対する対象原子のモル比を算出することが可能であれば、各種分析方法を利用してもよく、例えば、上述のTEM-EDX以外にも、質量分析、赤外吸収スペクトル、ラマン散乱スペクトル、NMRなどの各種分析により、炭素原子に対する対象原子のモル比を決定してもよい。 For elements other than carbon atoms, various analysis methods may be used as long as the molar ratio of the target atom to carbon atoms can be calculated. For example, in addition to the above-described TEM-EDX, mass spectrometry, You may determine the molar ratio of the object atom with respect to a carbon atom by various analyzes, such as an infrared absorption spectrum, a Raman scattering spectrum, and NMR.
 例えば、Cl/Cモル比がXであり、N/Cモル比がYであり、H/Cモル比がZである場合、カチオン性基濃度は、下記式で概算することが可能である。
 カチオン性基密度
 =1/{(1/X)×C+(Y/X)×C+(Z/X)×C}×1000
(式中、Cは炭素原子の原子量、Cは窒素原子の原子量、Cは水素原子の原子量)
で概算することが可能である。
 具体的には、カチオン性基がCl型カチオン性基に交換されたポリエチレンイミン(Cl/Cモル比0.5、N/Cモル比0.5、H/Cモル比2.5)をモデルとした場合、これから算出したカチオン性基密度は、23.21となり、上述の値とほぼ同様の値となる。
 本手法により、骨格構造が明瞭でない市販の吸着材においてもカチオン性基の密度を算出することができる。
For example, when the Cl / C molar ratio is X, the N / C molar ratio is Y, and the H / C molar ratio is Z, the cationic group concentration can be estimated by the following formula.
Cationic group density = 1 / {(1 / X) × C C + (Y / X) × C N + (Z / X) × C H } × 1000
(Wherein C C is the atomic weight of the carbon atom, C N is the atomic weight of the nitrogen atom, and C H is the atomic weight of the hydrogen atom)
It is possible to estimate with.
Specifically, the cationic group is Cl - polyethylene imine exchanged to mold cationic group (Cl / C molar ratio 0.5, N / C molar ratio 0.5, H / C molar ratio 2.5) In the case of a model, the cationic group density calculated from this is 23.21, which is substantially the same value as described above.
By this method, the density of the cationic group can be calculated even in a commercially available adsorbent whose skeleton structure is not clear.
 なお、Clの分布が均一である場合、吸着材のイオン交換容量を利用して、カチオン基密度を下記式により算出して、代替値としてもよい。
 カチオン性基密度=イオン交換容量(meq/ml)×体積当たりの樹脂絶乾重量(ml/g)
If the distribution of Cl is uniform, the cation group density may be calculated by the following formula using the ion exchange capacity of the adsorbent, and may be used as an alternative value.
Cationic group density = ion exchange capacity (meq / ml) × resin dry weight per volume (ml / g)
 吸着材において、骨格構造に基づくカチオン性基密度の測定が困難であれば、例えば、本発明は、一態様として、カチオン性基を含有する第1の高分子を含む吸着材であって、前記吸着材は、カチオン性基をCl型カチオン性基に交換した状態において、所定の形状の切片について、透過型電子顕微鏡(TEM)-エネルギー分散型X線分光法(EDX)により測定したCl/Cモル比が0.2~0.65である領域を少なくとも有し、膜ファウリング原因物質に対して吸着能を有する膜ファウリング原因物質吸着材、についても包含してもよい。例えば、前記Cl/Cモル比は、0.2~0.65、好ましくは0.25~0.6、より好ましくは0.28~0.55程度であってもよい。 If it is difficult to measure the density of the cationic group based on the skeleton structure in the adsorbent, for example, the present invention is an adsorbent including the first polymer containing a cationic group as one aspect, adsorbent, a cationic group Cl - in a state where the exchanged type cationic groups, on sections of a predetermined shape, a transmission electron microscope (TEM) - energy dispersive X-ray spectroscopy Cl measured by (EDX) / A film fouling-causing substance adsorbent having at least a region having a C molar ratio of 0.2 to 0.65 and having an adsorption ability for the film fouling-causing substance may also be included. For example, the Cl / C molar ratio may be about 0.2 to 0.65, preferably about 0.25 to 0.6, and more preferably about 0.28 to 0.55.
 また、単位骨格は、カチオン性基以外では、炭素原子と水素原子とを主要元素として有し、任意でその他の元素を有するのが好ましく、例えば、単位骨格中、炭素原子に対するその他の元素(例えば、酸素原子など)のモル比は、例えば、0.5以下、好ましくは0.4以下、より好ましくは0.3以下、さらに好ましくは0.2以下であってもよい。 Further, the unit skeleton has a carbon atom and a hydrogen atom as main elements other than the cationic group, and preferably has other elements as desired. For example, in the unit skeleton, other elements for the carbon atom (for example, , Oxygen atoms, etc.) may be, for example, 0.5 or less, preferably 0.4 or less, more preferably 0.3 or less, and even more preferably 0.2 or less.
 また、測定試料が相分離構造を示す場合、前記所定の範囲のCl/Cモル比を有する領域は、Clマッピングにおける測定面積全体に対する高濃度相の割合として、1~70%程度であってもよく、5~65%程度であってもよく、より好ましくは8~60%程度であってもよい。 When the measurement sample shows a phase separation structure, the region having the predetermined range of Cl / C molar ratio may be about 1 to 70% as a ratio of the high concentration phase to the entire measurement area in the Cl mapping. Alternatively, it may be about 5 to 65%, more preferably about 8 to 60%.
 本発明の吸着材はカチオン基含有高分子が含まれていればその形態は特に限定されない。例えば、吸着材は、カチオン基含有高分子自体が、基材機能と吸着性機能の双方を兼ね揃え、単体として吸着材を構成している高分子吸着材であってもよい。例えば、そのような吸着材は、カチオン基含有高分子を含む液体または固体を、架橋などにより不溶化した高分子吸着材であってもよい。架橋は、公知または慣用の手段により行うことができ、例えば、後述する架橋剤を用いて行ってもよい。 The form of the adsorbent of the present invention is not particularly limited as long as it contains a cationic group-containing polymer. For example, the adsorbent may be a polymer adsorbent in which the cation group-containing polymer itself has both a base material function and an adsorptive function and constitutes the adsorbent as a simple substance. For example, such an adsorbent may be a polymer adsorbent obtained by insolubilizing a liquid or solid containing a cationic group-containing polymer by crosslinking or the like. Crosslinking can be carried out by known or conventional means, and for example, it may be carried out using a crosslinking agent described later.
 一方で、吸着材は、カチオン基含有高分子と、基材または他の物質と組み合わせて形成されてもよい。この場合、本発明の吸着材は、カチオン基含有高分子に由来して、カチオン性基の密度が10mmol/g~30mmol/gである領域(すなわち、カチオン性基高濃度相)を少なくとも一部に有している。例えば、吸着材におけるカチオン基含有高分子の含有形態としては、所定のカチオン性基密度を達成できる範囲で、カチオン基含有高分子と他の物質の混合物や、カチオン基含有高分子が適用または導入された物質であってもよい。 On the other hand, the adsorbent may be formed in combination with a cationic group-containing polymer and a base material or another substance. In this case, the adsorbent of the present invention is derived from the cationic group-containing polymer and has at least a part of a region where the density of the cationic group is 10 mmol / g to 30 mmol / g (that is, a cationic group high concentration phase). Have. For example, the cation group-containing polymer contained in the adsorbent may be applied or introduced as a mixture of a cation group-containing polymer and another substance, or a cation group-containing polymer as long as a predetermined cationic group density can be achieved. It may be a material that has been removed.
[基材]
 本発明の吸着材は、カチオン基含有高分子と基材とが含まれる吸着材であってもよい。たとえば、前記吸着材は、カチオン基含有高分子が基材に、塗布、含浸などにより導入された吸着材であってもよいし、またはカチオン基含有高分子が基材に、共重合、アロイ化などにより導入された吸着材であってもよい。
 基材は、カチオン基含有高分子と組み合わせることが出来る限り特に限定されず、例えば、無機基材であってもよく、高分子基材であってもよい。無機基材としては、シリカ、アルミナ、ヒドロキシアパタイト、クレイ、モレキュラーシーブスなどが挙げられる。これらの無機基材は、単独でまたは二種以上組み合わせて使用してもよい。これらのうちシリカがより好ましい。
 無機基材を用いる場合、例えば、カチオン基含有高分子を無機基材に対して、塗布、含浸などにより適用してもよい。また、必要に応じて、カチオン基含有高分子は、無機基材に対して、シランカップリング剤や架橋剤などを用いて、化学結合により固定してもよい。
[Base material]
The adsorbent of the present invention may be an adsorbent containing a cation group-containing polymer and a substrate. For example, the adsorbent may be an adsorbent in which a cation group-containing polymer is introduced into a substrate by coating, impregnation, or the cation group-containing polymer is copolymerized or alloyed in a substrate. It may be an adsorbent introduced by, for example.
The substrate is not particularly limited as long as it can be combined with the cationic group-containing polymer, and may be, for example, an inorganic substrate or a polymer substrate. Examples of the inorganic substrate include silica, alumina, hydroxyapatite, clay, molecular sieves and the like. These inorganic substrates may be used alone or in combination of two or more. Of these, silica is more preferable.
When an inorganic substrate is used, for example, the cationic group-containing polymer may be applied to the inorganic substrate by coating, impregnation, or the like. If necessary, the cation group-containing polymer may be fixed to the inorganic base material by chemical bonding using a silane coupling agent or a crosslinking agent.
 導入が容易であるとともに、カチオン基含有高分子の保持性に優れる観点から、基材は、第2の高分子として用いられる高分子基材であることが好ましい。 From the viewpoint of easy introduction and excellent retention of the cationic group-containing polymer, the substrate is preferably a polymer substrate used as the second polymer.
 カチオン基含有高分子が高分子基材に導入された吸着材である場合、この場合の導入方法としては、カチオン基含有高分子(または前記高分子を形成可能な単量体)と高分子基材(または前記基材を形成可能な単量体)とをそれぞれ重合体成分として、公知の方法により共重合(好ましくは、ブロック共重合、グラフト共重合)させてもよいし、アロイ化(例えば、カチオン基含有高分子と高分子基材とを混合または混練する)などにより導入してもよい。また、必要に応じて、導入したカチオン基含有高分子(および高分子基材)を架橋などにより後変性してもよい。架橋は、公知または慣用の手段により行うことができ、例えば、後述する架橋剤を用いて行ってもよい。
 導入の容易さや得られる高分子吸着材の強度や膨潤度などの物理特性付与の観点から、カチオン基含有高分子と高分子基材のアロイ化により導入されることがより好ましい。
When the cation group-containing polymer is an adsorbent introduced into a polymer substrate, the introduction method in this case includes a cation group-containing polymer (or a monomer capable of forming the polymer) and a polymer group. The material (or the monomer capable of forming the base material) may be copolymerized (preferably block copolymerization or graft copolymerization) by a known method, respectively, as a polymer component, or alloyed (for example, Alternatively, the cationic group-containing polymer and the polymer base material may be mixed or kneaded). If necessary, the introduced cationic group-containing polymer (and polymer base material) may be post-modified by crosslinking or the like. Crosslinking can be carried out by known or conventional means, and for example, it may be carried out using a crosslinking agent described later.
From the viewpoint of ease of introduction and imparting physical properties such as strength and swelling degree of the resulting polymer adsorbent, it is more preferable to introduce the polymer by alloying the cation group-containing polymer and the polymer substrate.
 アロイ化は、例えば、(i)カチオン基含有高分子、高分子基材、必要に応じて任意成分、および適当な溶媒を用いて混合液を調製する方法により行ってもよいし、(ii)カチオン基含有高分子、高分子基材、必要に応じて任意成分を、混練機などを用いて溶融混練する方法(溶液成形)により行ってもよい。 The alloying may be performed by, for example, (i) a method of preparing a mixed solution using a cation group-containing polymer, a polymer substrate, an optional component as necessary, and an appropriate solvent, and (ii) You may carry out by the method (solution shaping | molding) of melt-kneading a cationic group containing polymer, a polymer base material, and arbitrary components as needed using a kneading machine etc.
 高分子基材は、疎水性高分子であってもよいし、親水性高分子であってもよい。
 疎水性高分子は、一般に、Fedorの推算法により算出した凝集エネルギー密度(Ecoh)とモル分子容(V)を用いて、下記式にて算出された溶解度パラメータ(δ)が、22未満である高分子のことをいう。
 δ=[ΣEcoh/ΣV]1/2
The polymer substrate may be a hydrophobic polymer or a hydrophilic polymer.
Hydrophobic polymers generally have a solubility parameter (δ) of less than 22 calculated using the following formula using the cohesive energy density (Ecoh) and molar molecular volume (V) calculated by the Fedor estimation method. It refers to a polymer.
δ = [ΣEcoh / ΣV] 1/2
 疎水性高分子としては、具体的には、例えば、ポリスチレンなどのスチレン系高分子;ポリエチレン、ポリプロピレンなどのポリオレフィン系高分子;ポリメタクリル酸メチルなどのポリ(メタ)アクリル酸エステル;ポリスルホン、ポリエーテルスルホンなどのポリスルホン系高分子;ポリフッ化ビニリデンなどのハロゲン系ビニルポリマーなどが挙げられる。これらの高分子は、単独でまたは二種以上組み合わせて使用してもよい。これらのうち、スチレン系高分子、ポリ(メタ)アクリル酸エステルなどが好ましい。 Specific examples of the hydrophobic polymer include styrene polymers such as polystyrene; polyolefin polymers such as polyethylene and polypropylene; poly (meth) acrylates such as polymethyl methacrylate; polysulfone and polyether. Examples thereof include polysulfone polymers such as sulfone; halogen vinyl polymers such as polyvinylidene fluoride. These polymers may be used alone or in combination of two or more. Of these, styrenic polymers and poly (meth) acrylic acid esters are preferred.
 疎水性高分子の重量平均分子量は、高分子の種類に応じて適宜好ましい範囲を設定することが可能であるが、例えば、疎水性高分子の重量平均分子量は、少なくとも5000以上(例えば、5000~100000)であってもよく、好ましくは10000以上であってもよい。なお、重量平均分子量は、例えばGPCを用いて求めることができる。 The weight average molecular weight of the hydrophobic polymer can be appropriately set in accordance with the type of polymer, but for example, the weight average molecular weight of the hydrophobic polymer is at least 5000 or more (for example, 5000 to 100,000), preferably 10,000 or more. In addition, a weight average molecular weight can be calculated | required, for example using GPC.
 高分子基材は、好ましくは、親水性高分子であってもよい。高分子基材が親水性高分子である高分子吸着材は、高分子基材が疎水性高分子である高分子吸着材と比べて、原水中に含まれる膜ファウリング原因物質(特に多糖類やタンパク質などのバイオポリマー)の吸着性に優れているため、膜ファウリング原因物質の吸着性の観点から好ましい。 The polymer substrate may preferably be a hydrophilic polymer. The polymer adsorbent whose polymer substrate is a hydrophilic polymer has a membrane fouling-causing substance (especially polysaccharides) contained in raw water compared to a polymer adsorbent whose polymer substrate is a hydrophobic polymer. From the viewpoint of the adsorptivity of the substance causing the membrane fouling, it is excellent in the adsorptivity of biopolymers such as protein and protein.
 高分子基材が親水性高分子である高分子吸着材が膜ファウリング原因物質の吸着性に優れる理由は、定かではないが、高分子基材を親水性高分子にすることで水に対する濡れ性が高まり、膜ファウリング原因物質の少なくとも一部の成分、特に多糖類やタンパク質などのバイオポリマーが吸着材内部まで浸透して、高分子基材が疎水性高分子である高分子吸着材に比べて、カチオン基含有高分子が有効に作用するため、と推測される。 The reason why the polymer adsorbent, whose polymer substrate is a hydrophilic polymer, is superior in adsorbability of substances that cause membrane fouling, is not clear, but by making the polymer substrate a hydrophilic polymer, it becomes wet with water. As a result, at least some of the components that cause membrane fouling, especially biopolymers such as polysaccharides and proteins, penetrate into the adsorbent, and the polymer substrate becomes a polymer adsorbent that is a hydrophobic polymer. In comparison, it is presumed that the cationic group-containing polymer acts effectively.
 親水性高分子は、一般に、Fedorの推算法の下記式にて算出された溶解度パラメータ(δ)が、22以上である高分子のことをいう。好ましくは23以上であり、より好ましくは24以上であり、25以上がさらに好ましい。なお、溶解度パラメータの上限は特に限定されないが、例えば、35程度であってもよい。
 δ=[ΣEcoh/ΣV]1/2
 親水性高分子は、上記溶解パラメータを満たすものであれば特に限定されないが、例えば、繰り返し単位中に水酸基、エーテル基、カチオン性基、アニオン性基、アミド基等の親水性基を有する高分子などが挙げられる。
The hydrophilic polymer generally refers to a polymer having a solubility parameter (δ) calculated by the following formula of Fedor's estimation method of 22 or more. Preferably it is 23 or more, More preferably, it is 24 or more, 25 or more is still more preferable. The upper limit of the solubility parameter is not particularly limited, but may be about 35, for example.
δ = [ΣEcoh / ΣV] 1/2
The hydrophilic polymer is not particularly limited as long as it satisfies the above-described solubility parameter. For example, the polymer having a hydrophilic group such as a hydroxyl group, an ether group, a cationic group, an anionic group, or an amide group in the repeating unit. Etc.
 例えば、親水性高分子としては、酢酸ビニル誘導体ポリマー[例えば、ポリビニルアルコール、エチレン-ビニルアルコール系共重合体、ポリビニルアセタール(例えば、ホルムアルデヒド、アセトアルデヒド、ブチルアルデヒドなどの各種アルデヒド類によるポリビニルアルコールアセタール化物)]、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、ポリアクリロニトリル、カチオン性ポリマー(例えば、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミドアミンデンドリマー、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸塩、ポリヌクレオチドなど)、アニオン性ポリマー(例えば、ポリスチレンスルホン酸、ポリビニル硫酸、ポリ(メタ)アクリル酸、ポリマレイン酸、ポリアミック酸)、フェノール樹脂、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンからなる群より選ばれる少なくとも1種が好適に用いられる。
 これらのポリマーは、他のコモノマー単位(例、マレイン酸、イタコン酸、アクリル酸等の不飽和カルボン酸単位、シラノール基、アルデヒド基、又はスルホン酸基を有するモノマー単位など)を有していてもよい。
For example, as the hydrophilic polymer, vinyl acetate derivative polymer [eg, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl alcohol acetalized product with various aldehydes such as formaldehyde, acetaldehyde, butyraldehyde) ], Polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth) acrylamide, polyacrylonitrile, cationic polymer (eg, polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine , Polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethyla Monium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride, polynucleotide, etc.), anionic polymer (eg, polystyrene sulfonic acid, polyvinyl sulfate, poly (meth) acrylic acid, polymaleic acid, polyamic acid), phenol At least one selected from the group consisting of a resin, polyamide, polyvinylpyrrolidone, cellulose derivative, dextrin, chitin, and chitosan is preferably used.
These polymers may have other comonomer units (eg, monomer units having unsaturated carboxylic acid units such as maleic acid, itaconic acid, acrylic acid, silanol groups, aldehyde groups, or sulfonic acid groups). Good.
 特に好ましい親水性高分子としては、ポリビニルアルコール、エチレン-ビニルアルコール系共重合体、ポリビニルアセタール(例えば、ポリビニルホルマール、ポリビニルブチラール)、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、カチオン性ポリマー、アニオン性ポリマー、フェノール樹脂、ポリビニルピロリドン、デキストリン、キチン、およびキトサンが好ましく、ポリビニルアルコール、エチレン-ビニルアルコール系共重合体、ポリビニルアセタールがより好ましく、ポリビニルアルコール、エチレン-ビニルアルコール系共重合体、ポリビニルホルマールが特に好ましく、耐水性を有するだけでなく、耐久性、成形性および親水性に優れる観点から、エチレン-ビニルアルコール系共重合体が最も好ましい。 Particularly preferred hydrophilic polymers include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, cation. Polymer, anionic polymer, phenol resin, polyvinyl pyrrolidone, dextrin, chitin, and chitosan are preferable, polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal are more preferable, polyvinyl alcohol, ethylene-vinyl alcohol copolymer Combined and polyvinyl formal are particularly preferred, not only having water resistance, but also from the viewpoint of excellent durability, moldability and hydrophilicity Ethylene - vinyl alcohol copolymer is most preferable.
 親水性高分子の重量平均分子量は、高分子の種類に応じて適宜好ましい範囲を設定することが可能であるが、例えば、親水性高分子の重量平均分子量は、少なくとも5000以上(例えば、5000~100000)であってもよく、好ましくは10000以上であってもよい。なお、重量平均分子量は、例えばGPCを用いて求めることができる。 The weight average molecular weight of the hydrophilic polymer can be appropriately set in accordance with the type of the polymer. For example, the weight average molecular weight of the hydrophilic polymer is at least 5000 or more (for example, from 5000 to 100,000), preferably 10,000 or more. In addition, a weight average molecular weight can be calculated | required, for example using GPC.
 なお、ポリビニルアルコールの分子量に関しては、粘度平均重合度で規定してもよく、30℃水溶液の粘度から求めた粘度平均重合度が、例えば100~15000程度の幅広い範囲から選択できる。耐久性を向上させる観点から、高重合度のものを用いるのが好ましく、その場合、例えば、粘度平均重合度は好ましくは800~13000程度、さらに好ましくは1000~10000程度であってもよい。 The molecular weight of polyvinyl alcohol may be defined by the viscosity average degree of polymerization, and the viscosity average degree of polymerization determined from the viscosity of a 30 ° C. aqueous solution can be selected from a wide range of about 100 to 15,000, for example. From the viewpoint of improving durability, those having a high degree of polymerization are preferably used. In this case, for example, the viscosity average degree of polymerization is preferably about 800 to 13000, and more preferably about 1000 to 10,000.
 また、ポリビニルアルコールのけん化度は、目的に応じて適宜選択でき特に限定されるものではないが、例えば、88モル%以上、好ましくは90モル%以上、さらに好ましくは95モル%以上であってもよい。特に耐久性を向上させる観点からは、けん化度98モル%以上のものが好ましい。 The degree of saponification of polyvinyl alcohol can be appropriately selected according to the purpose and is not particularly limited. For example, it may be 88 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. Good. In particular, from the viewpoint of improving durability, those having a saponification degree of 98 mol% or more are preferred.
 エチレン-ビニルアルコール系共重合体において、エチレン単位の含量は、全モノマー単位中20~60モル%であることが好ましく、より好ましくは25~55モル%であってもよい。エチレン含量が少なすぎると、耐久性が悪くなるおそれがある。一方、エチレン含量が多すぎると、親水性が低下するおそれがある。 In the ethylene-vinyl alcohol copolymer, the content of ethylene units is preferably 20 to 60 mol%, more preferably 25 to 55 mol% in all monomer units. If the ethylene content is too small, the durability may deteriorate. On the other hand, when there is too much ethylene content, there exists a possibility that hydrophilicity may fall.
[カチオン基含有高分子と高分子基材の質量比]
 本発明の吸着材で、カチオン基含有高分子と高分子基材の割合は、例えば、質量比でカチオン基含有高分子/高分子基材=1/99~70/30程度であってもよく、好ましくは5/95~65/45程度、より好ましくは8/92~60/40程度であってもよい。カチオン基含有高分子が多すぎると、耐水性が低下する恐れがあり、カチオン基含有高分子が少なすぎると、吸着性能が低下する傾向にある。カチオン基含有高分子は、高分子基材中に分散しているのが好ましい。
[Mass ratio of cationic group-containing polymer to polymer substrate]
In the adsorbent of the present invention, the ratio of the cation group-containing polymer to the polymer substrate may be, for example, about 1/99 to 70/30, in terms of mass ratio, cation group-containing polymer / polymer substrate. Preferably, it may be about 5/95 to 65/45, more preferably about 8/92 to 60/40. If the amount of the cation group-containing polymer is too much, the water resistance may be lowered, and if the amount of the cation group-containing polymer is too small, the adsorption performance tends to be lowered. The cationic group-containing polymer is preferably dispersed in the polymer substrate.
[その他の成分]
 なお、本発明において、原水中に含まれる膜ファウリング原因物質、特に多糖類やタンパク質などのバイオポリマーに対して吸着性を有する吸着材は、必要に応じて、例えば、架橋剤、酸化防止剤、安定剤、滑剤、加工助剤、帯電防止剤、着色剤、消泡剤、分散剤などの各種添加剤を含んでいてもよい。
[Other ingredients]
In the present invention, an adsorbent having an adsorptivity to a membrane fouling-causing substance contained in raw water, in particular, a biopolymer such as a polysaccharide or a protein, for example, a cross-linking agent, an antioxidant, etc. , Various additives such as stabilizers, lubricants, processing aids, antistatic agents, colorants, antifoaming agents, and dispersing agents may be included.
 架橋剤は、カチオン基含有高分子および基材の架橋反応性基の種類に応じて適宜決定することができるが、例えば、エポキシ基、カルボキシル基、ハロゲン基、酸無水物基、酸ハライド基、ホルミル基、N-クロロホルミル基、クロロホーメイト基、アミジニル基、イソシアネート基、ビニル基、アルデヒド基、アゼチジン基、カルボジイミド基などから選択される少なくとも1種又は2種以上の官能基を少なくとも2個含む化合物が挙げられる。また、ジルコニル系架橋剤(硝酸ジルコニル、炭酸ジルコニウムアンモニウム、塩化ジルコニル、酢酸ジルコニル、硫酸ジルコニル)、チタン系架橋剤[チタン系架橋剤、チタンラクテート、チタンジイソプロポキシビス(トリエタノールアミネート)]などを用いてもよい。このような架橋剤は、市販されている各種架橋剤を利用することができ、特に限定されないが、エポキシ基、ハロゲン基、イソシアネート基、ビニル基、アルデヒド基、アゼチジン基、カルボジイミド基などから選択される少なくとも1種又は2種以上の官能基を少なくとも2個含む化合物が好ましい。 The cross-linking agent can be appropriately determined according to the type of the cationic group-containing polymer and the cross-linking reactive group of the substrate, for example, epoxy group, carboxyl group, halogen group, acid anhydride group, acid halide group, At least one or two or more functional groups selected from a formyl group, N-chloroformyl group, chloroformate group, amidinyl group, isocyanate group, vinyl group, aldehyde group, azetidine group, carbodiimide group, and the like Including compounds. Also, zirconyl-based crosslinking agents (zirconyl nitrate, zirconium ammonium carbonate, zirconyl chloride, zirconyl acetate, zirconyl sulfate), titanium-based crosslinking agents [titanium-based crosslinking agents, titanium lactate, titanium diisopropoxybis (triethanolamate)], etc. May be used. Such a cross-linking agent can use various commercially available cross-linking agents, and is not particularly limited, but is selected from epoxy groups, halogen groups, isocyanate groups, vinyl groups, aldehyde groups, azetidine groups, carbodiimide groups, and the like. A compound containing at least two functional groups of at least one kind or two or more kinds is preferred.
 また、架橋剤による架橋構造の導入は、カチオン基含有高分子の水溶液中に該架橋剤を添加することで導入してもよい。 Further, the introduction of the crosslinked structure by the crosslinking agent may be introduced by adding the crosslinking agent to the aqueous solution of the cationic group-containing polymer.
 また、吸着材を合成時にジビニルモノマーなどの共重合成分を用いることにより、架橋構造を導入してもよい。 Also, a crosslinked structure may be introduced by using a copolymer component such as divinyl monomer during the synthesis of the adsorbent.
 また、架橋剤と吸着材の構成成分と合わせて溶融混練することにより架橋構造を導入してもよい。
 溶融混練を行う場合、吸着材の構成成分、架橋剤、必要に応じて任意成分を、二軸型の混練機などを用いて溶融混練する方法(溶融混練法)が挙げられる。当該溶融混練法によれば、各成分が均一に分散した吸着材を得ることが容易であるという利点を有する。
Moreover, you may introduce a crosslinked structure by melt-kneading together with the structural component of a crosslinking agent and an adsorbent.
In the case of performing melt kneading, a method (melt kneading method) in which the constituent components of the adsorbent, the crosslinking agent, and if necessary, optional components are melt kneaded using a biaxial kneader or the like can be mentioned. According to the melt kneading method, there is an advantage that it is easy to obtain an adsorbent in which each component is uniformly dispersed.
 また、一旦、吸着材材料を溶融成形、溶液成形などにより成形し、各種形状の成形体を形成した後、架橋剤を含む溶液に成形体を浸漬させることなどにより架橋構造を導入してもよい。 Alternatively, the adsorbent material may be once molded by melt molding, solution molding, etc. to form molded bodies of various shapes, and then the crosslinked structure may be introduced by immersing the molded body in a solution containing a crosslinking agent. .
 溶融成形を行う場合、例えば、架橋剤を少なくとも除く吸着材材料を、二軸型の混練機などを用いて溶融混練し、溶融混練物を押出成形、射出成形などにより各種形状の成形体を得た後、この成形体を、架橋剤含有溶液に浸漬させることなどにより、架橋処理を施してもよい。
 一方で、溶液成形を行う場合、例えば、架橋剤を少なくとも除く吸着材材料から、適当な溶媒を用いて混合液を調製し、この混合液を用いて、キャスト製膜または乾式紡糸、湿式紡糸などにより、膜状または繊維状の成形体を得た後、この成形体を、架橋剤含有溶液に浸漬させることなどにより、架橋処理を施してもよい。
When performing melt molding, for example, the adsorbent material excluding at least the cross-linking agent is melt-kneaded using a biaxial kneader or the like, and molded articles of various shapes are obtained by extrusion molding, injection molding, or the like. After that, the molded body may be subjected to a crosslinking treatment by immersing it in a crosslinking agent-containing solution.
On the other hand, when performing solution molding, for example, a mixed solution is prepared from an adsorbent material excluding at least a cross-linking agent using an appropriate solvent, and cast film formation or dry spinning, wet spinning, etc. are performed using this mixed solution. Thus, after obtaining a film-like or fibrous shaped body, the shaped body may be subjected to a crosslinking treatment by immersing it in a crosslinking agent-containing solution.
(吸着材の特徴)
 吸着材は、被処理水からの膜ファウリング原因物質、特に多糖類やタンパク質などのバイオポリマーの吸着処理に用いることができる限り、各種形状を有することができ、例えば、粒子状、繊維状、各種立体形状などであってもよい。吸着効率を向上させる観点から、吸着材は、粒子状または繊維状であるのが好ましく、カラム充填し使用する方法を考慮すると体積充填率の観点から粒子状がより好ましい。
(Characteristics of adsorbent)
The adsorbent can have various shapes as long as it can be used for adsorption treatment of membrane fouling-causing substances from treated water, in particular, biopolymers such as polysaccharides and proteins, for example, particulate, fibrous, Various three-dimensional shapes may be used. From the viewpoint of improving the adsorption efficiency, the adsorbent is preferably in the form of particles or fibers, and considering the method of packing and using the column, particles are more preferred from the viewpoint of the volume filling rate.
 本発明の吸着材は、被処理水の浸透性と、吸着処理での取扱い性の観点から、例えば、25℃水中における膨潤度が20~500%(例えば、20~400%)である吸着材であってもよい。この場合、膨潤度は、30~450%(例えば、30~250%)であることが好ましく、40~350%(例えば、40~300%)程度であることがより好ましく、さらに好ましくは40~250%、特に好ましくは50~250%(例えば、50~200%)程度であってもよい。膨潤度が低すぎると、吸着材の吸着性が低下する虞があり、膨潤度が高すぎると、吸着材が変形する虞がある。 The adsorbent of the present invention is, for example, an adsorbent having a swelling degree of 20 to 500% (for example, 20 to 400%) in water at 25 ° C. from the viewpoint of the permeability of water to be treated and the handleability in the adsorption treatment. It may be. In this case, the degree of swelling is preferably 30 to 450% (eg, 30 to 250%), more preferably about 40 to 350% (eg, 40 to 300%), and even more preferably 40 to It may be about 250%, particularly preferably about 50 to 250% (for example, 50 to 200%). If the degree of swelling is too low, the adsorptivity of the adsorbent may be reduced, and if the degree of swelling is too high, the adsorbent may be deformed.
 例えば、吸着材の膨潤性は、架橋剤により架橋することにより制御してもよいし、カチオン基含有高分子を、疎水性高分子基材や、低膨潤性または非膨潤性である親水性高分子(例えば、エチレン-ビニルアルコール系共重合体、及びポリアミドなど)基材に導入したアロイ材として制御してもよい。また、必要に応じて、アロイ材に対しても架橋をしてもよい。 For example, the swellability of the adsorbent may be controlled by cross-linking with a cross-linking agent, or the cationic group-containing polymer may be controlled with a hydrophobic polymer substrate or with a hydrophilic high or low swellable or non-swellable. It may be controlled as an alloy material introduced into a molecular (eg, ethylene-vinyl alcohol copolymer, polyamide, etc.) substrate. Moreover, you may bridge | crosslink an alloy material as needed.
 本発明の吸着材は、カラムへの充填性に優れる吸着材であるのが好ましい。カラムへの充填性は、80℃の高温下における吸着材の体積変化率で評価することができる。体積変化率は、カラムへの影響を及ぼさない観点から、1.2倍以下であることが好ましい。
 体積変化率は、十分膨潤させた吸着材を内径15.4mmクロマトカラム管(柴田科学(株)製)に、高さが5cmになるように吸着材を充填し、酸溶液を通液、洗浄した後、クロマトカラム全体を80℃に加温した水浴に1時間浸漬させた際の、浸漬前後の吸着材の体積変化率を下記式に従って算出することができる。
 体積変化率(倍)=80℃加温後の吸着材高さ(cm)/5cm
The adsorbent of the present invention is preferably an adsorbent that is excellent in packing properties in a column. The packing property to the column can be evaluated by the volume change rate of the adsorbent at a high temperature of 80 ° C. The volume change rate is preferably 1.2 times or less from the viewpoint of not affecting the column.
The volume change rate was determined by filling the adsorbent sufficiently swollen into a chromatographic column tube (made by Shibata Kagaku Co., Ltd.) with an inner diameter of 15.4 mm so that the height is 5 cm, and passing the acid solution through the washing. Then, the volume change rate of the adsorbent before and after the immersion when the entire chromatographic column is immersed in a water bath heated to 80 ° C. for 1 hour can be calculated according to the following formula.
Volume change rate (times) = Adsorbent height after heating at 80 ° C. (cm) / 5 cm
 また、吸着材は、再生工程に用いられる再生媒体の使用温度における耐熱水溶解性を有しているのが好ましい。ここで、耐熱水溶解性とは、所定の温度における熱水に対して、1時間吸着材を浸漬させた場合の下記式で表される溶解度(X)が5%以下であることを意味していてもよい。 Also, the adsorbent preferably has hot water solubility at the use temperature of the regeneration medium used in the regeneration process. Here, the hot water solubility means that the solubility (X) represented by the following formula when the adsorbent is immersed in hot water at a predetermined temperature for 1 hour is 5% or less. It may be.
  X=[(Y-Z)/(Y)]×100 (%)
(式中、Yは、吸着材を熱水に浸漬する前に、105℃で4時間乾燥して秤量した吸着材の乾燥重量であり、Zは、吸着材を所定の温度の熱水に1時間浸漬した後、105℃で4時間乾燥して秤量した乾燥重量である。)
X = [(Y−Z) / (Y)] × 100 (%)
(In the formula, Y is the dry weight of the adsorbent dried and weighed at 105 ° C. for 4 hours before immersing the adsorbent in hot water, and Z is 1 in hot water at a predetermined temperature. (This is the dry weight measured after soaking for 4 hours and drying at 105 ° C. for 4 hours.)
(膜ファウリング原因物質)
 原水中には、各種ファウリング原因物質が存在しているが、本発明の吸着材では従来吸着が困難であったファウリング原因物質を吸着除去することができる。特に、本発明の吸着材では、粒子径0.45μm以下の有機物(例えば、フミン酸やフルボ酸などの芳香族含有有機物、界面活性剤等の合成化学物質、バイオポリマーなど)を効率よく吸着することが可能である。
(Cause of membrane fouling)
Although various fouling-causing substances exist in the raw water, the fouling-causing substances that have been difficult to be adsorbed by the adsorbent of the present invention can be adsorbed and removed. In particular, the adsorbent of the present invention efficiently adsorbs organic substances having a particle size of 0.45 μm or less (for example, aromatic-containing organic substances such as humic acid and fulvic acid, synthetic chemical substances such as surfactants, biopolymers, etc.). It is possible.
 本明細書において、ファウリング原因物質とは、ファウリングを生じさせる原因となる物質を意味する。ファウリング原因物質は、例えば、有機体炭素、各種菌、無機粒子等を含む。なお、本発明の吸着材で吸着除去できるファウリング原因物質としては、無機粒子を除いてもよい。また、本明細書において、有機体炭素とは、水中に存在する有機物を構成する炭素[例えば、溶存有機炭素(DOC:Dissolved Organic carbon);TEPなどの粒子性有機体炭素(POC)]を意味する。
 有機体炭素は、例えば、多糖やタンパク質などのバイオポリマー、フミン、フルボ酸、ウロン酸、クツロン酸、臭気成分(ゲオスミン、2-メチルイソボルネオ-ル)などを含む。なお、本発明の吸着材で吸着除去できる有機体炭素としては、臭気成分を除いてもよい。
In the present specification, the fouling-causing substance means a substance that causes fouling. The fouling-causing substances include, for example, organic carbon, various bacteria, inorganic particles, and the like. In addition, as a fouling causative substance that can be adsorbed and removed by the adsorbent of the present invention, inorganic particles may be excluded. In this specification, organic carbon means carbon constituting organic substances existing in water [for example, dissolved organic carbon (DOC); particulate organic carbon (POC) such as TEP]. To do.
Organic carbon includes, for example, biopolymers such as polysaccharides and proteins, humic acid, fulvic acid, uronic acid, cuturonic acid, odor components (geosmin, 2-methylisoborneol), and the like. In addition, you may remove | eliminate an odor component as organic carbon which can be adsorbed and removed with the adsorbent of this invention.
 また、ファウリング原因物質は、膜ろ過を行う際に、物理的な逆洗などの手段により取り除くことが困難である物質であってもよい。具体的な原因物質については未だ研究中ではあるが、本発明の吸着工程を経た処理水を膜処理工程へ供する場合、吸着工程を経ることなく被処理水を膜処理工程へ供する場合と比較して、膜処理工程における膜の寿命を向上することが可能である。
 したがって、原因物質が具体的に特定されていなくとも、吸着工程によって、物理的に不可逆的な膜ファウリングを生じる原因物質の量が低減できていることを確認することが可能である。
The fouling-causing substance may be a substance that is difficult to remove by means such as physical backwashing when performing membrane filtration. Although specific causative substances are still under study, when the treated water that has undergone the adsorption process of the present invention is supplied to the membrane treatment process, the treated water is supplied to the membrane treatment process without going through the adsorption process. Thus, the lifetime of the film in the film processing step can be improved.
Therefore, even if the causative substance is not specifically identified, it is possible to confirm that the amount of causative substance that causes physically irreversible membrane fouling can be reduced by the adsorption process.
 本発明の吸着材は、ファウリング原因物質の中でも、特に、親水性が高いバイオポリマーの除去に優れている。バイオポリマーは、各種原水中に存在する有機体炭素の一種であり、一般的には、みかけ分子量が10万Da以上の多糖類およびタンパク質とされている。
 本発明では、他の有機体炭素とバイオポリマーとを区別する指標として、例えば、高速液体クロマトグラフィーに湿式全有機炭素計測器を接続したLC-OCDにおいて、フミン質の信号ピークが現れる保留時間より短い保留時間において、信号ピークを示す物質と定義してもよい。
 より詳細には、バイオポリマーは、Stefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定したAフラクション、例えばLC-OCDによる保留時間が、25分以上38分以下の成分であってもよい。また、フミン質は、同じ条件下での測定におけるBフラクション、例えば保留時間38分を超えて50分以下の成分であってもよい。
The adsorbent of the present invention is particularly excellent in removing biopolymers having high hydrophilicity among fouling-causing substances. A biopolymer is a kind of organic carbon present in various raw waters, and is generally a polysaccharide and protein having an apparent molecular weight of 100,000 Da or more.
In the present invention, as an index for distinguishing other organic carbons from biopolymers, for example, in LC-OCD in which a wet total organic carbon measuring instrument is connected to high performance liquid chromatography, from the retention time at which a humic signal peak appears. It may be defined as a substance that exhibits a signal peak in a short holding time.
In more detail, the biopolymer has an A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, a retention time by LC-OCD of 25 minutes to 38 minutes. The following components may be used. Further, the humic substance may be a B fraction in the measurement under the same conditions, for example, a component exceeding the holding time of 38 minutes and not more than 50 minutes.
 バイオポリマーは、ベンゼン環などの疎水性構造が少なく、主に親水性の高い有機物で構成されており、例えば、SUVA値が1.0[L/(m・mg)]以下を示す有機物で構成されていてもよい。
 一方、フミン質は、ベンゼン環などが含まれているため、UV吸収性を有する構造するだけでなく、疎水性が高く、例えば、SUVA値が2.0[L/(m・mg)]以上を示す有機物で構成されていてもよい。
Biopolymers are mainly composed of organic substances with few hydrophobic structures such as benzene rings and mainly high hydrophilicity. For example, biopolymers are composed of organic substances exhibiting an SUVA value of 1.0 [L / (m · mg)] or less. May be.
On the other hand, the humic substance contains not only a UV-absorbing structure because it contains a benzene ring, but also has a high hydrophobicity, for example, an SUVA value of 2.0 [L / (m · mg)] or more It may be composed of an organic material showing.
 なお、SUVA値は、以下の式で求められる。
 SUVA(L/mg-C・m)=UV(m-1)/DOC(mg-C/L)
The SUVA value is obtained by the following formula.
SUVA (L / mg-C · m) = UV (m −1 ) / DOC (mg-C / L)
 なお、ここで、SUVA値を算出するための各パラメータはStefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定されたものであり「面積値」とは、LC-OCDにより得られる面積値を表し、「UV」とは、波長254nmでの吸光度、「DOC」とは供試サンプル中のDOC濃度(mg-C/L)を示している。 Here, each parameter for calculating the SUVA value was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, and "area value" The area value obtained by LC-OCD is expressed, “UV” indicates the absorbance at a wavelength of 254 nm, and “DOC” indicates the DOC concentration (mg-C / L) in the test sample.
 UV値算出方法
(i)バイオポリマーのUV=供試サンプル全体のUV×スペクトル中のバイオポリマー(保留時間tb:25分≦tb≦38分)の面積値/スペクトル全体の面積値
(ii)フミン質のUV=供試サンプル全体のUV×スペクトル中のフミン質(保留時間th:38分<th≦50分)の面積値/スペクトル全体の面積値
UV value calculation method (i) UV of biopolymer = UV of entire test sample × area value of biopolymer in spectrum (holding time tb: 25 minutes ≦ tb ≦ 38 minutes) / area value of entire spectrum (ii) Humin Quality UV = UV of the entire test sample × area value of humic substance in the spectrum (holding time th: 38 minutes <th ≦ 50 minutes) / area value of the whole spectrum
 DOC値算出方法
(i)バイオポリマーのDOC=供試サンプル全体のDOC×スペクトル中のバイオポリマー(保留時間tb:25分≦tb≦38分)の面積値/スペクトル全体の面積値
(ii)フミン質のDOC=供試サンプル全体のDOC×スペクトル中のフミン質(保留時間th:38分<th≦50分)の面積値/スペクトル全体の面積値
DOC value calculation method (i) DOC of biopolymer = DOC of whole test sample × area value of biopolymer in spectrum (holding time tb: 25 minutes ≦ tb ≦ 38 minutes) / area value of whole spectrum (ii) Humin DOC of the quality = DOC of the entire test sample × Area value of humic substance in the spectrum (holding time th: 38 minutes <th ≦ 50 minutes) / Area value of the whole spectrum
 本発明で用いられる吸着材は、例えば、被処理水からのバイオポリマーの除去率(または吸着率)が、例えば15%以上であってもよく、好ましくは20%以上、より好ましくは30%以上、さらに好ましくは50%以上、さらに好ましくは80%以上、さらに好ましくは85%以上、特に好ましくは90%以上であってもよい。なお、除去率は、後述する実施例に記載された方法により測定された値を示す。 For example, the adsorbent used in the present invention may have a biopolymer removal rate (or adsorption rate) from the water to be treated of, for example, 15% or more, preferably 20% or more, more preferably 30% or more. More preferably, it may be 50% or more, more preferably 80% or more, further preferably 85% or more, and particularly preferably 90% or more. In addition, a removal rate shows the value measured by the method described in the Example mentioned later.
 本発明で用いられる吸着材は、特にバイオポリマーの吸収性に優れているのが好ましく、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)およびフミン質モデル水(フミン酸ナトリウム濃度:4.3mg―C/Lのフミン酸ナトリウム水溶液)のそれぞれにおいて、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比が、例えば、(A)/(B)=0.3~10程度であってもよく、好ましくは(A)/(B)=1.0~10程度、より好ましくは1.1~9程度、さらに好ましくは1.3~8程度であってもよい。なお、ここでそれぞれのモデル水において、バイオポリマーモデルとしてはアルギン酸ナトリウムを用い、フミン質モデルとしてはフミン酸ナトリウムを用いている。またそれぞれの吸着率は、後述する実施例に記載された方法により測定された値を示す。 The adsorbent used in the present invention is particularly excellent in biopolymer absorbability, and biopolymer model water at 25 ° C. (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) and humic substances In each model water (sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution), the ratio between the adsorption rate of sodium alginate (A) and the adsorption rate of sodium humate (B) is, for example, , (A) / (B) = about 0.3 to 10, preferably (A) / (B) = about 1.0 to 10, more preferably about 1.1 to 9, more preferably May be about 1.3 to 8. In each model water, sodium alginate is used as the biopolymer model, and sodium humate is used as the humic model. Moreover, each adsorption rate shows the value measured by the method described in the Example mentioned later.
 また、本発明で用いられる吸着材は、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)において、アルギン酸ナトリウムの吸着率(A)が、例えば、30%以上(例えば30~100%)であってもよく、好ましくは35%以上であってもよく、より好ましくは45%以上、さらに好ましくは60%以上、特に好ましくは80%以上であってもよい。吸着率については、後述する実施例に記載された方法により測定された値を示す。 In addition, the adsorbent used in the present invention has an adsorption rate (A) of sodium alginate in biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) at 25 ° C., for example, 30 % Or more (for example, 30 to 100%), preferably 35% or more, more preferably 45% or more, still more preferably 60% or more, and particularly preferably 80% or more. Good. About the adsorption rate, the value measured by the method described in the Example mentioned later is shown.
 また、本発明で用いられる吸着材は、25℃のフミン質モデル水(フミン酸ナトリウム濃度:4.3mg―C/Lのフミン酸ナトリウム水溶液)において、フミン酸ナトリウムの吸着率(A)が、例えば、25%以上(例えば25~90%)であってもよく、好ましくは35%以上であってもよく、より好ましくは45%以上、さらに好ましくは50%以上であってもよい。吸着率については、後述する実施例に記載された方法により測定された値を示す。 Further, the adsorbent used in the present invention has an adsorption rate (A) of sodium humate in humic model water (sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution) at 25 ° C. For example, it may be 25% or more (for example, 25 to 90%), preferably 35% or more, more preferably 45% or more, and further preferably 50% or more. About the adsorption rate, the value measured by the method described in the Example mentioned later is shown.
 [水処理方法]
 本発明は別の実施形態として、水処理方法についても包含する。水処理方法は、膜ファウリング原因物質を含む被処理水を、本発明の吸着材と接触させ、吸着材により被処理水中に含まれる膜ファウリング原因物質を吸着させる吸着工程を少なくとも備えている。
 水処理方法は、必要に応じて、さらに吸着工程により得られた吸着処理水を、膜ろ過処理する膜ろ過工程を含んでいてもよい。また前記膜ろ過工程が、限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、および逆浸透(RO)膜からなる群から選択される少なくとも一種の膜を用いて、一段または多段にて行われる、水処理方法であってもよい。
[Water treatment method]
The present invention includes a water treatment method as another embodiment. The water treatment method includes at least an adsorption step in which water to be treated containing a membrane fouling-causing substance is brought into contact with the adsorbent of the present invention and the membrane fouling-causing substance contained in the water to be treated is adsorbed by the adsorbent. .
The water treatment method may further include a membrane filtration step of subjecting the adsorption treated water obtained in the adsorption step to membrane filtration treatment, as necessary. Further, the membrane filtration step uses at least one membrane selected from the group consisting of an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. The water treatment method may be performed in one or more stages.
(吸着工程)
 本発明の水処理方法における被処理水は、自然環境下、人工環境下で得られるさまざまな原水を被処理水として利用可能であり、ファウリング原因物質を含有する限り特に限定されないが、例えば、原水としては、一般の河川水、湖沼水、海水、土壌溶出水、用水、生物処理水、これらを前処理(例えば、砂ろ過処理、水処理膜を用いた粗ろ過処理、凝集沈殿処理、オゾン処理、既存の吸着材や活性炭などを用いた吸着処理、生物処理)した後の処理水などが挙げられる。
 また、吸着前処理を行う場合、例えば、粒子径が5μm以上の粒子、好ましくは1μm以上の粒子、より好ましくは0.45μmより大きい粒子が排除された水を、吸着被処理水として用いるのが好ましい。
(Adsorption process)
The water to be treated in the water treatment method of the present invention is not particularly limited as long as various raw waters obtained in a natural environment and an artificial environment can be used as the water to be treated and contains a fouling-causing substance. The raw water includes general river water, lake water, seawater, soil elution water, irrigation water, biological treatment water, pretreatment of these (for example, sand filtration treatment, rough filtration treatment using a water treatment membrane, coagulation sedimentation treatment, ozone Treated water after treatment, adsorption treatment using existing adsorbent or activated carbon, biological treatment) and the like.
In addition, when the adsorption pretreatment is performed, for example, water from which particles having a particle diameter of 5 μm or more, preferably 1 μm or more, more preferably larger than 0.45 μm are excluded is used as the adsorption treated water. preferable.
 被処理水は、ファウリング原因物質、特に物理的に不可逆的な膜ファウリングを生じると考えられている多糖類やタンパク質を含有するとともに、0.1質量%以上の塩化ナトリウムを含む原水であってもよい。例えば、そのような原水は、海水(塩化ナトリウム濃度2~4質量%)、汽水(塩化ナトリウム濃度0.5~2質量%)、油田やガス田の採掘の際に発生する随伴水などであってもよく、またはこれらを処理して得られる、より塩化ナトリウム濃度の高い水などであってもよく、自然環境下の原水に由来して得られるさまざまな塩類を含む水を被処理水として用いてもよい。 The water to be treated is raw water containing fouling-causing substances, particularly polysaccharides and proteins that are considered to cause physically irreversible membrane fouling, and containing 0.1% by mass or more of sodium chloride. May be. Examples of such raw water include seawater (sodium chloride concentration of 2 to 4% by mass), brackish water (sodium chloride concentration of 0.5 to 2% by mass), and accompanying water generated when mining oil fields and gas fields. It may also be water with higher sodium chloride concentration obtained by treating these, and water containing various salts obtained from raw water in the natural environment is used as treated water May be.
 例えば、原水は、0.1質量%以上(例えば、0.5~30質量%程度)、1質量%以上、または2質量%以上の塩化ナトリウム濃度を有していてもよい。また被処理水中には、塩化ナトリウム以外にも、塩化カリウムなどのアルカリ金属塩;塩化マグネシウム、硫酸マグネシウム、塩化カルシウム、硫酸カルシウムなどのアルカリ土類金属塩などが含まれていてもよい。 For example, the raw water may have a sodium chloride concentration of 0.1% by mass or more (for example, about 0.5 to 30% by mass), 1% by mass or more, or 2% by mass or more. In addition to sodium chloride, the water to be treated may contain alkali metal salts such as potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate.
 吸着処理での被処理水の温度は、第1の接触温度(例えば室温付近)であってもよく、具体的には、室温付近とは、例えば0℃以上40℃未満であってもよく、好ましくは5~38℃、より好ましくは10~35℃であってもよい。 The temperature of the water to be treated in the adsorption treatment may be the first contact temperature (for example, near room temperature). Specifically, the vicinity of room temperature may be, for example, 0 ° C. or more and less than 40 ° C., The temperature may be preferably 5 to 38 ° C, more preferably 10 to 35 ° C.
 吸着工程では、被処理水と吸着材とを接触させることができる限り特に限定されず、例えば、バッチ式として、被処理水へ吸着材を添加し、必要に応じて公知の方法で撹拌することにより、吸着処理を行ってもよいし;連続式として、吸着材を充てんしたカラムに対し、被処理水を通液させることにより吸着処理を行ってもよい。また、吸着工程は、一段であってもよいし、多段であってもよい。 In the adsorption process, it is not particularly limited as long as the water to be treated and the adsorbent can be brought into contact with each other. For example, as a batch type, the adsorbent is added to the water to be treated and, if necessary, stirred by a known method. The adsorbing treatment may be carried out by a method in which the water to be treated is passed through a column filled with an adsorbent as a continuous type. Further, the adsorption step may be a single step or a multi-step.
 被処理水に対して用いられる吸着材の量は、被処理水の種類、吸着材の形態などに応じて適宜選択することができるが、例えば、バッチ式の場合、吸着材の量は、被処理水1Lあたり、0.05~30g程度、好ましくは0.1~10g程度であってもよい。 The amount of adsorbent used for the water to be treated can be appropriately selected according to the type of water to be treated, the form of the adsorbent, etc. For example, in the case of a batch type, the amount of adsorbent is The amount may be about 0.05 to 30 g, preferably about 0.1 to 10 g, per liter of treated water.
 また、吸着材を被処理水に浸漬し撹拌を行う場合、機械的撹拌、気泡撹拌などにより、吸着材を撹拌してもよい。機械的撹拌を行う場合、周速として0.1~20m/s程度であってもよく、0.3~15m/s程度であってもよい。 In addition, when the adsorbent is immersed in the water to be treated and stirred, the adsorbent may be stirred by mechanical stirring or bubble stirring. When performing mechanical stirring, the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 15 m / s.
 一方で、連続式の場合、カラムに充填された吸着材に対して、被処理水のカラムへの通液速度は、例えば、処理水流速を吸着材容積で割った値である空塔速度として0.5~200h-1程度であってもよく、好ましくは1~150h-1程度であってもよい。 On the other hand, in the case of the continuous type, with respect to the adsorbent packed in the column, the flow rate of the water to be treated to the column is, for example, the superficial velocity that is a value obtained by dividing the treated water flow rate by the adsorbent volume. it may be about 0.5 ~ 200h -1, preferably about 1 ~ 150h -1.
 本発明の吸着材を用いた吸着処理により、被処理水中の膜ファウリング原因物質を効率よく吸着することができ、特に、上述のようなバイオポリマーの吸着を効率よく行うことができる。例えば、吸着処理では、被処理水からのバイオポリマーの除去率(または吸着率)が、例えば15%以上であってもよく、好ましくは20%以上、より好ましくは25%以上であってもよい。なお、除去率は、後述する実施例に記載された方法により測定された値を示す。除去率が低すぎる場合、吸着処理後の処理水を膜ろ過工程に供給した場合、膜汚染の抑制効果が十分でない場合がある。 By the adsorption treatment using the adsorbent of the present invention, the membrane fouling-causing substance in the water to be treated can be efficiently adsorbed, and in particular, the above-described biopolymer can be adsorbed efficiently. For example, in the adsorption treatment, the removal rate (or adsorption rate) of the biopolymer from the water to be treated may be, for example, 15% or more, preferably 20% or more, more preferably 25% or more. . In addition, a removal rate shows the value measured by the method described in the Example mentioned later. When the removal rate is too low, when the treated water after the adsorption treatment is supplied to the membrane filtration step, the effect of suppressing membrane contamination may not be sufficient.
(膜ろ過工程)
 吸着工程の後、吸着処理された吸着処理水(または供給水)は、必要に応じて、膜ろ過工程において膜ろ過される。膜ろ過工程は、一段であってもよいし、多段であってもよい。膜ろ過工程の膜の種類については、同一の膜を用いても良いし、異なる種類の膜を組み合わせてもよい。膜ろ過を組み合わせ、用途に応じた浄水化を行ってもよい。
(Membrane filtration process)
After the adsorption step, the adsorption-treated water (or supply water) subjected to the adsorption treatment is subjected to membrane filtration in the membrane filtration step as necessary. The membrane filtration step may be a single step or multiple steps. About the kind of film | membrane of a membrane filtration process, the same film | membrane may be used and a different kind of film | membrane may be combined. Membrane filtration may be combined to purify water according to the application.
 膜ろ過工程は、水処理の目的に応じて、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノろ過膜(NF膜)、逆浸透(RO)膜などを用いて適宜行うことができる。膜ろ過工程では、これらの膜を単独で一段以上用いて膜ろ過を行ってもよいし、複数の種類の膜を組み合わせ、それぞれ一段以上用いて膜ろ過を行ってもよい。
 また、複数の種類の膜を組み合わせる場合、MF膜またはUF膜で供給処理された処理水を膜ろ過処理した後、NF膜または逆浸透(RO)膜でさらに膜ろ過処理を行ってもよい。
The membrane filtration step is appropriately performed using a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), a reverse osmosis (RO) membrane, etc., depending on the purpose of water treatment. be able to. In the membrane filtration step, these membranes may be used alone or in one or more stages for membrane filtration, or a plurality of types of membranes may be combined, and each one or more stages may be used for membrane filtration.
When a plurality of types of membranes are combined, the membrane water may be further filtered with an NF membrane or a reverse osmosis (RO) membrane after membrane filtration treatment of the treated water supplied with the MF membrane or UF membrane.
 膜ろ過工程におけるろ過膜の膜素材としては、特に限定されず、公知のものはいずれも適用可能である。例えば、UF膜やMF膜の膜素材としては、酢酸セルロース、ポリアクリロニトリル、ポリエチレン、ポリエーテルスルホン、ポリスルホン、ポリプロピレン、ポリフッ化ビニリデン、セラミックなどが挙げられる。NF膜の膜素材としては、ポリアミド系、ポリピペラジンアミド系、ポリエステルアミド系、あるいは水溶性のビニルポリマーを架橋したものなどが挙げられる。また、RO膜の膜素材としては、酢酸セルロース系、ポリアミド系などが挙げられる。 The membrane material of the filtration membrane in the membrane filtration step is not particularly limited, and any known material can be applied. For example, examples of the film material for the UF film and the MF film include cellulose acetate, polyacrylonitrile, polyethylene, polyethersulfone, polysulfone, polypropylene, polyvinylidene fluoride, and ceramic. Examples of the film material of the NF film include polyamide-based, polypiperazine amide-based, polyester amide-based, or water-soluble vinyl polymer crosslinked. Examples of the membrane material for the RO membrane include cellulose acetate and polyamide.
 膜形態については、特に限定されず、平膜、管状膜、中空糸膜等、いずれの形状のものでもよい。たとえば膜厚は、10μm~1mmの範囲、中空糸膜の場合、内径が0.2~2mm程度、外径が0.4~5mm程度であってもよい。また、ろ過膜は、網目状構造、ハニカム状構造、微細間隙構造などの微細多孔質構造を有していてもよい。 The membrane form is not particularly limited, and may be any shape such as a flat membrane, a tubular membrane, and a hollow fiber membrane. For example, the film thickness may be in the range of 10 μm to 1 mm, and in the case of a hollow fiber membrane, the inner diameter may be about 0.2 to 2 mm and the outer diameter may be about 0.4 to 5 mm. The filtration membrane may have a fine porous structure such as a network structure, a honeycomb structure, or a fine gap structure.
 これらのろ過膜は、モジュール化されていてもよい。例えば、平膜状の場合はスパイラル型、プリーツ型、プレート・アンド・フレーム型、円盤状のディスクを積み重ねたディスクタイプであってもよく、中空糸膜の場合は、中空糸をU字状やI字状に束ねて容器に収納した中空糸膜型であってもよい。 These filtration membranes may be modularized. For example, in the case of a flat membrane, a spiral type, a pleat type, a plate-and-frame type, or a disc type in which discs are stacked may be used. It may be a hollow fiber membrane type bundled in an I shape and stored in a container.
 ろ過流量は、膜への供給水の種類、ろ過膜の種類などに応じて適宜設定することが可能であるが、例えば、クロスフロー方式でろ過を行う場合、ろ過流量は、Flux0.5~5.0(m/m/日)でろ過膜に対して通液してもよく、好ましくはFlux1.0~4.0(m/m/日)であってもよい。 The filtration flow rate can be set as appropriate according to the type of water supplied to the membrane, the type of filtration membrane, and the like. For example, when filtration is performed by the cross flow method, the filtration flow rate is flux 0.5 to 5 .0 (m 3 / m 2 / day) may be liquid passing respect filtration membrane, preferably may be Flux1.0 ~ 4.0 (m 3 / m 2 / day).
 特に、本発明の吸着材は、被処理水が塩類を含有していても有効に機能するため、塩類を含有する被処理水を、本発明の吸着材で吸着処理し、その後RO膜などによる膜処理に供給し、水分中の塩類を除去してもよい。 In particular, since the adsorbent of the present invention functions effectively even if the water to be treated contains salts, the water to be treated containing salts is adsorbed with the adsorbent of the present invention, and then the RO membrane or the like. It may be supplied to a membrane treatment to remove salts in water.
 本発明の吸着材を用いた吸着工程を行うことで、ろ過膜への供給水から膜ファウリング原因物質、特に多糖類やタンパク質などのバイオポリマーを低減させることができる。その結果、ろ過膜に膜ファウリング(特に物理的に不可逆な膜ファウリング)が発生するのを抑制し、ろ過膜の目詰まりにより、ろ過膜の透水性が低下するのを抑制することが出来る。
 さらに、供給水中の原因物質の量を低減することができるため、膜ファウリングによりろ過膜が劣化するのを抑制することができ、それにより、膜の使用寿命を延命化することができる。また、供給水中の原因物質の量を低減することができるため、ろ過膜の洗浄頻度や洗浄薬品の使用量を低減することもできる。
By performing the adsorption process using the adsorbent of the present invention, membrane fouling-causing substances, particularly biopolymers such as polysaccharides and proteins, can be reduced from the water supplied to the filtration membrane. As a result, it is possible to suppress the occurrence of membrane fouling (particularly physically irreversible membrane fouling) in the filtration membrane, and it is possible to suppress the reduction of water permeability of the filtration membrane due to clogging of the filtration membrane. .
Furthermore, since the amount of the causative substance in the supply water can be reduced, it is possible to suppress the deterioration of the filtration membrane due to membrane fouling, thereby prolonging the service life of the membrane. In addition, since the amount of the causative substance in the supply water can be reduced, the frequency of cleaning the filtration membrane and the amount of cleaning chemicals used can also be reduced.
 本発明の吸着材を用いた水処理では、発明の効果を損なわない範囲で、必要に応じて、既存の水処理方法と組み合わせてもよい。既存の水処理方法としては、例えば、砂ろ過処理、粗ろ過処理、凝集沈殿処理、オゾン処理、既存の吸着材や活性炭などを用いた吸着処理、生物処理などが挙げられる。これらの処理は、単独でまたは二種以上組み合わせて行ってもよい。また、これらの水処理は、適宜、吸着処理前および/または吸着処理後に行われればよい。 In the water treatment using the adsorbent of the present invention, it may be combined with an existing water treatment method as necessary within a range not impairing the effects of the invention. Examples of the existing water treatment method include sand filtration treatment, coarse filtration treatment, coagulation sedimentation treatment, ozone treatment, adsorption treatment using an existing adsorbent or activated carbon, biological treatment, and the like. These treatments may be performed singly or in combination of two or more. In addition, these water treatments may be appropriately performed before and / or after the adsorption treatment.
 吸着工程により、膜ファウリング原因物質を吸着した吸着材は、必要に応じて、公知のろ別手段により分離され、再生工程へと供される。一方で、吸着材がろ別されることにより固液分離した吸着処理水は、必要に応じて、膜ろ過工程へ用いられ、ろ過工程において膜ろ過されてもよい。 The adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step is separated by a known filtering means as necessary and is supplied to the regeneration step. On the other hand, the adsorption-treated water that has been subjected to solid-liquid separation by filtering the adsorbent may be used in a membrane filtration step as needed, and membrane filtered in the filtration step.
(再生工程)
 本発明の水処理方法においては、吸着工程で膜ファウリング原因物質を吸着した吸着材を、洗浄流体と接触させることにより再生する再生工程を備えていてもよい。再生工程は、膜ファウリング原因物質を吸着した吸着材を再生できる限り特に限定されず、各種再生工程を行うことができる。
(Regeneration process)
The water treatment method of the present invention may include a regeneration step in which the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step is regenerated by contacting with the cleaning fluid. The regeneration process is not particularly limited as long as the adsorbent adsorbing the membrane fouling-causing substance can be regenerated, and various regeneration processes can be performed.
 なお、本発明は、吸着材の再生方法を含んでいてもよい。この場合、再生方法として、再生工程が独立して行われてもよい。例えば、吸着工程で膜ファウリング原因物質を吸着した吸着材を、洗浄流体と接触させることにより再生する吸着材の再生方法が独立して行われてもよい。好ましくは、吸着材の再生方法は、膜ファウリング原因物質が吸着している吸着材を、40℃以上に加温した洗浄流体と接触させ、前記吸着材を再生することにより行われてもよい。 Note that the present invention may include a method for regenerating the adsorbent. In this case, the regeneration step may be performed independently as a regeneration method. For example, the adsorbent regeneration method for regenerating the adsorbent that has adsorbed the membrane fouling-causing substance in the adsorption step by bringing it into contact with the cleaning fluid may be performed independently. Preferably, the adsorbent regeneration method may be performed by bringing the adsorbent adsorbing the membrane fouling-causing substance into contact with a cleaning fluid heated to 40 ° C. or more and regenerating the adsorbent. .
 洗浄流体は、水を主成分(例えば、60質量%以上)とする液体からなる媒体であってもよく、例えば、浄水(原水に対して適切な処理操作により、清浄化行為を行った水、例えば水道水など)、純水(RO水、脱イオン水、蒸留水など)、吸着工程において上述した各種原水またはその関連水を用いてもよく、薬剤をこれらの水(浄水、純水、原水またはその関連水)に添加した水溶液を用いてもよい。薬剤としては、例えば、各種酸性物質およびその塩類、各種アルカリ性物質などを利用することができる。
 例えば、酸性物質としては、各種無機酸(例えば、塩酸、次亜塩素酸、硫酸、亜硫酸、硝酸、亜硝酸、炭酸、リン酸、次亜臭素酸、次亜ヨウ素酸など)、各種有機酸(例えば、ギ酸、酢酸、プロピオン酸、酪酸、ステアリン酸、クエン酸、シュウ酸、乳酸、マレイン酸、酒石酸、フマル酸、マロン酸、コハク酸、リンゴ酸、アジピン酸、オレイン酸、リノール酸、リノレン酸、安息香酸)などが挙げられる。前記酸性物質の塩類は、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩であってもよいし、アンモニウム塩などの有機塩であってもよい。また、アルカリ性物質としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、アンモニア水などが挙げられる。これらの薬剤は、単独でまたは二種以上組み合わせて使用してもよい。洗浄流体中の薬剤の濃度は、水に対する溶質の割合として、例えば0.1~60量%程度であってもよく、好ましくは0.1~30質量%程度、より好ましくは0.5~20質量%程度であってもよい。
 また、洗浄流体は、液体に限定されず、例えば、空気又は加熱蒸気等の気体であってもよい。即ち、洗浄流体は、本発明の吸着材を洗浄し、表面に付着したファウリング原因物質を剥がすことができる流体であればよい。また、再生工程での洗浄流体との接触は、一段であっても多段であってもよく、多段である場合、複数の種類の洗浄流体を別々に用いてもよい。
The cleaning fluid may be a medium composed of a liquid containing water as a main component (for example, 60% by mass or more). For example, purified water (water that has been purified by an appropriate treatment operation on raw water, For example, tap water, etc.), pure water (RO water, deionized water, distilled water, etc.), various raw waters described above in the adsorption step or related waters may be used, and these waters (purified water, pure water, raw water) are used as chemicals. Alternatively, an aqueous solution added to the related water) may be used. As the drug, for example, various acidic substances and salts thereof, various alkaline substances and the like can be used.
For example, as an acidic substance, various inorganic acids (for example, hydrochloric acid, hypochlorous acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, carbonic acid, phosphoric acid, hypobromous acid, hypoiodous acid, etc.), various organic acids ( For example, formic acid, acetic acid, propionic acid, butyric acid, stearic acid, citric acid, oxalic acid, lactic acid, maleic acid, tartaric acid, fumaric acid, malonic acid, succinic acid, malic acid, adipic acid, oleic acid, linoleic acid, linolenic acid And benzoic acid). The acidic substance salt may be, for example, an alkali metal salt such as a sodium salt or a potassium salt, or an organic salt such as an ammonium salt. Examples of the alkaline substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and ammonia water. These drugs may be used alone or in combination of two or more. The concentration of the drug in the cleaning fluid may be, for example, about 0.1 to 60% by mass, preferably about 0.1 to 30% by mass, more preferably 0.5 to 20%, as the ratio of the solute to water. It may be about mass%.
Further, the cleaning fluid is not limited to a liquid, and may be a gas such as air or heated steam, for example. That is, the cleaning fluid may be any fluid that can clean the adsorbent of the present invention and remove the fouling-causing substance attached to the surface. Further, the contact with the cleaning fluid in the regeneration step may be one stage or multiple stages. In the case of multiple stages, a plurality of types of cleaning fluids may be used separately.
 洗浄流体としては、金属イオン含有水溶液が好ましく用いられる。金属イオン含有水溶液に用いられる金属イオンとしては、原因物質の脱離をすることが可能である限り特に限定されないが、典型的には、リチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオンが挙げられ、具体的には、例えば、アルカリ金属の水酸化物、アルカリ金属の有機酸塩、またはアルカリ金属の無機酸塩などを含有する水溶液であってもよい。アルカリ金属の水酸化物、有機酸および無機酸としては、上述の薬剤として用いられる各種物質を用いてもよい。好ましい金属イオン含有水溶液としては、無機酸のアルカリ金属塩水溶液が挙げられ、具体的には、塩化ナトリウム水溶液、塩化カリウム水溶液、塩化リチウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、炭酸リチウム水溶液などが挙げられる。洗浄流体は、被処理水に存在する塩類と同種の金属イオンを含む金属イオン含有水溶液であってもよい。金属イオン含有水溶液の濃度は、水に対する溶質の割合として、例えば0.1~60量%程度であってもよく、好ましくは0.1~30質量%程度、より好ましくは0.5~20質量%程度であってもよい。 A metal ion-containing aqueous solution is preferably used as the cleaning fluid. The metal ions used in the aqueous solution containing metal ions are not particularly limited as long as the causative substance can be eliminated, but typically, alkali metal ions such as lithium ions, sodium ions, and potassium ions are listed. Specifically, for example, an aqueous solution containing an alkali metal hydroxide, an alkali metal organic acid salt, or an alkali metal inorganic acid salt may be used. As the alkali metal hydroxide, organic acid and inorganic acid, various substances used as the above-mentioned chemicals may be used. Preferred metal ion-containing aqueous solutions include alkali metal salt aqueous solutions of inorganic acids, and specific examples include sodium chloride aqueous solution, potassium chloride aqueous solution, lithium chloride aqueous solution, sodium carbonate aqueous solution, potassium carbonate aqueous solution, lithium carbonate aqueous solution and the like. It is done. The cleaning fluid may be a metal ion-containing aqueous solution containing the same type of metal ions as the salts present in the water to be treated. The concentration of the metal ion-containing aqueous solution may be, for example, about 0.1 to 60% by mass, preferably about 0.1 to 30% by mass, more preferably 0.5 to 20% by mass as a solute ratio with respect to water. % May be sufficient.
 または、洗浄流体としての水性媒体が、0.1質量%以上、0.5質量%以上、1質量%以上、または2質量%以上の塩化ナトリウム濃度を有していてもよい。また、塩化ナトリウム濃度は、例えば、27質量%以下であってもよく、20質量%以下であってもよい。所定の温度で用いる限り、洗浄流体として好適に使用することが可能である。
 また洗浄流体中には、塩化ナトリウム以外にも、塩化カリウムなどのアルカリ金属塩;塩化マグネシウム、硫酸マグネシウム、塩化カルシウム、硫酸カルシウムなどのアルカリ土類金属塩などが含まれていてもよい。
Alternatively, the aqueous medium as the cleaning fluid may have a sodium chloride concentration of 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 2% by mass or more. Moreover, sodium chloride concentration may be 27 mass% or less, for example, and may be 20 mass% or less. As long as it is used at a predetermined temperature, it can be suitably used as a cleaning fluid.
In addition to sodium chloride, the cleaning fluid may contain alkali metal salts such as potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate.
 原水は、吸着工程において上述した各種原水を用いてもよく、吸着工程で利用する原水を一部取り分けて再生工程において利用してもよい。または、吸着工程で用いた原水とは異なる原水を再生媒体として利用してもよい。原水の関連水としては、原水を各種膜処理する際に発生する非透過水(例えば、RO膜処理後に得られる濃縮水など)、原水の吸着工程後に得られる処理水などが挙げられる。 As the raw water, the various raw waters described above in the adsorption process may be used, or a part of the raw water used in the adsorption process may be separated and used in the regeneration process. Alternatively, raw water different from the raw water used in the adsorption step may be used as a regeneration medium. Examples of raw water-related water include non-permeate water (for example, concentrated water obtained after RO membrane treatment) generated when various membrane treatments of raw water, treated water obtained after the raw water adsorption step, and the like.
 洗浄流体のpHは、例えば、5~14程度であってもよく、好ましくは5.5~12程度、より好ましくは6~11程度であってもよい。pHが中性領域(pH6~8)であると、再生処理後の洗浄流体の廃棄処理上好ましく、pHが弱塩基性(pH8~11)であると、再生性能が良好である。 The pH of the cleaning fluid may be, for example, about 5 to 14, preferably about 5.5 to 12, and more preferably about 6 to 11. When the pH is in the neutral range (pH 6 to 8), it is preferable for disposal of the cleaning fluid after the regeneration treatment, and when the pH is weakly basic (pH 8 to 11), the regeneration performance is good.
 再生工程で用いられる洗浄流体の温度は、吸着材の再生ができる限り特に限定されない。洗浄流体の種類に応じて、室温付近であっても、被処理水と同程度の温度であっても、吸着工程での被処理水の温度以上であってもよい。好ましくは、吸着工程での被処理水の温度よりも高温であるように設定されてもよい。吸着材が接触する液体の温度条件を、吸着工程と再生工程との間で変化させることにより、吸着工程で吸着材に対して吸着した原因物質であっても、再生工程においてより効率よく吸着材から脱離することが可能である。 The temperature of the cleaning fluid used in the regeneration process is not particularly limited as long as the adsorbent can be regenerated. Depending on the type of cleaning fluid, it may be near room temperature, at the same temperature as the water to be treated, or at a temperature equal to or higher than the temperature of the water to be treated in the adsorption process. Preferably, it may be set to be higher than the temperature of the water to be treated in the adsorption step. By changing the temperature condition of the liquid in contact with the adsorbent between the adsorption process and the regeneration process, even if it is a causative substance adsorbed to the adsorbent in the adsorption process, the adsorbent can be more efficiently used in the regeneration process. It is possible to detach from.
 例えば、吸着材の再生工程(または再生方法)は、ファウリング原因物質を含む被処理水を第1の接触温度で接触させ、被処理水中に含まれる膜ファウリング原因物質を吸着させた吸着材を、前記第1の接触温度より高い第2の接触温度で各種洗浄流体とで接触させ、前記吸着材を再生することにより行われてもよい。
 前記第1の接触温度と、前記第2の接触温度とは、例えば、10℃以上(例えば10~90℃程度)異なっていてもよく、好ましくは15~80℃程度、より好ましくは20~70℃程度異なっていてもよい。
For example, in the regeneration process (or regeneration method) of the adsorbent, the water to be treated containing the fouling-causing substance is brought into contact at the first contact temperature, and the film fouling-causing substance contained in the water to be treated is adsorbed. May be brought into contact with various cleaning fluids at a second contact temperature higher than the first contact temperature, and the adsorbent may be regenerated.
The first contact temperature and the second contact temperature may differ from each other by, for example, 10 ° C. or more (eg, about 10 to 90 ° C.), preferably about 15 to 80 ° C., more preferably 20 to 70 ° C. It may be different by about ° C.
 再生工程での洗浄流体の温度は、原因物質を脱離することが出来る限り、第2の接触温度として、適当な温度を選択することができるが、洗浄流体の温度は、脱離性の観点から、例えば40~110℃(例えば、50℃~110℃)であってもよく、好ましくは45~105℃(例えば、60℃~105℃)、より好ましくは50~100℃(例えば、70℃~100℃)であってもよい。 As long as the causative substance can be desorbed, the temperature of the cleaning fluid in the regeneration process can be selected as an appropriate temperature as the second contact temperature. For example, it may be 40 to 110 ° C. (eg 50 to 110 ° C.), preferably 45 to 105 ° C. (eg 60 to 105 ° C.), more preferably 50 to 100 ° C. (eg 70 ° C.). ~ 100 ° C).
 洗浄流体は、前記所定の範囲内の温度で、再生工程中に洗浄流体の温度が低下してもよい。または、必要に応じて、所定の加熱手段により加熱された洗浄流体を用いて再生工程を行ってもよい。例えば、加熱手段としては、あらゆる熱源を対象とすることができ、例えば、ヒートポンプ、電気加熱手段、ガスや石油などの燃焼熱を用いた燃焼手段、太陽熱や地熱などの天然由来熱源等、これらの熱源由来の二次的熱源(例えば、前記熱源により加熱された加熱用熱媒体)などが挙げられる。これらの熱源は、単独でまたは二種以上組み合わせて使用してもよい。 The cleaning fluid may have a temperature within the predetermined range, and the temperature of the cleaning fluid may decrease during the regeneration process. Or you may perform a reproduction | regeneration process using the washing | cleaning fluid heated by the predetermined heating means as needed. For example, as the heating means, any heat source can be targeted, such as heat pumps, electric heating means, combustion means using combustion heat such as gas or petroleum, natural heat sources such as solar heat and geothermal heat, etc. A secondary heat source derived from a heat source (for example, a heating heat medium heated by the heat source) may be used. These heat sources may be used alone or in combination of two or more.
 また、加熱様式としては、洗浄流体が流通する配管を各種熱源で加熱する方式、外部または内部に熱源を設けた加熱タンクへ洗浄流体を収容することにより加熱する方式などが挙げられる。これらの方式は、単独でまたは二種以上組み合わせて使用してもよい。例えば、配管や加熱タンクは、直接熱源を利用して加熱してもよいし、工場で用いられるスチームなどの二次的熱源を利用して加熱してもよい。
 なお、洗浄流体を加熱する加熱タンクは、再生処理を行う収容器であってもよいし、再生処理前の洗浄流体を保管するための収容器であってもよい。再生時間が長時間(例えば、1時間以上)である場合、洗浄流体の温度を維持するため、再生処理を行う収容器を加熱するのが好ましい。
Examples of the heating mode include a system in which piping through which the cleaning fluid flows is heated with various heat sources, and a system in which the cleaning fluid is stored in a heating tank provided with a heat source outside or inside. These methods may be used alone or in combination of two or more. For example, piping and a heating tank may be heated directly using a heat source, or may be heated using a secondary heat source such as steam used in a factory.
The heating tank that heats the cleaning fluid may be a container that performs a regeneration process, or may be a container that stores the cleaning fluid before the regeneration process. When the regeneration time is long (for example, 1 hour or longer), it is preferable to heat the container for performing the regeneration process in order to maintain the temperature of the cleaning fluid.
 また、再生工程では、吸着材を再生できる限りその処理時間は特に限定されず、吸着材や再生媒体の状態、量などに応じて適宜設定することができる。再生処理時間は、例えば、10分以上であってもよく、好ましくは15分以上であってもよく、より好ましくは20分以上であってもよく、さらに好ましくは30分以上であってもよい。また、再生処理時間は、再生処理を効率化する観点から、36時間以下であってもよく、好ましくは25時間以下であってもよい。 In the regeneration step, the treatment time is not particularly limited as long as the adsorbent can be regenerated, and can be set as appropriate according to the state and amount of the adsorbent and the regeneration medium. The regeneration treatment time may be, for example, 10 minutes or more, preferably 15 minutes or more, more preferably 20 minutes or more, and further preferably 30 minutes or more. . In addition, the regeneration processing time may be 36 hours or less, preferably 25 hours or less, from the viewpoint of improving the efficiency of the regeneration process.
 吸着材に対して用いられる洗浄流体の量は、洗浄流体の種類、吸着材の形態、再生工程の形式(バッチ式または連続式)などに応じて適宜選択することができる。また、吸着材を洗浄流体に浸漬し撹拌を行う場合、機械的撹拌、気泡撹拌などなどにより、吸着材を撹拌してもよい。また、機械的撹拌を行う場合、周速として0.1~20m/s程度であってもよく、0.3~18m/s程度であってもよい。 The amount of the cleaning fluid used for the adsorbent can be appropriately selected according to the type of the cleaning fluid, the form of the adsorbent, the type of regeneration process (batch type or continuous type), and the like. When the adsorbent is immersed in the cleaning fluid and stirred, the adsorbent may be stirred by mechanical stirring, bubble stirring, or the like. When mechanical stirring is performed, the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 18 m / s.
 再生工程では、洗浄流体と、吸着材とを接触させることができる限り特に限定されず、例えば、バッチ式として、洗浄流体へ吸着材を添加し、必要に応じて公知の方法で撹拌することにより、再生処理を行ってもよいし;連続式として、吸着材を充てんしたカラムに対し、洗浄流体を通液させることにより再生処理を行ってもよい。また、再生工程は、一段であってもよいし、多段であってもよい。 The regeneration step is not particularly limited as long as the cleaning fluid and the adsorbent can be brought into contact with each other. For example, as a batch type, the adsorbent is added to the cleaning fluid, and if necessary, stirred by a known method. The regeneration process may be carried out; as a continuous system, the regeneration process may be carried out by passing a washing fluid through a column filled with an adsorbent. Further, the regeneration step may be a single step or multiple steps.
 再生工程により、再生された吸着材は、必要に応じて、公知のろ別手段により分離され、再度、吸着工程へと供されてもよい。 The adsorbent regenerated by the regeneration step may be separated by a known filtering means as necessary and may be provided again to the adsorption step.
 再生工程では、洗浄流体との接触により吸着材を効率よく再生することができる。例えば、再生工程では、再生処理前後での吸着材の吸着率を、再生効率として評価することができ、例えば、再生効率は、30%以上であってもよく、好ましくは50%以上、より好ましくは80%以上、特に好ましくは90%以上であってもよい。なお、再生効率は、後述する実施例に記載された方法により測定された値を示す。 In the regeneration process, the adsorbent can be efficiently regenerated by contact with the cleaning fluid. For example, in the regeneration step, the adsorption rate of the adsorbent before and after the regeneration treatment can be evaluated as regeneration efficiency. For example, the regeneration efficiency may be 30% or more, preferably 50% or more, more preferably May be 80% or more, particularly preferably 90% or more. Note that the regeneration efficiency is a value measured by a method described in Examples described later.
 なお、本発明は応用例として、以下の内容を含んでいてもよい。
 すなわち、本発明の第1の応用例は、有機体炭素(例えば、膜ファウリングの原因物質)を含有する被処理水(例えば原水)と、各種吸着材(好ましくは高分子吸着材)とを室温付近の第1の接触温度で接触させ、吸着材により有機体炭素の少なくとも一部の成分を吸着させる吸着工程と、
 前記成分を吸着した吸着材を、前記第1の接触温度よりも高い40℃以上の第2の接触温度に加温した洗浄流体(例えば水性媒体)と接触させ、前記吸着材を再生する再生工程と、を少なくとも備える水処理方法である。
 前記水処理方法では水性媒体の温度に着目して再生媒体を利用するため、浄水、金属イオン含有水溶液、原水(特に、吸着対象の有機体炭素を含む水性媒体)などの各種洗浄流体を利用して、効率よく吸着材を再生することができる。
The present invention may include the following contents as application examples.
That is, in the first application example of the present invention, water to be treated (for example, raw water) containing organic carbon (for example, a substance causing membrane fouling) and various adsorbents (preferably polymer adsorbents) are used. An adsorption step of contacting at a first contact temperature near room temperature and adsorbing at least a part of organic carbon by an adsorbent;
A regeneration step of regenerating the adsorbent by bringing the adsorbent adsorbed with the component into contact with a cleaning fluid (eg, an aqueous medium) heated to a second contact temperature of 40 ° C. or higher, which is higher than the first contact temperature. And a water treatment method comprising at least
In the water treatment method, since the regeneration medium is used by paying attention to the temperature of the aqueous medium, various cleaning fluids such as purified water, metal ion-containing aqueous solution, raw water (in particular, an aqueous medium containing organic carbon to be adsorbed) are used. Thus, the adsorbent can be efficiently regenerated.
 第1の応用例による水処理方法では、各種吸着材(好ましくは高分子吸着材)により、被処理水中に含まれる有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質(特に糖類やたんぱく質といった親水性が高いバイオポリマー)を吸着することができるだけでなく、吸着工程後の吸着材を、吸着工程よりも高温の洗浄流体と接触させることにより、すでに吸着材に吸着されている吸着物質を、吸着材から脱離させて再生することができる。そして、再生された吸着材を、再び吸着処理へ有効に用いることができる。 In the water treatment method according to the first application example, various adsorbents (preferably polymer adsorbents) cause organic carbon contained in the water to be treated, particularly causative substances that cause physically irreversible membrane fouling (particularly Not only can adsorb highly hydrophilic biopolymers such as sugars and proteins), but it is already adsorbed on the adsorbent by bringing the adsorbent after the adsorption process into contact with a cleaning fluid that is hotter than the adsorption process. The adsorbed material can be regenerated by desorbing from the adsorbent. Then, the regenerated adsorbent can be effectively used again for the adsorption process.
 なお、第1の応用例に係る水処理方法に含まれる再生工程を独立して、吸着材の再生方法として行ってもよい。すなわち、再生方法として、有機体炭素を吸着した吸着材を、洗浄流体と接触させることにより再生する再生を備える再生方法が独立して行われてもよい。
 この再生工程(または再生方法)で行われる各種処理条件としては、本発明において上述した各種条件(洗浄流体の種類、洗浄流体の温度条件、加熱手段、再生処理時間、洗浄流体の使用条件など)を適宜利用してもよいし、後述する再生条件を別途利用してもよい。
Note that the regeneration step included in the water treatment method according to the first application example may be performed independently as a method for regenerating the adsorbent. That is, as a regeneration method, a regeneration method including regeneration in which an adsorbent adsorbing organic carbon is regenerated by bringing it into contact with a cleaning fluid may be performed independently.
Various processing conditions performed in this regeneration step (or regeneration method) include the various conditions described above in the present invention (type of cleaning fluid, temperature condition of cleaning fluid, heating means, regeneration processing time, cleaning fluid usage conditions, etc.). May be used as appropriate, or playback conditions described later may be used separately.
 本発明の第2の応用例は、前記第1の応用例による水処理方法において、吸着工程で吸着された成分が、バイオポリマーを含む、水処理方法である。
 本発明の第3の応用例は、前記第1または2の応用例による水処理方法において、高分子吸着材は、アミノ基、およびそれらの塩からなる群から選択された少なくとも一種の官能基を有する、水処理方法である。
 本発明の第4の応用例は、前記第1~3のいずれか一つの応用例による水処理方法において、親水性高分子を主骨格とする高分子を高分子吸着材として用いる、水処理方法である。
A second application example of the present invention is a water treatment method in which the component adsorbed in the adsorption step in the water treatment method according to the first application example includes a biopolymer.
According to a third application example of the present invention, in the water treatment method according to the first or second application example, the polymer adsorbent has at least one functional group selected from the group consisting of an amino group and a salt thereof. It has a water treatment method.
The fourth application example of the present invention is the water treatment method according to any one of the first to third application examples, wherein a polymer having a hydrophilic polymer as a main skeleton is used as a polymer adsorbent. It is.
 本発明の第5の応用例は、前記第4の応用例による水処理方法において、高分子吸着材の主骨格である親水性高分子が、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、ポリアクリロニトリル、カチオン性ポリマー、アニオン性ポリマー、フェノール樹脂、ポリアミド、ポリビニルピロリドン、デキストリン、キチン、およびキトサンからなる群から選択される少なくとも1種を含む水処理方法である。 According to a fifth application example of the present invention, in the water treatment method according to the fourth application example, the hydrophilic polymer that is the main skeleton of the polymer adsorbent is polyvinyl alcohol, an ethylene-vinyl alcohol copolymer, polyvinyl acetal. , Polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth) acrylamide, polyacrylonitrile, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinyl pyrrolidone, dextrin, chitin, and chitosan A water treatment method comprising at least one selected from the group.
 本発明の第6の応用例は、前記第1~5のいずれか一つの応用例による水処理方法において、さらに、吸着工程により得られた吸着処理水を、膜ろ過処理により膜ろ過する、膜ろ過工程を含む、水処理方法である。
 本発明の第7の応用例は、前記第6の応用例による水処理方法において、膜ろ過工程が、限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、および逆浸透(RO)膜からなる群から選択される少なくとも一種の膜を用いて、一段または多段にて行われる、水処理方法である。
The sixth application example of the present invention is the water treatment method according to any one of the first to fifth application examples, wherein the adsorption treated water obtained by the adsorption step is further subjected to membrane filtration by membrane filtration treatment. A water treatment method including a filtration step.
According to a seventh application example of the present invention, in the water treatment method according to the sixth application example, the membrane filtration step includes an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and The water treatment method is carried out in one or more stages using at least one membrane selected from the group consisting of reverse osmosis (RO) membranes.
 前記第1~7の応用例で用いられる高分子吸着材は、高分子から形成され、有機体炭素の少なくとも一部の成分を吸着する吸着材である限り特に限定されず、各種高分子吸着材を利用することができる。 The polymer adsorbent used in the first to seventh application examples is not particularly limited as long as it is an adsorbent that is formed of a polymer and adsorbs at least a part of organic carbon, and various polymer adsorbents. Can be used.
 より詳細には、応用例で用いられる前記高分子吸着材としては、原水中に含まれる膜ファウリングを生じる原因物質が、吸着材に対して吸着されるための結合形成基を有する高分子吸着材が挙げられる。
 結合形成基は、吸着成分との各種結合(例えば、水素結合、配位結合、イオン結合など)を形成することが可能である。例えば、結合形成基としては、水素結合形成基、キレート形成基、カチオン性イオン交換基、アニオン性イオン交換基などが挙げられ、これらの結合形成基は、単独でまたは二種以上組み合わせて使用してもよい。好ましくは、カチオン性イオン交換基を少なくとも有していてもよい。
More specifically, the polymer adsorbent used in the application example includes a polymer adsorbent having a bond-forming group for causing causative substances that cause membrane fouling contained in raw water to be adsorbed to the adsorbent. Materials.
The bond-forming group can form various bonds (for example, hydrogen bond, coordination bond, ionic bond, etc.) with the adsorbing component. For example, examples of the bond-forming group include a hydrogen bond-forming group, a chelate-forming group, a cationic ion-exchange group, and an anionic ion-exchange group. These bond-forming groups can be used alone or in combination of two or more. May be. Preferably, it may have at least a cationic ion exchange group.
 結合形成基は、例えば、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む官能基であってもよい。
 具体的には、そのような官能基としては、アミノ基(1級アミノ基、2級アミノ基、3級アミノ基)、4級アンモニウム基、イミニウム基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基、水酸基、カルボキシル基、スルホネート基、スルホン酸基、スルホニウム基、メルカプト基、チオウレア基、ホスホネート基、ホスホン酸基、ホスホニウム基などが挙げられる。それらは塩の状態で存在していてもよい。これらの官能基は、単独でまたは二種以上組み合わせて存在していてもよい。これらのうち、好ましい官能基としては、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基、イミニウム基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基であり、さらに好ましくは、アミノ基(1級アミノ基、2級アミノ基、3級アミノ基)、およびそれらの塩が挙げられる。
The bond-forming group may be a functional group containing at least one element selected from the group consisting of N, S, P and O, for example.
Specifically, such functional groups include amino groups (primary amino groups, secondary amino groups, tertiary amino groups), quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups. Group, quaternary pyridinium group, hydroxyl group, carboxyl group, sulfonate group, sulfonic acid group, sulfonium group, mercapto group, thiourea group, phosphonate group, phosphonic acid group, phosphonium group and the like. They may be present in a salt state. These functional groups may be present alone or in combination of two or more. Among these, preferred functional groups are primary amino group, secondary amino group, tertiary amino group, quaternary ammonium group, iminium group, imidazole group, quaternary imidazolium group, pyridyl group, and quaternary pyridinium group. And more preferably, an amino group (primary amino group, secondary amino group, tertiary amino group) and salts thereof.
 高分子吸着材は、前記結合形成基とともに、疎水性高分子を主骨格として有していてもよいし、親水性高分子を主骨格として有していてもよい。 The polymer adsorbent may have a hydrophobic polymer as a main skeleton together with the bond-forming group, or may have a hydrophilic polymer as a main skeleton.
 疎水性高分子を主骨格として有する疎水性高分子吸着材としては、上述の疎水性高分子に対して、上記官能基が導入された高分子吸着材などが挙げられる。導入される量は、例えば、全モノマー単位中2~100モル%、好ましくは、3~95モル%、より好ましくは、5~90モル%であってもよい。 Examples of the hydrophobic polymer adsorbent having a hydrophobic polymer as a main skeleton include a polymer adsorbent in which the above functional group is introduced with respect to the above-described hydrophobic polymer. The amount to be introduced may be, for example, 2 to 100 mol%, preferably 3 to 95 mol%, more preferably 5 to 90 mol% in all monomer units.
 このような疎水性高分子吸着材は、例えば、ピュロライト株式会社より「ピュロライト(登録商標)」シリーズ;住化ケムテックス株式会社より、「スミキレート(登録商標)」シリーズ、「デュオライト(登録商標)」シリーズ;三菱化学株式会社より「ダイヤイオン(登録商標)」シリーズなどとして上市されている。 Such hydrophobic polymer adsorbents are, for example, “Purolite (registered trademark)” series from Purolite Co., Ltd .; “Sumichelate (registered trademark)” series, “Duolite (registered trademark)” from Sumika Chemtex Co., Ltd. Series: Launched as “Diaion (registered trademark)” series by Mitsubishi Chemical Corporation.
 親水性高分子吸着材は、親水性高分子を主骨格として有しており、親水性高分子自体が、その構造中に結合形成基を有していてもよいし、親水性高分子に対して、結合形成基が導入されたものであってもよい。その場合、結合形成基は、上記親水性高分子を作製する際に、結合形成基を含有するモノマー(またはその誘導体)を共重合することにより導入してもよいし、親水性高分子を作製した後、後変性により結合形成基を導入してもよい。官能基を導入する場合、導入される結合形成基は、親水性高分子の親水性基とは、異なる種類の官能基であってもよい。
 また、導入される量は、全モノマー単位中2~100モル%、好ましくは、3~95モル%、より好ましくは、5~90モル%であってもよい。
The hydrophilic polymer adsorbent has a hydrophilic polymer as a main skeleton, and the hydrophilic polymer itself may have a bond-forming group in its structure. In addition, a bond forming group may be introduced. In that case, the bond-forming group may be introduced by copolymerizing a monomer (or a derivative thereof) containing the bond-forming group when the hydrophilic polymer is produced, or the hydrophilic polymer is produced. Thereafter, a bond-forming group may be introduced by post-modification. When a functional group is introduced, the introduced bond-forming group may be a different type of functional group from the hydrophilic group of the hydrophilic polymer.
The amount to be introduced may be 2 to 100 mol%, preferably 3 to 95 mol%, more preferably 5 to 90 mol%, based on all monomer units.
 また、高分子吸着材は、上記親水性高分子または疎水性高分子をマトリクス成分とし、結合形成性官能基(結合形成基)を有する成分とアロイ化することにより、結合形成基を親水性高分子または疎水性高分子に導入したものであってもよい。導入の容易さや得られる高分子吸着材の強度や膨潤度などの物理特性付与の観点から、高分子吸着材は、結合形成基含有高分子と、マトリクス高分子(B)とのポリマーアロイであるのが好ましい。 In addition, the polymer adsorbent is composed of the above hydrophilic polymer or hydrophobic polymer as a matrix component and alloyed with a component having a bond-forming functional group (bond-forming group), thereby making the bond-forming group highly hydrophilic. It may be introduced into a molecule or a hydrophobic polymer. From the viewpoint of ease of introduction and imparting physical properties such as strength and swelling degree of the resulting polymer adsorbent, the polymer adsorbent is a polymer alloy of a bond-forming group-containing polymer and a matrix polymer (B). Is preferred.
[結合形成基含有高分子]
 例えば、結合形成基含有高分子は、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリアミック酸などのアニオン系ポリマーであってもよいし;ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミドアミンデンドリマー、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸塩、ポリヌクレオチドなどのカチオン性ポリマーであってもよい。このような高分子は、単独でまたは二種以上組み合わせて使用してもよい。
[Bond-forming group-containing polymer]
For example, the bond-forming group-containing polymer is an anionic polymer such as polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, and polyamic acid. Polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride It may also be a cationic polymer such as a polynucleotide. Such polymers may be used alone or in combination of two or more.
 これらのうち、マトリクス高分子と組み合わせて、原水中に含まれる有機体炭素、特に物理的に不可逆な膜ファウリングを生じる原因物質をより効率よく吸着する観点から、上述のカチオン性ポリマーが好ましく、アミノ基含有高分子、4級アンモニウム基含有高分子、4級ピリジニウム基含有高分子がより好ましく、特に、高カチオン密度を有する高分子(例えば、ポリエチレンイミン、ポリアリルアミンなど)が好ましい。 Among these, in combination with the matrix polymer, from the viewpoint of more efficiently adsorbing the organic carbon contained in the raw water, particularly the causative substance that causes physically irreversible membrane fouling, the above-mentioned cationic polymer is preferable, Amino group-containing polymers, quaternary ammonium group-containing polymers, and quaternary pyridinium group-containing polymers are more preferred, and polymers having a high cation density (for example, polyethyleneimine, polyallylamine, etc.) are particularly preferred.
[マトリクス高分子]
 マトリクス高分子は、結合形成基含有高分子とポリマーアロイ化が可能である限り、疎水性マトリクス高分子であっても、親水性マトリクス高分子であっても、いずれであってもよく、両者のブレンド高分子であってもよい。疎水性マトリクス高分子および親水性マトリクス高分子としては、それぞれ、上述した高分子基材に記載された疎水性高分子および親水性高分子が用いられてもよい。
[Matrix polymer]
The matrix polymer may be either a hydrophobic matrix polymer or a hydrophilic matrix polymer as long as it can be polymerized with the bond-forming group-containing polymer. It may be a blend polymer. As the hydrophobic matrix polymer and the hydrophilic matrix polymer, the hydrophobic polymer and the hydrophilic polymer described in the above-described polymer base material may be used, respectively.
 本発明またはその応用例における水処理方法および吸着材の再生方法では、上述したように、原水などを洗浄流体として用いてもよい。特に、洗浄流体として、吸着対象の有機体炭素を含む水性媒体を用いる場合、水処理方法における造水コストの低減、造水率の改善が達成される。以下に、洗浄流体として、非浄水(非造水)に由来する洗浄流体を用いる場合について詳述する。 In the water treatment method and the adsorbent regeneration method in the present invention or its application examples, as described above, raw water or the like may be used as a cleaning fluid. In particular, when an aqueous medium containing organic carbon to be adsorbed is used as the cleaning fluid, reduction in water production cost and improvement in water production rate in the water treatment method are achieved. Hereinafter, a case where a cleaning fluid derived from non-purified water (non-fresh water) is used as the cleaning fluid will be described in detail.
 これは、吸着材(特に高分子吸着材)に対する再生工程で用いる洗浄流体が、前記第1の接触温度よりも高い、特定の温度に加温した第2の接触温度を有する状態であれば、造水された浄水でなくとも洗浄流体として利用することができ、有機体炭素による再汚染を抑制できることを見出したものである。洗浄流体として、浄水を用いる必要がないため、本発明の水処理方法では、造水コストを低減することが可能である。なお、ここで浄水とは、原水に対して適切な処理操作により、清浄化行為を行った水(例えば、出願時において、日本における水道法が定める水質基準を充足する水)である。 If the cleaning fluid used in the regeneration process for the adsorbent (particularly the polymer adsorbent) has a second contact temperature heated to a specific temperature higher than the first contact temperature, It has been found that even if it is not purified water, it can be used as a cleaning fluid and recontamination by organic carbon can be suppressed. Since it is not necessary to use purified water as the cleaning fluid, the water treatment method of the present invention can reduce water production costs. In addition, purified water here is the water which performed the purification act by appropriate processing operation with respect to raw | natural water (For example, the water which satisfies the water quality standard which the water supply law in Japan at the time of application) satisfy | fills.
 従来、再汚濁を防止して吸着材を再生させるためには、浄水などの造水された水を洗浄水として用いて吸着材の再生を行うということが当業者における当然の知識であった。しかしながら、大変意外なことに、所定の高温に加温された水性媒体を、吸着材に対して適用する場合、浄化して用いられる浄水ではなくとも、再生工程において吸着材に有機体炭素が付着するのを抑制しつつ、吸着材の再生が可能であり、その結果、造水コストを低減することが可能である。 Conventionally, in order to regenerate the adsorbent while preventing re-contamination, it has been a natural knowledge of those skilled in the art to regenerate the adsorbent using fresh water or other fresh water as washing water. However, surprisingly, when an aqueous medium heated to a predetermined high temperature is applied to the adsorbent, organic carbon adheres to the adsorbent in the regeneration process, even if it is not purified water used for purification. It is possible to regenerate the adsorbent while suppressing the generation of water, and as a result, it is possible to reduce water production costs.
 例えば、洗浄流体は、吸着工程において上述した各種原水またはその関連水を用いることが可能である。原水の関連水としては、原水を各種膜処理する際に発生する非透過水(例えば、RO膜処理後に得られる濃縮水など)、原水の吸着工程後に得られる処理水などが挙げられる。原水は、吸着工程で利用する原水を一部取り分けて再生工程において利用してもよい。または、吸着工程で用いた原水とは異なる原水を洗浄流体として利用してもよい。 For example, as the cleaning fluid, it is possible to use the above-described various raw waters or related waters in the adsorption process. Examples of raw water-related water include non-permeate water (for example, concentrated water obtained after RO membrane treatment) generated when various membrane treatments of raw water, treated water obtained after the raw water adsorption step, and the like. The raw water may be used in the regeneration process by partially separating the raw water used in the adsorption process. Alternatively, raw water different from the raw water used in the adsorption process may be used as the cleaning fluid.
 例えば、洗浄流体として用いられる水性媒体は、全有機体炭素(TOC)濃度が0.01mg-C/L以上であってもよく、0.05mg-C/L以上であってもよく、0.1mg-C/L以上、3.1mg-C/L以上であってもよい。なお、ここでTOC濃度は、JIS K 0101に規定されるTOCおよびその測定方法を意味している。
 なお、洗浄流体として利用することが出来る限り、TOC濃度は特に限定されないが、例えば、20mg-C/L以下であってもよい。
For example, the aqueous medium used as the cleaning fluid may have a total organic carbon (TOC) concentration of 0.01 mg-C / L or more, 0.05 mg-C / L or more, and 0. It may be 1 mg-C / L or more, 3.1 mg-C / L or more. In addition, TOC density | concentration means the TOC prescribed | regulated to JISK0101, and its measuring method here.
The TOC concentration is not particularly limited as long as it can be used as a cleaning fluid, but may be, for example, 20 mg-C / L or less.
 洗浄流体として用いられる水性媒体は、吸着工程で吸着された有機体炭素成分を、吸着材から脱着することができる限り特に限定されないが、例えば、洗浄流体として用いられる水性媒体の濁度は、200NTU以下(例えば1~200NTU)であってもよく、好ましくは150NTU以下(例えば5~150NTU)、より好ましくは100NTU以下(例えば10~100NTU)であってもよい。ここで水性媒体の濁度は、ホルマジンを濁度標準液とし、透過散乱光測定方式で測定した値である。 The aqueous medium used as the cleaning fluid is not particularly limited as long as the organic carbon component adsorbed in the adsorption step can be desorbed from the adsorbent. For example, the turbidity of the aqueous medium used as the cleaning fluid is 200 NTU. (For example, 1 to 200 NTU), preferably 150 NTU or less (for example, 5 to 150 NTU), more preferably 100 NTU or less (for example, 10 to 100 NTU). Here, the turbidity of the aqueous medium is a value measured by a transmitted scattering light measurement method using formazine as a turbidity standard solution.
 洗浄流体として用いられる水性媒体は、好ましくは、粒子径が5μm以上の粒子、好ましくは1μm以上の粒子、より好ましくは0.45μmより大きい粒子が排除された原水であってもよい。 The aqueous medium used as the cleaning fluid may preferably be raw water from which particles having a particle size of 5 μm or more, preferably 1 μm or more, and more preferably 0.45 μm or more are excluded.
 また、洗浄流体は、前記原水(例えば、有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を含有する原水)に対して、薬剤を添加した水溶液であってもよい。
 薬剤としては、例えば、各種酸性物質およびその塩類、各種アルカリ性物質などを利用することができる。例えば、酸性物質としては、各種無機酸(例えば、塩酸、次亜塩素酸、硫酸、亜硫酸、硝酸、亜硝酸、炭酸、リン酸、次亜臭素酸、次亜ヨウ素酸など)、各種有機酸(例えば、ギ酸、酢酸、プロピオン酸、酪酸、ステアリン酸、クエン酸、シュウ酸、乳酸、マレイン酸、酒石酸、フマル酸、マロン酸、コハク酸、リンゴ酸、アジピン酸、オレイン酸、リノール酸、リノレン酸、安息香酸)などが挙げられる。前記酸性物質の塩類は、例えば、ナトリウム塩、カリウム塩などのアルカリ金属塩であってもよいし、アンモニウム塩などの有機塩であってもよい。また、アルカリ性物質としては、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物、アンモニア水、などが挙げられる。これらの薬剤は、単独でまたは二種以上組み合わせて使用してもよい。
The cleaning fluid may be an aqueous solution in which a chemical is added to the raw water (for example, raw water containing organic carbon, particularly a causative substance that causes physically irreversible membrane fouling).
As the drug, for example, various acidic substances and salts thereof, various alkaline substances and the like can be used. For example, as an acidic substance, various inorganic acids (for example, hydrochloric acid, hypochlorous acid, sulfuric acid, sulfurous acid, nitric acid, nitrous acid, carbonic acid, phosphoric acid, hypobromous acid, hypoiodous acid, etc.), various organic acids ( For example, formic acid, acetic acid, propionic acid, butyric acid, stearic acid, citric acid, oxalic acid, lactic acid, maleic acid, tartaric acid, fumaric acid, malonic acid, succinic acid, malic acid, adipic acid, oleic acid, linoleic acid, linolenic acid And benzoic acid). The acidic substance salt may be, for example, an alkali metal salt such as a sodium salt or a potassium salt, or an organic salt such as an ammonium salt. Examples of the alkaline substance include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and ammonia water. These drugs may be used alone or in combination of two or more.
 好ましくは、洗浄流体は、金属イオンを含有する原水(以下、金属イオン含有原水と称する)であってもよい。金属イオン含有原水に用いられる金属イオンとしては、原因物質の脱離をすることが可能である限り特に限定されないが、典型的には、リチウムイオン、ナトリウムイオン、カリウムイオンなどのアルカリ金属イオンが挙げられ、具体的には、例えば、アルカリ金属の水酸化物、アルカリ金属の有機酸塩、またはアルカリ金属の無機酸塩などを含有する水溶液であってもよい。アルカリ金属の水酸化物、有機酸および無機酸としては、上述の薬剤として用いられる各種物質を用いてもよい。好ましい金属イオン含有原水としては、無機酸のアルカリ金属塩含有原水が挙げられ、具体的には、塩化ナトリウム含有原水、塩化カリウム含有原水、塩化リチウム含有原水、炭酸ナトリウム含有原水、炭酸カリウム含有原水、炭酸リチウム含有原水などが挙げられる。原水中の薬剤濃度は、水に対する溶質の割合として、例えば0.1~60量%程度であってもよく、好ましくは0.1~30質量%程度、より好ましくは0.5~20質量%程度であってもよい。 Preferably, the cleaning fluid may be raw water containing metal ions (hereinafter referred to as metal ion-containing raw water). The metal ions used in the metal ion-containing raw water are not particularly limited as long as the causative substances can be eliminated, but typically, alkali metal ions such as lithium ions, sodium ions, potassium ions and the like can be mentioned. Specifically, for example, an aqueous solution containing an alkali metal hydroxide, an alkali metal organic acid salt, or an alkali metal inorganic acid salt may be used. As the alkali metal hydroxide, organic acid and inorganic acid, various substances used as the above-mentioned chemicals may be used. Preferred metal ion-containing raw water includes alkali metal salt-containing raw water of inorganic acid, specifically, sodium chloride-containing raw water, potassium chloride-containing raw water, lithium chloride-containing raw water, sodium carbonate-containing raw water, potassium carbonate-containing raw water, Examples include raw water containing lithium carbonate. The concentration of the drug in the raw water may be, for example, about 0.1 to 60% by mass, preferably about 0.1 to 30% by mass, more preferably 0.5 to 20% by mass, as a solute ratio with respect to water. It may be a degree.
 例えば、洗浄流体は、有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を含有するとともに、0.1質量%以上の塩類を含む水性媒体であってもよい。例えば、そのような水性媒体としては、海水(塩化ナトリウム濃度2~4質量%)、汽水(塩化ナトリウム濃度0.5~2質量%)、油田やガス田の採掘の際に発生する随伴水などであってもよく、またはこれらを処理して得られる、より塩類濃度の高い水など、自然環境下の原水に由来して得られるさまざまな塩類を含む水を洗浄流体として用いてもよい。 For example, the cleaning fluid may be an aqueous medium containing organic carbon, particularly a causative substance that causes physically irreversible film fouling, and containing 0.1% by mass or more of salts. Examples of such an aqueous medium include seawater (sodium chloride concentration of 2 to 4% by mass), brackish water (sodium chloride concentration of 0.5 to 2% by mass), and accompanying water generated when oil fields and gas fields are mined. Alternatively, water containing various salts obtained from raw water in the natural environment, such as water with a higher salt concentration obtained by treating them, may be used as the cleaning fluid.
 または、洗浄流体としての水性媒体が、0.1質量%以上、0.5質量%以上、1質量%以上、または2質量%以上の塩化ナトリウム濃度を有していてもよい。また、塩化ナトリウム濃度は、例えば、27質量%以下であってもよく、20質量%以下であってもよい。所定の温度で用いる限り、洗浄流体として好適に使用することが可能である。
 また洗浄流体中には、塩化ナトリウム以外にも、塩化カリウムなどのアルカリ金属塩;塩化マグネシウム、硫酸マグネシウム、塩化カルシウム、硫酸カルシウムなどのアルカリ土類金属塩などが含まれていてもよい。
Alternatively, the aqueous medium as the cleaning fluid may have a sodium chloride concentration of 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, or 2% by mass or more. Moreover, sodium chloride concentration may be 27 mass% or less, for example, and may be 20 mass% or less. As long as it is used at a predetermined temperature, it can be suitably used as a cleaning fluid.
In addition to sodium chloride, the cleaning fluid may contain alkali metal salts such as potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate.
 洗浄流体のpHは、水性媒体のままであってもよいし、水性媒体に対してpH調節剤を用いて調節してもよい。洗浄流体のpHは、例えば、5~14程度であってもよく、好ましくは5.5~12程度、より好ましくは6~11程度であってもよい。pHが中性領域(pH6~8)であると、再生処理後の洗浄流体の廃棄処理上好ましく、pHが弱塩基性(pH8~11)であると、再生性能が良好である。 The pH of the cleaning fluid may remain as an aqueous medium or may be adjusted using a pH adjuster with respect to the aqueous medium. The pH of the cleaning fluid may be, for example, about 5 to 14, preferably about 5.5 to 12, and more preferably about 6 to 11. When the pH is in the neutral range (pH 6 to 8), it is preferable for disposal of the cleaning fluid after the regeneration treatment, and when the pH is weakly basic (pH 8 to 11), the regeneration performance is good.
 さらに、必要に応じて、再生工程で用いられる水性媒体を、複数回繰り返して用いてもよい。このような繰り返しの利用により、洗浄流体中の有機体炭素の濃度を濃縮し、廃棄物としての洗浄流体の減容化を図ってもよい。 Furthermore, if necessary, the aqueous medium used in the regeneration step may be repeatedly used a plurality of times. By repeatedly using such a method, the concentration of organic carbon in the cleaning fluid may be concentrated to reduce the volume of the cleaning fluid as waste.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」および「部」は特に断りのない限り、それぞれ「質量%」および「質量部」を表す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, “%” and “parts” represent “% by mass” and “parts by mass”, respectively, unless otherwise specified.
(カチオン性基密度の算出)
 市販のイオン交換樹脂を含め、カチオン性基の密度は、高分子の骨格構造から、高分子の単位分子量(M)(g/mol)あたりのカチオン性基数(N)に基づき算出した(下式)。
 カチオン性基密度=(N/M)×1000(mmol/g)
(Calculation of cationic group density)
The density of cationic groups, including commercially available ion exchange resins, was calculated based on the number of cationic groups (N) per unit molecular weight (M) (g / mol) of the polymer from the polymer skeleton structure (the following formula) ).
Cationic group density = (N / M) × 1000 (mmol / g)
(Cl/Cモル比の測定)
 吸着材0.1gを、4%のNaOH水溶液30gに添加し、3時間攪拌させ、カチオン性基をOH-型に交換した。次に、OH-型に交換後の樹脂をイオン交換水で十分に洗浄した後、吸着材0.1gを4%のHCl水溶液30gに添加し、3時間攪拌させ、カチオン性基をCl-型に交換した。交換後の樹脂をイオン交換水で十分に洗浄した後、該樹脂の断面を切り出し、厚み100nm、3μm×3μm四方の超薄切片を作製した。該超薄切片を、透過型電子顕微鏡(TEM)-エネルギー分散型X線分光法(EDX)(JEOL製JEM-2100F、JED-2300T)により分析し、Clをマッピングした際に、Clの分布が均一であれば任意の5点を、相分離構造であれば高濃度相をランダムに5点選び、Cl/Cモル比を算出した。Cl/Cモル比が0.2以上であれば、該点をカチオン性基/Cモル比が0.2以上で含有する点と判定した。
(Measurement of Cl / C molar ratio)
0.1 g of the adsorbent was added to 30 g of 4% NaOH aqueous solution and stirred for 3 hours to exchange the cationic group to OH-type. Next, after thoroughly washing the resin after the exchange to OH − type with ion exchange water, 0.1 g of the adsorbent is added to 30 g of 4% HCl aqueous solution and stirred for 3 hours to remove the cationic group from the Cl − type. Was replaced. After the exchanged resin was sufficiently washed with ion-exchanged water, a cross section of the resin was cut out, and an ultrathin slice having a thickness of 100 nm, 3 μm × 3 μm square was prepared. The ultrathin section was analyzed by transmission electron microscope (TEM) -energy dispersive X-ray spectroscopy (EDX) (JEOL JEM-2100F, JED-2300T). If it was uniform, arbitrary 5 points were selected, and if it was a phase separation structure, 5 high-concentration phases were randomly selected, and the Cl / C molar ratio was calculated. If the Cl / C molar ratio was 0.2 or more, the point was determined to be a point containing a cationic group / C molar ratio of 0.2 or more.
(バイオポリマーの吸着率1)
 バイオポリマーのモデル物質としてアルギン酸ナトリウム(和光純薬工業株式会社製、型番:199-09961)の吸着評価を実施した。各実施例と比較例で得られた吸着材1.0g(12時間真空乾燥機にて乾燥させた状態での質量であり、以下の記載において同じ)を200mLのモデル海水(アルギン酸ナトリウム濃度:4.3mg―C/L、NaCl:3.5%)に添加し、マグネチックホットスターラーにより攪拌した(180rpm、25℃)。18時間攪拌の前後の上澄み液40mlを全有機炭素計によって評価し、該吸着材によるバイオポリマーの吸着率を以下のように評価した。
 バイオポリマーの吸着率=(吸着評価前のアルギン酸ナトリウム濃度―吸着評価後のアルギン酸ナトリウム濃度)/吸着評価前のアルギン酸ナトリウム濃度×100(%)
(Biopolymer adsorption rate 1)
Adsorption evaluation of sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd., model number: 199-09961) was carried out as a biopolymer model substance. 200 g of model sea water (concentration of sodium alginate: 4) is obtained by using 1.0 g of the adsorbent obtained in each of the Examples and Comparative Examples (the mass in the state dried in a vacuum dryer for 12 hours and the same in the following description). .3 mg-C / L, NaCl: 3.5%) and stirred with a magnetic hot stirrer (180 rpm, 25 ° C.). 40 ml of the supernatant liquid before and after stirring for 18 hours was evaluated by a total organic carbon meter, and the adsorption rate of the biopolymer by the adsorbent was evaluated as follows.
Biopolymer adsorption rate = (sodium alginate concentration before adsorption evaluation−sodium alginate concentration after adsorption evaluation) / sodium alginate concentration before adsorption evaluation × 100 (%)
(膨潤度の評価)
 吸着材1gを25℃の水に12時間浸漬させた後、吸着材を遠心脱水して秤量(A)した後、105℃で4時間乾燥して秤量(B)する。以下の式より、膨潤度を求めた。
    膨潤度=[(A-B)/(B)]×100 (%)
(Evaluation of swelling degree)
After 1 g of the adsorbent is immersed in 25 ° C. water for 12 hours, the adsorbent is subjected to centrifugal dehydration and weighed (A), then dried at 105 ° C. for 4 hours and weighed (B). The degree of swelling was determined from the following formula.
Swelling degree = [(AB) / (B)] × 100 (%)
(吸着材の体積変化率)
 吸着材5.0gを25℃の水に12時間浸漬させた後、内径15.4mmクロマトカラム管(柴田科学株式会社製)に、高さが5cmになるように吸着材を充填した。そこへ、1N HClを3BV通液したのち、イオン交換水を3BV通液した。通液を停止後、クロマトカラム全体を80℃に加温した水浴に1時間浸漬させた際の、浸漬前後の吸着材の体積変化率を下記式に従って算出した。
体積変化率(倍)=80℃加温後の吸着材高さ(cm)/5cm
 前記体積変化率が1.2倍以下の場合をA、1.2倍をこえる場合をBと評価した。
(Volume change rate of adsorbent)
After immersing 5.0 g of the adsorbent in water at 25 ° C. for 12 hours, the adsorbent was packed in a 15.4 mm inner diameter chromatographic column tube (manufactured by Shibata Kagaku Co., Ltd.) so that the height was 5 cm. After passing 1N HCl through 3BV, ion-exchanged water was passed through 3BV. After stopping the flow, the volume change rate of the adsorbent before and after immersion was calculated according to the following formula when the entire chromatographic column was immersed in a water bath heated to 80 ° C. for 1 hour.
Volume change rate (times) = Adsorbent height after heating at 80 ° C. (cm) / 5 cm
A case where the volume change rate was 1.2 times or less was evaluated as A, and a case where the volume change rate exceeded 1.2 times was evaluated as B.
(ろ過膜の透水性評価)
 印旛沼(千葉県)から採取した表流水(有機体炭素濃度=3.6mg-C/L、pH=8.7)を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水に3.5%分のNaClを添加した。得られた液1Lに、作製した吸着材を5g投入し、25℃にて4時間振とうした。振とう後、吸着材をろ別し、吸着処理液を得た。
 得られた吸着処理液をFlux2.0(m/m/日)でろ過膜に対して通液するとともに、30分に1回Flux3.0m/m/日)の純水で逆洗浄を実施し、膜を通液する際の圧力変化を評価し、60kPaに到達するまでの時間(分)を求め、以下の基準にて、長期の透水性を評価した。
 A:900分以上 B:600分以上900分未満 C:600分未満
(Water permeability evaluation of filtration membrane)
Surface water (organic carbon concentration = 3.6 mg-C / L, pH = 8.7) collected from Inba Marsh (Chiba Prefecture), first, stainless mesh cartridge filter (TMP-2, manufactured by Advanced Technology) with an exclusion diameter of 2 μm ) To remove insoluble matters, and 3.5% of NaCl was added to the filtered water. 5 g of the produced adsorbent was added to 1 L of the obtained liquid and shaken at 25 ° C. for 4 hours. After shaking, the adsorbent was filtered off to obtain an adsorption treatment liquid.
The obtained adsorption treatment liquid was passed through a filtration membrane with Flux 2.0 (m 3 / m 2 / day) and reversely with pure water of Flux 3.0 m 3 / m 2 / day) once every 30 minutes. Washing was performed, the pressure change when passing through the membrane was evaluated, the time (min) until reaching 60 kPa was determined, and long-term water permeability was evaluated according to the following criteria.
A: 900 minutes or more B: 600 minutes or more and less than 900 minutes C: Less than 600 minutes
(吸着材の再生)
 アルギン酸ナトリウムを吸着後、ろ別し、所定の温度に設定したモデル海水1に浸漬、1時間攪拌することでアルギン酸ナトリウムを脱離させ再生処理した。下記式により、再生効率を評価した。
 吸着材の再生効率=再生処理後の吸着率/再生処理前の吸着率×100(%)
(Regeneration of adsorbent)
After adsorbing sodium alginate, it was filtered and immersed in model seawater 1 set to a predetermined temperature and stirred for 1 hour to desorb sodium alginate and regenerate it. The regeneration efficiency was evaluated by the following formula.
Adsorbent regeneration efficiency = adsorption rate after regeneration process / adsorption rate before regeneration process x 100 (%)
(耐熱水溶解性)
 吸着材を105℃で4時間乾燥し、その重さをYgとして秤量した。秤量した吸着材を浴比1/30で所定の温度に保持した熱水に1時間浸漬した後回収し、回収した吸着材をさらに105℃で4時間乾燥して、その重さをZgとして秤量した。この吸着材の溶解度(X)を、下記式により算出した。
  X=[(Y-Z)/(Y)]×100 (%)
 Xが5%以下である場合、吸着材が所定の温度の熱水に対して、耐熱水溶解性があると判断した。
(Heat resistant water solubility)
The adsorbent was dried at 105 ° C. for 4 hours, and its weight was weighed as Yg. The weighed adsorbent was recovered after being immersed in hot water maintained at a predetermined temperature at a bath ratio of 1/30 for 1 hour. The collected adsorbent was further dried at 105 ° C. for 4 hours, and its weight was weighed as Zg. did. The solubility (X) of this adsorbent was calculated by the following formula.
X = [(Y−Z) / (Y)] × 100 (%)
When X was 5% or less, it was determined that the adsorbent was soluble in hot water with respect to hot water at a predetermined temperature.
[実施例1-1]
 カチオン性基密度が23.2(mmol/g)であるポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)を用いて架橋させた後、粉砕処理を施した。得られた粉砕物を多量の80℃熱水で攪拌洗浄することで、表1に示すとおり目的の吸着材1-1を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-1の25℃水中の膨潤度は276%であった。
[Example 1-1]
Polyethyleneimine having a cationic group density of 23.2 (mmol / g) (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) and an epoxy compound (“Denacol EX-810” manufactured by Nagase ChemteX Corp.) After being used and cross-linked, it was crushed. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the target adsorbent 1-1 as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-1 in 25 ° C. water was 276%.
 得られた吸着材1-1を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。吸着材1-1の80℃熱水での体積変化率はBであった。結果を表2に示す。 The obtained adsorbent 1-1 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating water permeability with a pore diameter of 0.1 μm, the long-term water permeability was A. The volume change rate of the adsorbent 1-1 with 80 ° C. hot water was B. The results are shown in Table 2.
[実施例1-2]
 カチオン性基密度が23.2(mmol/g)であるポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)25質量部と親水性高分子であるエチレン-ビニルアルコール系共重合体(株式会社クラレ製、「E-105」、δ=28)75質量部をラボプラストミルにて、180℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施し粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄することで、表1に示すとおり目的の吸着材1-2を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-2の25℃水中の膨潤度は80%であった。
[Example 1-2]
25 parts by mass of polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) having a cationic group density of 23.2 (mmol / g) and an ethylene-vinyl alcohol copolymer (hydrophilic polymer) 75 parts by mass of Kuraray Co., Ltd., “E-105”, δ = 28) was melt kneaded for 3 minutes at 180 ° C. using a Laboplast mill, and the resulting kneaded product was cooled and then pulverized to obtain particles. It was. Furthermore, this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C. As a result, the target adsorbent 1-2 was obtained as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-2 in 25 ° C. water was 80%.
 得られた吸着材1-2を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、ポリアクリロニトリル(PAN)製UF膜(旭化成株式会社製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。吸着材1-2の80℃熱水での体積変化率はAであった。結果を表2に示す。
 なお、本吸着材をTEM-EDXで分析したところ、高濃度相のCl/Cモル比は0.45であった。
The obtained adsorbent 1-2 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh, and after the adsorption treatment, a UF membrane made of polyacrylonitrile (PAN) ( As a result of evaluating the water permeability of Asahi Kasei Co., Ltd., molecular weight cut-off 100 kDa), the long-term water permeability was A. The volume change rate of the adsorbent 1-2 with 80 ° C. hot water was A. The results are shown in Table 2.
When this adsorbent was analyzed by TEM-EDX, the high concentration phase Cl / C molar ratio was 0.45.
[実施例1-3]
 カチオン性基密度が23.2(mmol/g)であるポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)10質量部と親水性高分子であるエチレン-ビニルアルコール系共重合体(株式会社クラレ製、「F-101」、δ=28)90質量部をラボプラストミルにて、210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施し粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄した。得られた洗浄物を塩酸に浸漬させ、塩酸塩型に置換した吸着材1-3を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-3の25℃水中の膨潤度は40%であった。
[Example 1-3]
10 parts by mass of polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) having a cationic group density of 23.2 (mmol / g) and an ethylene-vinyl alcohol copolymer (hydrophilic polymer) 90 parts by mass of Kuraray Co., Ltd. “F-101”, δ = 28) was melt-kneaded at 210 ° C. for 3 minutes with a Laboplast mill, and the resulting kneaded product was cooled and then pulverized to obtain particles. It was. Furthermore, this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C. did. The obtained washed product was immersed in hydrochloric acid to obtain an adsorbent 1-3 substituted with a hydrochloride type. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-3 in 25 ° C. water was 40%.
 得られた吸着材1-3を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。吸着材1-3の80℃熱水での体積変化率はAであった。結果を表2に示す。 The obtained adsorbent 1-3 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating water permeability with a pore diameter of 0.1 μm, the long-term water permeability was A. The volume change rate of the adsorbent 1-3 in 80 ° C. hot water was A. The results are shown in Table 2.
[実施例1-4]
 カチオン性基密度が17.5(mmol/g)であるポリアリルアミン(ニットーボーメディカル(株)製、「PAA-15C」)35質量部と親水性高分子であるエチレン-ビニルアルコール系共重合体(株式会社クラレ製、「G-156」、δ=25)65質量部をラボプラストミルにて、180℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施し、粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水に浸漬、攪拌洗浄することで、表1に示すとおり目的の吸着材1-4を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-4の25℃水中の膨潤度は93%であった。
[Example 1-4]
35 parts by weight of polyallylamine (Nittobo Medical Co., Ltd., “PAA-15C”) having a cationic group density of 17.5 (mmol / g) and a hydrophilic polymer, an ethylene-vinyl alcohol copolymer ( Kuraray Co., Ltd., “G-156”, δ = 25) 65 parts by mass was melt kneaded at 180 ° C. for 3 minutes using a Laboplast mill, and the resulting kneaded product was cooled and then pulverized to give particles. Obtained. Furthermore, the particles were subjected to a crosslinking treatment with a 25% solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) for 1 hour, filtered and then immersed in a large amount of hot water at 80 ° C. The target adsorbent 1-4 was obtained by stirring and washing as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-4 in 25 ° C. water was 93%.
 得られた吸着材1-4を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。吸着材1-4の80℃熱水での体積変化率はAであった。結果を表2に示す。
 なお、本吸着材をTEM-EDXで分析したところ、高濃度相のCl/Cモル比は0.3であった。
The obtained adsorbent 1-4 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating water permeability with a pore diameter of 0.1 μm, the long-term water permeability was A. The volume change rate of the adsorbent 1-4 in 80 ° C. hot water was A. The results are shown in Table 2.
When this adsorbent was analyzed by TEM-EDX, the Cl / C molar ratio of the high concentration phase was 0.3.
[実施例1-5]
 カチオン性基密度が17.5(mmol/g)であるポリアリルアミン(ニットーボーメディカル株式会社製、「PAA-15C」)をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)を用いて架橋させた後、粉砕処理を施した。得られた粉砕物を多量の80℃熱水で攪拌洗浄することで、表1に示すとおり目的の吸着材1-5を得た。なお、吸着材1-5は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-5の25℃水中の膨潤度は346%であった。
[Example 1-5]
A polyallylamine (Nitto Bo Medical Co., Ltd., “PAA-15C”) having a cationic group density of 17.5 (mmol / g) was used with an epoxy compound (Nagase ChemteX Co., Ltd., “Denacol EX-810”). After cross-linking, pulverization was performed. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the target adsorbent 1-5 as shown in Table 1. The adsorbent 1-5 had hot water solubility in 80 ° C. hot water. The degree of swelling of the obtained adsorbent 1-5 in 25 ° C. water was 346%.
 得られた吸着材1-5を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PE製MF膜(三菱レイヨン株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。吸着材1-5の80℃熱水での体積変化率はBであった。結果を表2に示す。 The obtained adsorbent 1-5 was immersed and stirred in model seawater, and a sodium alginate adsorption test was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and the resulting treated water was used to make a PE MF membrane (Mitsubishi Rayon Co., Ltd.). As a result, the long-term water permeability was A. The volume change rate of the adsorbent 1-5 in 80 ° C. hot water was B. The results are shown in Table 2.
[実施例1-6]
 DMSO中にポリメチルメタクリレート(株式会社クラレ製、「パラペットG」)を溶解させ、5%溶液を調製した。また、DMSO中にカチオン性基密度が23.2(mmol/g)であるポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)を溶解させ、5%溶液を調製した。ポリメチルメタクリレート5%溶液75質量部とポリエチレンイミン5%溶液25質量部を混合し、得られた混合溶液をポリエチレンフィルム上にてキャスト製膜を行い、乾燥し、所望のフィルムを得た。次いで、得られたフィルムを粉砕したのち、エポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別したのち、多量の80℃熱水に浸漬、攪拌洗浄することで、表1に示すとおり目的の吸着材1-6を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-6の25℃水中の膨潤度は40%であった。
[Example 1-6]
Polymethyl methacrylate (manufactured by Kuraray Co., Ltd., “Parapet G”) was dissolved in DMSO to prepare a 5% solution. Polyethyleneimine having a cationic group density of 23.2 (mmol / g) was dissolved in DMSO (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) to prepare a 5% solution. 75 parts by mass of a 5% polymethyl methacrylate solution and 25 parts by mass of a 5% polyethyleneimine solution were mixed, and the resulting mixed solution was cast on a polyethylene film and dried to obtain a desired film. Next, after pulverizing the obtained film, it was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C. As shown in Table 1, the intended adsorbent 1-6 was obtained by immersing in 80 ° C. hot water and washing with stirring. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-6 in 25 ° C. water was 40%.
 得られた吸着材1-6を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はBであった。吸着材1-6の80℃熱水での体積変化率はAであった。結果を表2に示す。 The obtained adsorbent 1-6 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating the water permeability of the pore diameter of 0.1 μm, the long-term water permeability was B. The volume change rate of the adsorbent 1-6 in 80 ° C. hot water was A. The results are shown in Table 2.
[実施例1-7]
 カチオン性基密度が23.2(mmol/g)であるポリビニルアミン(三菱レイヨン株式会社製、「PVAM-0595B」)25質量部と親水性高分子であるエチレン-ビニルアルコール系共重合体(株式会社クラレ製、「E-105」、δ=28)75質量部をラボプラストミルにて、180℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施し粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄することで、表1に示すとおり目的の吸着材1-7を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-7の25℃水中の膨潤度は70%であった。
[Example 1-7]
25 parts by mass of polyvinylamine (“PVAM-0595B”, manufactured by Mitsubishi Rayon Co., Ltd.) having a cationic group density of 23.2 (mmol / g) and an ethylene-vinyl alcohol copolymer (stock) 75 parts by mass of Kuraray Co., Ltd., “E-105”, δ = 28) was melt kneaded for 3 minutes at 180 ° C. using a lab plast mill, and the resulting kneaded product was cooled and pulverized to obtain particles. . Furthermore, this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C. As a result, the target adsorbent 1-7 was obtained as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-7 in 25 ° C. water was 70%.
 得られた吸着材1-7を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。吸着材1-7の80℃熱水での体積変化率はAであった。結果を表2に示す。
 なお、本吸着材をTEM-EDXで分析したところ、高濃度相のCl/Cモル比は0.4であった。
The obtained adsorbent 1-7 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating water permeability with a pore diameter of 0.1 μm, the long-term water permeability was A. The volume change rate of the adsorbent 1-7 in 80 ° C. hot water was A. The results are shown in Table 2.
When this adsorbent was analyzed by TEM-EDX, the high concentration phase Cl / C molar ratio was 0.4.
[実施例1-8]
 市販のヒュームドシリカ(Aldrich製、Silica,fumed、型番:S5505-100G)12gをメタノール中に分散させ、10%メタノールゾルを調製した。10%メタノールゾルを攪拌しながら、シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン、信越化学工業株式会社製、KBM-403)3mLを添加、60℃で6h反応させた後、メタノールで3回洗浄し、エポキシ修飾シリカ基材を得た。
 カチオン性基密度が23.2(mmol/g)であるポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)の60質量%水溶液25gを80℃に加熱したところへ、エポキシ修飾シリカ基材5gを徐々に添加し、1h反応させた。得られた粒子をろ別後、多量の80℃熱水に浸漬、攪拌洗浄することで、表1に示すとおり目的の吸着材1-8を得た。なお、吸着材は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材1-8の25℃水中の膨潤度は90%であった。
[Example 1-8]
12 g of commercially available fumed silica (manufactured by Aldrich, Silica, fumed, model number: S5505-100G) was dispersed in methanol to prepare a 10% methanol sol. While stirring 10% methanol sol, 3 mL of a silane coupling agent (3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403) was added, reacted at 60 ° C. for 6 hours, Washing three times gave an epoxy-modified silica substrate.
An epoxy-modified silica group was obtained by heating 25 g of a 60 mass% aqueous solution of polyethyleneimine (Nippon Shokubai Co., Ltd., “Epomin SP-200”) having a cationic group density of 23.2 (mmol / g) to 80 ° C. 5 g of the material was gradually added and reacted for 1 h. The obtained particles were filtered, immersed in a large amount of hot water at 80 ° C., washed with stirring, and the target adsorbent 1-8 was obtained as shown in Table 1. In addition, the adsorbent had heat-resistant water solubility with respect to 80 degreeC hot water. The degree of swelling of the obtained adsorbent 1-8 in 25 ° C. water was 90%.
 得られた吸着材1-8のポリエチレンイミン付加量は、ポリエチレンイミン付加反応前後の重量増加から算出し、ポリエチレンイミンとエポキシ修飾シリカ基材の質量比は10/90であった。
 得られた吸着材1-8を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はBであった。吸着材1-8の80℃熱水での体積変化率はAであった。結果を表2に示す。
The amount of polyethyleneimine added to the adsorbent 1-8 obtained was calculated from the weight increase before and after the polyethyleneimine addition reaction, and the mass ratio of polyethyleneimine to the epoxy-modified silica substrate was 10/90.
The obtained adsorbent 1-8 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating the water permeability of the pore diameter of 0.1 μm, the long-term water permeability was B. The volume change rate of the adsorbent 1-8 in 80 ° C. hot water was A. The results are shown in Table 2.
[比較例1-1]
 市販の帯磁性イオン交換樹脂(前澤工業株式会社製、「MIEX樹脂」)を多量の80℃熱水にて浸漬、攪拌洗浄することで吸着材1-9を得た。吸着材1-9のカチオン性基密度は、特許文献 特表平10-504995号公報に記載の高分子骨格構造をもとに算出した結果、4.9(mmol/g)であり、25℃水中の膨潤度は170%であった。
[Comparative Example 1-1]
An adsorbent 1-9 was obtained by immersing a commercially available magnetic ion exchange resin (manufactured by Maezawa Kogyo Co., Ltd., “MIEX resin”) in a large amount of hot water at 80 ° C. and washing with stirring. The cationic group density of the adsorbent 1-9 was 4.9 (mmol / g) as a result of calculation based on the polymer skeleton structure described in Japanese Patent Application Laid-Open No. 10-504959. The degree of swelling in water was 170%.
 得られた吸着材1-9を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はCであった。吸着材1-9の80℃熱水での体積変化率はAであった。結果を表2に示す。 The obtained adsorbent 1-9 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating the water permeability of the pore diameter of 0.1 μm, the long-term water permeability was C. The volume change rate of the adsorbent 1-9 in 80 ° C. hot water was A. The results are shown in Table 2.
[比較例1-2]
 市販の陰イオン交換樹脂(三菱化学株式会社製、「WA10」)を多量の80℃熱水にて浸漬、攪拌洗浄することで吸着材1-10を得た。吸着材1-10のカチオン性基密度は、非特許文献 ダイヤイオン2イオン交換樹脂・合成吸着材マニュアルに記載の高分子骨格構造をもとに算出した結果、7.8(mmol/g)であり、25℃水中の膨潤度は157%であった。
[Comparative Example 1-2]
A commercially available anion exchange resin (“WA10” manufactured by Mitsubishi Chemical Corporation) was immersed in a large amount of hot water at 80 ° C., washed with stirring, and adsorbent 1-10 was obtained. The cationic group density of the adsorbent 1-10 was calculated based on the polymer skeleton structure described in the non-patent document Diaion 2 Ion Exchange Resin / Synthetic Adsorbent Manual, and was found to be 7.8 (mmol / g). Yes, the degree of swelling in water at 25 ° C. was 157%.
 得られた吸着材1-10を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。また、印旛沼の表流水に3.5%NaClを添加した液に、吸着材を添加し、吸着処理をおこなったのち、得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はCであった。吸着材1-10の80℃熱水での体積変化率はAであった。結果を表2に示す。 The obtained adsorbent 1-10 was immersed and stirred in model seawater, and an adsorption test for sodium alginate was performed. In addition, an adsorbent was added to a solution obtained by adding 3.5% NaCl to the surface water of Inba Marsh and adsorbed, and then the PVDF MF membrane (manufactured by Asahi Kasei Co., Ltd.) was used. As a result of evaluating the water permeability of the pore diameter of 0.1 μm, the long-term water permeability was C. The volume change rate of the adsorbent 1-10 in 80 ° C. hot water was A. The results are shown in Table 2.
[比較例1-3]
 アミノ基密度が6.2(mmol/g)であるキトサンの架橋粒子(株式会社キミカ製、「キミカキトサンF」)を多量の80℃熱水にて浸漬、攪拌洗浄することで吸着材1-11を得た。25℃水中の膨潤度は166%であった。
[Comparative Example 1-3]
The adsorbent 1- 1 is obtained by immersing crosslinked chitosan particles having an amino group density of 6.2 (mmol / g) (“Kimikakitosan F”, manufactured by Kimika Co., Ltd.) in a large amount of hot water at 80 ° C. and washing with stirring. 11 was obtained. The degree of swelling in water at 25 ° C. was 166%.
 得られた吸着材1-11を、モデル海水に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。吸着試験後に得られた処理水を用いて、PVDF製MF膜(旭化成株式会社製、孔径0.1μm)の透水性を評価した結果、長期透水性はCであった。吸着材1-11の80℃熱水での体積変化率はAであった。結果を表2に示す。 The obtained adsorbent 1-11 was immersed in model seawater and stirred, and an adsorption test for sodium alginate was performed. As a result of evaluating the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm) using the treated water obtained after the adsorption test, the long-term water permeability was C. The volume change rate of the adsorbent 1-11 in 80 ° C. hot water was A. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2に示すように、実施例1-1~1-8では、バイオポリマーを効率的に吸着することが可能であり、そのため膜ろ過工程において長期にわたって高い透水性を維持することが可能である。一方、比較例1-1~1-3に示すように、アミノ基密度が低い高分子吸着材を用いた場合、バイオポリマーを吸着することができないため、十分な長期透水性が得られなかった。 As shown in Table 2, in Examples 1-1 to 1-8, it is possible to efficiently adsorb the biopolymer, and thus it is possible to maintain high water permeability over a long period in the membrane filtration step. . On the other hand, as shown in Comparative Examples 1-1 to 1-3, when a polymer adsorbent having a low amino group density was used, biopolymer could not be adsorbed, and sufficient long-term water permeability could not be obtained. .
[実施例1-9]
 実施例1-2に従い、吸着材1-2にアルギン酸ナトリウムを吸着させた後、吸着材をろ別した。次いで、ろ別した吸着材を80℃に調整した純水に浸漬し、1時間攪拌させることで再生処理を行った。その後、再生処理された吸着材をろ別回収した後、再度、実施例1-2と同様にしてアルギン酸ナトリウムの吸着率を求めた。評価結果を表3に示す。
[Example 1-9]
According to Example 1-2, after adsorbing sodium alginate on the adsorbent 1-2, the adsorbent was filtered off. Subsequently, the adsorbent separated by filtration was immersed in pure water adjusted to 80 ° C., and regenerated by stirring for 1 hour. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was determined again in the same manner as in Example 1-2. The evaluation results are shown in Table 3.
[実施例1-10]
 実施例1-3に従い、吸着材1-3にアルギン酸ナトリウムを吸着させた後、吸着材をろ別した。次いで、ろ別した吸着材を60℃に調整した上述のモデル海水に浸漬し、24時間攪拌させることで再生処理を行った。その後、再生処理された吸着材をろ別回収した後、再度、実施例1-3と同様にしてアルギン酸ナトリウムの吸着率を求めた。評価結果を表3に示す。
[Example 1-10]
According to Example 1-3, after adsorbing sodium alginate on the adsorbent 1-3, the adsorbent was filtered off. Subsequently, the adsorbent separated by filtration was immersed in the above-described model seawater adjusted to 60 ° C. and regenerated by stirring for 24 hours. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was determined again in the same manner as in Example 1-3. The evaluation results are shown in Table 3.
 表3に示すように、アルギン酸ナトリウムを吸着した吸着材に対して、再生処理を行った実施例1-9および1-10において、再生処理後の吸着材は、アルギン酸ナトリウムを再び高い吸着率で吸着することが可能である。その再生効率は、実施例1-9および1-10のいずれも90%以上である。 As shown in Table 3, in Examples 1-9 and 1-10 where the regeneration treatment was performed on the adsorbent that adsorbed sodium alginate, the adsorbent after the regeneration treatment again had a high adsorption rate of sodium alginate. It is possible to adsorb. The regeneration efficiency of both Examples 1-9 and 1-10 is 90% or more.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(バイオポリマーの吸着率2)
 バイオポリマーのモデル物質としてアルギン酸ナトリウム(和光純薬工業株式会社製、型番:199-09961)の吸着評価を実施した。各実施例と比較例で得られた吸着材1.0g(12時間真空乾燥機にて乾燥させた状態での質量であり、以下の記載において同じ)を200mLのモデル河川水1(アルギン酸ナトリウム濃度:4.3mg―C/L)もしくはモデル海水1(アルギン酸ナトリウム濃度:4.3mg―C/L、NaCl:3.5%)に添加し、マグネチックホットスターラーにより攪拌した(180rpm、25℃)。18時間攪拌の前後の上澄み液40mlを全有機炭素計によって評価し、該吸着材によるバイオポリマーの吸着率を以下のように評価した。
 バイオポリマーの吸着率=(吸着評価前のアルギン酸ナトリウム濃度―吸着評価後のアルギン酸ナトリウム濃度)/吸着評価前のアルギン酸ナトリウム濃度×100(%)
(Biopolymer adsorption rate 2)
Adsorption evaluation of sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd., model number: 199-09961) was carried out as a biopolymer model substance. 200 g of model river water 1 (sodium alginate concentration) was obtained from 1.0 g of the adsorbent obtained in each Example and Comparative Example (the mass in the state dried in a vacuum dryer for 12 hours and the same in the following description). : 4.3 mg-C / L) or model seawater 1 (sodium alginate concentration: 4.3 mg-C / L, NaCl: 3.5%), and stirred with a magnetic hot stirrer (180 rpm, 25 ° C.) . 40 ml of the supernatant liquid before and after stirring for 18 hours was evaluated by a total organic carbon meter, and the adsorption rate of the biopolymer by the adsorbent was evaluated as follows.
Biopolymer adsorption rate = (sodium alginate concentration before adsorption evaluation−sodium alginate concentration after adsorption evaluation) / sodium alginate concentration before adsorption evaluation × 100 (%)
(フミン質の吸着率)
 フミン質のモデル物質としてフミン酸ナトリウム(Aldrich社製、型番:H16752-100G)の吸着評価を実施した。各実施例と比較例で得られた吸着材1.0gを200mLのモデル河川水2(フミン酸ナトリウム濃度:4.3mg―C/L)もしくはモデル海水2(フミン酸ナトリウム濃度:4.3mg―C/L、NaCl:3.5%)に添加し、マグネチックホットスターラーにより攪拌した(180rpm、25℃)。18時間攪拌の前後の上澄み液40mlを全有機炭素計によって評価し、該樹脂によるフミン質の吸着率を以下のように評価した。
 フミン質の吸着率=(吸着評価前のフミン酸ナトリウム濃度―吸着評価後のフミン酸ナトリウム濃度)/吸着評価前のフミン酸ナトリウム濃度×100(%)
(Humine adsorption rate)
Adsorption evaluation of sodium humate (manufactured by Aldrich, model number: H16752-100G) was performed as a model substance of humic substances. In each Example and Comparative Example, 1.0 g of the adsorbent obtained from 200 mL of model river water 2 (sodium humate concentration: 4.3 mg-C / L) or model seawater 2 (sodium humate concentration: 4.3 mg-) C / L, NaCl: 3.5%) and stirred with a magnetic hot stirrer (180 rpm, 25 ° C.). 40 ml of the supernatant before and after stirring for 18 hours was evaluated by a total organic carbon meter, and the adsorption rate of humic substances by the resin was evaluated as follows.
Humic acid adsorption rate = (sodium humate concentration before adsorption evaluation−sodium humate concentration after adsorption evaluation) / sodium humate concentration before adsorption evaluation × 100 (%)
(バイオポリマーとフミン質の吸着率の比)
 上記のバイオポリマーの吸着率とフミン質の吸着率の比から、以下の算式によりバイオポリマーとフミン質の吸着率の比を算出した。
 バイオポリマーとフミン質の吸着率の比=バイオポリマーの吸着率/フミン質の吸着率
(Ratio of adsorption rate of biopolymer and humic substance)
From the ratio of the adsorption rate of the biopolymer and the adsorption rate of the humic substance, the ratio of the adsorption rate of the biopolymer and the humic substance was calculated by the following formula.
Ratio of adsorption rate of biopolymer and humic substance = adsorption rate of biopolymer / adsorption rate of humic substance
(ろ過膜の透水性評価)
 処理対象の水をFlux2.0(m/m/日)でろ過膜に対して通液するとともに、30分に1回Flux3.0m/m/日)の純水で逆洗浄を実施し、膜を通液する際の圧力変化を評価し、60kPaに到達するまでの時間(分)を求め、以下の基準にて、長期の透水性を評価した。
 A:1000分以上
 B:1000分未満
(Water permeability evaluation of filtration membrane)
While passing liquid to the filtration membrane of water processed with Flux2.0 (m 3 / m 2 / day), the backwashing once Flux3.0m 3 / m 2 / day) of pure water in 30 minutes The pressure change at the time of carrying through the membrane was evaluated, the time (min) until reaching 60 kPa was determined, and long-term water permeability was evaluated according to the following criteria.
A: 1000 minutes or more B: Less than 1000 minutes
[参考例2-1]
 25℃水中の膨潤度が113%であるメタクリレート系ポリアミン型である市販イオン交換樹脂(ピュロライト株式会社製、「ピュロライトA830W」)を多量の80℃熱水にて浸漬、攪拌洗浄することで表4に示す吸着材2-1を得た。なお、吸着材2-1は、80℃熱水に対して耐熱水溶解性を有していた。吸着材2-1を用いて、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。結果を表5に示す。なお、ピュロライトA830WのサンプルをTEM-EDXにより測定したころ、Clは均一に分布しており、Cl/Cモル比は0.15であった。また、Clは均一に分布しているため、イオン交換容量からアミノ基密度を概算したところ、カチオン性基濃度は、7.4mmol/gであった。
 モデル河川水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整したモデル河川水1に浸漬し、1時間攪拌させ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、再度モデル河川水1に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表5に示す。
[Reference Example 2-1]
A commercially available ion exchange resin (Purolite Co., Ltd., “Purolite A830W”) having a swelling degree in water at 25 ° C. of 113% is immersed in a large amount of hot water at 80 ° C., and washed with stirring. The adsorbent 2-1 shown in FIG. The adsorbent 2-1 was soluble in hot water with respect to 80 ° C. hot water. The adsorption test of sodium alginate and sodium humate was performed by using the adsorbent 2-1 soaking and stirring in model river water 1 and model river water 2, respectively. The results are shown in Table 5. When a sample of Purolite A830W was measured by TEM-EDX, Cl was uniformly distributed and the Cl / C molar ratio was 0.15. Moreover, since Cl is uniformly distributed, the amino group density was estimated from the ion exchange capacity. As a result, the cationic group concentration was 7.4 mmol / g.
After the adsorption process of sodium alginate from the model river water 1, the adsorbent was filtered, immersed in the model river water 1 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was again immersed and stirred in the model river water 1, and an adsorption test for sodium alginate was performed. Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
[実施例2-2]
 ポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)を用いて架橋させた後、粉砕処理を施した。得られた粉砕物を多量の80℃熱水で攪拌洗浄することで、表4に示すとおり目的の吸着材2-2を得た。なお、吸着材2-2は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材の25℃水中の膨潤度は276%であった。
[Example 2-2]
Polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200”) was crosslinked using an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”), and then pulverized. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the intended adsorbent 2-2 as shown in Table 4. The adsorbent 2-2 was soluble in hot water with respect to 80 ° C. hot water. The degree of swelling of the obtained adsorbent in 25 ° C. water was 276%.
 得られた吸着材2-2を、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル河川水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整したモデル河川水1に浸漬し、1時間攪拌させ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、再度モデル河川水1に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表5に示す。
The obtained adsorbent 2-2 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
After the adsorption process of sodium alginate from the model river water 1, the adsorbent was filtered, immersed in the model river water 1 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was again immersed and stirred in the model river water 1, and an adsorption test for sodium alginate was performed. Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
[実施例2-3]
 主骨格である親水性高分子としてエチレン-ビニルアルコール系共重合体(株式会社クラレ製、「E-105」)75質量部とポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)25質量部をラボプラストミルにて、180℃において溶融混練し、得られた混練物を冷却後、粉砕処理を施し粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄することで、表4に示すとおり目的の吸着材2-3を得た。なお、吸着材2-3は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材の25℃水中の膨潤度は80%であった。
[Example 2-3]
75 parts by mass of an ethylene-vinyl alcohol copolymer (“E-105” manufactured by Kuraray Co., Ltd.) and polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) 25 as hydrophilic polymers as the main skeleton A mass part was melt-kneaded at 180 ° C. with a lab plast mill, and the obtained kneaded product was cooled and then pulverized to obtain particles. Furthermore, this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C. As a result, the intended adsorbent 2-3 was obtained as shown in Table 4. Note that the adsorbent 2-3 had solubility in hot water with respect to 80 ° C. hot water. The degree of swelling of the obtained adsorbent in 25 ° C. water was 80%.
 得られた吸着材2-3を、モデル海水1およびモデル海水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル海水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、90℃に調整したモデル水1に浸漬し、1時間攪拌させ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、再度モデル海水1に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表5に示す。
The obtained adsorbent 2-3 was immersed and stirred in each of model seawater 1 and model seawater 2, and an adsorption test for sodium alginate and sodium humate was performed.
After the adsorption process of sodium alginate from model seawater 1, the adsorbent was filtered off, immersed in model water 1 adjusted to 90 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was again immersed and stirred in the model seawater 1, and an adsorption test for sodium alginate was performed. Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
[実施例2-4]
 表6に示すように、吸着材2-3の再生に用いる水をモデル海水2にしたこと以外は実施例2-3と同様にして、吸着、再生の評価を行った。評価結果を表5に示す。
[Example 2-4]
As shown in Table 6, the adsorption and regeneration were evaluated in the same manner as in Example 2-3, except that the model seawater 2 was used as the water for regeneration of the adsorbent 2-3. The evaluation results are shown in Table 5.
[実施例2-5]
 表6に示すように、吸着材2-2の再生に用いる水を50℃のモデル河川水1にしたこと以外は実施例2-3と同様にして、吸着、再生の評価を行った。評価結果を表5に示す。
[Example 2-5]
As shown in Table 6, the adsorption and regeneration were evaluated in the same manner as in Example 2-3, except that the water used for regeneration of the adsorbent 2-2 was changed to model river water 1 at 50 ° C. The evaluation results are shown in Table 5.
[実施例2-6]
 主骨格である親水性高分子としてエチレン-ビニルアルコール系共重合体(株式会社クラレ製、「F-101」)70質量部とポリエチレンイミン(株式会社日本触媒製、「エポミンSP-200」)30質量部をラボプラストミルにて、210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施し粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄することで、表4に示すとおり目的の吸着材2-4を得た。なお、吸着材2-4は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材の25℃水中の膨潤度は101%であった。
[Example 2-6]
70 parts by mass of an ethylene-vinyl alcohol copolymer (“F-101” manufactured by Kuraray Co., Ltd.) and polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) 30 as hydrophilic polymers as the main skeleton A mass part was melt-kneaded at 210 ° C. for 3 minutes in a lab plast mill, and the obtained kneaded product was cooled and then pulverized to obtain particles. Furthermore, this particle was subjected to a crosslinking treatment for 1 hour with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at 25 ° C., filtered, and then stirred and washed with a large amount of hot water at 80 ° C. As a result, as shown in Table 4, the intended adsorbent 2-4 was obtained. The adsorbent 2-4 had hot water solubility in hot water at 80 ° C. The degree of swelling of the obtained adsorbent in 25 ° C. water was 101%.
 得られた吸着材2-4を、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル河川水2からのフミン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整したモデル河川水2に浸漬し、1時間攪拌させ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、再度モデル河川水1に浸漬、攪拌させ、フミン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表5に示す。
The obtained adsorbent 2-4 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
After the adsorption step of sodium humate from the model river water 2, the adsorbent was filtered, immersed in the model river water 2 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was again immersed and stirred in the model river water 1, and an adsorption test for sodium humate was performed. Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
[参考例2-7]
 25℃水中の膨潤度が85%であるスチレン系の強塩基性陰イオン交換樹脂(オルガノ株式会社製、「IRA400」)を多量の80℃熱水にて浸漬、攪拌洗浄することで吸着材2-5を得た。なお、吸着材2-5は、80℃熱水に対して耐熱水溶解性を有していた。吸着材2-5を用いて、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。結果を表5に示す。なお、IRA400のサンプルをTEM-EDXにより測定したころ、Clは均一に分布しており、Cl/Cモル比は0.05であった。また、Clは均一に分布しているため、イオン交換容量からアミノ基密度を概算したところ、3.7mmol/gであった。
 モデル河川水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整したモデル河川水1に浸漬し、1時間攪拌させ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、再度モデル河川水1に浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表5に示す。
[Reference Example 2-7]
Adsorbent 2 is obtained by immersing styrene-based strongly basic anion exchange resin (organo Co., Ltd., “IRA400”) having a degree of swelling of 85% in water at 25 ° C. with a large amount of hot water at 80 ° C., stirring and washing. -5 was obtained. The adsorbent 2-5 had hot water solubility in 80 ° C. hot water. Using the adsorbent 2-5, the model river water 1 and the model river water 2 were immersed and stirred, respectively, and an adsorption test for sodium alginate and sodium humate was performed. The results are shown in Table 5. When the sample of IRA400 was measured by TEM-EDX, Cl was uniformly distributed and the Cl / C molar ratio was 0.05. Further, since Cl is uniformly distributed, the amino group density was estimated from the ion exchange capacity, and it was 3.7 mmol / g.
After the adsorption process of sodium alginate from the model river water 1, the adsorbent was filtered, immersed in the model river water 1 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was again immersed and stirred in the model river water 1, and an adsorption test for sodium alginate was performed. Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
[実施例2-8]
 ポリアリルアミン(ニットーボーメディカル株式会社製、「PAA-15C」)をエポキシ化合物(ナガセケムテックス株式会社製、「デナコールEX-810」)を用いて架橋させた後、粉砕処理を施した。得られた粉砕物を多量の80℃熱水で攪拌洗浄することで、表4に示すとおり目的の吸着材2-6を得た。なお、吸着材2-6は、80℃熱水に対して耐熱水溶解性を有していた。得られた吸着材の25℃水中の膨潤度は346%であった。
[Example 2-8]
Polyallylamine (Nitto Bo Medical Co., Ltd., “PAA-15C”) was crosslinked using an epoxy compound (Nagase ChemteX Co., Ltd., “Denacol EX-810”), and then pulverized. The obtained pulverized product was stirred and washed with a large amount of hot water at 80 ° C. to obtain the intended adsorbent 2-6 as shown in Table 4. The adsorbent 2-6 had hot water solubility in 80 ° C. hot water. The degree of swelling of the obtained adsorbent in 25 ° C. water was 346%.
 得られた吸着材2-6を、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル河川水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整したモデル河川水1に浸漬し、1時間攪拌させ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、再度モデル河川水1のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表5に示す。
The obtained adsorbent 2-6 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
After the adsorption process of sodium alginate from the model river water 1, the adsorbent was filtered, immersed in the model river water 1 adjusted to 80 ° C., stirred for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was again immersed in each model river water 1 and stirred, and an adsorption test for sodium alginate was performed. Table 5 shows the results of adsorption evaluation after regeneration of the obtained adsorbent.
[比較例2-1]
 吸着材2-1の再生を行わずに2回目の吸着試験を実施したこと以外は参考例2-1と同様に吸着の評価を行った。評価結果を表5に示すが、再生を行わない場合、2回目の吸着では目的物をほとんど吸着しなかった。
[Comparative Example 2-1]
Adsorption was evaluated in the same manner as in Reference Example 2-1, except that the second adsorption test was performed without regenerating the adsorbent 2-1. The evaluation results are shown in Table 5. When the regeneration was not performed, the target product was hardly adsorbed by the second adsorption.
[比較例2-2]
 吸着材2-1の再生を25℃のモデル河川水1を用いて行った後、2回目の吸着試験を実施したこと以外は参考例2-1と同様に吸着の評価を行った。評価結果を表5に示すが、室温の再生水を用いたため、再生が不充分となり、2回目の吸着では目的物をほとんど吸着しなかった。
[Comparative Example 2-2]
Adsorption was evaluated in the same manner as in Reference Example 2-1, except that the adsorbent 2-1 was regenerated using model river water 1 at 25 ° C. and the second adsorption test was conducted. The evaluation results are shown in Table 5. Since room temperature reclaimed water was used, regeneration was insufficient, and the target product was hardly adsorbed by the second adsorption.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表5に示すように、参考例2-1では、モデル河川水からのアルギン酸ナトリウムおよびフミン酸ナトリウムを双方とも吸着し、高温のモデル河川水で再生し、2回目の吸着も可能であることが分かった。実施例2-2~2-6では、モデル河川水もしくはモデル海水において、吸着材の主骨格が親水性高分子で構成されているため、特にアルギン酸ナトリウムの吸着性に優れる結果を得た。これらの実施例では、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比(A)/(B)が1.1倍以上を示している。そのため、本発明の吸着材は、例えば、フミン質がバイオポリマーよりも多く存在しているような場合であっても、効率的にバイオポリマーを吸着できることを示唆している。また、再生においてもモデル河川水、モデル海水共に機能することが分かった。
 再生効率としては、参考例2-1および実施例2-2~2-4および2-6と2-8、さらに参考例2-7では90%以上であり、2-5では40%以上であり、再生処理において用いられる水性媒体の温度が60℃以上であると再生効率が高い傾向にある。
As shown in Table 5, in Reference Example 2-1, it is possible to adsorb both sodium alginate and sodium humate from the model river water, regenerate it with the hot model river water, and perform the second adsorption. I understood. In Examples 2-2 to 2-6, in the model river water or model seawater, the main skeleton of the adsorbent was composed of a hydrophilic polymer. In these examples, the ratio (A) / (B) of the adsorption rate (A) of sodium alginate and the adsorption rate (B) of sodium humate is 1.1 times or more. Therefore, the adsorbent of the present invention suggests that the biopolymer can be adsorbed efficiently even when, for example, more humic substances are present than the biopolymer. Also, it was found that both model river water and model seawater function in regeneration.
Reproduction efficiency was 90% or more in Reference Example 2-1 and Examples 2-2 to 2-4, 2-6 and 2-8, and Reference Example 2-7, and 40% or more in 2-5. In addition, when the temperature of the aqueous medium used in the regeneration treatment is 60 ° C. or higher, the regeneration efficiency tends to be high.
[実施例2-9]
(1)原水として、印旛沼(千葉県)から採取した表流水(全有機体炭素濃度=4.0mg-C/L、溶存有機物濃度=3.6mg-C/L、pH=8.7、バイオポリマーのSUVA値:0.21(L/mg-C・m)、バイオポリマーの濃度:0.50(ppm-C)、フミン質のSUVA値:3.3(L/mg-C・m)、フミン質の濃度:1.8(ppm-C)を用い、原水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに対して、吸着材2-3を5g投入し、25℃にて2時間攪拌した。撹拌後、吸着材をろ別し、得られた処理水を用いて、PVDF製MFモジュール(旭化成株式会社製、UNA-620A)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。
[Example 2-9]
(1) As raw water, surface water collected from Inba Marsh (Chiba Prefecture) (total organic carbon concentration = 4.0 mg-C / L, dissolved organic matter concentration = 3.6 mg-C / L, pH = 8.7, SUVA value of biopolymer: 0.21 (L / mg-C · m), biopolymer concentration: 0.50 (ppm-C), SUVA value of humic substance: 3.3 (L / mg-C · m) ), The concentration of humic substance: 1.8 (ppm-C), the raw water is first filtered through a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) with an exclusion diameter of 2 μm to remove insoluble matters, 5 g of adsorbent 2-3 was added to 1 L of the filtered water and stirred for 2 hours at 25 ° C. After stirring, the adsorbent was filtered off, and the resulting treated water was used to make PVDF MF module (Asahi Kasei Corporation, UNA-6 0A) result of the permeability was evaluated for long-term permeability was A. Table 6 shows the results.
(2)上記(1)で原水と接触させた後の吸着材2-3をろ別回収し、80℃に熱した印旛沼(千葉県)から採取した表流水を用いて加温下で水温を維持したまま24時間撹拌して再生処理を行った後、再度上記(1)と同様に25℃で原水と接触させ、処理水を得た。得られた処理水を用いて、PVDF製MFモジュール(旭化成株式会社製、UNA-620A)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。なお、再生に用いた表流水は、採取後、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除いた状態(濁度200NTU以下)である。 (2) The adsorbent 2-3 after contacted with the raw water in (1) above is collected by filtration, and the water temperature is heated using surface water collected from Inba marsh (Chiba Prefecture) heated to 80 ° C. The mixture was stirred for 24 hours while being maintained, and then subjected to a regeneration treatment, and was again brought into contact with raw water at 25 ° C. in the same manner as in the above (1) to obtain treated water. As a result of evaluating the water permeability of the PVDF MF module (Ana-Chemical Co., Ltd., UNA-620A) using the treated water obtained, the long-term water permeability was A. The results are shown in Table 6. The surface water used for regeneration is in a state where insoluble matters are removed (turbidity: 200 NTU or less) by sampling with a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) having an exclusion diameter of 2 μm.
[実施例2-10]
(1)原水として、上記と同様、印旛沼(千葉県)から採取した表流水(全有機体炭素濃度=4.0mg-C/L、溶存有機物濃度=3.6mg-C/L、pH=8.7)を用い、原水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに対して、吸着材2-3を5g投入し、25℃にて2時間攪拌した。撹拌後、親水性高分子吸着材をろ別し、得られた処理水を用いて、ポリアクリロニトリル(PAN)製UF膜(旭化成株式会社製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。
[Example 2-10]
(1) As raw water, surface water collected from Inba Marsh (Chiba Prefecture) as above (total organic carbon concentration = 4.0 mg-C / L, dissolved organic matter concentration = 3.6 mg-C / L, pH = 8.7), first, the raw water is filtered through a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) with an exclusion diameter of 2 μm to remove insoluble matter, and adsorbed to 1 L of the filtered water. 5 g of the material 2-3 was added and stirred at 25 ° C. for 2 hours. After stirring, the hydrophilic polymer adsorbent was filtered off, and the resulting treated water was used to evaluate the water permeability of a polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut off 100 kDa), The long-term water permeability was A. The results are shown in Table 6.
(2)上記(1)で原水と接触させた後の吸着材2-3をろ別回収し、80℃に熱した印旛沼(千葉県)から採取した表流水を用いて1時間撹拌して再生処理を行った後、再度上記(1)と同様に25℃で原水と接触させ、処理水を得た。ポリアクリロニトリル(PAN)製UF膜(旭化成株式会社製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。なお、再生に用いた表流水は、採取後、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除いた状態(濁度200NTU以下)である。 (2) The adsorbent 2-3 after contacted with the raw water in (1) above is collected by filtration and stirred for 1 hour using surface water collected from Inba marsh (Chiba Prefecture) heated to 80 ° C. After carrying out the regeneration treatment, treated water was obtained again at 25 ° C. in the same manner as in (1) above. As a result of evaluating the water permeability of a polyacrylonitrile (PAN) UF membrane (manufactured by Asahi Kasei Corporation, fractional molecular weight 100 kDa), the long-term water permeability was A. The results are shown in Table 6. The surface water used for regeneration is in a state where insoluble matters are removed (turbidity: 200 NTU or less) by sampling with a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) having an exclusion diameter of 2 μm.
(3)上記(2)で原水と接触させた後の吸着材2-3をろ別回収し、上記(2)のUF膜にて処理した後の濃縮水(非透過水)を80℃に熱し再生水とし、吸着材2-3を再生処理した後、再度上記(1)と同様に25℃で原水と接触させ、処理水を得た。ポリアクリロニトリル(PAN)製UF膜(旭化成(株)製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。 (3) The adsorbent 2-3 after contacted with the raw water in (2) above is collected by filtration, and the concentrated water (non-permeated water) after being treated with the UF membrane in (2) above is heated to 80 ° C. After heating to reclaimed water and regenerating the adsorbent 2-3, it was again contacted with raw water at 25 ° C. in the same manner as in (1) above to obtain treated water. As a result of evaluating the water permeability of a polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut-off 100 kDa), the long-term water permeability was A. The results are shown in Table 6.
[実施例2-11]
(1)原水として、上記と同様、印旛沼(千葉県)から採取した表流水(全有機体炭素濃度=4.0mg-C/L、溶存有機物濃度=3.6mg-C/L、pH=8.7)を用い、原水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに対して、吸着材2-3を5g投入し、25℃にて2時間攪拌した。撹拌後、親水性高分子吸着材をろ別し、得られた処理水を用いて、ポリエーテルスルホン(PES)製UF膜(Pentair製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。
[Example 2-11]
(1) As raw water, surface water collected from Inba Marsh (Chiba Prefecture) as above (total organic carbon concentration = 4.0 mg-C / L, dissolved organic matter concentration = 3.6 mg-C / L, pH = 8.7), first, the raw water is filtered through a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) with an exclusion diameter of 2 μm to remove insoluble matter, and adsorbed to 1 L of the filtered water. 5 g of the material 2-3 was added and stirred at 25 ° C. for 2 hours. After stirring, the hydrophilic polymer adsorbent was filtered off, and the resulting treated water was used to evaluate the water permeability of a polyethersulfone (PES) UF membrane (Pentair, fractional molecular weight 100 kDa). The water permeability was A. The results are shown in Table 6.
(2)上記(1)で原水と接触させた後の吸着材2-3をろ別回収し、80℃に熱した印旛沼(千葉県)から採取した表流水を用いて1時間撹拌して再生処理を行った後、再度上記(1)と同様に25℃で原水と接触させ、処理水を得た。ポリエーテルスルホン(PES)製UF膜(Pentair製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。なお、再生に用いた表流水は、採取後、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除いた状態(濁度200NTU以下)である。 (2) The adsorbent 2-3 after contacted with the raw water in (1) above is collected by filtration and stirred for 1 hour using surface water collected from Inba marsh (Chiba Prefecture) heated to 80 ° C. After carrying out the regeneration treatment, treated water was obtained again at 25 ° C. in the same manner as in (1) above. As a result of evaluating the water permeability of a polyethersulfone (PES) UF membrane (Pentair, fractional molecular weight 100 kDa), the long-term water permeability was A. The results are shown in Table 6. The surface water used for regeneration is in a state where insoluble matters are removed (turbidity: 200 NTU or less) by sampling with a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) having an exclusion diameter of 2 μm.
[比較例2-3]
 吸着材を用いずに表流水を排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過した後、PVDF製MFモジュール(旭化成株式会社製、UNA-620A)の透水性を評価したこと以外は参考例2-7と同様に評価を行った。吸着材で膜ファウリングを生じる原因物質を除去しなかったため、長期透水性はBであった。結果を表6に示す。
[Comparative Example 2-3]
The surface water is filtered without using an adsorbent and filtered through a stainless mesh cartridge filter (TMP-2, manufactured by Advantech) with a diameter of 2 μm, and the water permeability of PVDF MF module (Asahi Kasei Co., Ltd., UNA-620A) is evaluated. The evaluation was performed in the same manner as Reference Example 2-7 except that. The long-term water permeability was B because the causative substance causing film fouling was not removed by the adsorbent. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明によれば、膜ファウリング原因物質に対して吸着能を有し、膜ファウリング原因物質を有する被処理水を、効率よく処理することができる吸着材を提供することができる。また、吸着材により処理された供給水は、膜ファウリングに起因する、ろ過膜の劣化を抑制することができ、それにより、膜の使用寿命を延命化することができる。 According to the present invention, it is possible to provide an adsorbent that has an ability to adsorb a membrane fouling-causing substance and can efficiently treat water to be treated having the membrane fouling-causing substance. Further, the feed water treated with the adsorbent can suppress the deterioration of the filtration membrane due to membrane fouling, thereby prolonging the useful life of the membrane.
 以上、本発明の好ましい実施態様を例示的に説明したが、当業者であれば、特許請求の範囲に開示した本発明の範囲および精神から逸脱することなく多様な修正、付加および置換ができることが理解可能であろう。 Although the preferred embodiments of the present invention have been described above by way of example, those skilled in the art can make various modifications, additions and substitutions without departing from the scope and spirit of the present invention disclosed in the claims. It will be understandable.

Claims (16)

  1.  カチオン性基を含有する第1の高分子を含む吸着材であって、前記吸着材は、カチオン性基密度が10mmol/g~30mmol/g(絶乾重量1グラムあたり、カチオン性基の含有量が10~30mmol。以降、gは絶乾重量を示す。)、好ましくは11mmol/g~28mmol/gである領域を有し、膜ファウリング原因物質に対して吸着能を有する膜ファウリング原因物質吸着材。 An adsorbent comprising a first polymer containing a cationic group, wherein the adsorbent has a cationic group density of 10 mmol / g to 30 mmol / g (content of cationic group per gram of dry weight) 10 to 30 mmol, hereinafter, g represents an absolute dry weight.), Preferably a film fouling causative substance having a region of 11 mmol / g to 28 mmol / g and having an adsorption ability for the film fouling causative substance Adsorbent.
  2.  請求項1に記載の吸着材において、カチオン性基が、アミノ基、4級アンモニウム基、イミノ基、アミジン基、グアニジノ基、イミダゾール基、4級イミダゾリウム基、ピリジル基、および4級ピリジニウム基から選択される少なくとも1種類の官能基である、膜ファウリング原因物質吸着材。 The adsorbent according to claim 1, wherein the cationic group is selected from an amino group, a quaternary ammonium group, an imino group, an amidine group, a guanidino group, an imidazole group, a quaternary imidazolium group, a pyridyl group, and a quaternary pyridinium group. Membrane fouling causative agent adsorbent that is at least one functional group selected.
  3.  請求項1または2に記載の吸着材において、第1の高分子が、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミジン、ポリグアニジン、ポリアミノ酸、ポリピリジン、およびそれらの塩から選択される少なくとも1種類の高分子である、膜ファウリング原因物質吸着材。 The adsorbent according to claim 1 or 2, wherein the first polymer is at least one selected from polyethyleneimine, polyallylamine, polyvinylamine, polyamidine, polyguanidine, polyamino acid, polypyridine, and salts thereof. Membrane fouling-causing substance adsorbent, which is a polymer.
  4.  請求項1~3のいずれか1項に記載の吸着材において、第1の高分子が基材に導入されている、膜ファウリング原因物質吸着材。 The membrane fouling-causing substance adsorbent according to any one of claims 1 to 3, wherein the first polymer is introduced into the substrate.
  5.  請求項4に記載の吸着材において、基材が、第2の高分子からなる高分子基材である、膜ファウリング原因物質吸着材。 5. The adsorbent according to claim 4, wherein the base material is a polymer base material made of a second polymer.
  6.  請求項5に記載の吸着材において、前記第2の高分子が親水性高分子である、膜ファウリング原因物質吸着材。 6. The adsorbent according to claim 5, wherein the second polymer is a hydrophilic polymer.
  7.  請求項5または6に記載の吸着材において、吸着材が、第1の高分子と第2の高分子とのポリマーアロイである、膜ファウリング原因物質吸着材。 The adsorbent according to claim 5 or 6, wherein the adsorbent is a polymer alloy of a first polymer and a second polymer.
  8.  請求項7に記載の吸着材において、基材を構成する第2の高分子が、エチレン-ビニルアルコール系共重合体である、膜ファウリング原因物質吸着材。 8. The adsorbent according to claim 7, wherein the second polymer constituting the substrate is an ethylene-vinyl alcohol copolymer.
  9.  請求項1~8のいずれか一項に記載の吸着材において、25℃水中における膨潤度が20~500%、好ましくは30~250%である、膜ファウリング原因物質吸着材。 The membrane fouling-causing substance adsorbent according to any one of claims 1 to 8, wherein the adsorbent has a degree of swelling in water at 25 ° C of 20 to 500%, preferably 30 to 250%.
  10.  請求項1~9のいずれか一項に記載の吸着材において、膜ファウリング原因物質が、バイオポリマーを含む、膜ファウリング原因物質吸着材。 The adsorbent according to any one of claims 1 to 9, wherein the membrane fouling-causing substance includes a biopolymer.
  11.  請求項1~10のいずれか一項に記載の吸着材において、限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、および逆浸透(RO)膜からなる群から選択される少なくとも一種の膜による膜ろ過処理に対する供給水を提供するために用いられる、膜ファウリング原因物質吸着材。 The adsorbent according to any one of claims 1 to 10, wherein the adsorbent comprises a group consisting of an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. A membrane fouling causative agent adsorbent used to provide feed water for membrane filtration treatment with at least one selected membrane.
  12.  膜ファウリング原因物質を含む被処理水を、請求項1~11のいずれか一項に記載の膜ファウリング原因物質吸着材と第1の接触温度で接触させ、前記吸着材により被処理水中に含まれる膜ファウリング原因物質を吸着させる吸着工程と、
     吸着工程により得られた吸着処理水を、膜ろ過処理する膜ろ過工程を含み、膜ろ過工程が、限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、および逆浸透(RO)膜からなる群から選択される少なくとも一種の膜を用いて、一段または多段にて行われる、水処理方法。
    A treated water containing a membrane fouling-causing substance is brought into contact with the membrane fouling-causing substance adsorbent according to any one of claims 1 to 11 at a first contact temperature. An adsorption process for adsorbing the substances that cause membrane fouling;
    It includes a membrane filtration step for membrane filtration treatment of the adsorption treated water obtained by the adsorption step, and the membrane filtration step is an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and the reverse A water treatment method that is performed in one or more stages using at least one membrane selected from the group consisting of osmotic (RO) membranes.
  13.  請求項12に記載の水処理方法において、被処理水が0.1質量%以上の塩類を含む水であることを特徴とする、水処理方法。 The water treatment method according to claim 12, wherein the water to be treated is water containing 0.1% by mass or more of salts.
  14.  請求項12または13に記載の水処理方法であって、吸着工程における膜ファウリング原因物質を吸着した吸着材を、洗浄流体と、第2の接触温度で接触させて再生する再生工程と、を少なくとも備える水処理方法。 The water treatment method according to claim 12 or 13, wherein the adsorbent adsorbing the membrane fouling-causing substance in the adsorption step is regenerated by bringing the adsorbent into contact with the second fluid at a second contact temperature. A water treatment method provided at least.
  15.  膜ファウリング原因物質が吸着している請求項1~11のいずれか一項に記載の膜ファウリング原因物質吸着材を、40℃以上に加温した洗浄流体と接触させ、前記吸着材を再生する、膜ファウリング原因物質吸着材の再生方法。 The membrane fouling-causing substance adsorbent according to any one of claims 1 to 11, wherein the membrane fouling-causing substance is adsorbed, is contacted with a cleaning fluid heated to 40 ° C or higher to regenerate the adsorbent. A method for regenerating the adsorbent that causes membrane fouling.
  16.  請求項15の再生方法において、洗浄流体が、金属イオン含有水溶液である、膜ファウリング原因物質吸着材の再生方法。 16. The regeneration method according to claim 15, wherein the cleaning fluid is a metal ion-containing aqueous solution.
PCT/JP2015/064635 2014-05-23 2015-05-21 Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material WO2015178458A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-106855 2014-05-23
JP2014106855A JP2017124341A (en) 2014-05-23 2014-05-23 Water treatment method
JP2014204547 2014-10-03
JP2014-204547 2014-10-03

Publications (1)

Publication Number Publication Date
WO2015178458A1 true WO2015178458A1 (en) 2015-11-26

Family

ID=54554118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064635 WO2015178458A1 (en) 2014-05-23 2015-05-21 Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material

Country Status (1)

Country Link
WO (1) WO2015178458A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277429A (en) * 2016-08-10 2017-01-04 云南省轻工业科学研究院 From refined sugar from handing over the method and device extracting antioxidant waste liquid
CN107792950A (en) * 2016-08-29 2018-03-13 合肥格美电器有限责任公司 A kind of full house water purifying machine of integral type
JP2021045724A (en) * 2019-09-19 2021-03-25 名古屋市 Semi-metal adsorbing material and semi-metal element removal method
CN116143227A (en) * 2023-04-19 2023-05-23 新乡学院 Method for treating low-concentration heavy metal pollution wastewater by combining adsorption and ultrafiltration
WO2023176049A1 (en) * 2022-03-14 2023-09-21 日東電工株式会社 Composite reverse osmosis membrane and production method therefor
WO2023176048A1 (en) * 2022-03-14 2023-09-21 日東電工株式会社 Composite reverse osmosis membrane and production method therefor
CN117482932A (en) * 2023-09-26 2024-02-02 湖南中寅环保设备制造有限公司 Regeneration method of waste lubricating oil refined adsorbent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216641A (en) * 1986-03-19 1987-09-24 Nippon Shokubai Kagaku Kogyo Co Ltd Adsorbent for purifying environment
JP2006151705A (en) * 2004-11-25 2006-06-15 Kanto Natural Gas Development Co Ltd Fulvic acid-containing material and method of producing fulvic acid-containing material
JP2008279435A (en) * 2007-04-09 2008-11-20 Hitachi Ltd Method, apparatus and system for treating organic matter contained in wastewater, and bitumen recovery system
JP2012067268A (en) * 2010-09-27 2012-04-05 Kuraray Co Ltd Composition, metal ion adsorbent, and metal recovery method
JP2012187507A (en) * 2011-03-10 2012-10-04 Toshiba Corp Device and method for water treatment
JP2013056286A (en) * 2011-09-07 2013-03-28 Hitachi Ltd Seawater desalination system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216641A (en) * 1986-03-19 1987-09-24 Nippon Shokubai Kagaku Kogyo Co Ltd Adsorbent for purifying environment
JP2006151705A (en) * 2004-11-25 2006-06-15 Kanto Natural Gas Development Co Ltd Fulvic acid-containing material and method of producing fulvic acid-containing material
JP2008279435A (en) * 2007-04-09 2008-11-20 Hitachi Ltd Method, apparatus and system for treating organic matter contained in wastewater, and bitumen recovery system
JP2012067268A (en) * 2010-09-27 2012-04-05 Kuraray Co Ltd Composition, metal ion adsorbent, and metal recovery method
JP2012187507A (en) * 2011-03-10 2012-10-04 Toshiba Corp Device and method for water treatment
JP2013056286A (en) * 2011-09-07 2013-03-28 Hitachi Ltd Seawater desalination system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106277429A (en) * 2016-08-10 2017-01-04 云南省轻工业科学研究院 From refined sugar from handing over the method and device extracting antioxidant waste liquid
CN107792950A (en) * 2016-08-29 2018-03-13 合肥格美电器有限责任公司 A kind of full house water purifying machine of integral type
JP2021045724A (en) * 2019-09-19 2021-03-25 名古屋市 Semi-metal adsorbing material and semi-metal element removal method
JP7352055B2 (en) 2019-09-19 2023-09-28 名古屋市 Adsorbent for metalloid and method for removing metalloid elements
WO2023176049A1 (en) * 2022-03-14 2023-09-21 日東電工株式会社 Composite reverse osmosis membrane and production method therefor
WO2023176048A1 (en) * 2022-03-14 2023-09-21 日東電工株式会社 Composite reverse osmosis membrane and production method therefor
CN116143227A (en) * 2023-04-19 2023-05-23 新乡学院 Method for treating low-concentration heavy metal pollution wastewater by combining adsorption and ultrafiltration
CN117482932A (en) * 2023-09-26 2024-02-02 湖南中寅环保设备制造有限公司 Regeneration method of waste lubricating oil refined adsorbent
CN117482932B (en) * 2023-09-26 2024-04-16 湖南中寅环保设备制造有限公司 Regeneration method of waste lubricating oil refined adsorbent

Similar Documents

Publication Publication Date Title
WO2015178458A1 (en) Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
Güler et al. Boron removal from seawater: state-of-the-art review
Gao et al. Ultrasonic control of UF membrane fouling by natural waters: Effects of calcium, pH, and fractionated natural organic matter
Zhang et al. Thin film interfacial cross-linking approach to fabricate a chitosan rejecting layer over poly (ether sulfone) support for heavy metal removal
WO2015076371A1 (en) Hydrophilic polymeric adsorbent and water treatment method employing same
CN108465377B (en) Preparation method of regenerated cellulose/chitosan composite antibacterial nanofiltration membrane
JP2017018843A (en) Water treatment method, water treatment polymer adsorbent, and regeneration method therefor
JP7275034B2 (en) Method for producing ultrapure water
JP2017094259A (en) Membrane fouling inhibitor
JP2004066153A (en) Organic porous body having selective boron adsorption capability and boron removal module and ultrapure water production apparatus using the same
K Goyal et al. Nanotechnology for water treatment
JP2016215147A (en) Membrane fouling factor agent absorbent
Uyak et al. Natural organic matter removal and fouling in a low pressure hybrid membrane systems
JP2020529917A (en) Removal of bacteria from drinking water by filtration
Dutta et al. Interpenetrating polymer networks for desalination and water remediation: A comprehensive review of research trends and prospects
JP2016215156A (en) Safety filter for water treatment
Elshaarawy et al. Dual ionic liquid-based crosslinked chitosan for fine-tuning of antifouling, water throughput, and denitrification performance of polysulfone membrane
WO2015076370A1 (en) Biopolymer-adsorbing composition and water treatment method using same
JP2017018842A (en) Hydrophilic polymer adsorbent material and water treatment method using the same
JP2016040030A (en) Water treatment system
Nazir et al. Polymeric membranes nanocomposites as effective strategy for dye removal
JP2016040031A (en) Circulation water treatment system of cooling tower
Chooaksorn et al. Enhancement of Cr (VI) ion removal using nanochitosan coated on bituminous activated carbon
JP2016215144A (en) Water treatment system
JP2017124341A (en) Water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP