WO2023176049A1 - Composite reverse osmosis membrane and production method therefor - Google Patents

Composite reverse osmosis membrane and production method therefor Download PDF

Info

Publication number
WO2023176049A1
WO2023176049A1 PCT/JP2022/043353 JP2022043353W WO2023176049A1 WO 2023176049 A1 WO2023176049 A1 WO 2023176049A1 JP 2022043353 W JP2022043353 W JP 2022043353W WO 2023176049 A1 WO2023176049 A1 WO 2023176049A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse osmosis
osmosis membrane
composite reverse
polyamide resin
amino acid
Prior art date
Application number
PCT/JP2022/043353
Other languages
French (fr)
Japanese (ja)
Inventor
敏行 川島
俊祐 能見
倫次 宮部
ユンシャ フー
シャオルー リー
ヤーシュ グゥアン
イーウェン チン
ゲンハオ ゴン
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023176049A1 publication Critical patent/WO2023176049A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/48Antimicrobial properties

Definitions

  • the present invention relates to a composite reverse osmosis membrane including a skin layer and a porous support supporting the same, and a method for manufacturing the same.
  • This composite reverse osmosis membrane is suitable for producing ultrapure water, desalinating brackish water or seawater, etc., and also eliminates pollution sources contained in it, such as stains that cause pollution such as dyeing wastewater and electrocoated paint wastewater. Alternatively, effective substances can be removed and recovered, contributing to the closure of wastewater. It can also be used for advanced treatments such as concentrating active ingredients in food applications and removing harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, etc.
  • the causative substances that cause fouling are divided into inorganic crystalline fouling, organic fouling, particle and colloid fouling, and microbial fouling, depending on their properties.
  • the main causative agent is microbial fouling, which occurs when microorganisms present in water adsorb to the surface of the separation membrane and form a thin biofilm.
  • Recent research on anti-fouling separation membranes has focused on changing the electrical charge characteristics of the separation membrane surface.
  • a method has been proposed in which a surface layer containing a crosslinked organic polymer having a nonionic hydrophilic group is formed on a reverse osmosis composite membrane (Patent Document 1).
  • a method has been proposed in which a polyamide thin film is coated with a water-insoluble polymer crosslinked with an epoxy compound to make it hydrophilic (Patent Document 2).
  • Patent Documents 1 and 2 are less effective in suppressing deterioration of membrane properties due to biological contamination or secondary contamination caused therefrom. Furthermore, when a separate coating layer is provided on the surface of the separation membrane, there is a problem in that water permeability decreases.
  • An object of the present invention is to provide a composite reverse osmosis membrane with improved water permeability and antifouling performance, and a method for manufacturing the same.
  • the present invention provides a composite reverse osmosis membrane in which a skin layer containing a polyamide resin is formed on the surface of a porous support, wherein the polyamide resin is a modified polyamide resin modified with a polyalkylene imine derivative and an amino acid.
  • a composite reverse osmosis membrane characterized by the following.
  • the present invention involves contacting an aqueous solution containing a polyfunctional amine component and an organic solution containing a polyfunctional acid halide component on a porous support to form a skin layer containing a polyamide resin on the surface of the porous support. and a step of bringing a solution or gas containing a polyalkyleneimine derivative and an amino acid into contact with the skin layer to modify the polyamide resin.
  • the polyalkyleneimine derivative is preferably a modified polyethyleneimine in which an anionic functional group is added to the nitrogen atom of polyethyleneimine.
  • the anionic functional group is preferably a carboxyalkyl group, a sulfonic acid group, or a phosphoric acid group.
  • the amino acid is preferably a basic amino acid. Moreover, it is preferable that the basic amino acid is arginine.
  • At least the surface of the skin layer of the composite reverse osmosis membrane of the present invention is formed of a modified polyamide resin modified with a polyalkylene imine derivative and an amino acid, so it has excellent hydrophilicity and water permeability, and also has excellent antifouling properties. It has ring properties and/or antibacterial properties.
  • a skin layer containing a polyamide resin is formed on the surface of a porous support, and the polyamide resin is a modified polyamide resin modified with a polyalkylene imine derivative and an amino acid. It is characterized by
  • the polyamide resin is obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halogen component.
  • the polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and includes aromatic, aliphatic, and alicyclic polyfunctional amines.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diaminobenzene.
  • aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diaminobenzene.
  • examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N,N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, xylylenediamine, and the like.
  • Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris(2-aminoethyl)amine, and N-phenyl-ethylenediamine.
  • Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, etc. .
  • polyfunctional amines may be used alone or in combination of two or more. In order to obtain a skin layer with high salt blocking performance, it is preferable to use an aromatic polyfunctional amine.
  • the polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
  • polyfunctional acid halide examples include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
  • aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalenedicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, and chlorosulfonylbenzenedicarboxylate. Examples include acid dichloride.
  • Examples of the aliphatic polyfunctional acid halides include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, and adipolycarboxylic acid dichloride.
  • Examples include luhalide.
  • Examples of the alicyclic polyfunctional acid halides include cyclopropanetricarboxylic acid trichloride, cyclobutanetricarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetricarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydrofuran.
  • Examples include tetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
  • polyfunctional acid halides may be used alone or in combination of two or more.
  • an aromatic polyfunctional acid halide it is preferable to use an aromatic polyfunctional acid halide.
  • polymers such as polyvinyl alcohol, polyvinylpyrrolidone, and polyacrylic acid, and polyhydric alcohols such as sorbitol and glycerin may be copolymerized.
  • the porous support supporting the skin layer is not particularly limited as long as it can support the skin layer, and an ultrafiltration membrane having micropores with an average pore diameter of about 10 to 500 ⁇ is preferably used.
  • Various materials can be used to form the porous support, such as polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, and polyvinylidene fluoride. Polysulfone and polyarylether sulfone are preferably used because they are stable.
  • the thickness of such a porous support is usually about 25 to 125 ⁇ m, preferably about 40 to 75 ⁇ m, but is not necessarily limited thereto.
  • the porous support is usually reinforced by lining with a base material such as woven fabric or nonwoven fabric.
  • the method for forming a skin layer containing a polyamide resin on the surface of a porous support is not particularly limited, and any known method can be used. Examples include interfacial condensation method, phase separation method, and thin film coating method. Specifically, the interfacial condensation method involves forming a skin layer by bringing an aqueous amine solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component to cause interfacial polymerization. and a method in which a skin layer of polyamide resin is directly formed on a porous support by the interfacial polymerization on the porous support.
  • an aqueous solution coating layer made of an amine aqueous solution containing a polyfunctional amine component is formed on a porous support, and then the aqueous solution coating layer is brought into contact with an organic solution containing a polyfunctional acid halide component to perform interfacial polymerization.
  • a method in which a skin layer is formed by forming a skin layer is preferred.
  • the concentration of the polyfunctional amine component in the aqueous amine solution is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.5 to 4% by weight.
  • concentration of the polyfunctional amine component is less than 0.1% by weight, defects such as pinholes are likely to occur in the skin layer, and salt blocking performance tends to decrease.
  • concentration of the polyfunctional amine component exceeds 5% by weight, the polyfunctional amine component may easily permeate into the porous support, or the film thickness may become too thick, resulting in increased permeation resistance and the permeation flow. The bundle tends to decrease.
  • the concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide component is less than 0.01% by weight, unreacted polyfunctional amine components tend to remain or defects such as pinholes tend to occur in the skin layer, resulting in a decrease in salt blocking performance. There is a tendency to On the other hand, if the concentration of the polyfunctional acid halide component exceeds 5% by weight, unreacted polyfunctional acid halide components tend to remain or the film thickness becomes too thick, resulting in high permeation resistance and a decrease in permeation flux. It is on a declining trend.
  • the organic solvent used in the organic solution is not particularly limited as long as it has low solubility in water, does not deteriorate the porous support, and dissolves the polyfunctional acid halide component, such as cyclohexane, heptane, and octane. and saturated hydrocarbons such as nonane, and halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane. It is preferably a saturated hydrocarbon or naphthenic solvent with a boiling point of 300°C or lower, more preferably 200°C or lower.
  • One type of organic solvent may be used alone, or two or more types of organic solvents may be used as a mixed solvent.
  • additives can be added to the amine aqueous solution or organic solution for the purpose of facilitating membrane formation or improving the performance of the resulting composite reverse osmosis membrane.
  • the additives include surfactants such as sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate; sodium hydroxide for removing hydrogen halide produced by polymerization; trisodium phosphate; and triethylamine. basic compounds, acylation catalysts, etc.
  • a solution or a gas containing a polyalkylene imine derivative and an amino acid is used. is brought into contact with the skin layer to modify at least the polyamide resin on the surface of the skin layer to a modified polyamide resin.
  • the polyalkylene imine derivative is attached to the polyamide resin via a newly formed amide bond.
  • polyalkylene imine derivatives examples include alkylene imines having 2 to 8 carbon atoms, preferably carbon atoms, such as ethyleneimine, propylene imine, butylene imine, dimethylethylene imine, pentylene imine, hexylene imine, heptylene imine, and octylene imine.
  • alkylene imines having 2 to 8 carbon atoms such as ethyleneimine, propylene imine, butylene imine, dimethylethylene imine, pentylene imine, hexylene imine, heptylene imine, and octylene imine.
  • modified polyalkylene imines obtained by polymerizing one or more of 2 to 4 alkylene imines by a conventional method and chemically modifying the polyalkylene imines by reacting them with various compounds.
  • the polyalkyleneimine may be linear or branched.
  • the polyalkyleneimine derivative is preferably a modified polyethyleneimine in which an anionic functional group is added to the nitrogen atom of polyethyleneimine, from the viewpoint of improving water permeability and antifouling performance.
  • the anionic functional group is not particularly limited as long as it has an anionic group, but includes carboxyalkyl groups (the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 5), sulfones, etc. An acid group or a phosphoric acid group is preferable.
  • the polyalkyleneimine derivative is more preferably the following modified polyethyleneimine.
  • the weight average molecular weight of the polyalkyleneimine derivative is preferably 800 to 250,000, more preferably 1,800 to 70,000, and still more preferably 3,000 to 50,000, from the viewpoint of improving water permeability and antifouling performance. More preferably, it is 5,000 to 30,000, particularly preferably 5,000 to 20,000.
  • the amino acid is not particularly limited, but is preferably a basic amino acid from the viewpoint of improving water permeability and antifouling performance.
  • the basic amino acid include lysine, arginine, histidine, ornithine, and tryptophan, among which arginine is preferred.
  • the method of bringing a solution (aqueous or organic solution) containing a polyalkylene imine derivative and an amino acid into contact with the skin layer is not particularly limited, and examples include a method of applying the solution to the skin layer, a method of applying the solution to the skin layer, a method of applying the solution to the skin layer, and a method of contacting the skin layer with the solution (aqueous solution or organic solution). Examples include a method of immersing.
  • the method of contacting the skin layer with a gas containing a polyalkylene imine derivative and an amino acid is not particularly limited, and examples include a method of spraying the gas onto the skin layer, a method of contacting the skin layer with the gas containing the polyalkylene imine derivative and an amino acid, and Examples include a method of exposing layers.
  • the thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.05 to 2 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the composite reverse osmosis membrane of the present invention is not limited in any way to its shape. That is, any conceivable membrane shape is possible, such as a flat membrane shape or a spiral element shape. Further, in order to improve the salt blocking properties, water permeability, oxidant resistance, etc. of the composite reverse osmosis membrane, various conventionally known treatments may be performed.
  • Comparative example 1 An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 2.0% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, the excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.1% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. Thereafter, the membrane was kept in a hot air dryer at 60° C. for 10 minutes to form a skin layer containing a polyamide resin on the porous polysulfone support membrane, thereby producing a composite reverse osmosis membrane.
  • Comparative example 2 An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 3.4% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.15% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, the excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. Thereafter, the membrane was kept in a hot air dryer at 60° C. for 10 minutes to form a skin layer containing a polyamide resin on the porous polysulfone support membrane, thereby producing a composite reverse osmosis membrane.
  • Example 1 An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 2.0% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, the excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.1% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. A skin layer containing polyamide resin was then formed.
  • an aqueous solution containing 0.4% by mass of PEI-CA and 0.1% by mass of arginine as a polyalkyleneimine derivative was applied to the surface of the skin layer at 25 ⁇ 0.2°C and 40 ⁇ 2%RH. It was held in an atmosphere for 2 minutes, and then held in a hot air dryer at 60°C for 10 minutes to modify the polyamide resin forming the skin layer. As a result, a composite reverse osmosis membrane having a skin layer containing a modified polyamide resin on a porous polysulfone support membrane was produced.
  • Example 2 An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 3.4% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.15% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, the excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. A skin layer containing polyamide resin was then formed.
  • an aqueous solution containing 0.4% by mass of PEI-CA and 0.1% by mass of arginine as a polyalkyleneimine derivative was applied to the surface of the skin layer at 25 ⁇ 0.2°C and 40 ⁇ 2%RH. It was held in an atmosphere for 2 minutes, and then held in a hot air dryer at 60°C for 10 minutes to modify the polyamide resin forming the skin layer. As a result, a composite reverse osmosis membrane having a skin layer containing a modified polyamide resin on a porous polysulfone support membrane was produced.
  • the permeate flux of the composite reverse osmosis membrane was then measured after operating for 1 hour at a pressure of 15 bar using a feed aqueous solution containing a concentration of 2000 mg/L NaCl (30 minutes of permeate collected).
  • the permeation flux was determined using the following formula (1).
  • the concentrations of the feed and permeate solutions were also measured using a conductivity meter (Thermo, Eutech CON2700, USA).
  • the salt rejection rate was determined by the following formula (2). The test was repeated three times and the average data was taken as the final result. The results are shown in Table 1.
  • DTAB Dodecyl Trimethyl Ammonium Bromide
  • SDS Sodium Dodecyl Sulfate
  • the permeate flux was measured again.
  • the composite reverse osmosis membrane was cleaned using deionized water for 30 minutes at a circulation flow rate of 3 L/min.
  • the permeation flux was measured again using an aqueous feed solution containing 2000 mg/L NaCl. Then, the flux decline rate and flux irreversible recovery rate were calculated using the following formulas. The results are shown in Table 1.
  • Flux reduction rate (%) ⁇ 1 - (permeation flux in the second stage / permeation flux in the first stage) ⁇ ⁇ 100
  • Flux non-recovery rate (%) ⁇ 1 - (permeation flux in the 4th stage / permeation flux in the 1st stage) ⁇ ⁇ 100
  • the composite reverse osmosis membranes of Examples 1 and 2 having a skin layer formed from a modified polyamide resin modified with PEI-CA and arginine have a skin layer formed from an unmodified polyamide resin.
  • the permeation flow rate is improved compared to the composite reverse osmosis membranes of Comparative Examples 1 and 2, which have layers, and the flux is reduced compared to the RO membrane of Comparative Example 3, which has a skin layer made of unmodified polyamide resin. It can be seen that the anti-fouling properties are low and the anti-fouling properties are excellent.
  • the composite reverse osmosis membrane of the present invention is suitable for the production of ultra-pure water, desalination of brine or seawater, etc., and is also effective against pollution-causing stains such as dyeing wastewater and electrocoating paint wastewater. It is possible to remove and recover pollutants or effective substances, contributing to the closure of wastewater. It can also be used for advanced treatments such as concentrating active ingredients in food applications and removing harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Water Supply & Treatment (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The purpose of the present invention is to provide a composite reverse osmosis membrane that exhibits improved permeability and antifouling properties, and a production method therefor. A composite reverse osmosis membrane according to the present invention is configured by forming a skin layer containing a polyamide resin on a surface of a porous support, wherein the polyamide resin is a modified polyamide resin modified by a polyalkylene imine derivative and an amino acid.

Description

複合逆浸透膜及びその製造方法Composite reverse osmosis membrane and its manufacturing method
 本発明は、スキン層とこれを支持する多孔性支持体とを含む複合逆浸透膜及びその製造方法に関する。かかる複合逆浸透膜は、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。 The present invention relates to a composite reverse osmosis membrane including a skin layer and a porous support supporting the same, and a method for manufacturing the same. This composite reverse osmosis membrane is suitable for producing ultrapure water, desalinating brackish water or seawater, etc., and also eliminates pollution sources contained in it, such as stains that cause pollution such as dyeing wastewater and electrocoated paint wastewater. Alternatively, effective substances can be removed and recovered, contributing to the closure of wastewater. It can also be used for advanced treatments such as concentrating active ingredients in food applications and removing harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, etc.
 複合逆浸透膜を用いた水処理工程では、時間の経過に伴って水透過量や塩阻止率のような水透過特性が低下する現象、即ちファウリングが発生しており、水処理施設の運営コストの中で最も多くのコストがこのようなファウリングによる損失処理及びファウリング防止に使われている。そのため、このようなファウリングに対する根本的な防止策が求められている。 In water treatment processes using composite reverse osmosis membranes, a phenomenon in which water permeation characteristics such as water permeation amount and salt rejection rate decrease over time, that is, fouling, occurs, and the operation of water treatment facilities has become difficult. Most of the costs are spent on handling loss due to fouling and preventing fouling. Therefore, fundamental preventive measures against such fouling are required.
 ファウリングを引き起こす原因物質は、その性状によって、無機結晶質ファウリング、有機物ファウリング、粒子及びコロイドファウリング、微生物ファウリングに分けられる。ポリアミド系複合逆浸透膜の場合は、水中に存在する微生物が分離膜の表面に吸着し、薄いバイオフィルムを形成することにより発生する微生物ファウリングが主原因物質である。 The causative substances that cause fouling are divided into inorganic crystalline fouling, organic fouling, particle and colloid fouling, and microbial fouling, depending on their properties. In the case of polyamide-based composite reverse osmosis membranes, the main causative agent is microbial fouling, which occurs when microorganisms present in water adsorb to the surface of the separation membrane and form a thin biofilm.
 ファウリングを減らすために、原水の前処理、分離膜表面の電気的性質改質、モジュール工程条件改質、周期的クリーニングなどの方法が広く用いられている。特に、複合逆浸透膜で最も激しく発生する微生物によるファウリングの場合、塩素のような殺菌剤の処理によって微生物によるファウリングが著しく減少することが知られている。しかし、塩素の場合、発癌物質などの副産物を発生させるので、飲料水を生産する工程にそのまま適用するには多くの問題点がある。 In order to reduce fouling, methods such as pretreatment of raw water, modification of the electrical properties of the separation membrane surface, modification of module process conditions, and periodic cleaning are widely used. In particular, in the case of microbial fouling, which occurs most severely in composite reverse osmosis membranes, it is known that treatment with a disinfectant such as chlorine can significantly reduce microbial fouling. However, since chlorine generates byproducts such as carcinogens, there are many problems when directly applying it to the process of producing drinking water.
 最近のアンチファウリング分離膜の研究は、分離膜表面の電荷的な特性を変化させることに焦点を合わせている。例えば、逆浸透複合膜上に、非イオン系の親水性基を有する架橋した有機重合体を含む表層を形成する方法が提案されている(特許文献1)。また、ポリアミド薄膜上に、エポキシ化合物を架橋させた非水溶性高分子にて親水性コートを行う方法が提案されている(特許文献2)。 Recent research on anti-fouling separation membranes has focused on changing the electrical charge characteristics of the separation membrane surface. For example, a method has been proposed in which a surface layer containing a crosslinked organic polymer having a nonionic hydrophilic group is formed on a reverse osmosis composite membrane (Patent Document 1). Furthermore, a method has been proposed in which a polyamide thin film is coated with a water-insoluble polymer crosslinked with an epoxy compound to make it hydrophilic (Patent Document 2).
特開平11-226367号公報Japanese Patent Application Publication No. 11-226367 特開2004-25102号公報Japanese Patent Application Publication No. 2004-25102
 しかし、特許文献1及び2の方法は、生物由来の汚染、あるいはそれに起因する副次的な汚染等による膜特性の低下を抑制する効果が低い。また、分離膜の表面にコート層を別途設けると、透水性が低下するという問題があった。 However, the methods of Patent Documents 1 and 2 are less effective in suppressing deterioration of membrane properties due to biological contamination or secondary contamination caused therefrom. Furthermore, when a separate coating layer is provided on the surface of the separation membrane, there is a problem in that water permeability decreases.
 本発明は、透水性及び防汚性能を向上させた複合逆浸透膜及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a composite reverse osmosis membrane with improved water permeability and antifouling performance, and a method for manufacturing the same.
 本発明者は、前記課題を解決すべく鋭意検討を重ねた結果、以下に示す複合逆浸透膜により上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the above-mentioned objects can be achieved by using the composite reverse osmosis membrane shown below, and have completed the present invention.
 すなわち、本発明は、ポリアミド樹脂を含むスキン層が多孔性支持体の表面に形成されている複合逆浸透膜において、前記ポリアミド樹脂は、ポリアルキレンイミン誘導体とアミノ酸とによって変性された変性ポリアミド樹脂であることを特徴とする複合逆浸透膜、に関する。 That is, the present invention provides a composite reverse osmosis membrane in which a skin layer containing a polyamide resin is formed on the surface of a porous support, wherein the polyamide resin is a modified polyamide resin modified with a polyalkylene imine derivative and an amino acid. A composite reverse osmosis membrane characterized by the following.
 また、本発明は、多官能アミン成分を含む水溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド樹脂を含むスキン層を多孔性支持体の表面に形成する工程、及びポリアルキレンイミン誘導体とアミノ酸とを含む溶液又はガスを前記スキン層に接触させて、前記ポリアミド樹脂を変性する工程を含む複合逆浸透膜の製造方法、に関する。 Furthermore, the present invention involves contacting an aqueous solution containing a polyfunctional amine component and an organic solution containing a polyfunctional acid halide component on a porous support to form a skin layer containing a polyamide resin on the surface of the porous support. and a step of bringing a solution or gas containing a polyalkyleneimine derivative and an amino acid into contact with the skin layer to modify the polyamide resin.
 前記ポリアルキレンイミン誘導体は、ポリエチレンイミンの窒素原子にアニオン性官能基が付加した変性ポリエチレンイミンであることが好ましい。 The polyalkyleneimine derivative is preferably a modified polyethyleneimine in which an anionic functional group is added to the nitrogen atom of polyethyleneimine.
 前記アニオン性官能基は、カルボキシアルキル基、スルホン酸基、又はリン酸基であることが好ましい。 The anionic functional group is preferably a carboxyalkyl group, a sulfonic acid group, or a phosphoric acid group.
 前記アミノ酸は、塩基性アミノ酸であることが好ましい。また、前記塩基性アミノ酸は、アルギニンであることが好ましい。 The amino acid is preferably a basic amino acid. Moreover, it is preferable that the basic amino acid is arginine.
 本発明の複合逆浸透膜の少なくともスキン層表面は、ポリアルキレンイミン誘導体とアミノ酸とによって変性された変性ポリアミド樹脂により形成されているため、親水性及び透水性に優れており、また優れたアンチファウリング特性及び/又は抗菌特性を有している。 At least the surface of the skin layer of the composite reverse osmosis membrane of the present invention is formed of a modified polyamide resin modified with a polyalkylene imine derivative and an amino acid, so it has excellent hydrophilicity and water permeability, and also has excellent antifouling properties. It has ring properties and/or antibacterial properties.
 以下、本発明の実施の形態について説明する。本発明の複合逆浸透膜は、ポリアミド樹脂を含むスキン層が多孔性支持体の表面に形成されているものであり、前記ポリアミド樹脂は、ポリアルキレンイミン誘導体とアミノ酸とによって変性された変性ポリアミド樹脂であることを特徴とする。 Embodiments of the present invention will be described below. In the composite reverse osmosis membrane of the present invention, a skin layer containing a polyamide resin is formed on the surface of a porous support, and the polyamide resin is a modified polyamide resin modified with a polyalkylene imine derivative and an amino acid. It is characterized by
 前記ポリアミド樹脂は、多官能アミン成分と多官能酸ハロゲン成分とを重合して得られる。 The polyamide resin is obtained by polymerizing a polyfunctional amine component and a polyfunctional acid halogen component.
 多官能アミン成分とは、2以上の反応性アミノ基を有する多官能アミンであり、芳香族、脂肪族及び脂環式の多官能アミンが挙げられる。 The polyfunctional amine component is a polyfunctional amine having two or more reactive amino groups, and includes aromatic, aliphatic, and alicyclic polyfunctional amines.
 芳香族多官能アミンとしては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、o-フェニレンジアミン、1,3,5-トリアミノベンゼン、1,2,4-トリアミノベンゼン、3,5-ジアミノ安息香酸、2,4-ジアミノトルエン、2,6-ジアミノトルエン、N,N’-ジメチル-m-フェニレンジアミン、2,4-ジアミノアニソール、アミドール、キシリレンジアミン等が挙げられる。 Examples of aromatic polyfunctional amines include m-phenylenediamine, p-phenylenediamine, o-phenylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene, and 3,5-diaminobenzene. Examples include benzoic acid, 2,4-diaminotoluene, 2,6-diaminotoluene, N,N'-dimethyl-m-phenylenediamine, 2,4-diaminoanisole, amidol, xylylenediamine, and the like.
 脂肪族多官能アミンとしては、例えば、エチレンジアミン、プロピレンジアミン、トリス(2-アミノエチル)アミン、N-フェニル-エチレンジアミン等が挙げられる。 Examples of the aliphatic polyfunctional amine include ethylenediamine, propylenediamine, tris(2-aminoethyl)amine, and N-phenyl-ethylenediamine.
 脂環式多官能アミンとしては、例えば、1,3-ジアミノシクロヘキサン、1,2-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ピペラジン、2,5-ジメチルピペラジン、4-アミノメチルピペラジン等が挙げられる。 Examples of the alicyclic polyfunctional amine include 1,3-diaminocyclohexane, 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 2,5-dimethylpiperazine, 4-aminomethylpiperazine, etc. .
 これらの多官能アミンは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能アミンを用いることが好ましい。 These polyfunctional amines may be used alone or in combination of two or more. In order to obtain a skin layer with high salt blocking performance, it is preferable to use an aromatic polyfunctional amine.
 多官能酸ハライド成分とは、反応性カルボニル基を2個以上有する多官能酸ハライドである。 The polyfunctional acid halide component is a polyfunctional acid halide having two or more reactive carbonyl groups.
 多官能酸ハライドとしては、芳香族、脂肪族及び脂環式の多官能酸ハライドが挙げられる。 Examples of the polyfunctional acid halide include aromatic, aliphatic, and alicyclic polyfunctional acid halides.
 芳香族多官能酸ハライドとしては、例えば、トリメシン酸トリクロライド、テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、ベンゼントリスルホン酸トリクロライド、ベンゼンジスルホン酸ジクロライド、クロロスルホニルベンゼンジカルボン酸ジクロライド等が挙げられる。 Examples of aromatic polyfunctional acid halides include trimesic acid trichloride, terephthalic acid dichloride, isophthalic acid dichloride, biphenyldicarboxylic acid dichloride, naphthalenedicarboxylic acid dichloride, benzenetrisulfonic acid trichloride, benzenedisulfonic acid dichloride, and chlorosulfonylbenzenedicarboxylate. Examples include acid dichloride.
 脂肪族多官能酸ハライドとしては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、ブタントリカルボン酸トリクロライド、ペンタントリカルボン酸トリクロライド、グルタリルハライド、アジポイルハライド等が挙げられる。 Examples of the aliphatic polyfunctional acid halides include propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, butanetricarboxylic acid trichloride, pentanetricarboxylic acid trichloride, glutaryl halide, and adipolycarboxylic acid dichloride. Examples include luhalide.
 脂環式多官能酸ハライドとしては、例えば、シクロプロパントリカルボン酸トリクロライド、シクロブタンテトラカルボン酸テトラクロライド、シクロペンタントリカルボン酸トリクロライド、シクロペンタンテトラカルボン酸テトラクロライド、シクロヘキサントリカルボン酸トリクロライド、テトラハイドロフランテトラカルボン酸テトラクロライド、シクロペンタンジカルボン酸ジクロライド、シクロブタンジカルボン酸ジクロライド、シクロヘキサンジカルボン酸ジクロライド、テトラハイドロフランジカルボン酸ジクロライド等が挙げられる。 Examples of the alicyclic polyfunctional acid halides include cyclopropanetricarboxylic acid trichloride, cyclobutanetricarboxylic acid tetrachloride, cyclopentanetricarboxylic acid trichloride, cyclopentanetricarboxylic acid tetrachloride, cyclohexanetricarboxylic acid trichloride, and tetrahydrofuran. Examples include tetracarboxylic acid tetrachloride, cyclopentanedicarboxylic acid dichloride, cyclobutanedicarboxylic acid dichloride, cyclohexanedicarboxylic acid dichloride, and tetrahydrofurandicarboxylic acid dichloride.
 これら多官能酸ハライドは1種で用いてもよく、2種以上を併用してもよい。高塩阻止性能のスキン層を得るためには、芳香族多官能酸ハライドを用いることが好ましい。また、多官能酸ハライド成分の少なくとも一部に3価以上の多官能酸ハライドを用いて、架橋構造を形成するのが好ましい。 These polyfunctional acid halides may be used alone or in combination of two or more. In order to obtain a skin layer with high salt blocking performance, it is preferable to use an aromatic polyfunctional acid halide. Further, it is preferable to form a crosslinked structure by using a trivalent or higher polyfunctional acid halide as at least a part of the polyfunctional acid halide component.
 また、ポリアミド樹脂を含むスキン層の性能を向上させるために、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリル酸などのポリマー、ソルビトール、グリセリンなどの多価アルコールなどを共重合させてもよい。 Furthermore, in order to improve the performance of the skin layer containing the polyamide resin, polymers such as polyvinyl alcohol, polyvinylpyrrolidone, and polyacrylic acid, and polyhydric alcohols such as sorbitol and glycerin may be copolymerized.
 スキン層を支持する多孔性支持体は、スキン層を支持しうるものであれば特に限定されず、通常平均孔径10~500Å程度の微孔を有する限外濾過膜が好ましく用いられる。多孔性支持体の形成材料としては、例えば、ポリスルホン、ポリエーテルスルホンのようなポリアリールエーテルスルホン、ポリイミド、ポリフッ化ビニリデンなど種々のものをあげることができるが、特に化学的、機械的、熱的に安定である点からポリスルホン、ポリアリールエーテルスルホンが好ましく用いられる。かかる多孔性支持体の厚さは、通常約25~125μm、好ましくは約40~75μmであるが、必ずしもこれらに限定されるものではない。なお、多孔性支持体は、通常、織布や不織布等の基材による裏打ちにて補強されていている。 The porous support supporting the skin layer is not particularly limited as long as it can support the skin layer, and an ultrafiltration membrane having micropores with an average pore diameter of about 10 to 500 Å is preferably used. Various materials can be used to form the porous support, such as polysulfone, polyarylethersulfone such as polyethersulfone, polyimide, and polyvinylidene fluoride. Polysulfone and polyarylether sulfone are preferably used because they are stable. The thickness of such a porous support is usually about 25 to 125 μm, preferably about 40 to 75 μm, but is not necessarily limited thereto. Note that the porous support is usually reinforced by lining with a base material such as woven fabric or nonwoven fabric.
 ポリアミド樹脂を含むスキン層を多孔性支持体の表面に形成する方法は特に制限されず、あらゆる公知の手法を用いることができる。例えば、界面縮合法、相分離法、薄膜塗布法などが挙げられる。界面縮合法とは、具体的に、多官能アミン成分を含有するアミン水溶液と、多官能酸ハライド成分を含有する有機溶液とを接触させて界面重合させることによりスキン層を形成し、該スキン層を多孔性支持体上に載置する方法や、多孔性支持体上での前記界面重合によりポリアミド樹脂のスキン層を多孔性支持体上に直接形成する方法である。 The method for forming a skin layer containing a polyamide resin on the surface of a porous support is not particularly limited, and any known method can be used. Examples include interfacial condensation method, phase separation method, and thin film coating method. Specifically, the interfacial condensation method involves forming a skin layer by bringing an aqueous amine solution containing a polyfunctional amine component into contact with an organic solution containing a polyfunctional acid halide component to cause interfacial polymerization. and a method in which a skin layer of polyamide resin is directly formed on a porous support by the interfacial polymerization on the porous support.
 本発明においては、多官能アミン成分を含むアミン水溶液からなる水溶液被覆層を多孔性支持体上に形成し、次いで多官能酸ハライド成分を含有する有機溶液と水溶液被覆層とを接触させて界面重合させることによりスキン層を形成する方法が好ましい。 In the present invention, an aqueous solution coating layer made of an amine aqueous solution containing a polyfunctional amine component is formed on a porous support, and then the aqueous solution coating layer is brought into contact with an organic solution containing a polyfunctional acid halide component to perform interfacial polymerization. A method in which a skin layer is formed by forming a skin layer is preferred.
 前記界面重合法において、アミン水溶液中の多官能アミン成分の濃度は特に制限されないが、0.1~5重量%であることが好ましく、より好ましくは0.5~4重量%である。多官能アミン成分の濃度が0.1重量%未満の場合にはスキン層にピンホール等の欠陥が生じやすくなり、また塩阻止性能が低下する傾向にある。一方、多官能アミン成分の濃度が5重量%を超える場合には、多官能アミン成分が多孔性支持体中に浸透しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなって透過流束が低下する傾向にある。 In the interfacial polymerization method, the concentration of the polyfunctional amine component in the aqueous amine solution is not particularly limited, but is preferably 0.1 to 5% by weight, more preferably 0.5 to 4% by weight. When the concentration of the polyfunctional amine component is less than 0.1% by weight, defects such as pinholes are likely to occur in the skin layer, and salt blocking performance tends to decrease. On the other hand, if the concentration of the polyfunctional amine component exceeds 5% by weight, the polyfunctional amine component may easily permeate into the porous support, or the film thickness may become too thick, resulting in increased permeation resistance and the permeation flow. The bundle tends to decrease.
 前記有機溶液中の多官能酸ハライド成分の濃度は特に制限されないが、0.01~5重量%であることが好ましく、より好ましくは0.05~3重量%である。多官能酸ハライド成分の濃度が0.01重量%未満の場合には、未反応多官能アミン成分が残留しやすくなったり、スキン層にピンホール等の欠陥が生じやすくなって塩阻止性能が低下する傾向にある。一方、多官能酸ハライド成分の濃度が5重量%を超える場合には、未反応多官能酸ハライド成分が残留しやすくなったり、膜厚が厚くなりすぎて透過抵抗が大きくなり、透過流束が低下する傾向にある。 The concentration of the polyfunctional acid halide component in the organic solution is not particularly limited, but is preferably 0.01 to 5% by weight, more preferably 0.05 to 3% by weight. If the concentration of the polyfunctional acid halide component is less than 0.01% by weight, unreacted polyfunctional amine components tend to remain or defects such as pinholes tend to occur in the skin layer, resulting in a decrease in salt blocking performance. There is a tendency to On the other hand, if the concentration of the polyfunctional acid halide component exceeds 5% by weight, unreacted polyfunctional acid halide components tend to remain or the film thickness becomes too thick, resulting in high permeation resistance and a decrease in permeation flux. It is on a declining trend.
 前記有機溶液に用いられる有機溶媒としては、水に対する溶解度が低く、多孔性支持体を劣化させず、多官能酸ハライド成分を溶解するものであれば特に限定されず、例えば、シクロヘキサン、ヘプタン、オクタン、及びノナン等の飽和炭化水素、1,1,2-トリクロロトリフルオロエタン等のハロゲン置換炭化水素などを挙げることができる。好ましくは沸点が300℃以下、さらに好ましくは沸点が200℃以下の飽和炭化水素またはナフテン系溶媒である。有機溶媒は1種単独で用いてもよく、2種以上の混合溶媒として用いてもよい。 The organic solvent used in the organic solution is not particularly limited as long as it has low solubility in water, does not deteriorate the porous support, and dissolves the polyfunctional acid halide component, such as cyclohexane, heptane, and octane. and saturated hydrocarbons such as nonane, and halogen-substituted hydrocarbons such as 1,1,2-trichlorotrifluoroethane. It is preferably a saturated hydrocarbon or naphthenic solvent with a boiling point of 300°C or lower, more preferably 200°C or lower. One type of organic solvent may be used alone, or two or more types of organic solvents may be used as a mixed solvent.
 前記アミン水溶液又は有機溶液には、製膜を容易にしたり、得られる複合逆浸透膜の性能を向上させるための目的で各種の添加剤を加えることができる。前記添加剤としては、例えば、ドデシルベンゼンスルホン酸ナトリウム、ドデシル硫酸ナトリウム、及びラウリル硫酸ナトリウム等の界面活性剤、重合により生成するハロゲン化水素を除去する水酸化ナトリウム、リン酸三ナトリウム、及びトリエチルアミン等の塩基性化合物、アシル化触媒などが挙げられる。 Various additives can be added to the amine aqueous solution or organic solution for the purpose of facilitating membrane formation or improving the performance of the resulting composite reverse osmosis membrane. Examples of the additives include surfactants such as sodium dodecylbenzenesulfonate, sodium dodecyl sulfate, and sodium lauryl sulfate; sodium hydroxide for removing hydrogen halide produced by polymerization; trisodium phosphate; and triethylamine. basic compounds, acylation catalysts, etc.
 本発明においては、多孔性支持体の表面にスキン層を形成した後(ただし、完全に形成されていなくてもよく、形成途中でもよい。)、ポリアルキレンイミン誘導体とアミノ酸とを含む溶液又はガスを前記スキン層に接触させて、少なくとも前記スキン層の表面のポリアミド樹脂を変性ポリアミド樹脂に変性する。詳しくは、前記スキン層を形成するポリアミド樹脂に残存するハロゲン化アシル基にポリアルキレンイミン誘導体とアミノ酸とを反応させることにより、新たに形成されたアミド結合を介して前記ポリアミド樹脂にポリアルキレンイミン誘導体由来の有機基とアミノ酸由来の有機基を導入する。 In the present invention, after forming a skin layer on the surface of a porous support (however, it does not have to be completely formed and may be formed in the middle of formation), a solution or a gas containing a polyalkylene imine derivative and an amino acid is used. is brought into contact with the skin layer to modify at least the polyamide resin on the surface of the skin layer to a modified polyamide resin. Specifically, by reacting a polyalkylene imine derivative and an amino acid with a halogenated acyl group remaining in the polyamide resin forming the skin layer, the polyalkylene imine derivative is attached to the polyamide resin via a newly formed amide bond. Introducing an organic group derived from amino acids and an organic group derived from an amino acid.
 前記ポリアルキレンイミン誘導体としては、例えば、エチレンイミン、プロピレンイミン、ブチレンイミン、ジメチルエチレンイミン、ペンチレンイミン、ヘキシレンイミン、ヘプチレンイミン、及びオクチレンイミン等の炭素数2~8のアルキレンイミン、好ましくは炭素数2~4のアルキレンイミンの1種又は2種以上を常法により重合して得られるポリアルキレンイミンを種々の化合物と反応させて化学的に変性させた変性ポリアルキレンイミンが挙げられる。前記ポリアルキレンイミンは、線状であってもよく、分岐状であってもよい。 Examples of the polyalkylene imine derivatives include alkylene imines having 2 to 8 carbon atoms, preferably carbon atoms, such as ethyleneimine, propylene imine, butylene imine, dimethylethylene imine, pentylene imine, hexylene imine, heptylene imine, and octylene imine. Examples include modified polyalkylene imines obtained by polymerizing one or more of 2 to 4 alkylene imines by a conventional method and chemically modifying the polyalkylene imines by reacting them with various compounds. The polyalkyleneimine may be linear or branched.
 前記ポリアルキレンイミン誘導体は、透水性及び防汚性能を向上させる観点から、ポリエチレンイミンの窒素原子にアニオン性官能基が付加した変性ポリエチレンイミンであることが好ましい。前記アニオン性官能基は、アニオン性基を有する官能基であれば特に制限されないが、カルボキシアルキル基(アルキル基の炭素数は好ましくは1~10、より好ましくは1~5である。)、スルホン酸基、又はリン酸基であることが好ましい。 The polyalkyleneimine derivative is preferably a modified polyethyleneimine in which an anionic functional group is added to the nitrogen atom of polyethyleneimine, from the viewpoint of improving water permeability and antifouling performance. The anionic functional group is not particularly limited as long as it has an anionic group, but includes carboxyalkyl groups (the number of carbon atoms in the alkyl group is preferably 1 to 10, more preferably 1 to 5), sulfones, etc. An acid group or a phosphoric acid group is preferable.
 前記ポリアルキレンイミン誘導体は、より好ましくは下記の変性ポリエチレンイミンである。
Figure JPOXMLDOC01-appb-C000001
The polyalkyleneimine derivative is more preferably the following modified polyethyleneimine.
Figure JPOXMLDOC01-appb-C000001
 前記ポリアルキレンイミン誘導体の重量平均分子量は、透水性及び防汚性能を向上させるの観点から、好ましくは800~250000であり、より好ましくは1800~70000であり、さらに好ましくは3000~50000であり、さらに好ましくは5000~30000であり、特に好ましくは5000~20000である。 The weight average molecular weight of the polyalkyleneimine derivative is preferably 800 to 250,000, more preferably 1,800 to 70,000, and still more preferably 3,000 to 50,000, from the viewpoint of improving water permeability and antifouling performance. More preferably, it is 5,000 to 30,000, particularly preferably 5,000 to 20,000.
 前記アミノ酸は特に制限されないが、透水性及び防汚性能を向上させるの観点から、塩基性アミノ酸であることが好ましい。前記塩基性アミノ酸としては、例えば、リシン、アルギニン、ヒスチジン、オルニチン、及びトリプトファンなどが挙げられ、これらのうち、好ましくはアルギニンである。 The amino acid is not particularly limited, but is preferably a basic amino acid from the viewpoint of improving water permeability and antifouling performance. Examples of the basic amino acid include lysine, arginine, histidine, ornithine, and tryptophan, among which arginine is preferred.
 ポリアルキレンイミン誘導体とアミノ酸とを含む溶液(水溶液又は有機溶液)を前記スキン層に接触させる方法は特に制限されず、例えば、前記溶液を前記スキン層に塗布する方法、前記溶液中に前記スキン層を浸漬する方法などが挙げられる。 The method of bringing a solution (aqueous or organic solution) containing a polyalkylene imine derivative and an amino acid into contact with the skin layer is not particularly limited, and examples include a method of applying the solution to the skin layer, a method of applying the solution to the skin layer, a method of applying the solution to the skin layer, and a method of contacting the skin layer with the solution (aqueous solution or organic solution). Examples include a method of immersing.
 ポリアルキレンイミン誘導体とアミノ酸とを含むガス(例えば、希ガスなど)を前記スキン層に接触させる方法は特に制限されず、例えば、前記ガスを前記スキン層に吹き付ける方法、前記ガス雰囲気下に前記スキン層を曝す方法などが挙げられる。 The method of contacting the skin layer with a gas containing a polyalkylene imine derivative and an amino acid (for example, a rare gas) is not particularly limited, and examples include a method of spraying the gas onto the skin layer, a method of contacting the skin layer with the gas containing the polyalkylene imine derivative and an amino acid, and Examples include a method of exposing layers.
 前記溶液中又はガス中のポリアルキレンイミン誘導体の濃度、アミノ酸の濃度、ポリアルキレンイミン誘導体とアミノ酸との濃度比、並びに前記溶液又はガスを前記スキン層に接触させる時間(反応時間)や温度等は特に制限されず、適宜調整する。 The concentration of the polyalkylene imine derivative in the solution or gas, the concentration of the amino acid, the concentration ratio of the polyalkylene imine derivative and the amino acid, the time (reaction time) and temperature for contacting the solution or gas with the skin layer, etc. There are no particular restrictions, and adjustments may be made as appropriate.
 多孔性支持体上に形成したスキン層の厚みは特に制限されないが、通常0.05~2μm程度であり、好ましくは、0.1~1μmである。 The thickness of the skin layer formed on the porous support is not particularly limited, but is usually about 0.05 to 2 μm, preferably 0.1 to 1 μm.
 本発明の複合逆浸透膜は、その形状になんら制限を受けるものではない。すなわち平膜状、あるいはスパイラルエレメント状など、考えられるあらゆる膜形状が可能である。また、複合逆浸透膜の塩阻止性、透水性、及び耐酸化剤性等を向上させるために、従来公知の各種処理を施してもよい。 The composite reverse osmosis membrane of the present invention is not limited in any way to its shape. That is, any conceivable membrane shape is possible, such as a flat membrane shape or a spiral element shape. Further, in order to improve the salt blocking properties, water permeability, oxidant resistance, etc. of the composite reverse osmosis membrane, various conventionally known treatments may be performed.
 以下に実施例をあげて本発明を説明するが、本発明はこれら実施例によりなんら限定されるものではない。 The present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples in any way.
 比較例1
 トリエチルアミン1.1質量%、カンファースルホン酸2.4質量%、及びm-フェニレンジアミン2.0質量%を含有するアミン水溶液を多孔性ポリスルホン支持膜上に塗布し、2分後、余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.1質量%を含有するヘキサン溶液を塗布し、1分後、余分なヘキサン溶液を除去し、その後、空気中で2分間ヘキサンを蒸発させ、その後、60℃の熱風乾燥機中で10分間保持して、多孔性ポリスルホン支持膜上にポリアミド樹脂を含むスキン層を形成して複合逆浸透膜を作製した。
Comparative example 1
An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 2.0% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, the excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.1% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. Thereafter, the membrane was kept in a hot air dryer at 60° C. for 10 minutes to form a skin layer containing a polyamide resin on the porous polysulfone support membrane, thereby producing a composite reverse osmosis membrane.
 比較例2
 トリエチルアミン1.1質量%、カンファースルホン酸2.4質量%、及びm-フェニレンジアミン3.4質量%を含有するアミン水溶液を多孔性ポリスルホン支持膜上に塗布し、2分後、余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.15質量%を含有するヘキサン溶液を塗布し、1分後、余分なヘキサン溶液を除去し、その後、空気中で2分間ヘキサンを蒸発させ、その後、60℃の熱風乾燥機中で10分間保持して、多孔性ポリスルホン支持膜上にポリアミド樹脂を含むスキン層を形成して複合逆浸透膜を作製した。
Comparative example 2
An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 3.4% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.15% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, the excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. Thereafter, the membrane was kept in a hot air dryer at 60° C. for 10 minutes to form a skin layer containing a polyamide resin on the porous polysulfone support membrane, thereby producing a composite reverse osmosis membrane.
 実施例1
 トリエチルアミン1.1質量%、カンファースルホン酸2.4質量%、及びm-フェニレンジアミン2.0質量%を含有するアミン水溶液を多孔性ポリスルホン支持膜上に塗布し、2分後、余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.1質量%を含有するヘキサン溶液を塗布し、1分後、余分なヘキサン溶液を除去し、その後、空気中で2分間ヘキサンを蒸発させて、ポリアミド樹脂を含むスキン層を形成した。その後、ポリアルキレンイミン誘導体として前記PEI-CAを0.4質量%及びアルギニンを0.1質量%含む水溶液をスキン層の表面に塗布して25±0.2℃及び湿度40±2%RHの雰囲気下で2分間保持し、その後、60℃の熱風乾燥機中で10分間保持して、スキン層を形成するポリアミド樹脂を変性した。それにより、多孔性ポリスルホン支持膜上に変性ポリアミド樹脂を含むスキン層を有する複合逆浸透膜を作製した。
Example 1
An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 2.0% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, the excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.1% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. A skin layer containing polyamide resin was then formed. Thereafter, an aqueous solution containing 0.4% by mass of PEI-CA and 0.1% by mass of arginine as a polyalkyleneimine derivative was applied to the surface of the skin layer at 25±0.2°C and 40±2%RH. It was held in an atmosphere for 2 minutes, and then held in a hot air dryer at 60°C for 10 minutes to modify the polyamide resin forming the skin layer. As a result, a composite reverse osmosis membrane having a skin layer containing a modified polyamide resin on a porous polysulfone support membrane was produced.
 実施例2
 トリエチルアミン1.1質量%、カンファースルホン酸2.4質量%、及びm-フェニレンジアミン3.4質量%を含有するアミン水溶液を多孔性ポリスルホン支持膜上に塗布し、2分後、余分なアミン水溶液を除去することにより水溶液被覆層を形成した。次に、前記水溶液被覆層の表面にトリメシン酸クロライド0.15質量%を含有するヘキサン溶液を塗布し、1分後、余分なヘキサン溶液を除去し、その後、空気中で2分間ヘキサンを蒸発させて、ポリアミド樹脂を含むスキン層を形成した。その後、ポリアルキレンイミン誘導体として前記PEI-CAを0.4質量%及びアルギニンを0.1質量%含む水溶液をスキン層の表面に塗布して25±0.2℃及び湿度40±2%RHの雰囲気下で2分間保持し、その後、60℃の熱風乾燥機中で10分間保持して、スキン層を形成するポリアミド樹脂を変性した。それにより、多孔性ポリスルホン支持膜上に変性ポリアミド樹脂を含むスキン層を有する複合逆浸透膜を作製した。
Example 2
An aqueous amine solution containing 1.1% by weight of triethylamine, 2.4% by weight of camphorsulfonic acid, and 3.4% by weight of m-phenylenediamine is applied onto a porous polysulfone support membrane, and after 2 minutes, excess amine aqueous solution is removed. An aqueous solution coating layer was formed by removing . Next, a hexane solution containing 0.15% by mass of trimesic acid chloride was applied to the surface of the aqueous solution coating layer, and after 1 minute, the excess hexane solution was removed, and then the hexane was evaporated in air for 2 minutes. A skin layer containing polyamide resin was then formed. Thereafter, an aqueous solution containing 0.4% by mass of PEI-CA and 0.1% by mass of arginine as a polyalkyleneimine derivative was applied to the surface of the skin layer at 25±0.2°C and 40±2%RH. It was held in an atmosphere for 2 minutes, and then held in a hot air dryer at 60°C for 10 minutes to modify the polyamide resin forming the skin layer. As a result, a composite reverse osmosis membrane having a skin layer containing a modified polyamide resin on a porous polysulfone support membrane was produced.
〔評価及び測定方法〕
(透過流束及び塩阻止率の測定)
 比較例1及び2、実施例1及び2で作製した複合逆浸透膜、並びに比較例3としてデュポン社製のRO膜(商品名:CR100)について、逆浸透クロスフローテストシステム(有効膜表面積:28.26cm)を使用して、透過流束(Flux)と塩阻止率(Rej)を測定した。最初に20バールの圧力で2時間操作して複合逆浸透膜の透過性を安定化させた。次に、濃度2000mg/LのNaClを含む供給水溶液を用いて、15バールの圧力で1時間操作した後、複合逆浸透膜の透過流束を測定した(30分間の浸透液を収集)。透過流束は下記式(1)により求めた。また、導電率計(Thermo、Eutech CON2700、USA)を使用して、供給液と浸透液の濃度を測定した。塩阻止率は下記式(2)により求めた。テストを3回繰り返し、平均データを最終結果とした。結果を表1に示す。
Figure JPOXMLDOC01-appb-M000002
J:透過流束(Lm-2-1bar-1、LMH/bar)
V:浸透液の体積(L)
A:複合逆浸透膜の有効膜表面積(28.26cm
Δt:浸透時間(h)
ΔP:浸透圧力(bar)
 
Figure JPOXMLDOC01-appb-M000003
R:塩阻止率(%)
Cf:供給液濃度(mg/L)
Cp:浸透液濃度(mg/L)
[Evaluation and measurement method]
(Measurement of permeation flux and salt rejection rate)
The composite reverse osmosis membranes prepared in Comparative Examples 1 and 2, Examples 1 and 2, and the RO membrane manufactured by DuPont (trade name: CR100) as Comparative Example 3 were tested using a reverse osmosis cross-flow test system (effective membrane surface area: 28 .26 cm 2 ) was used to measure the permeation flux (Flux) and salt rejection rate (Rej). The permeability of the composite reverse osmosis membrane was stabilized by first operating at a pressure of 20 bar for 2 hours. The permeate flux of the composite reverse osmosis membrane was then measured after operating for 1 hour at a pressure of 15 bar using a feed aqueous solution containing a concentration of 2000 mg/L NaCl (30 minutes of permeate collected). The permeation flux was determined using the following formula (1). The concentrations of the feed and permeate solutions were also measured using a conductivity meter (Thermo, Eutech CON2700, USA). The salt rejection rate was determined by the following formula (2). The test was repeated three times and the average data was taken as the final result. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-M000002
J: Permeation flux (Lm −2 h −1 bar −1 , LMH/bar)
V: Volume of permeate (L)
A: Effective membrane surface area of composite reverse osmosis membrane (28.26 cm 2 )
Δt: Penetration time (h)
ΔP: Osmotic pressure (bar)

Figure JPOXMLDOC01-appb-M000003
R: Salt rejection rate (%)
Cf: Feed liquid concentration (mg/L)
Cp: Penetrant concentration (mg/L)
(アンチファウリングの評価)
 モデル汚染物質として、DTAB(Dodecyl Trimethyl Ammonium Bromideドデシルトリメチルアンモニウムブロミド)、及びSDS(ドデシル硫酸ナトリウム)を使用した。DTABは、プラス電荷を持つ界面活性剤である小分子汚染物質の一例として採用した。SDSは、マイナス荷電を持つ界面活性剤の一例として採用した。これらは、水体系の中で一般的な有機汚染物質の典型的な代表例である。 
 アンチファウリング実験は、下記の4段階で行った。 
 第1段階では、ROシステムを15bar、クロスフロー速度14cm/sで30分間操作し、2000mg/LのNaClを含む供給水溶液を使用して、ベースラインの透過流束と塩阻止率を決定した。 
 第2段階では、前記モデル汚染物質を前記供給水溶液に200ppm添加し、第1段階と同じ条件でROシステムを6時間操作して、透過流束を再度測定した。 
 第3段階では、3L/minの循環流量で30分間脱イオン水を使用して複合逆浸透膜を洗浄した。 
 第4段階では、2000mg/LのNaClを含む供給水溶液を使用して、透過流束を再度測定した。 
 そして、Flux低下率(decline rate)及びFlux非回復率(irreversible recovery rate)を下記式により算出した。結果を表1に示す。 
 Flux低下率(%)={1-(第2段階における透過流束/第1段階における透過流束)}×100
 Flux非回復率(%)={1-(第4段階における透過流束/第1段階における透過流束)}×100
(Anti-fouling evaluation)
DTAB (Dodecyl Trimethyl Ammonium Bromide) and SDS (Sodium Dodecyl Sulfate) were used as model contaminants. DTAB was taken as an example of a small molecule contaminant that is a positively charged surfactant. SDS was employed as an example of a negatively charged surfactant. These are typical representatives of common organic pollutants in water systems.
The anti-fouling experiment was conducted in the following four stages.
In the first stage, the RO system was operated for 30 minutes at 15 bar and a crossflow rate of 14 cm/s, and the baseline permeate flux and salt rejection were determined using an aqueous feed solution containing 2000 mg/L NaCl.
In the second stage, 200 ppm of the model contaminant was added to the feed aqueous solution, the RO system was operated for 6 hours under the same conditions as the first stage, and the permeate flux was measured again.
In the third stage, the composite reverse osmosis membrane was cleaned using deionized water for 30 minutes at a circulation flow rate of 3 L/min.
In the fourth step, the permeation flux was measured again using an aqueous feed solution containing 2000 mg/L NaCl.
Then, the flux decline rate and flux irreversible recovery rate were calculated using the following formulas. The results are shown in Table 1.
Flux reduction rate (%) = {1 - (permeation flux in the second stage / permeation flux in the first stage)} × 100
Flux non-recovery rate (%) = {1 - (permeation flux in the 4th stage / permeation flux in the 1st stage)} × 100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1に示すように、前記PEI-CAとアルギニンによって変性された変性ポリアミド樹脂から形成されたスキン層を有する実施例1及び2の複合逆浸透膜は、未変性のポリアミド樹脂から形成されたスキン層を有する比較例1及び2の複合逆浸透膜に比べて透過流速が向上しており、また、未変性のポリアミド樹脂から形成されたスキン層を有する比較例3のRO膜に比べてFlux低下率が低く、アンチファウリング特性に優れていることがわかる。 As shown in Table 1, the composite reverse osmosis membranes of Examples 1 and 2 having a skin layer formed from a modified polyamide resin modified with PEI-CA and arginine have a skin layer formed from an unmodified polyamide resin. The permeation flow rate is improved compared to the composite reverse osmosis membranes of Comparative Examples 1 and 2, which have layers, and the flux is reduced compared to the RO membrane of Comparative Example 3, which has a skin layer made of unmodified polyamide resin. It can be seen that the anti-fouling properties are low and the anti-fouling properties are excellent.
 本発明の複合逆浸透膜は、超純水の製造、かん水または海水の脱塩などに好適であり、また染色排水や電着塗料排水などの公害発生原因である汚れなどから、その中に含まれる汚染源あるいは有効物質を除去・回収し、排水のクローズ化に寄与することができる。また、食品用途などで有効成分の濃縮、浄水や下水用途等での有害成分の除去などの高度処理に用いることができる。また、油田やシェールガス田などにおける排水処理に用いることができる。 The composite reverse osmosis membrane of the present invention is suitable for the production of ultra-pure water, desalination of brine or seawater, etc., and is also effective against pollution-causing stains such as dyeing wastewater and electrocoating paint wastewater. It is possible to remove and recover pollutants or effective substances, contributing to the closure of wastewater. It can also be used for advanced treatments such as concentrating active ingredients in food applications and removing harmful components in water purification and sewage applications. It can also be used for wastewater treatment in oil fields, shale gas fields, etc.

Claims (10)

  1.  ポリアミド樹脂を含むスキン層が多孔性支持体の表面に形成されている複合逆浸透膜において、前記ポリアミド樹脂は、ポリアルキレンイミン誘導体とアミノ酸とによって変性された変性ポリアミド樹脂であることを特徴とする複合逆浸透膜。 A composite reverse osmosis membrane in which a skin layer containing a polyamide resin is formed on the surface of a porous support, characterized in that the polyamide resin is a modified polyamide resin modified with a polyalkyleneimine derivative and an amino acid. Composite reverse osmosis membrane.
  2.  前記ポリアルキレンイミン誘導体は、ポリエチレンイミンの窒素原子にアニオン性官能基が付加した変性ポリエチレンイミンである請求項1に記載の複合逆浸透膜。 The composite reverse osmosis membrane according to claim 1, wherein the polyalkyleneimine derivative is a modified polyethyleneimine in which an anionic functional group is added to the nitrogen atom of polyethyleneimine.
  3.  前記アニオン性官能基は、カルボキシアルキル基、スルホン酸基、又はリン酸基である請求項2に記載の複合逆浸透膜。 The composite reverse osmosis membrane according to claim 2, wherein the anionic functional group is a carboxyalkyl group, a sulfonic acid group, or a phosphoric acid group.
  4.  前記アミノ酸は、塩基性アミノ酸である請求項1~3のいずれかに記載の複合逆浸透膜。 The composite reverse osmosis membrane according to any one of claims 1 to 3, wherein the amino acid is a basic amino acid.
  5.  前記塩基性アミノ酸は、アルギニンである請求項4に記載の複合逆浸透膜。 The composite reverse osmosis membrane according to claim 4, wherein the basic amino acid is arginine.
  6.  多官能アミン成分を含む水溶液と多官能酸ハライド成分を含む有機溶液とを多孔性支持体上で接触させて、ポリアミド樹脂を含むスキン層を多孔性支持体の表面に形成する工程、及びポリアルキレンイミン誘導体とアミノ酸とを含む溶液又はガスを前記スキン層に接触させて、前記ポリアミド樹脂を変性する工程を含む複合逆浸透膜の製造方法。 A step of contacting an aqueous solution containing a polyfunctional amine component and an organic solution containing a polyfunctional acid halide component on a porous support to form a skin layer containing a polyamide resin on the surface of the porous support, and a polyalkylene A method for producing a composite reverse osmosis membrane, comprising the step of bringing a solution or gas containing an imine derivative and an amino acid into contact with the skin layer to modify the polyamide resin.
  7.  前記ポリアルキレンイミン誘導体は、ポリエチレンイミンの窒素原子にアニオン性官能基が付加した変性ポリエチレンイミンである請求項6に記載の複合逆浸透膜の製造方法。 The method for manufacturing a composite reverse osmosis membrane according to claim 6, wherein the polyalkyleneimine derivative is a modified polyethyleneimine in which an anionic functional group is added to the nitrogen atom of polyethyleneimine.
  8.  前記アニオン性官能基は、カルボキシアルキル基、スルホン酸基、又はリン酸基である請求項7に記載の複合逆浸透膜の製造方法。 The method for manufacturing a composite reverse osmosis membrane according to claim 7, wherein the anionic functional group is a carboxyalkyl group, a sulfonic acid group, or a phosphoric acid group.
  9.  前記アミノ酸は、塩基性アミノ酸である請求項6~8のいずれかに記載の複合逆浸透膜の製造方法。 The method for producing a composite reverse osmosis membrane according to any one of claims 6 to 8, wherein the amino acid is a basic amino acid.
  10.  前記塩基性アミノ酸は、アルギニンである請求項9に記載の複合逆浸透膜の製造方法。 The method for producing a composite reverse osmosis membrane according to claim 9, wherein the basic amino acid is arginine.
PCT/JP2022/043353 2022-03-14 2022-11-24 Composite reverse osmosis membrane and production method therefor WO2023176049A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210247509.0 2022-03-14
CN202210247509.0A CN116785942A (en) 2022-03-14 2022-03-14 Composite reverse osmosis membrane and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2023176049A1 true WO2023176049A1 (en) 2023-09-21

Family

ID=88023164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043353 WO2023176049A1 (en) 2022-03-14 2022-11-24 Composite reverse osmosis membrane and production method therefor

Country Status (2)

Country Link
CN (1) CN116785942A (en)
WO (1) WO2023176049A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040354A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Method for improving rejection of permeable membrane and permeable membrane
WO2015178458A1 (en) * 2014-05-23 2015-11-26 株式会社クラレ Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
WO2016052427A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP2017196613A (en) * 2016-02-17 2017-11-02 ビー.ブラウン アビタム アーゲーB. Braun Avitum Ag Dialysis membrane and manufacturing method thereof
WO2019054119A1 (en) * 2017-09-15 2019-03-21 日東電工株式会社 Composite semipermeable membrane and method for manufacturing same
JP2020531260A (en) * 2017-08-21 2020-11-05 オハイオ・ステート・イノヴェーション・ファウンデーション Gas separation membrane

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040354A1 (en) * 2009-09-29 2011-04-07 栗田工業株式会社 Method for improving rejection of permeable membrane and permeable membrane
WO2015178458A1 (en) * 2014-05-23 2015-11-26 株式会社クラレ Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
WO2016052427A1 (en) * 2014-09-30 2016-04-07 日東電工株式会社 Composite semipermeable membrane and method for producing same, and spiral separation membrane element
JP2017196613A (en) * 2016-02-17 2017-11-02 ビー.ブラウン アビタム アーゲーB. Braun Avitum Ag Dialysis membrane and manufacturing method thereof
JP2020531260A (en) * 2017-08-21 2020-11-05 オハイオ・ステート・イノヴェーション・ファウンデーション Gas separation membrane
WO2019054119A1 (en) * 2017-09-15 2019-03-21 日東電工株式会社 Composite semipermeable membrane and method for manufacturing same

Also Published As

Publication number Publication date
CN116785942A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP2015500737A (en) Membrane, water treatment system and manufacturing method
JP6774841B2 (en) Composite semipermeable membrane and spiral separation membrane element
JP2008100214A (en) Oxidation-resistant composite reverse osmosis membrane
JP2012250192A (en) Composite semipermeable membrane and manufacturing method thereof
EP3354333B1 (en) Water treatment membrane and method for manufacturing same
WO2015118894A1 (en) Method for producing composite semipermeable membrane
KR101477848B1 (en) Reverse osmosis membrane having ultra hydrophilic layer and method of manufacturing the same
JP7300810B2 (en) Composite semipermeable membrane and manufacturing method thereof
JPWO2002076594A1 (en) Composite semipermeable membrane, method for producing the same, and water treatment method using the same
JP3862184B2 (en) Method for producing composite reverse osmosis membrane
JP4563093B2 (en) Method for producing high salt rejection composite reverse osmosis membrane
WO2023176048A1 (en) Composite reverse osmosis membrane and production method therefor
WO2023176049A1 (en) Composite reverse osmosis membrane and production method therefor
JP2007253109A (en) Method for manufacturing dry composite semipermeable membrane
KR20190055664A (en) A polyamide composite membrane having improved salt and boron rejection and method for preparation thereof
JP2002095940A (en) Composite reverse osmosis membrane, method for manufacturing the same, and method for using the same
US20230182084A1 (en) Composite reverse osmosis membrane and production method thereof
WO2017002699A1 (en) Composite semipermeable membrane and method for producing same
JPH10174852A (en) Composite reverse osmotic film
JPH06327953A (en) Production of composite reverse osmotic membrane
WO2024122107A1 (en) Composite semipermeable membrane, and spiral-type membrane element
JP2004209406A (en) Composite semipermeable membrane and its production method
JPH11137982A (en) Treatment of high-permeable composite reverse osmosis membrane, and high permeable composite reverse osmosis membrane
JPH10137563A (en) Highly permeable composite reverse osmotic membrane
JP2015147192A (en) Composite semi-permeable membrane manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932312

Country of ref document: EP

Kind code of ref document: A1