JP2021045724A - Semi-metal adsorbing material and semi-metal element removal method - Google Patents

Semi-metal adsorbing material and semi-metal element removal method Download PDF

Info

Publication number
JP2021045724A
JP2021045724A JP2019170427A JP2019170427A JP2021045724A JP 2021045724 A JP2021045724 A JP 2021045724A JP 2019170427 A JP2019170427 A JP 2019170427A JP 2019170427 A JP2019170427 A JP 2019170427A JP 2021045724 A JP2021045724 A JP 2021045724A
Authority
JP
Japan
Prior art keywords
adsorbent
semi
water
hydroxyl group
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019170427A
Other languages
Japanese (ja)
Other versions
JP7352055B2 (en
Inventor
大植 松村
Daiki Matsumura
大植 松村
万敬 中野
Kazutaka Nakano
万敬 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
City of Nagoya
Original Assignee
City of Nagoya
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by City of Nagoya filed Critical City of Nagoya
Priority to JP2019170427A priority Critical patent/JP7352055B2/en
Publication of JP2021045724A publication Critical patent/JP2021045724A/en
Application granted granted Critical
Publication of JP7352055B2 publication Critical patent/JP7352055B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Epoxy Resins (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

To provide a semi-metal adsorbing material that has a high water absorption property and is difficult to elute into water, and that can adsorb semi-metal throughout the bulk.SOLUTION: A semi-metal adsorbing material of the present invention has a structure in which a part of the amino groups of a compound having a hydrocarbon skeleton modified with the amino groups is subjected to a ring-opening reaction with a lactone having at least one hydroxyl group or an epoxy compound having at least one hydroxyl group, and, furthermore, a part or all of the remaining amino groups are crosslinked with a cross-linking agent.SELECTED DRAWING: Figure 1

Description

本発明は、ホウ素やヒ素やセレン等の半金属を吸着することができる半金属用吸着材及びそれを用いた半金属元素除去方法に関する。 The present invention relates to an adsorbent for metalloids capable of adsorbing metalloids such as boron, arsenic and selenium, and a method for removing metalloid elements using the same.

金属元素と非金属元素の境界に位置する元素は、その両方の性質を示すことが知られており、半金属元素と呼ばれている。半金属元素は、その性質から幅広い分野において使用されているが、人体に有害な半金属元素もあるため、排水中の半金属を効率よく除去するための技術開発が望まれている。 Elements located at the boundary between metallic and non-metallic elements are known to exhibit both properties and are called metalloid elements. Metalloid elements are used in a wide range of fields due to their properties, but since some metalloid elements are harmful to the human body, technological development for efficiently removing metalloids in wastewater is desired.

例えば、ホウ素化合物はガラス製造業、陶磁器製造業、電気機器製造業等、多くの産業界において使用されているが、ホウ素化合物が人体に及ぼす影響として、胃腸障害、皮膚紅疹、中枢神経症状等が知られている。このため、2001年に水質汚濁防止法が改正され、排水基準に「ホウ素及びその化合物」が追加された。しかしながら、水中のホウ素の効果的な除去方法は未だ確立されていないことから、業種別に暫定的な排水基準が設けられているにすぎないというのが現状である。 For example, boron compounds are used in many industries such as glass manufacturing, ceramics manufacturing, and electrical equipment manufacturing, but the effects of boron compounds on the human body include gastrointestinal disorders, cutaneous erythema, and central nervous system symptoms. It has been known. For this reason, the Water Pollution Control Law was amended in 2001, and "boron and its compounds" were added to the wastewater standards. However, since an effective method for removing boron in water has not yet been established, the current situation is that only provisional wastewater standards have been set for each industry.

従来から知られているホウ素排水処理技術としては、例えば、硫酸アルミニウムと消石灰とを加えて沈殿除去する方法が知られている。しかし、この沈殿除去法では、大量の汚泥が発生し、その処理が問題となる。
これに対して、キレート樹脂を用いてホウ素を吸着させる方法(例えば、特許文献1に記載のアンバーライト(登録商標)IRA-743等)では、排水をキレート樹脂塔に流すだけでホウ素が除去されるため、操作が簡単であり、吸脱着を繰り返すことにより、キレート樹脂をリサイクル使用することができるという利点もある。
As a conventionally known boron wastewater treatment technique, for example, a method of adding aluminum sulfate and slaked lime to remove the precipitate is known. However, this sediment removal method generates a large amount of sludge, and its treatment becomes a problem.
On the other hand, in the method of adsorbing boron using a chelate resin (for example, Amberlite (registered trademark) IRA-743 described in Patent Document 1), boron is removed only by flowing wastewater to a chelate resin tower. Therefore, the operation is simple, and there is an advantage that the chelate resin can be recycled and used by repeating adsorption and desorption.

しかし、上記従来の吸着法に用いられているキレート樹脂では、吸水性が低く、ホウ素吸着は表面のみで行われ、バルク全体が吸着に利用されているわけではなかった。このため、吸着量の理論的な上限が小さくなるという問題があった。また、ホウ素以外の半金属についても、上記と同様の問題があった。 However, in the chelate resin used in the above-mentioned conventional adsorption method, the water absorption is low, boron adsorption is performed only on the surface, and the entire bulk is not used for adsorption. Therefore, there is a problem that the theoretical upper limit of the adsorption amount becomes small. Further, the same problem as described above has occurred with metalloids other than boron.

このため、吸水性の付与が期待できるポリオール構造を有するアミド誘導体の半金属吸着材が開発されている(特許文献2、3)。しかし、特許文献2に記載の吸着材では、支持体の表面のみをポリオールで修飾するため、支持体自身の重量のため吸着材あたりの半金属吸着量は低くなってしまう。また、特許文献3に記載の吸着材は水溶性であり、そのままの使用では吸着材が溶出してしまうため、無機凝集剤等で沈殿させる必要があり、工程数が多くなる等の問題が生ずる。 Therefore, a semimetal adsorbent of an amide derivative having a polyol structure that can be expected to impart water absorption has been developed (Patent Documents 2 and 3). However, in the adsorbent described in Patent Document 2, since only the surface of the support is modified with polyol, the amount of metalloid adsorbed per adsorbent is low due to the weight of the support itself. Further, the adsorbent described in Patent Document 3 is water-soluble, and if it is used as it is, the adsorbent will elute, so that it is necessary to precipitate it with an inorganic flocculant or the like, which causes problems such as an increase in the number of steps. ..

特公平3−10378号Special fair No. 3-10378 特開2009−165972JP-A-2009-165792 国際公開第2008/146666International Publication No. 2008/146666

本発明は、上記従来の実情に鑑みてなされたものであって、吸水性が高くて、水に溶出し難く、バルク全体で半金属を吸着させることが可能な半金属用吸着材及びそれを用いた半金属元素除去方法を提供することを課題とする(本明細書において「半金属」とは、ホウ素、ケイ素、ゲルマニウム、ヒ素、アンチモン、テルル、セレン及びビスマスの8元素をいう)。 The present invention has been made in view of the above-mentioned conventional circumstances, and is a metalloid adsorbent which has high water absorption, is difficult to elute in water, and can adsorb metalloids in the entire bulk, and a metalloid adsorbent thereof. It is an object of the present invention to provide a method for removing a metalloid used (in the present specification, "metalloid" means eight elements of boron, silicon, germanium, arsenic, antimony, tellurium, selenium and bismuth).

本発明者らは、ホウ素がポリビニルアルコールのポリオール構造とキレートを形成することに着目し、様々な化合物にポリオール構造を導入した。そして、さらには、ポリオール構造を導入した化合物を架橋剤で架橋して、水への溶出を防止した化合物を調製し、半金属に対する吸着能について調べた。その結果、上記課題を解決できる半金属用吸着材を見出し、本発明を完成するに至った。 The present inventors have focused on the fact that boron forms a chelate with the polyol structure of polyvinyl alcohol, and introduced the polyol structure into various compounds. Further, the compound into which the polyol structure was introduced was crosslinked with a cross-linking agent to prepare a compound in which elution into water was prevented, and the adsorption ability to a semimetal was investigated. As a result, they have found an adsorbent for semi-metals that can solve the above problems, and have completed the present invention.

すなわち、本発明の半金属用吸着材は、アミノ基で修飾された炭化水素骨格を有する化合物の前記アミノ基の一部が、少なくとも1つの水酸基を有するラクトン又は少なくとも1つの水酸基を有するエポキシ化合物と開環反応した構造を有し、さらに残りの前記アミノ基の一部又は全部が架橋剤で架橋されていることを特徴とする。 That is, the adsorbent for semi-metals of the present invention is a compound having a hydrocarbon skeleton modified with an amino group, wherein a part of the amino groups is a lactone having at least one hydroxyl group or an epoxy compound having at least one hydroxyl group. It has a ring-opening reaction structure, and is characterized in that a part or all of the remaining amino groups are crosslinked with a cross-linking agent.

本発明の半金属用吸着材では、アミノ基で修飾された炭化水素骨格を有する化合物の前記アミノ基の一部が、少なくとも1つの水酸基を有するラクトン又は少なくとも1つの水酸基を有するエポキシ化合物と開環反応した構造を有している。換言すれば、炭化水素骨格に結合した少なくとも1つの水酸基を有する置換基が結合している。このため、この吸着材に存在する多数の水酸基が半金属イオンとキレートを形成し、吸着されることとなる。また、この吸着材は水酸基の存在により親水性に富み、吸水率が高くなる。このため、表面のみならずバルク全体で半金属を吸着することができることから、従来の吸着材に対してより多くの半金属イオンを吸着することが期待できる。また、残りの前記アミノ基の一部又は全部が架橋剤で架橋されているため、吸着材が水で溶出し難くなる。このため、この吸着材を排液に直接投入した場合であっても、ろ過や静置による沈殿及びデカンテーション等の方法により容易に母液から分離することができ、取り扱いが簡便となる。 In the adsorbent for semi-metals of the present invention, a part of the amino groups of the compound having a hydrocarbon skeleton modified with an amino group opens a ring with a lactone having at least one hydroxyl group or an epoxy compound having at least one hydroxyl group. It has a reacted structure. In other words, a substituent having at least one hydroxyl group bonded to the hydrocarbon skeleton is bonded. Therefore, a large number of hydroxyl groups existing in this adsorbent form a chelate with the metalloid ion and are adsorbed. In addition, this adsorbent is highly hydrophilic due to the presence of hydroxyl groups, and the water absorption rate is high. Therefore, since the semimetal can be adsorbed not only on the surface but also on the entire bulk, it can be expected that more semimetal ions are adsorbed on the conventional adsorbent. Further, since a part or all of the remaining amino groups are crosslinked with a cross-linking agent, it becomes difficult for the adsorbent to elute with water. Therefore, even when this adsorbent is directly added to the drainage liquid, it can be easily separated from the mother liquor by a method such as precipitation by filtration or standing, and decantation, which facilitates handling.

本発明の吸着材において、アミノ基で修飾された炭化水素骨格を有する化合物としては、ポリエチレンイミン、ポリアリルアミン、ジエチレントリアミン、テトラエチレンペンタミン、トリス(2−アミノエチル)アミン等が挙げられる。 In the adsorbent of the present invention, examples of the compound having a hydrocarbon skeleton modified with an amino group include polyethyleneimine, polyallylamine, diethylenetriamine, tetraethylenepentamine, tris (2-aminoethyl) amine and the like.

また、少なくとも1つの水酸基を有するラクトンとしては、ラクトン構造を有する単糖類、アスコルビン酸及びアラボアスコルビン酸等が挙げられる。
ラクトン構造を有する単糖類としてはアルドン酸、ウロン酸、アルダル酸などの糖ラクトンが挙げられる。
アルドン酸のラクトンとしてはエリトロノラクトン、トレオノラクトン、リボノラクトン、アラビノノラクトン、キシロノラクトン、リキソノラクトン、アロノラクトン、アルトロノラクトン、グルコノラクトン、マンノラクトン、グロノラクトン、イドノラクトン、ガラクトノラクトン、タロノラクトン、グルコヘプトノラクトンなどが挙げられる。
ウロン酸のラクトンとしては、リブロノラクトン、アラビヌロノラクトン、キシルロノラクトン、リキスロノラクトン、アルロノラクトン、アルトルロノラクトン、グルクロノラクトン、マンヌロノラクトン、グルロノラクトン、イズロノラクトン、ガラクツロノラクトン、タルロノラクトンなどが挙げられる。
アルダル酸のラクトンとしてはリバロラクトン、アラバロラクトン、キシラロラクトン、リキサロラクトン、アラロラクトン、アルトラロラクトン、グルカロラクトン、マンナロラクトン、グラロラクトン、イダロラクトン、ガラクタロラクトン、タラロラクトンなどが挙げられる。
また、糖ラクトン以外の水酸基を有するラクトンとしては、アスコルビン酸やアラボアスコルビン酸などが挙げられる。
これらのラクトンの中でも、グルコノラクトンが比較的手に入れやすく、最も好ましい。また、二種以上のラクトンが構成要素とされていてもよい。
Examples of the lactone having at least one hydroxyl group include monosaccharides having a lactone structure, ascorbic acid, alab ascorbic acid and the like.
Examples of monosaccharides having a lactone structure include sugar lactones such as aldonic acid, uronic acid, and aldaric acid.
Aldonic acid lactones include erythronolactone, threonolactone, ribonolactone, arabinonolactone, xylonolactone, lixonolactone, aronolactone, altronolactone, gluconolactone, mannolactone, glonolactone, idonolactone, galactonolactone, taronolactone, Examples include glucoheptonolactone.
Uronic acid lactones include libronolactone, arabinuronolactone, xyllonolactone, lixuronolactone, allonolactone, altorronolactone, glucuronolactone, mannuronolactone, gluronolactone, isronolactone, and galacturono. Examples include lactone and tarlonolactone.
Examples of the lactone of aldaric acid include rivalolactone, alabarolactone, xylarolactone, lixarolactone, aralololactone, altralolactone, glucarolactone, mannarolactone, glarolactone, idarolactone, galactarolactone and tararolactone.
Examples of the lactone having a hydroxyl group other than the sugar lactone include ascorbic acid and alab ascorbic acid.
Of these lactones, glucono lactones are relatively easy to obtain and are most preferred. Moreover, two or more kinds of lactones may be a component.

さらに、少なくとも1つの水酸基を有するエポキシ化合物としては、例えばグリシドールが挙げられる。 Further, examples of the epoxy compound having at least one hydroxyl group include glycidol.

また、架橋剤としては、エポキシ基を2つ以上有する化合物とすることができる。こうであれば、エポキシ基が炭化水素骨格を有する化合物のアミノ基と反応し、確実に架橋構造を形成させることができる。エポキシ基を2つ以上有する化合物としては、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、2,2−ジメチルプロパンジオールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル等が挙げられる。これらの架橋剤は単独であってもよいし、複数種類からなる架橋剤であってもよい。入手が容易であるという観点からはエポキシ系の架橋剤が好適であるが、カルボジイミド系、アリジン系、ウレタン系などの他の水溶性架橋剤を用いても良い。 Further, the cross-linking agent can be a compound having two or more epoxy groups. In this case, the epoxy group can react with the amino group of the compound having a hydrocarbon skeleton to surely form a crosslinked structure. Examples of the compound having two or more epoxy groups include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, resorcinol diglycidyl ether, 2,2-dimethylpropanediol diglycidyl ether, and polyethylene glycol diglycidyl ether. These cross-linking agents may be used alone or may be a cross-linking agent composed of a plurality of types. Epoxy-based cross-linking agents are preferable from the viewpoint of easy availability, but other water-soluble cross-linking agents such as carbodiimide-based, azine-based, and urethane-based may be used.

吸着材全体の質量に対する前記架橋剤の質量割合は、吸着材の溶出を防ぐという観点から0.05以上が好ましく、また、吸水率を高めて吸着を迅速に行わせるという観点から2.0以下であることが好ましい。 The mass ratio of the cross-linking agent to the total mass of the adsorbent is preferably 0.05 or more from the viewpoint of preventing elution of the adsorbent, and 2.0 or less from the viewpoint of increasing the water absorption rate and promptly adsorbing. Is preferable.

また、(水を飽和に達するまで吸水させた場合の吸水した水の質量)/(乾燥状態における質量)で定義される吸水率は0.5以上10以下であることが好ましい。吸水率が0.5以上であれば、半金属を含む水溶液が吸着材内部により速く浸透するため、半金属を迅速に吸着させることができる。また、吸着材の機械強度を高くし、壊れ難く、ハンドリングも容易にするという観点から、吸水率は10以下であることが好ましい。より好ましくは吸水率が1.0以上8.0以下である。 Further, the water absorption rate defined by (mass of water absorbed when water is absorbed until it reaches saturation) / (mass in a dry state) is preferably 0.5 or more and 10 or less. When the water absorption rate is 0.5 or more, the aqueous solution containing the semimetal permeates the inside of the adsorbent more quickly, so that the semimetal can be rapidly adsorbed. Further, from the viewpoint of increasing the mechanical strength of the adsorbent, being hard to break, and facilitating handling, the water absorption rate is preferably 10 or less. More preferably, the water absorption rate is 1.0 or more and 8.0 or less.

本発明の半金属用吸着材は、単に半金属元素を構成要素とするイオンを含有する水溶液と接触させることによって半金属元素を除去することができる。 The metalloid adsorbent of the present invention can remove the metalloid element by simply contacting it with an aqueous solution containing an ion having the metalloid element as a constituent element.

本発明の半金属用吸着材の化学構造を模式的に示した図である(アミノ基で修飾された炭化水素骨格1を有する化合物のアミノ基の一部が、少なくとも1つの水酸基を有するラクトンと開環反応してアミド結合を有する置換基部分2となり、架橋剤によって架橋部3が形成された場合)。It is a figure which showed typically the chemical structure of the adsorbent for semi-metals of this invention (a part of the amino group of the compound which has a hydrocarbon skeleton 1 modified with an amino group is a lactone which has at least one hydroxyl group. When the ring-opening reaction results in a substituent portion 2 having an amide bond and the cross-linked portion 3 is formed by a cross-linking agent). 本発明の半金属用吸着材の化学構造を模式的に示した図である(アミノ基で修飾された炭化水素骨格1を有する化合物のアミノ基の一部が、少なくとも1つの水酸基を有するエポキシ化合物と開環反応して置換基部分4となり、架橋剤によって架橋部3が形成された場合)。It is a figure which showed typically the chemical structure of the adsorbent for semi-metals of this invention (an epoxy compound which a part of amino groups of the compound which has a hydrocarbon skeleton 1 modified with an amino group has at least one hydroxyl group. When the cross-linking reaction is formed with the substituent portion 4 and the cross-linking portion 3 is formed by the cross-linking agent). 本発明の半金属用吸着材に存在する水酸基がホウ酸イオンとキレート形成を示す模式図。The schematic diagram which shows the hydroxyl group present in the adsorbent for semi-metal of this invention with borate ion and chelate formation.

<本発明の半金属用吸着材の化学構造>
図1は、本発明の半金属用吸着材の化学構造を模式的に示したものである。すなわち、図1は、アミノ基で修飾された炭化水素骨格1を有する化合物のアミノ基の一部が、少なくとも1つの水酸基を有するラクトンと開環反応してアミド結合を有する置換基部分2となり、さらに残りの前記アミノ基の一部又は全部が架橋剤によって架橋部3が形成された本発明の吸着材を示している。
また、図2は、アミノ基で修飾された炭化水素骨格1を有する化合物のアミノ基の一部が、少なくとも1つの水酸基を有するエポキシ化合物と開環反応して置換基部分4となり、さらに残りの前記アミノ基の一部又は全部が架橋剤によって架橋部3が形成された本発明の吸着材を示している。
<Chemical structure of adsorbent for metalloids of the present invention>
FIG. 1 schematically shows the chemical structure of the adsorbent for metalloids of the present invention. That is, in FIG. 1, a part of the amino group of the compound having a hydrocarbon skeleton 1 modified with an amino group undergoes a ring-opening reaction with a lactone having at least one hydroxyl group to form a substituent portion 2 having an amide bond. Further, it shows the adsorbent of the present invention in which a crosslinked portion 3 is formed by a crosslinking agent in a part or all of the remaining amino groups.
Further, in FIG. 2, a part of the amino group of the compound having the hydrocarbon skeleton 1 modified with the amino group undergoes a ring-opening reaction with the epoxy compound having at least one hydroxyl group to become the substituent portion 4, and the rest. The adsorbent of the present invention in which a crosslinked portion 3 is formed by a crosslinking agent in part or all of the amino group is shown.

<半金属イオンの吸着メカニズム>
図1及び図2に示す本発明の半金属用吸着材は、いずれも多くの水酸基を有しているため、半金属イオンを含む排水中に投じられた場合、吸着材に存在している多数の水酸基が半金属イオンとキレートを形成し(例えば、ホウ酸イオンのキレート形成を示す図3参照)、半金属イオンが吸着される。また、多数の水酸基の存在によって親水性に優れ、吸水率が高くなる。このため、半金属イオンは吸着材の内部まで浸透してバルク全体で半金属を吸着することができる。さらに、この吸着材は、残りの前記アミノ基の一部又は全部が架橋剤で架橋されているため、水に溶出されにくくなる。
<Adsorption mechanism of metalloid ions>
Since the adsorbents for metalloids of the present invention shown in FIGS. 1 and 2 both have many hydroxyl groups, many of them are present in the adsorbent when they are thrown into wastewater containing semimetal ions. The hydroxyl group forms a chelate with the metalloid ion (see, for example, FIG. 3 showing chelate formation of borate ion), and the metalloid ion is adsorbed. In addition, the presence of a large number of hydroxyl groups provides excellent hydrophilicity and a high water absorption rate. Therefore, the semimetal ion can permeate into the inside of the adsorbent and adsorb the metalloid in the entire bulk. Further, since a part or all of the remaining amino groups of the adsorbent are crosslinked with a cross-linking agent, the adsorbent is less likely to be eluted with water.

<本発明の半金属用吸着材の使用方法>
本発明の半金属用吸着材は、単に半金属元素を構成要素とするイオンを含有する水溶液と接触させることによって半金属元素を除去することができる。接触させる方法としては特に限定はないが、例えば、被処理液に吸着材を投入したり、吸着材を充填したカラムに被処理液を流したりしてもよい。さらには、粉末状でもよく、膜状にして流通経路等に設置してもよい。
<How to use the adsorbent for semi-metals of the present invention>
The metalloid adsorbent of the present invention can remove the metalloid element by simply contacting it with an aqueous solution containing an ion having the metalloid element as a constituent element. The method of contacting is not particularly limited, but for example, the adsorbent may be added to the liquid to be treated, or the liquid to be treated may be poured into a column filled with the adsorbent. Further, it may be in the form of powder or may be in the form of a film and installed in a distribution channel or the like.

本発明の半金属用吸着材による半金属の吸着は、幅広いpH範囲において適用できるが、吸着量を多くするという観点から、好ましくはpH1以上13以下であり、さらに好ましいのはpH3以上8以下である。 The adsorption of a semimetal by the adsorbent for a semimetal of the present invention can be applied in a wide pH range, but from the viewpoint of increasing the amount of adsorption, the pH is preferably 1 or more and 13 or less, and more preferably 3 or more and 8 or less. is there.

また、本発明の半金属用吸着材は、再生することができる。すなわち、半金属を吸着した吸着材からホウ素等の半金属を脱離させるために塩酸水溶液や硫酸水溶液等の酸性水溶液に浸漬させる。その後、純水で洗浄し、水酸化ナトリウム水溶液や炭酸水素ナトリウム水溶液等の塩基性水溶液中に浸漬し、撹拌することによって容易に吸着材を再生することができる。 Further, the adsorbent for semi-metals of the present invention can be regenerated. That is, in order to desorb the metalloid such as boron from the adsorbent adsorbing the metalloid, it is immersed in an acidic aqueous solution such as an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution. After that, the adsorbent can be easily regenerated by washing with pure water, immersing in a basic aqueous solution such as an aqueous solution of sodium hydroxide or an aqueous solution of sodium hydrogen carbonate, and stirring.

本発明における半金属回収用吸着材の形態は、用途によって様々なものとすることができる。例えば、粉末状、膜状、ビーズ状、板状などの形態で使用できる。さらに、これらの吸着材を通水性のある容器に入れて使用してもよい。 The form of the adsorbent for recovering metalloids in the present invention can be various depending on the application. For example, it can be used in the form of powder, film, bead, plate or the like. Further, these adsorbents may be used in a water-permeable container.

本発明の半金属回収用吸着材における発明の効果を阻害することのない範囲において、添加剤を配合することができる。このような添加剤としては、着色剤、紫外線吸収剤、光安定剤、防カビ剤などが例示される。 Additives can be added as long as the effects of the invention in the adsorbent for recovering metalloids of the present invention are not impaired. Examples of such additives include colorants, ultraviolet absorbers, light stabilizers, and fungicides.

本発明の吸着材が多孔質体に担持された吸着材−多孔質複合体とすることもできる。吸着材と多孔質体との複合化により、吸着材の機械的強度を格段に向上させることができ、取り扱いがさらに容易になる。このため、半金属含有溶液から吸着材−多孔質複合体を回収したり、カラムに詰めて半金属回収用の吸着塔としたりする場合のハンドリングが極めて容易となる。 The adsorbent of the present invention may be an adsorbent-porous composite supported on a porous body. By combining the adsorbent and the porous body, the mechanical strength of the adsorbent can be remarkably improved, and the handling becomes easier. Therefore, handling is extremely easy when the adsorbent-porous composite is recovered from the semimetal-containing solution or packed in a column to form an adsorption tower for recovering the semimetal.

多孔質体としては特に制限はないが、例えば、発泡高分子、不織布・織物、樹脂焼結多孔体、多孔質セラミック、多孔質ガラス、多孔質金属等があげられる。 The porous body is not particularly limited, and examples thereof include a foamed polymer, a non-woven fabric / woven fabric, a resin sintered porous body, a porous ceramic, a porous glass, and a porous metal.

以下、本発明を具体化した実施例について説明する。ただし、本発明はこれらの実施例に限定されるものではない。 Hereinafter, examples embodying the present invention will be described. However, the present invention is not limited to these examples.

<吸着材の合成>
(実施例1〜5、比較例1)
以下に示す実施例1〜実施例5の吸着材を合成した。
ポリエチレンイミン(平均分子量1800、富士フイルム和光純薬株式会社製、以下同様)及びグルコノラクトン(東京化成工業株式会社製、以下同様)を、下記表1に示す仕込み重量だけ秤取り、水3mL中に投入し、室温で24時間反応させた。ここで、ポリエチレンイミンが、アミノ基で修飾された炭化水素骨格を有する化合物であり、グルコノラクトンが、少なくとも1つの水酸基を有するラクトンである。その後、架橋剤としてエチレングリコールジグリシジルエーテル(富士フイルム和光純薬株式会社製、以下同様)を表1に示す仕込み重量だけ秤取り、上記反応液に添加し、撹拌後、さらに一晩静置させた。その後、生成物を水洗し、80℃で加熱乾燥し、実施例1〜5の吸着材を得た。
<Synthesis of adsorbent>
(Examples 1 to 5, Comparative Example 1)
The adsorbents of Examples 1 to 5 shown below were synthesized.
Polyethyleneimine (average molecular weight 1800, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., the same applies hereinafter) and gluconolactone (manufactured by Tokyo Chemical Industry Co., Ltd., the same applies hereinafter) are weighed by the weight shown in Table 1 below and in 3 mL of water. And reacted at room temperature for 24 hours. Here, polyethyleneimine is a compound having a hydrocarbon skeleton modified with an amino group, and gluconolactone is a lactone having at least one hydroxyl group. Then, ethylene glycol diglycidyl ether (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., the same applies hereinafter) as a cross-linking agent is weighed by the amount shown in Table 1, added to the above reaction solution, stirred, and then allowed to stand overnight. It was. Then, the product was washed with water and dried by heating at 80 ° C. to obtain the adsorbent of Examples 1 to 5.

また、比較例1として、グルコノラクトンを添加することなく、ポリエチレンイミンを下記表1に示す仕込み重量だけ秤取り、水3mL中に投入し、室温で24時間撹拌した。その後、エチレングリコールジグリシジルエーテルを表1に示す仕込み重量だけ秤取り、上記反応液に添加し、撹拌後、さらに一晩静置させた。その後、生成物を水洗し、80℃で加熱乾燥し、比較例1の吸着材を得た。 Further, as Comparative Example 1, without adding gluconolactone, polyethyleneimine was weighed by the charged weight shown in Table 1 below, charged into 3 mL of water, and stirred at room temperature for 24 hours. Then, ethylene glycol diglycidyl ether was weighed by the amount of the charge shown in Table 1, added to the above reaction solution, stirred, and then allowed to stand overnight. Then, the product was washed with water and dried by heating at 80 ° C. to obtain an adsorbent of Comparative Example 1.

上記のようにして得た実施例1〜5及び比較例1の吸着材の重量を測定した後、純水中に24時間浸し、取り出した後に表面に付着している水滴を拭き取り吸水した吸着材の重量を測定した。乾燥前後の重量の差から吸水量を算出し、吸水率を求めた。結果を表1に示す。 After measuring the weights of the adsorbents of Examples 1 to 5 and Comparative Example 1 obtained as described above, the adsorbent was immersed in pure water for 24 hours, taken out, and then the water droplets adhering to the surface were wiped off to absorb water. Was weighed. The amount of water absorption was calculated from the difference in weight before and after drying, and the water absorption rate was determined. The results are shown in Table 1.

Figure 2021045724
Figure 2021045724

(実施例6〜8、比較例2)
以下に示す実施例6〜実施例8の吸着材を合成した。
ポリアリルアミン20%溶液(ニットーボーメディカル株式会社製)と、グルコノラクトンとを、表2に示す仕込み重量だけ秤取り、水0.5mL中に投入し、90℃で3時間反応させた。ポリアリルアミンが、アミノ基で修飾された炭化水素骨格を有する化合物である。その後、室温まで下げ、架橋剤としてエチレングリコールジグリシジルエーテルを表2に示す仕込み重量だけ秤取り、上記の反応液に添加し、撹拌後、一晩静置させた。得られた生成物を水洗し、80℃で加熱乾燥し、実施例6〜8の吸着材を得た。
(Examples 6 to 8, Comparative Example 2)
The adsorbents of Examples 6 to 8 shown below were synthesized.
A 20% solution of polyallylamine (manufactured by Nittobo Medical Co., Ltd.) and gluconolactone were weighed by the weight shown in Table 2, put into 0.5 mL of water, and reacted at 90 ° C. for 3 hours. Polyallylamine is a compound having a hydrocarbon skeleton modified with an amino group. Then, the temperature was lowered to room temperature, ethylene glycol diglycidyl ether as a cross-linking agent was weighed by the amount shown in Table 2, added to the above reaction solution, stirred, and allowed to stand overnight. The obtained product was washed with water and dried by heating at 80 ° C. to obtain the adsorbents of Examples 6 to 8.

また、比較例2として、グルコノラクトンを添加することなく、ポリアリルアミン20%溶液(ニットーボーメディカル株式会社製)を、表2に示す仕込み重量だけ秤取り、水0.5mL中に投入し、90℃で3時間反応させた。その後、室温まで下げ、エチレングリコールジグリシジルエーテルを表2に示す仕込み重量だけ秤取り、上記の反応液に添加し、撹拌後、一晩静置させた。得られた生成物を水洗し、80℃で加熱乾燥し、比較例2の吸着材を得た。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表2に示す。 Further, as Comparative Example 2, a 20% polyallylamine solution (manufactured by Nittobo Medical Co., Ltd.) was weighed by the amount of the charge shown in Table 2 without adding gluconolactone, and put into 0.5 mL of water, and 90 The reaction was carried out at ° C. for 3 hours. Then, the temperature was lowered to room temperature, ethylene glycol diglycidyl ether was weighed by the weight shown in Table 2, added to the above reaction solution, stirred, and allowed to stand overnight. The obtained product was washed with water and dried by heating at 80 ° C. to obtain an adsorbent of Comparative Example 2. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 2.

Figure 2021045724
Figure 2021045724

(実施例9)
グリシドール(関東化学株式会社製)0.592gと、エチレングルコールジグリシジルエーテル0.174gとを混合した後、ポリアリルアミン20%溶液2.28gを入れて室温で3時間撹拌した後、生成物を水洗し、80℃で乾燥させて、実施例9の吸着材を得た。ここで、グリシドールが少なくとも1つの水酸基を有するエポキシ化合物である。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表3に示す。
(Example 9)
After mixing 0.592 g of glycidol (manufactured by Kanto Chemical Co., Inc.) and 0.174 g of ethylene glycol diglycidyl ether, 2.28 g of a 20% polyallylamine solution was added and stirred at room temperature for 3 hours, and then the product was prepared. It was washed with water and dried at 80 ° C. to obtain the adsorbent of Example 9. Here, glycidol is an epoxy compound having at least one hydroxyl group. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 3.

Figure 2021045724
Figure 2021045724

(実施例10)
ジエチレントリアミン(米山薬品工業株式会社製)0.26gと、グルコノラクトン0.45gとを、水1mL中に投入し、90℃で3時間反応させた。ここで、ジエチレントリアミンがアミノ基で修飾された炭化水素骨格を有する化合物ある。その後、室温まで下げ、架橋剤としてエチレングリコールジグリシジルエーテルを0.65g投入し、撹拌後、一晩静置させた。生成物を水洗し、80℃で加熱乾燥し、実施例10の吸着材を得た。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表4に示す。
(Example 10)
0.26 g of diethylenetriamine (manufactured by Yoneyama Yakuhin Kogyo Co., Ltd.) and 0.45 g of gluconolactone were put into 1 mL of water and reacted at 90 ° C. for 3 hours. Here, there is a compound in which diethylenetriamine has a hydrocarbon skeleton modified with an amino group. Then, the temperature was lowered to room temperature, 0.65 g of ethylene glycol diglycidyl ether was added as a cross-linking agent, and the mixture was stirred and allowed to stand overnight. The product was washed with water and dried by heating at 80 ° C. to obtain the adsorbent of Example 10. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 4.

Figure 2021045724
Figure 2021045724

(実施例11)
テトラエチレンペンタミン(関東化学株式会社製)0.47gと、グルコノラクトン0.445gとを、水1mL中に投入し、90℃で3時間反応させた。ここで、テトラエチレンペンタミンがアミノ基で修飾された炭化水素骨格を有する化合物である。その後、室温まで下げ、架橋剤としてエチレングリコールジグリシジルエーテルを0.65g投入し、撹拌後、一晩静置させた。生成物を水洗し、80℃で加熱乾燥し、実施例11の吸着材を得た。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表5に示す。
(Example 11)
0.47 g of tetraethylenepentamine (manufactured by Kanto Chemical Co., Inc.) and 0.445 g of gluconolactone were put into 1 mL of water and reacted at 90 ° C. for 3 hours. Here, tetraethylenepentamine is a compound having a hydrocarbon skeleton modified with an amino group. Then, the temperature was lowered to room temperature, 0.65 g of ethylene glycol diglycidyl ether was added as a cross-linking agent, and the mixture was stirred and allowed to stand overnight. The product was washed with water and dried by heating at 80 ° C. to obtain the adsorbent of Example 11. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 5.

Figure 2021045724
Figure 2021045724

(実施例12)
トリス(2−アミノエチル)アミン(東京化成工業株式会社製)0.73gと、グルコノラクトン0.29gとを、水2.5mL中に投入し、90℃で3時間反応させた。ここで、トリス(2−アミノエチル)アミンがアミノ基で修飾された炭化水素骨格を有する化合物である。その後、室温まで下げ、架橋剤としてエチレングリコールジグリシジルエーテルを0.58g投入し、撹拌後、一晩静置させた。生成物を水洗し、80℃で加熱乾燥し、実施例12の吸着材を得た。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表6に示す。
(Example 12)
0.73 g of tris (2-aminoethyl) amine (manufactured by Tokyo Chemical Industry Co., Ltd.) and 0.29 g of gluconolactone were put into 2.5 mL of water and reacted at 90 ° C. for 3 hours. Here, tris (2-aminoethyl) amine is a compound having a hydrocarbon skeleton modified with an amino group. Then, the temperature was lowered to room temperature, 0.58 g of ethylene glycol diglycidyl ether was added as a cross-linking agent, and the mixture was stirred and allowed to stand overnight. The product was washed with water and dried by heating at 80 ° C. to obtain the adsorbent of Example 12. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 6.

Figure 2021045724
Figure 2021045724

(実施例13)
ポリエチレンイミン(平均分子量1800、富士フイルム和光純薬株式会社製)0.48gと、アスコルビン酸0.247gとを、水3mL中に投入し、室温で24時間反応させた。ここで、アスコルビン酸が少なくとも1つの水酸基を有するラクトンである。その後、室温まで下げ、架橋剤としてエチレングリコールジグリシジルエーテルを0.37g投入し、撹拌後、一晩静置させた。水洗し、80℃で加熱乾燥し、実施例13の吸着材を得た。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表7に示す。
(Example 13)
0.48 g of polyethyleneimine (average molecular weight 1800, manufactured by Wako Pure Chemical Industries, Ltd.) and 0.247 g of ascorbic acid were put into 3 mL of water and reacted at room temperature for 24 hours. Here, ascorbic acid is a lactone having at least one hydroxyl group. Then, the temperature was lowered to room temperature, 0.37 g of ethylene glycol diglycidyl ether was added as a cross-linking agent, and the mixture was stirred and allowed to stand overnight. It was washed with water and dried by heating at 80 ° C. to obtain the adsorbent of Example 13. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 7.

Figure 2021045724
Figure 2021045724

(実施例14)
ポリエチレンイミン(平均分子量1800、富士フイルム和光純薬株式会社製)0.48gと、グロノラクトン0.25gとを、水3mL中に投入し、室温で24時間反応させた。ここで、グロノラクトンが少なくとも1つの水酸基を有するラクトンである。その後、室温まで下げ、架橋剤としてエチレングリコールジグリシジルエーテルを0.37g投入し、撹拌後、一晩静置させた。生成物を水洗し、80℃で加熱乾燥し、実施例14の吸着材を得た。また、実施例1〜5の場合と同様の方法により吸水率を求めた。結果を表8に示す。
(Example 14)
0.48 g of polyethyleneimine (average molecular weight 1800, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) and 0.25 g of glonolactone were put into 3 mL of water and reacted at room temperature for 24 hours. Here, glonolactone is a lactone having at least one hydroxyl group. Then, the temperature was lowered to room temperature, 0.37 g of ethylene glycol diglycidyl ether was added as a cross-linking agent, and the mixture was stirred and allowed to stand overnight. The product was washed with water and dried by heating at 80 ° C. to obtain the adsorbent of Example 14. In addition, the water absorption rate was determined by the same method as in Examples 1 to 5. The results are shown in Table 8.

Figure 2021045724
Figure 2021045724

−評 価−
<吸水率>
表1〜表8に示す結果から、実施例1〜14の吸着材の吸水率は高く、バルク内部まで水を浸透させることが可能であることが分かった。また、架橋剤の質量割合を小さくすれば吸水率が高くなり、架橋剤の質量割合を大きくすれば吸水率が小さくなることから、架橋剤の仕込み割合を適宜調整することにより、吸水率を容易に制御できることが分かった。
-Rating-
<Water absorption rate>
From the results shown in Tables 1 to 8, it was found that the adsorbents of Examples 1 to 14 had a high water absorption rate and could allow water to permeate into the bulk. Further, if the mass ratio of the cross-linking agent is reduced, the water absorption rate is increased, and if the mass ratio of the cross-linking agent is increased, the water absorption rate is reduced. It turned out that it can be controlled.

<ホウ素吸着試験>
試験液としてホウ素濃度100ppmに調製したホウ酸水溶液を用意し、この試験液25mLに対し、上記のようにして調製した実施例及び比較例の吸着材を約0.3gまたは約0.05gを入れ、24時間撹拌した。その後、試験液から吸着材をろ別し、ICP-AES(エスアイアイ・ナノテクノロジー株式会社製SEIKO SPS3520)を用いてろ液中のホウ素の定量分析を行った。
<Boron adsorption test>
A boric acid aqueous solution prepared to have a boron concentration of 100 ppm was prepared as a test solution, and about 0.3 g or about 0.05 g of the adsorbents of Examples and Comparative Examples prepared as described above was added to 25 mL of this test solution. , Stirred for 24 hours. Then, the adsorbent was filtered off from the test solution, and a quantitative analysis of boron in the filtrate was performed using ICP-AES (SEIKO SPS3520 manufactured by SII Nanotechnology Co., Ltd.).

実施例1〜14及び比較例1、2の吸着材に対する結果を表9に示す。
この表から、水酸基を有する置換基が結合している実施例1〜14の吸着材の1g当たりのホウ素吸着量は、水酸基を有する置換基が結合していない比較例1及び比較例2に比べて、顕著に高くなることが分かった。これは、試験液中のホウ酸イオンが水酸基とキレートを形成して、吸着材に吸着されるからである(図3参照)。
Table 9 shows the results for the adsorbents of Examples 1 to 14 and Comparative Examples 1 and 2.
From this table, the amount of boron adsorbed per gram of the adsorbents of Examples 1 to 14 to which the substituent having a hydroxyl group is bonded is compared with that of Comparative Example 1 and Comparative Example 2 in which the substituent having a hydroxyl group is not bonded. It turned out that it was significantly higher. This is because borate ions in the test solution form a chelate with the hydroxyl group and are adsorbed on the adsorbent (see FIG. 3).

Figure 2021045724
Figure 2021045724

<ホウ素以外の半金属の吸着試験>
ホウ素以外の半金属(すなわち、ヒ素、ビスマス、ゲルマニウム、アンチモン、セレン、ケイ素、テルル)に関しても、ホウ素の吸着試験と同様の方法で吸着試験を行った。比較例として、半金属以外の金属(カルシウム、チタン)も同様の方法で吸着試験を行った。各元素を100ppmに調整した試験液を用意し、この試験液25mLに対し、実施例1の吸着材を約0.3g入れて24時間撹拌した。その後、吸着材をろ別し、ICP-AES(エスアイアイ・ナノテクノロジー株式会社製SEIKO SPS3520)を用いてろ液中の分析を行った。結果を表10に示す。この表から、ヒ素、ビスマス、ゲルマニウム、アンチモン、セレン、ケイ素及びテルルにおいて吸着効果が確認された。これらの元素の中でもセレン、ビスマス、ゲルマニウム及びヒ素については特に高い吸着効果を示した。また、半金属ではないカルシウム、チタンについてはほとんど吸着能がないことが確認された。
<Adsorption test for metalloids other than boron>
Metalloids other than boron (that is, arsenic, bismuth, germanium, antimony, selenium, silicon, tellurium) were also subjected to an adsorption test in the same manner as the boron adsorption test. As a comparative example, an adsorption test was conducted on metals other than metalloids (calcium, titanium) in the same manner. A test solution prepared by adjusting each element to 100 ppm was prepared, and about 0.3 g of the adsorbent of Example 1 was added to 25 mL of this test solution and stirred for 24 hours. Then, the adsorbent was filtered off and analyzed in the filtrate using ICP-AES (SEIKO SPS3520 manufactured by SII Nanotechnology Co., Ltd.). The results are shown in Table 10. From this table, the adsorption effect was confirmed for arsenic, bismuth, germanium, antimony, selenium, silicon and tellurium. Among these elements, selenium, bismuth, germanium and arsenic showed particularly high adsorption effects. It was also confirmed that calcium and titanium, which are not semimetals, have almost no adsorptive capacity.

Figure 2021045724
Figure 2021045724

<リサイクル試験>
吸着材についてのリサイクル使用の可能性を調べるために、以下のリサイクル試験を行った。
実施例1の吸着材について、前述したホウ素吸着試験を行った後の吸着材を取り出し、0.1Mの塩酸水溶液中に加え、2時間撹拌した。その後、吸着材をろ別し、純水で洗浄した後、0.1Mの水酸化ナトリウム水溶液で1時間撹拌し、吸着材に吸着していたホウ素を脱離させ、吸着材を再生した。
こうして再生させた吸着材に対して再度、同様の方法でホウ素吸着試験を行った。その結果、再生前の結果とほぼ同様のホウ素吸着能を示しており、リサイクル使用が十分可能であることが分かった。
<Recycling test>
The following recycling tests were conducted to investigate the possibility of recycling of adsorbents.
With respect to the adsorbent of Example 1, the adsorbent after the above-mentioned boron adsorption test was taken out, added to a 0.1 M aqueous hydrochloric acid solution, and stirred for 2 hours. Then, the adsorbent was filtered off, washed with pure water, and then stirred with a 0.1 M aqueous sodium hydroxide solution for 1 hour to desorb boron adsorbed on the adsorbent, and the adsorbent was regenerated.
The boron adsorption test was performed again on the adsorbent regenerated in this way by the same method. As a result, it was found that the boron adsorption capacity was almost the same as that before the regeneration, and that it could be recycled sufficiently.

<吸着試験におけるpHの影響>
吸着材のホウ素吸着量におけるpHの影響を調べるために、塩酸または水酸化ナトリウム水溶液を用いてpHを1〜13に調整したホウ素濃度100ppm試験液を用いて吸着実験を行った。吸着実験の方法については、pH調整すること以外は前述した吸着実験方法と同じである。結果を表11に示す。この表から、広いpH範囲で、ホウ素を吸着できることが分かった。特に好適なpH範囲は、2以上10以下であり、さらに好適なのは3以上9以下であり、最も好適なのは3以上8以下であった。
<Effect of pH on adsorption test>
In order to investigate the effect of pH on the amount of boron adsorbed on the adsorbent, an adsorption experiment was conducted using a test solution having a boron concentration of 100 ppm whose pH was adjusted to 1 to 13 using hydrochloric acid or an aqueous solution of sodium hydroxide. The adsorption experiment method is the same as the adsorption experiment method described above except that the pH is adjusted. The results are shown in Table 11. From this table, it was found that boron can be adsorbed in a wide pH range. A particularly suitable pH range was 2 or more and 10 or less, a more preferable pH range was 3 or more and 9 or less, and the most preferable pH range was 3 or more and 8 or less.

Figure 2021045724
Figure 2021045724

本発明の吸着材を半金属含有溶液に浸漬するだけで、効率的に半金属を吸着させることができる。このため、工場排水等の排水中の半金属除去に利用することができる。 The semimetal can be efficiently adsorbed only by immersing the adsorbent of the present invention in the semimetal-containing solution. Therefore, it can be used for removing semimetals in wastewater such as factory wastewater.

1…炭化水素骨格、2,4…置換基部分、3…架橋部 1 ... Hydrocarbon skeleton, 2, 4 ... Substituent part, 3 ... Cross-linked part

Claims (8)

アミノ基で修飾された炭化水素骨格を有する化合物の前記アミノ基の一部が、少なくとも1つの水酸基を有するラクトン又は少なくとも1つの水酸基を有するエポキシ化合物と開環反応した構造を有し、さらに残りの前記アミノ基の一部又は全部が架橋剤で架橋されている半金属用吸着材。 A part of the amino groups of the compound having a hydrocarbon skeleton modified with an amino group has a structure obtained by ring-opening reaction with a lactone having at least one hydroxyl group or an epoxy compound having at least one hydroxyl group, and the rest. A semi-metal adsorbent in which a part or all of the amino groups are crosslinked with a cross-linking agent. 前記アミノ基で修飾された炭化水素骨格を有する化合物は、ポリエチレンイミン、ポリアリルアミン、ジエチレントリアミン、テトラエチレンペンタミン及びトリス(2−アミノエチル)アミンのいずれかである請求項1に記載の半金属用吸着材。 The semi-metal according to claim 1, wherein the compound having a hydrocarbon skeleton modified with an amino group is any one of polyethyleneimine, polyallylamine, diethylenetriamine, tetraethylenepentamine and tris (2-aminoethyl) amine. Adsorbent. 前記少なくとも1つの水酸基を有するラクトンは、ラクトン構造を有する単糖類及びアスコルビン酸のいずれかである請求項1又は2に記載の半金属用吸着材。 The adsorbent for semi-metals according to claim 1 or 2, wherein the lactone having at least one hydroxyl group is either a monosaccharide having a lactone structure or ascorbic acid. 前記少なくとも1つの水酸基を有するエポキシ化合物は、グリシドールである請求項1乃至3のいずれか1項に記載の半金属用吸着材。 The adsorbent for semi-metals according to any one of claims 1 to 3, wherein the epoxy compound having at least one hydroxyl group is glycidol. 前記架橋剤はエポキシ基を2つ以上有する化合物である請求項1乃至4のいずれか1項に記載の半金属用吸着材。 The adsorbent for semi-metals according to any one of claims 1 to 4, wherein the cross-linking agent is a compound having two or more epoxy groups. 吸着材の質量に対する前記架橋剤の質量割合は0.05以上2.0以下である請求項1乃至5のいずれか1項に記載の半金属用吸着材。 The adsorbent for semi-metals according to any one of claims 1 to 5, wherein the mass ratio of the cross-linking agent to the mass of the adsorbent is 0.05 or more and 2.0 or less. (水を飽和に達するまで吸水させた場合の吸水した水の質量)/(乾燥状態における質量)で定義される吸水率が0.5以上10以下である請求項1乃至6のいずれか1項に記載の半金属用吸着材。 Any one of claims 1 to 6 in which the water absorption rate defined by (mass of water absorbed when water is absorbed until it reaches saturation) / (mass in a dry state) is 0.5 or more and 10 or less. The adsorbent for semi-metals described in. 請求項1乃至7のいずれか1項に記載の半金属用吸着材に、半金属元素を構成要素とするイオンを含有する水溶液を接触させることを特徴とする半金属元素除去方法。 A method for removing a metalloid element, which comprises contacting the adsorbent for a metalloid according to any one of claims 1 to 7 with an aqueous solution containing an ion containing a metalloid element as a constituent element.
JP2019170427A 2019-09-19 2019-09-19 Adsorbent for metalloid and method for removing metalloid elements Active JP7352055B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019170427A JP7352055B2 (en) 2019-09-19 2019-09-19 Adsorbent for metalloid and method for removing metalloid elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019170427A JP7352055B2 (en) 2019-09-19 2019-09-19 Adsorbent for metalloid and method for removing metalloid elements

Publications (2)

Publication Number Publication Date
JP2021045724A true JP2021045724A (en) 2021-03-25
JP7352055B2 JP7352055B2 (en) 2023-09-28

Family

ID=74877225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019170427A Active JP7352055B2 (en) 2019-09-19 2019-09-19 Adsorbent for metalloid and method for removing metalloid elements

Country Status (1)

Country Link
JP (1) JP7352055B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123381A (en) * 1999-10-20 2001-05-08 Kiresuto Kk Chelate-forming fiber, its production and use thereof
JP2009233594A (en) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd Boron adsorbent and method of treating boron-containing waste liquid
JP2011212672A (en) * 2010-03-17 2011-10-27 Toshiba Corp Acrylic resin particle for adsorbent and column for water treatment
WO2015178458A1 (en) * 2014-05-23 2015-11-26 株式会社クラレ Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
JP2019063691A (en) * 2017-09-28 2019-04-25 日立化成テクノサービス株式会社 Resin for arsenic adsorption and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018039721A1 (en) 2016-08-31 2018-03-08 Commonwealth Scientific And Industrial Research Organisation Polymer coatings
CN112266496B (en) 2020-10-29 2023-01-20 江苏厚生新能源科技有限公司 Multilayer composite film based on polyimide modification and preparation process thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123381A (en) * 1999-10-20 2001-05-08 Kiresuto Kk Chelate-forming fiber, its production and use thereof
JP2009233594A (en) * 2008-03-27 2009-10-15 Mitsubishi Paper Mills Ltd Boron adsorbent and method of treating boron-containing waste liquid
JP2011212672A (en) * 2010-03-17 2011-10-27 Toshiba Corp Acrylic resin particle for adsorbent and column for water treatment
WO2015178458A1 (en) * 2014-05-23 2015-11-26 株式会社クラレ Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
JP2019063691A (en) * 2017-09-28 2019-04-25 日立化成テクノサービス株式会社 Resin for arsenic adsorption and method for producing the same

Also Published As

Publication number Publication date
JP7352055B2 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
CN110290853B (en) Stable immobilized amine sorbents for REE and heavy metal recovery from liquid sources
Lu et al. Adsorption and thermal stabilization of Pb2+ and Cu2+ by zeolite
JP3045148B2 (en) Alginate gel water treatment agent and method for producing the same
US10023937B2 (en) Adsorbent for rare earth element and method for recovering rare earth element
US8110526B2 (en) Arsenic absorbing composition and methods of use
Yuan et al. Click functionalization of poly (glycidyl methacrylate) microspheres with triazole-4-carboxylic acid for the effective adsorption of Pb (II) ions
CN111212567A (en) Removal of bacteria from drinking water by filtration
CN101298040A (en) Mercapto-functionalized polyvinyl alcohol-gelatine composite crosslinked microsphere adsorbing agent and preparation thereof
Xu et al. Uptake of perchlorate from aqueous solutions by amine-crosslinked cotton stalk
CN106807336B (en) Porous polymeric materials incorporating metal-containing ions or for purifying organic molecules
Rahman et al. Cyclic tetra [(indolyl)-tetra methyl]-diethane-1, 2-diamine (CTet) impregnated hydrous zirconium oxide as a novel hybrid material for enhanced removal of fluoride from water samples
O'Connell et al. Removal of lead (II) ions from aqueous solutions using a modified cellulose adsorbent
Li et al. A new amine-modified hypercrosslinked polymeric adsorbent for removing phenolic compounds from aqueous solutions
Wang et al. Synthesis of Poly (Ortho‐Phenylenediamine) Fluffy Microspheres and Application for the Removal of Cr (VI)
Yaacoubi et al. Adsorption isotherm, kinetic and mechanism studies of 2-nitrophenol on sedimentary phosphate
Shukla et al. Removal of fluoride from aqueous solution using Psidium guajava leaves
JP2021045724A (en) Semi-metal adsorbing material and semi-metal element removal method
Putra et al. Preparation, characterization, and adsorption performance of activated rice straw as a bioadsorbent for Cr (VI) removal from aqueous solution using a batch method
KR101919150B1 (en) double functional adsorption material for removing contaminants including heavy metals and preventing membrane fouling
US10752522B2 (en) Compositions and methods for selenium removal
KR101927405B1 (en) Humic acid-impregnated activated carbon for adsorbing mercury and the manufacturing method thereof
RU2616064C1 (en) Method for sorbent production based on polymer hydrogel
Nabais et al. Adsorption of aqueous mercury (II) species by commercial activated carbon fibres with and without surface modification
Morsy et al. Sorption of uranium from waste effluent solutions by mesoporous carbon impregnated with trioctylamine
CN111135875A (en) Composite ion exchanger, preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230822

R150 Certificate of patent or registration of utility model

Ref document number: 7352055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150