WO2015076370A1 - Biopolymer-adsorbing composition and water treatment method using same - Google Patents

Biopolymer-adsorbing composition and water treatment method using same Download PDF

Info

Publication number
WO2015076370A1
WO2015076370A1 PCT/JP2014/080910 JP2014080910W WO2015076370A1 WO 2015076370 A1 WO2015076370 A1 WO 2015076370A1 JP 2014080910 W JP2014080910 W JP 2014080910W WO 2015076370 A1 WO2015076370 A1 WO 2015076370A1
Authority
WO
WIPO (PCT)
Prior art keywords
biopolymer
polymer
water
adsorbing
functional group
Prior art date
Application number
PCT/JP2014/080910
Other languages
French (fr)
Japanese (ja)
Inventor
涌井孝
藤原直樹
森川圭介
渡辺義公
山村寛
Original Assignee
株式会社クラレ
学校法人 中央大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, 学校法人 中央大学 filed Critical 株式会社クラレ
Publication of WO2015076370A1 publication Critical patent/WO2015076370A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines

Definitions

  • the present invention relates to a biopolymer adsorptive composition that can adsorb dissolved organic substances that are contaminants in water treatment such as raw water, and is particularly excellent in the adsorptivity of biopolymers present in water.
  • DOC dissolved organic carbon
  • Patent Document 1 Japanese Patent Publication No. 10-504995
  • DOC is a term encompassing organic carbon, organic colorants, and natural organic substances, and is an organic compound formed by decomposition of plant residues. It is also a term encompassing compounds such as humic acid and fulvic acid, which are mixtures of these compounds, and the main compounds and materials constituting DOC are soluble and cannot be easily separated from water.
  • Patent Document 1 a. Adding an ion exchange resin to water containing dissolved organic carbon; b. Dispersing the resin in the water to allow adsorption of the dissolved organic carbon onto the resin; and c. It proposes a method for removing dissolved organic carbon from water by separating the resin loaded with the dissolved organic carbon from the water.
  • humic substances such as humic acid and fulvic acid exist in raw water such as rivers, and such humic substances are problematic as pollutants in water treatment.
  • humic substances account for 30 to 80% of dissolved organic matter (DOM) in rivers and lake water, It has been pointed out that it is also included in domestic wastewater, sewage facility wastewater, and agricultural facility wastewater such as barns, which contributes to environmental pollution.
  • the humic substance removal agent characterized by using as a main component the titanium carrying
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2008-246365 discloses a method for treating humic substance-containing water, in which fine particles made of a cationic or nonionic polymer that swells in water and does not substantially dissolve in water are described above. Disclosed is a method for treating humic-containing water characterized by having a step of adding to humic-containing water. According to this method, cationic property that swells in humic-containing water and does not substantially dissolve in water is disclosed.
  • humic substances can be efficiently removed from water containing humic substances without the need for activated carbon treatment that causes problems such as clogging problems, water flow to ion exchange resin columns, membrane treatment, etc. can do.
  • Non-Patent Document 1 the causative substance of irreversible fouling is a dissolved organic substance having a relatively higher hydrophilicity than humic substances or the like. It has been reported that biopolymers such as proteins are the main cause.
  • Patent Document 1 investigates dissolved organic carbon (DOC) in general, since DOC contains a wide variety of organic carbon substances including humic acid and fulvic acid, specific pollutants are included. The water treatment cannot be performed efficiently by adsorbing water. In the inventions of Patent Documents 2 and 3, although adsorption performance for humic substances in water is reported, if organic carbon substances other than humic substances are important as pollutants in water treatment, those substances It is not clear about the adsorptivity to.
  • DOC dissolved organic carbon
  • the pores already used cannot be further used because they are taken in by utilizing a capillary phenomenon using a porous structure.
  • the particles of Patent Document 3 have an extremely large swelling property such that the particle size in water is about 10 to 200 times (that is, 1000 to 200000%) with respect to the particle size when not swollen with water. Therefore, the handleability at the time of adsorption treatment is poor, and there is a problem that the liquid permeability is lowered due to the adhesion of particles particularly in a closed environment.
  • An object of the present invention is to provide a biopolymer adsorbing composition capable of adsorbing dissolved organic substances that are contaminants in water treatment, and particularly capable of adsorbing at least a biopolymer efficiently.
  • a conventionally used ion exchange resin hardly adsorbs a biopolymer
  • a hydrophilic matrix a composition in which a polymer having a chemisorbable functional group is combined with a polymer in a state having a predetermined average dispersion diameter is surprisingly not only capable of adsorbing dissolved organic matter, but particularly among them.
  • the present inventors have found that it has excellent adsorptivity to biopolymers and has reached the present invention.
  • the present invention is a composition comprising a chemisorbable functional group-containing polymer (A) and a hydrophilic matrix polymer (B),
  • the hydrophilic matrix polymer (B) is non-ion exchangeable
  • the polymer (A) is a biopolymer adsorptive composition that is dispersed in the polymer (B) with an average dispersion diameter of 10000 nm or less and that is excellent in the adsorptivity of the biopolymer present in the water to be treated.
  • the ion exchange capacity may be 0.1 mmol / g or more.
  • the chemisorbable functional group in the chemisorbable functional group-containing polymer (A) forms at least one bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond with respect to the biopolymer. May have a function.
  • a chemisorbable functional group may be a chemisorbable functional group containing at least one element selected from the group consisting of N, S, P, and O.
  • the chemisorbable functional group-containing polymer (A) is a cationic polymer.
  • Cationic polymers include, for example, polyethyleneimine, polyallylamine, polyvinylamine, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride, It may be at least one selected from the group consisting of polynucleotides and salts thereof.
  • the hydrophilic matrix polymer (B) includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth) acrylamide, polyamide, It may be at least one selected from polyvinylpyrrolidone, cellulose derivatives, dextrin, chitin, and chitosan.
  • the hydrophilic matrix polymer (B) is preferably at least one selected from polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
  • the weight loss when the boiling test is performed on the biopolymer adsorbing composition may be 20% by mass or less.
  • 50% or more of the adsorptive retention may be obtained when the biopolymer adsorbing composition is immersed in warm water at 60 ° C. for 1 week.
  • the present invention includes, as another embodiment, a water treatment method comprising at least an adsorption step of bringing the water to be treated containing a biopolymer into contact with the biopolymer adsorbing composition and adsorbing at least the biopolymer.
  • the water treatment method may further include a filtration step of membrane-filtering the adsorption treated water obtained by the adsorption step.
  • the chemically adsorbing functional group-containing polymer (A) is dispersed with the hydrophilic matrix polymer (B) with a predetermined dispersion diameter.
  • Biopolymers that were difficult to adsorb can be adsorbed efficiently.
  • the water treatment method of the present invention by using a specific biopolymer adsorbent composition as an adsorbent, even in the case of water to be treated containing biopolymer, the biopolymer in the water to be treated can be easily treated. The amount can be reduced.
  • the biopolymer adsorbing composition of the present invention is a composition comprising at least a chemically adsorbing functional group-containing polymer (A) and a hydrophilic matrix polymer (B).
  • the chemisorbable functional group-containing polymer (A) is at least composed of a structural unit having a chemisorbable functional group, and this structural unit exists in the polymer as a main chain and / or as a side chain. .
  • the functional group having chemisorbability is a functional group having a capability of forming at least one kind of bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond (preferably a chelate-forming group, A cationic ion-exchange group, an anion ion-exchange group, etc.), and is not particularly limited as long as it has adsorptivity to a biopolymer.
  • the functional group may be a chemisorbable functional group containing at least one element selected from the group consisting of N, S, P and O, for example.
  • such functional groups include amino groups (primary amino groups, secondary amino groups, tertiary amino groups), quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups.
  • These functional groups may be present in a salt state. These functional groups may be present alone or in combination of two or more in the polymer (A). These functional groups may be complexed, and in that case, for example, a chelate-forming group such as an iminodiacetic acid group, an aminophosphoric acid group, an amidoxime group, a methylglucamine group, or a dithiocarbamic acid group may be used.
  • a chelate-forming group such as an iminodiacetic acid group, an aminophosphoric acid group, an amidoxime group, a methylglucamine group, or a dithiocarbamic acid group may be used.
  • preferred functional groups include amino groups, quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups, quaternary pyridinium groups, and salts thereof.
  • the structural unit having such a functional group for example, polymerizes an ethylenically unsaturated monomer having a functional group (such as allylamine or diallyldimethylammonium halide) or a ring structure-containing monomer capable of forming a functional group (for example, ethyleneimine). May be introduced.
  • a functional group such as allylamine or diallyldimethylammonium halide
  • a ring structure-containing monomer capable of forming a functional group for example, ethyleneimine
  • styrene resin poly (meth) acrylate resin, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene oxide, polyimide, etc. are used as the base resin, and the base resin is sulfonated, hydrolyzed, and aminated.
  • the functional group may be introduced by a known method such as phosphorylation.
  • the base resin may have a crosslinkable structural unit such as divinylbenzene.
  • the chemisorbable functional group-containing polymer (A) is an anion such as polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, polyamic acid, etc.
  • Polyethyleneimine polyallylamine, polyvinylamine, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride
  • Cationic polymers such as polynucleotides and salts thereof may be used. Such polymers may be used alone or in combination of two or more.
  • a cationic polymer is preferable from the viewpoint of more efficiently adsorbing a biopolymer in combination with a hydrophilic matrix polymer, and particularly a polymer having a high cation density (for example, polyethyleneimine, polyallylamine, etc.). Is preferred.
  • the weight average molecular weight of the chemisorbable functional group-containing polymer (A) can be appropriately set within a preferable range depending on the type of the functional group.
  • the chemisorbable functional group-containing polymer (A ) can be selected from a wide range of about 5000 to 100,000, preferably about 6000 to 90,000, more preferably about 7000 to 80,000.
  • a weight average molecular weight can be calculated
  • the hydrophilic matrix polymer (B) is non-ion exchangeable.
  • Various hydrophilic polymers can be used as long as the chemisorbable functional group-containing polymer (A) can be dispersed within a predetermined range.
  • the matrix polymer (B) is non-ion exchange means that the ion exchange capacity (IEC) of the matrix polymer (B) is 0.01 mmol / g or less.
  • ion exchange capacity shows the value measured by the method described in the Example mentioned later.
  • the hydrophilic matrix polymer (B) has a solubility parameter ( ⁇ ) calculated by the following formula using the cohesive energy density (Ecoh) and molar molecular volume (V) calculated by the Fedor's estimation method.
  • the polymer may be 22 or more.
  • the solubility parameter ( ⁇ ) is 24 or more, and more preferably 25 or more.
  • the upper limit of the solubility parameter is not particularly limited, but may be about 35, for example.
  • [ ⁇ Ecoh / ⁇ V] 1/2
  • Examples of the hydrophilic polymer include a polymer having a hydrophilic group such as a hydroxyl group, an ether group, a cationic group, an anionic group, and an amide group in a repeating unit.
  • the hydrophilic matrix polymer (B) includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth).
  • examples include acrylamide, polyamide, polyvinyl pyrrolidone, phenol resin, cellulose derivative, dextrin, chitin, and chitosan. These polymers may be used alone or in combination of two or more.
  • These polymers may have other comonomer units, and the content of the comonomer units is preferably 10 mol% or less, more preferably 5% mol or less in all monomer units. .
  • the weight average molecular weight of the hydrophilic matrix polymer (B) can be appropriately set in accordance with the type of the polymer. From the viewpoint of maintaining inside the molecule (B), for example, the weight average molecular weight of the hydrophilic matrix polymer (B) may be at least 5000 or more (eg, 5000 to 100,000), preferably 10,000 or more. May be. In addition, a weight average molecular weight can be calculated
  • Preferred hydrophilic matrix polymers (B) include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), and polyamide (eg, polyamide 6, polyamide 10, polyamide 6,6). , Polyamide 11, polyamide 12, polyamide 6,12, polyamide 6,10, polyamide 6 / 6,6 copolymer, polyamide 6,6 / 6,10 copolymer, polyamide 6,11, polyamide 6,6 / 6 , 10/6 copolymer), and the like. Polyvinyl alcohol and ethylene-vinyl alcohol copolymer are more preferable. From the viewpoint of not only having high hydrophilicity but also excellent adsorption characteristics and durability, ethylene-vinyl. Alcohol copolymers are particularly preferred.
  • the content of ethylene units is preferably 20 to 60 mol%, more preferably 25 to 55 mol%, particularly preferably 35 to 48 mol% in the total monomer units. Also good. If the ethylene content is too small, the durability of the molded article may be deteriorated. On the other hand, when there is too much ethylene content, there exists a possibility that hydrophilicity may fall.
  • the saponification degree of the vinyl ester component of the ethylene-vinyl alcohol copolymer is preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 99.5 mol% or more.
  • the saponification degree is less than 90 mol%, the moldability as a matrix may be deteriorated.
  • the average value calculated from the blending weight ratio is defined as the saponification degree.
  • the ethylene-vinyl alcohol copolymer may be evaluated by a melt flow rate (MFR) (210 ° C., load 2160 g).
  • MFR melt flow rate
  • the melt flow rate (MFR) 210 ° C., load 2160 g) is 0.1 g / min or more is preferable, and 0.5 g / min or more is more preferable. If it is less than 0.1 g / min, the strength may decrease.
  • the upper limit of a melt flow rate should just be the range normally used, for example, 25 g / min or less may be sufficient.
  • Polyvinyl alcohol may be defined by the viscosity average degree of polymerization, and is not particularly limited as long as the chemically adsorbable functional group-containing polymer (A) can be dispersed with a predetermined dispersion diameter, and is determined from the viscosity of a 30 ° C. aqueous solution.
  • the viscosity average degree of polymerization can be selected from a wide range of about 100 to 15000, for example. From the viewpoint of improving the durability of the matrix polymer, it is preferable to use those having a high degree of polymerization. In this case, for example, the viscosity average degree of polymerization is preferably about 800 to 13000, more preferably about 1000 to 10,000. May be.
  • the degree of saponification of polyvinyl alcohol can be appropriately selected according to the purpose and is not particularly limited. For example, it may be 88 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. Good. In particular, from the viewpoint of improving durability, those having a saponification degree of 98 mol% or more are preferred.
  • the ratio of the chemically adsorbing functional group-containing polymer (A) and the hydrophilic matrix polymer (B) is particularly limited as long as the polymer (A) is dispersed within a predetermined range.
  • the biopolymer adsorbing composition is used as a resin component other than the chemically adsorbing functional group-containing polymer (A) and the hydrophilic matrix polymer (B) as long as the effects of the present invention are not impaired.
  • the polymer polymer may be included.
  • the biopolymer adsorbent composition may be added with various additives such as a cross-linking agent, an antioxidant, a stabilizer, a lubricant, a processing aid, an antistatic agent, a colorant, an antifoaming agent, and a dispersing agent as necessary.
  • An agent may be included.
  • the biopolymer adsorbing composition may contain a crosslinking agent from the viewpoint of controlling durability and swelling property.
  • a crosslinking agent can be suitably selected from a well-known crosslinking agent according to the kind of chemisorbable functional group containing polymer (A) and hydrophilic matrix polymer (B).
  • the biopolymer adsorbing composition according to the present invention includes a chemically adsorbing functional group-containing polymer (A) and a hydrophilic matrix polymer (B), and the polymer (A) is the polymer (B).
  • the manufacturing method is not specifically limited, It can manufacture by various methods according to the kind of polymer used.
  • melt kneading method a method of melt-kneading the chemisorbable functional group-containing polymer (A), the hydrophilic matrix polymer (B) and an optional component using a biaxial kneader (melt kneading method) Is mentioned.
  • melt kneading method it is possible to obtain a composition in which the chemically adsorbing functional group-containing polymer (A) is dispersed with respect to the hydrophilic matrix polymer (B) with an average dispersion diameter in a predetermined range.
  • the hydrophilic matrix polymer (B) is melt kneaded by a twin screw extruder, and the chemisorbable functional group-containing polymer (A) is placed from the side feeder. A fixed amount can be added and these can be mixed and implemented.
  • the kneading temperature after the addition of the polymer (A) can be appropriately set according to the desired dispersion diameter of the polymer (A).
  • the kneading temperature is the hydrophilic matrix polymer (B). If the melting point is Mp, it may be Mp ⁇ 50 ° C. or higher, preferably Mp ° C. or higher, and more preferably Mp + 10 ° C. or higher.
  • the upper limit of the kneading temperature is usually below the decomposition temperature of the hydrophilic matrix polymer.
  • the kneading time after the addition of the polymer (A) can be appropriately set according to the amount of the polymer (A) and the like.
  • the polymer (A) is charged into the kneader for 1 minute or more. It is preferable to knead, and it is more preferable to knead for 2 minutes or more.
  • the kneading time may be 30 minutes or less from the viewpoint of preventing thermal deterioration of the resin.
  • the melt-kneaded product can be extruded to form molded bodies of various shapes, and further, can be immersed in a solution containing a crosslinking agent to be subjected to a crosslinking treatment, and a crosslinking agent is added during the kneading,
  • the polymer can be melt-kneaded and a crosslink can be introduced.
  • the molded body can be pulverized into a pulverized product (for example, in a particulate form).
  • a mixed liquid of a chemically adsorbing functional group-containing polymer (A) and a hydrophilic matrix polymer (B) and an arbitrary component is prepared.
  • the solvent water is usually used, but an organic solvent such as dimethyl sulfoxide may be used.
  • a solution with good properties can be obtained by adding both polymers to a solvent and raising the temperature while stirring.
  • the mixing method and mixing time after the addition of the chemisorbable functional group-containing polymer (A) and the hydrophilic matrix polymer (B) can be appropriately set according to the desired dispersion diameter of the polymer (A).
  • the polymer (A) resin is charged into a mixer and mixed for 1 minute or more, and more preferably kneaded for 2 minutes or more.
  • the mixing time may be 30 minutes or less from the viewpoint of preventing thermal degradation of the resin.
  • the obtained solution can be molded by cast film formation or the like to obtain molded bodies of various shapes. Moreover, this molded body may be further dipped in a solution containing a crosslinking agent and subjected to a crosslinking treatment.
  • Biopolymer adsorptive composition contains a chemisorbable functional group-containing polymer (A) and a hydrophilic matrix polymer (B), and the polymer (A) is the polymer.
  • A chemisorbable functional group-containing polymer
  • B hydrophilic matrix polymer
  • the polymer (A) is the polymer.
  • it is dispersed with an average dispersion diameter of 10000 nm or less (for example, 1 to 10000 nm), and the biopolymer existing in water can be adsorbed efficiently.
  • the average dispersion diameter of the chemisorbable functional group-containing polymer (A) and the hydrophilic matrix polymer (B) can be measured by the method described in the examples described later. Is preferably 8000 nm or less (eg 1 to 7000 nm), more preferably 6000 nm or less (eg 5 to 5000 nm), further preferably 4000 nm or less (eg 10 to 3000 nm), particularly preferably 2000 nm or less (eg 50 to 1000 nm). May be. In addition, an average dispersion diameter shows the value measured by the method described in the Example mentioned later.
  • the biopolymer adsorbing composition of the present invention can adsorb at least biopolymers among dissolved organic substances, and can adsorb not only biopolymers but also various dissolved organic substances present in the water to be treated. is there.
  • the biopolymer adsorbing composition of the present invention is a dissolved organic substance that has been difficult to be adsorbed in the past, particularly an organic substance having a particle size of 0.45 ⁇ m or less (for example, humin). It is possible to efficiently adsorb aromatic organic substances such as acids and fulvic acids, synthetic chemical substances such as surfactants, biopolymers, and the like.
  • the biopolymer adsorptive composition of the present invention is particularly excellent in adsorbing biopolymers having high hydrophilicity among dissolved organic substances.
  • Biopolymers are a kind of dissolved organic substances present in various raw waters. Generally, biopolymers are polysaccharides and proteins having an apparent molecular weight of 100,000 Da or more.
  • the chemisorbable functional group-containing polymer (A) is a non-ion-exchangeable hydrophilic matrix polymer. Because of the presence in (B), the composition of the present invention can efficiently recover a biopolymer that was very difficult to adsorb with a commercially available ion exchange resin. This is very surprising in view of the fact that commercially available ion exchange resins hardly adsorb biopolymers even though there are adsorptive functional groups, as shown in Comparative Examples described later. It should be an effect.
  • Biopolymers are compounds (for example, polysaccharides and proteins) having hydrophilic high molecular weight (for example, 100,000 daltons or more).
  • the biopolymer has an A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, a retention time by LC-OCD of 25 minutes to 38 minutes.
  • the following components may be used.
  • a component having a holding time of 25 minutes or more and 38 minutes or less is measured as a biopolymer in the analysis of LC-OCD (manufactured by DOC-Labor) based on the above-described method.
  • the humic substance may be a B fraction in the measurement under the same conditions, for example, a component exceeding the holding time of 38 minutes and not more than 50 minutes.
  • biopolymers Since biopolymers have few unsaturated bonds such as benzene rings, biopolymers are mainly composed of highly hydrophilic organic substances.
  • the SUVA value is 1.0 [L / (m ⁇ mg)] or less. It may be composed of an organic material showing.
  • the humic substance since the humic substance includes a UV-absorbing structure such as a benzene ring, the humic substance is mainly composed of an organic substance having high hydrophobicity.
  • the SUVA value is 2.0 [L / (M ⁇ mg)] It may be composed of an organic material showing the above.
  • SUVA (L / mg-C ⁇ m) UV (m ⁇ 1 ) / DOC (mg-C / L)
  • each parameter for calculating the SUVA value was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, and "area value" The area value obtained by LC-OCD is expressed, “UV” indicates the absorbance at a wavelength of 254 nm, and “DOC” indicates the DOC concentration (mg-C / L) in the test sample.
  • DOC of biopolymer DOC of the entire test sample x area value of biopolymer in the spectrum (holding time t b : 25 minutes ⁇ t b ⁇ 38 minutes) / area value of the entire spectrum
  • Humic DOC DOC of the entire test sample x area value of humic substance in the spectrum (holding time t h : 38 minutes ⁇ t h ⁇ 50 minutes) / area value of the entire spectrum
  • the adsorption rate of the biopolymer in the treated water is, for example, 15% or more, preferably 20% or more, more preferably 25. % Or more.
  • an adsorption rate shows the value measured by the method described in the Example mentioned later.
  • the biopolymer adsorbing composition of the present invention may have, for example, an ion exchange capacity of 0.1 mmol / g or more (eg, 0.1 to 15 mmol / g), preferably 1 mmol / g or more (eg, 1 To 12 mmol / g), more preferably 1.5 mmol / g or more (for example, 1.5 to 11 mmol / g).
  • the ion exchange capacity can be applied to either the cation exchange capacity or the anion exchange capacity depending on the type of the adsorptive functional group. The higher the ion exchange capacity, the better the adsorptivity. However, if the ion exchange capacity is too high, the adsorptive retention performance tends to decrease.
  • the biopolymer adsorbing composition of the present invention may have an adsorption rate of, for example, 20% or more, preferably 30 when sodium alginate is used as a model substance as an index indicating the adsorption performance. % Or more, more preferably 40% or more, and particularly preferably 50% or more. In addition, this adsorption rate shows the value measured by the method described in the Example mentioned later.
  • the biopolymer adsorbent composition of the present invention may have a weight loss when a boiling test is performed, for example, 20% by mass or less, and preferably 10% by mass or less. It may be more preferably 7% by mass or less, particularly preferably 5% by mass or less.
  • a weight loss when a boiling test is performed for example, 20% by mass or less, and preferably 10% by mass or less. It may be more preferably 7% by mass or less, particularly preferably 5% by mass or less.
  • the biopolymer adsorbent composition of the present invention has an adsorbability retention rate of 45% when immersed in warm water at a temperature of 60 ° C. for 1 week. It may be above, preferably 55% or more, more preferably 65% or more, and particularly preferably 75% or more.
  • an adsorptive retention rate shows the value measured by the method described in the Example mentioned later.
  • the shape of the biopolymer adsorbent composition of the present invention is not particularly limited as long as the biopolymer can be adsorbed, and is in the form of particles, flakes, fibers, hollow fibers, sheets, woven / knitted fabrics, nonwoven fabrics, etc. It is possible to select from various shapes such as processed products. From the viewpoint of improving the adsorption efficiency, the biopolymer adsorbent composition is preferably particulate [spherical or non-spherical (for example, irregularly shaped particles such as a pulverized product)] or fibrous.
  • the biopolymer-adsorbing composition When the biopolymer-adsorbing composition is in the form of particles, it may be adjusted to the desired particle size by appropriate pulverization, but the particle size is preferably 1 ⁇ m to 5000 ⁇ m, more preferably 10 ⁇ m to 4000 ⁇ m, and most preferably 20 ⁇ m to 3000 ⁇ m. When the particle size is too small, handling is difficult, for example, the fine powder tends to fly. If the particle size is too large, sufficient adsorption performance may not be obtained. In addition, a particle diameter shows the value classified by sieving.
  • the average fiber diameter is not particularly limited, but can be selected from a wide range of 0.1 to 1000 ⁇ m, and may be 1 to 500 ⁇ m, for example. May be 2 to 200 ⁇ m.
  • the average fiber diameter can be calculated as an average fiber diameter by measuring the fiber diameter at 10 locations of fibers in a standard state defined by JIS L 0105 with a micrometer. Moreover, as a fiber, a continuous fiber may be sufficient and a short fiber may be sufficient.
  • the fiber length may be, for example, about 0.1 to 100 mm (for example, 1 to 100 mm), preferably about 0.5 to 80 mm (for example, 5 to 80 mm), more preferably 10 It may be about 50 mm.
  • the present invention includes a water treatment method as another embodiment.
  • the water treatment method includes at least an adsorption step in which water to be treated containing a biopolymer is brought into contact with the biopolymer adsorbing composition to adsorb the biopolymer.
  • the water to be treated is not particularly limited as long as various kinds of water obtained in a natural environment or an artificial environment can be used as the water to be treated and contains a biopolymer.
  • the adsorption process is not particularly limited as long as the water to be treated and the biopolymer adsorbent composition can be brought into contact with each other.
  • the adsorption treatment is performed by adding an adsorbent to the water to be treated and stirring the solution using a known method.
  • the adsorption treatment may be carried out by passing water to be treated through a column filled with a hydrophilic polymer adsorbent.
  • the adsorption step may be a single step or a multi-step.
  • the solid-liquid separation step may be performed by a known method as necessary, and the adsorbent after the adsorption treatment may be removed from the adsorption treatment liquid by the solid-liquid separation step. .
  • dissolved organic substances in the water to be treated can be adsorbed efficiently, and in particular, the biopolymer can be adsorbed efficiently as described above.
  • the water treatment method may further include a filtration step of membrane-filtering the adsorption treated water obtained by the adsorption step.
  • filtration membranes may be modularized. For example, in the case of a flat membrane, a spiral type, a pleat type, a plate-and-frame type, or a disc type in which discs are stacked may be used. It may be a hollow fiber membrane type bundled in an I shape and stored in a container.
  • the water treatment method of the present invention may be combined with an existing water treatment method as necessary within a range not impairing the effects of the invention.
  • the existing water treatment method include sand filtration treatment, coagulation sedimentation treatment, ozone treatment, adsorption treatment using an existing adsorbent or activated carbon, biological treatment, and the like. These treatments may be performed singly or in combination of two or more.
  • Ion exchange capacity A ⁇ 1000 / Wa [mmol / g]
  • the cation exchange capacity was measured by the following method. It was immersed in a 0.5 M KCl aqueous solution for 1 hour and washed with ion exchange water. Thereafter, the sample was immersed in a 0.1 M NaCl aqueous solution to replace with sodium ions, and the liberated potassium ions B (mol) were quantified by ion chromatography ICS-1600 (manufactured by Nippon Dionex Co., Ltd.). Next, after thoroughly washing the resin composition sample used with ion-exchanged water, it was vacuum-dried at a temperature of 50 ° C.
  • Biopolymer adsorption rate (Biopolymer concentration before adsorption evaluation ⁇ Biopolymer concentration after adsorption evaluation) / Biopolymer concentration before adsorption evaluation ⁇ 100 (%)
  • the biopolymer concentration was measured by the following method.
  • the biopolymer concentration is measured by LC-OCD (manufactured by DOC-Labor) in which a wet total organic carbon meter (OCD meter) is connected to high performance liquid chromatography (HPLC).
  • LC-OCD liquid chromatography
  • LC-OCD-OND high performance liquid chromatography
  • Example 1 An ethylene-vinyl alcohol copolymer having an ethylene content of 27 mol% (“Eval L-104” manufactured by Kuraray Co., Ltd.) and polyethyleneimine having a weight average molecular weight of 10,000 (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP- 200 ").
  • the above-mentioned ethylene-vinyl alcohol copolymer is melt-kneaded at 210 ° C. with a lab plast mill, so that the polyethyleneimine content is 3 parts by mass and the ethylene-vinyl alcohol copolymer is 97 parts by mass.
  • polyethyleneimine was added, and the two polymers were mixed and kneaded for 5 minutes.
  • the obtained kneaded product was cooled and then pulverized by a pulverizer to obtain a particulate material having a particle size of 200 to 500 ⁇ m by sieving.
  • the particulate material was subjected to a crosslinking treatment in an aqueous solution of 25% by weight of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at a concentration of 2% by mass to obtain a biopolymer adsorbing composition. It was. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
  • Examples 2 to 8 As described in Table 1, biopolymer adsorptivity under the same conditions as in Example 1 except that the blending ratio was changed in Example 2, and the types and blends of ethylene-vinyl alcohol copolymers were changed in Examples 3 to 8. A composition was obtained. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
  • Example 9 70 g of polyvinyl alcohol having a viscosity average polymerization degree of 1700 and a saponification degree of 98.5 mol% is dissolved in 630 g of ion-exchanged water, and 30 g of the above-mentioned polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200”) is uniformly dispersed. Then, a 1200 ⁇ m cast film was formed on a PET film in a wet state and dried to obtain a desired film.
  • polyethyleneimine manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200
  • the film was immersed in an aqueous solution of 2 mol / L sodium sulfate for 24 hours, concentrated sulfuric acid was added to the aqueous solution so that the pH was 1.0, and then the film was crosslinked with an aqueous 0.5 volume% glutaraldehyde solution. It was carried out at 50 ° C. for 2 hours.
  • glutaraldehyde aqueous solution a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used.
  • the obtained film was taken out, pulverized by a pulverizer, and sieved to obtain a small-piece biopolymer adsorbing composition (diameter: 100 to 500 ⁇ m).
  • Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
  • Example 10 and 11 Biopolymer adsorptive compositions prepared under the same conditions were obtained except that the crosslinking treatment of Example 9 was changed from 2 hours to 1 hour in Example 10 and 30 minutes in Example 11. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
  • Example 12 The component A under the conditions of Example 5 was changed to polyallylamine having a weight average molecular weight of 15000 in Example 12 (“PAA-15C” manufactured by Nittobo Medical Co., Ltd.). In Example 13, diallyldimethylammonium having a weight average molecular weight of 30000 was used. Biopolymer adsorptive compositions prepared under the same conditions were obtained except that the polymer was changed to a chloride polymer (“PAS-H-5L” manufactured by Nitto Bo Medical Co., Ltd.). Table 1 shows the results of the adsorption property evaluation using the obtained biopolymer adsorbent composition.
  • Example 14 The biopolymer adsorptive composition was obtained by changing the ethylene-vinyl alcohol copolymer from Example 1 to the conditions described in Table 1. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
  • Example 15 A biopolymer adsorbing composition was obtained by producing under the same conditions as in Example 1 except that the kneading temperature of Laboplast Mill was set to 160 ° C. in Example 1 and melt kneading was performed for 1 minute. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
  • Example 1 A resin composition was obtained under the same conditions as in Example 4 except that the polyethyleneimine component was not added in Example 4.
  • Table 1 shows the results of the adsorption characteristics evaluation and the like of the obtained resin composition.
  • Example 2 A resin composition was obtained under the same conditions as in Example 5 except that the polyethyleneimine component was not added in Example 5.
  • Table 1 shows the results of the adsorption characteristics evaluation and the like of the obtained resin composition.
  • Example 3 A resin composition was obtained under the same conditions as in Example 9 except that the polyethyleneimine component was not added in Example 9.
  • Table 1 shows the results of the adsorption characteristics evaluation and the like of the obtained resin composition.
  • Comparative Examples 4 and 5 In Comparative Example 4, a commercially available ion exchange resin ("Diaion SA-10A” manufactured by Mitsubishi Chemical Corporation) that is a styrene quaternary ammonium type, and in Comparative Example 5, a commercially available ion exchange resin that is a styrene polyamine type (( Evaluation of adsorption properties of the adsorbent was evaluated using “Diaion WA-20” manufactured by Mitsubishi Chemical Corporation. The results are shown in Table 1.
  • Example 6 A kneaded material was obtained under the same conditions as in Example 2 except that the kneading temperature of Laboplast Mill was set to 160 ° C. in Example 2 and melt kneading was performed for 1 minute. The average dispersion diameter of PEI was 20000 nm. After the obtained kneaded product was cooled, a pulverization treatment with a pulverizer was attempted, but the adhesion of the resin was so great that almost no pulverized product could be obtained. Although a small amount of the particles obtained were used for the adsorption property evaluation, the elution of the PEI component was remarkable and could not be evaluated.
  • a composition obtained by combining a polymer having a chemical adsorption functional group with a hydrophilic matrix polymer in a state having a predetermined average dispersion diameter is a commercially available ion exchange resin.
  • adsorb the biopolymer with a high adsorption rate.
  • the chemically adsorbing functional group-containing polymer (A) is uniformly dispersed in the matrix polymer (B). Dispersed by diameter.
  • Examples 1 to 13 having an average dispersion diameter of 10000 nm or less (particularly 7500 nm or less) and an ion exchange capacity of 0.3 mmol / g or more are compared with Comparative Examples 4 and 5 in that sodium alginate is a model substance.
  • the adsorption rate is 7 times or more, and the adsorption rate in river water is also 6 times or more.
  • the adsorptive retention rate tends to be good.
  • those having an ion exchange capacity in the range of 0.5 to 10 mmol / g have particularly good adsorption retention.
  • Comparative Examples 4 and 5 which are commercially available ion exchange resins, have a poor biopolymer adsorption rate compared to the Examples, and the adsorption rate does not include the chemically adsorbing functional group-containing polymer (A). It is almost the same as 1-3.
  • compositions capable of adsorbing dissolved organic matter and in particular, capable of efficiently adsorbing biopolymers that have been difficult to adsorb.
  • Such a composition can be effectively used as a biopolymer adsorbent when various raw waters are treated with water.

Abstract

Provided is a biopolymer-adsorbing composition which has excellent adsorbability of a biopolymer that is present in water to be treated. This biopolymer-adsorbing composition contains a chemisorptive functional group-containing polymer (A) and a hydrophilic matrix polymer (B). The hydrophilic matrix polymer (B) is not ion-changing, and the polymer (A) is dispersed in the polymer (B) at an average dispersion diameter of 10,000 nm or less.

Description

バイオポリマー吸着性組成物およびそれを用いた水処理方法Biopolymer adsorptive composition and water treatment method using the same 関連出願Related applications
 本願は、2013年11月25日に出願した特願2013-243149の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2013-243149 filed on November 25, 2013, which is incorporated herein by reference in its entirety as a part of this application.
 本発明は、原水などの水処理における汚染物質である溶存有機物を吸着でき、特に水中に存在するバイオポリマーの吸着性に優れるバイオポリマー吸着性組成物に関する。 The present invention relates to a biopolymer adsorptive composition that can adsorb dissolved organic substances that are contaminants in water treatment such as raw water, and is particularly excellent in the adsorptivity of biopolymers present in water.
 自然環境下または人工環境下から得られる原水に対して水処理を行う場合、そのような原水には、溶存有機炭素(DOC:Dissolved Organic carbon)が存在している。特許文献1(特表平10-504995号公報)によると、DOCは、有機炭素、有機着色剤、及び天然の有機物質を包含する用語であるとともに、植物残留物の分解により形成される有機化合物の混合物であるフミン酸及びフルボ酸のような化合物をも包含する用語であり、DOCを構成する主要な化合物及び材料は可溶性であるため、水から容易に分離できないとされている。そして特許文献1ではa.溶解された有機炭素を含む水にイオン交換樹脂を添加し;b.前記樹脂上への前記溶解された有機炭素の吸着を可能にするために前記水に前記樹脂を分散し;そしてc.前記溶解された有機炭素により負荷された樹脂を前記水から分離する工程により、溶解された有機炭素を水から除去する方法を提案している。 When water treatment is performed on raw water obtained from a natural environment or an artificial environment, dissolved organic carbon (DOC) exists in such raw water. According to Patent Document 1 (Japanese Patent Publication No. 10-504995), DOC is a term encompassing organic carbon, organic colorants, and natural organic substances, and is an organic compound formed by decomposition of plant residues. It is also a term encompassing compounds such as humic acid and fulvic acid, which are mixtures of these compounds, and the main compounds and materials constituting DOC are soluble and cannot be easily separated from water. In Patent Document 1, a. Adding an ion exchange resin to water containing dissolved organic carbon; b. Dispersing the resin in the water to allow adsorption of the dissolved organic carbon onto the resin; and c. It proposes a method for removing dissolved organic carbon from water by separating the resin loaded with the dissolved organic carbon from the water.
 また、河川などの原水には、フミン酸及びフルボ酸のようなフミン質が存在しており、このようなフミン質は水処理における汚染物質として問題となっている。
 例えば、特許文献2(特開2005-238174号公報)では、フミン質は、河川、湖水中の難分解性である溶存有機物(DOM:Dissolved Organic Matter)のうち30~80%を占めており、生活排水、下水施設排水、畜舎等の農業施設排水にも多く含まれ、環境汚染の一因となっていることが指摘されている。そして、フミン物質を効果的に除去するために、チタンを多孔質体に担持してなるチタン担持多孔質体を主成分とすることを特徴とするフミン物質除去剤が開示されている。
In addition, humic substances such as humic acid and fulvic acid exist in raw water such as rivers, and such humic substances are problematic as pollutants in water treatment.
For example, in Patent Document 2 (Japanese Patent Application Laid-Open No. 2005-238174), humic substances account for 30 to 80% of dissolved organic matter (DOM) in rivers and lake water, It has been pointed out that it is also included in domestic wastewater, sewage facility wastewater, and agricultural facility wastewater such as barns, which contributes to environmental pollution. And in order to remove a humic substance effectively, the humic substance removal agent characterized by using as a main component the titanium carrying | support porous body which carry | supports titanium in a porous body is disclosed.
 また、特許文献3(特開2008-246365号公報)には、フミン質含有水を処理する方法において、水中で膨潤し実質的に水に溶解しないカチオン性またはノニオン性ポリマーからなる微粒子を、前記フミン質含有水に添加する工程を有することを特徴とするフミン質含有水の処理方法が開示され、この方法によると、フミン質含有水に、水中で膨潤し実質的に水に溶解しないカチオン性またはノニオン性ポリマーの微粒子を添加することにより、閉塞トラブル等の問題を生じる活性炭処理、イオン交換樹脂カラムへの通水や膜処理等を行わなくてもフミン質含有水からフミン質を効率よく除去することができる。 Patent Document 3 (Japanese Patent Application Laid-Open No. 2008-246365) discloses a method for treating humic substance-containing water, in which fine particles made of a cationic or nonionic polymer that swells in water and does not substantially dissolve in water are described above. Disclosed is a method for treating humic-containing water characterized by having a step of adding to humic-containing water. According to this method, cationic property that swells in humic-containing water and does not substantially dissolve in water is disclosed. Or, by adding fine particles of nonionic polymer, humic substances can be efficiently removed from water containing humic substances without the need for activated carbon treatment that causes problems such as clogging problems, water flow to ion exchange resin columns, membrane treatment, etc. can do.
 一方、近年、膜ろ過におけるファウリング物質に関する詳細な解析がなされており、非特許文献1では、不可逆ファウリングの原因物質は、フミン質などよりも比較的親水性が高い溶存有機物である糖類やたんぱく質などのバイオポリマーが主因であることが報告されている。 On the other hand, in recent years, detailed analysis on fouling substances in membrane filtration has been made, and in Non-Patent Document 1, the causative substance of irreversible fouling is a dissolved organic substance having a relatively higher hydrophilicity than humic substances or the like. It has been reported that biopolymers such as proteins are the main cause.
特表平10-504995号公報Japanese National Patent Publication No. 10-504995 特開2005-238174号公報JP 2005-238174 A 特開2008-246365号公報JP 2008-246365 A
 しかし、特許文献1の発明では、溶存有機炭素(DOC)全般について調べているものの、DOCには、フミン酸及びフルボ酸を含め多種多様な有機炭素物質が含まれているため、特定の汚染物質を吸着して効率よく水処理を行うことはできない。
 また、特許文献2および3の発明では、水中のフミン質に対しての吸着性能を報告しているものの、水処理においてフミン質以外の有機炭素物質が汚染物質として重要である場合、それらの物質に対しての吸着性については定かではない。
However, although the invention of Patent Document 1 investigates dissolved organic carbon (DOC) in general, since DOC contains a wide variety of organic carbon substances including humic acid and fulvic acid, specific pollutants are included. The water treatment cannot be performed efficiently by adsorbing water.
In the inventions of Patent Documents 2 and 3, although adsorption performance for humic substances in water is reported, if organic carbon substances other than humic substances are important as pollutants in water treatment, those substances It is not clear about the adsorptivity to.
 特に、特許文献2のチタン担持多孔質体では、多孔質構造を利用した毛細管現象を利用して取り込まれるため、すでに利用された細孔はさらに利用することができない。また、特許文献3の粒子は、水で膨潤していない時の粒子径に対して水中での粒子径は10~200倍(すなわち1000~200000%)程度という極めて大きな膨潤性を有しているため、吸着処理の際の取扱い性が悪く、特に閉塞環境下では粒子同士の固着により通液性が低下するなどの問題点を有している。 In particular, in the titanium-supporting porous material of Patent Document 2, the pores already used cannot be further used because they are taken in by utilizing a capillary phenomenon using a porous structure. Further, the particles of Patent Document 3 have an extremely large swelling property such that the particle size in water is about 10 to 200 times (that is, 1000 to 200000%) with respect to the particle size when not swollen with water. Therefore, the handleability at the time of adsorption treatment is poor, and there is a problem that the liquid permeability is lowered due to the adhesion of particles particularly in a closed environment.
 本発明の目的は、水処理における汚染物質である溶存有機物を吸着でき、特に少なくともバイオポリマーを効率よく吸着することができるバイオポリマー吸着性組成物を提供することにある。 An object of the present invention is to provide a biopolymer adsorbing composition capable of adsorbing dissolved organic substances that are contaminants in water treatment, and particularly capable of adsorbing at least a biopolymer efficiently.
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、(i)従来利用されているイオン交換樹脂ではバイオポリマーをほとんど吸着することができないこと、そして(ii)親水性マトリクス高分子に対して、化学吸着性官能基を有する高分子を所定の平均分散径を有する状態で組み合わせた組成物は、驚くべきことに、溶存有機物を吸着することができるだけでなく、その中でも特にバイオポリマーに対する吸着性に優れることを見出し、本発明に至った。 As a result of intensive studies to achieve the above object, the inventors of the present invention have found that (i) a conventionally used ion exchange resin hardly adsorbs a biopolymer, and (ii) a hydrophilic matrix. A composition in which a polymer having a chemisorbable functional group is combined with a polymer in a state having a predetermined average dispersion diameter is surprisingly not only capable of adsorbing dissolved organic matter, but particularly among them. The present inventors have found that it has excellent adsorptivity to biopolymers and has reached the present invention.
 すなわち、本発明は、化学吸着性官能基含有高分子(A)と、親水性マトリクス高分子(B)とを含む組成物であって、
 前記親水性マトリクス高分子(B)は、非イオン交換性であり、
 前記高分子(A)は前記高分子(B)中に平均分散径10000nm以下で分散しており、且つ
 被処理水中に存在するバイオポリマーの吸着性に優れるバイオポリマー吸着性組成物である。
That is, the present invention is a composition comprising a chemisorbable functional group-containing polymer (A) and a hydrophilic matrix polymer (B),
The hydrophilic matrix polymer (B) is non-ion exchangeable,
The polymer (A) is a biopolymer adsorptive composition that is dispersed in the polymer (B) with an average dispersion diameter of 10000 nm or less and that is excellent in the adsorptivity of the biopolymer present in the water to be treated.
 前記バイオポリマー吸着性組成物では、例えばイオン交換容量が0.1mmol/g以上であってもよい。 In the biopolymer adsorbing composition, for example, the ion exchange capacity may be 0.1 mmol / g or more.
 例えば、化学吸着性官能基含有高分子(A)中の化学吸着性官能基は、バイオポリマーに対して、水素結合、イオン結合、およびキレート結合からなる群から選択された少なくとも一種の結合の形成能を有していてもよい。例えば、そのような化学吸着性官能基は、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む化学吸着性官能基であってもよい。また、好ましくは、化学吸着性官能基含有高分子(A)は、カチオン性高分子である。
 カチオン性高分子は、例えば、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸、ポリヌクレオチド、およびそれらの塩からなる群から選択される少なくとも1種であってもよい。
For example, the chemisorbable functional group in the chemisorbable functional group-containing polymer (A) forms at least one bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond with respect to the biopolymer. May have a function. For example, such a chemisorbable functional group may be a chemisorbable functional group containing at least one element selected from the group consisting of N, S, P, and O. Preferably, the chemisorbable functional group-containing polymer (A) is a cationic polymer.
Cationic polymers include, for example, polyethyleneimine, polyallylamine, polyvinylamine, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride, It may be at least one selected from the group consisting of polynucleotides and salts thereof.
 一方、親水性マトリクス高分子(B)は、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンから選択される少なくとも1種であってもよい。特に、親水性マトリクス高分子(B)は、ポリビニルアルコールおよびエチレン-ビニルアルコール系共重合体から選択される少なくとも1種であるのが好ましい。 On the other hand, the hydrophilic matrix polymer (B) includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth) acrylamide, polyamide, It may be at least one selected from polyvinylpyrrolidone, cellulose derivatives, dextrin, chitin, and chitosan. In particular, the hydrophilic matrix polymer (B) is preferably at least one selected from polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
 バイオポリマー吸着性組成物において、化学吸着性官能基含有高分子(A)と、マトリクス高分子(B)との割合(質量比)は、例えば、高分子(A)/高分子(B)=1/99~70/30程度であってもよい。 In the biopolymer adsorbing composition, the ratio (mass ratio) between the chemically adsorbing functional group-containing polymer (A) and the matrix polymer (B) is, for example, polymer (A) / polymer (B) = It may be about 1/99 to 70/30.
 好ましくは、バイオポリマー吸着性組成物に対して煮沸試験を行った場合の減量分が20質量%以下であってもよい。また、バイオポリマー吸着性組成物を温度60℃で1週間温水に浸漬させた場合の吸着性保持率が50%以上であってもよい。 Preferably, the weight loss when the boiling test is performed on the biopolymer adsorbing composition may be 20% by mass or less. Moreover, 50% or more of the adsorptive retention may be obtained when the biopolymer adsorbing composition is immersed in warm water at 60 ° C. for 1 week.
 本発明は、別の実施態様として、バイオポリマーを含有する被処理水と前記バイオポリマー吸着性組成物とを接触させ、少なくともバイオポリマーを吸着する吸着工程を少なくとも備える水処理方法を包含する。 The present invention includes, as another embodiment, a water treatment method comprising at least an adsorption step of bringing the water to be treated containing a biopolymer into contact with the biopolymer adsorbing composition and adsorbing at least the biopolymer.
 前記水処理方法は、吸着工程により得られた吸着処理水を膜ろ過するろ過工程を、さらに備えていてもよい。 The water treatment method may further include a filtration step of membrane-filtering the adsorption treated water obtained by the adsorption step.
 なお、請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成要素のどのような組み合わせも、本発明に含まれる。特に、請求の範囲に記載された請求項の2つ以上のどのような組み合わせも本発明に含まれる。 It should be noted that any combination of at least two components disclosed in the claims and / or the specification and / or the drawings is included in the present invention. In particular, any combination of two or more of the claims recited in the claims is included in the present invention.
 本発明のバイオポリマー吸着性組成物は、化学吸着性官能基含有高分子(A)を所定の分散径で親水性マトリクス高分子(B)と分散させているため、溶存有機物だけでなく、従来吸着が困難であったバイオポリマーを効率よく吸着することができる。
 また、本発明の水処理方法では、特定のバイオポリマー吸着性組成物を吸着材として用いることにより、バイオポリマーを含有する被処理水であっても、簡便な方法で被処理水中のバイオポリマーの量を低減させることが可能である。
In the biopolymer adsorbing composition of the present invention, the chemically adsorbing functional group-containing polymer (A) is dispersed with the hydrophilic matrix polymer (B) with a predetermined dispersion diameter. Biopolymers that were difficult to adsorb can be adsorbed efficiently.
Moreover, in the water treatment method of the present invention, by using a specific biopolymer adsorbent composition as an adsorbent, even in the case of water to be treated containing biopolymer, the biopolymer in the water to be treated can be easily treated. The amount can be reduced.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきでない。この発明の範囲は添付のクレームによって定まる。添付図面において、複数の図面における同一の部品番号は、同一部分を示す。
本発明の実施例2で得られたバイオポリマー吸着性組成物のTEM写真である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are merely for illustration and description and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part number in a plurality of drawings indicates the same part.
It is a TEM photograph of the biopolymer adsorptive composition obtained in Example 2 of the present invention.
 以下、本発明の実施の形態について具体的に説明する。なお、以下に説明する実施の形態は、本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described in detail. Note that the embodiments described below do not limit the present invention.
[バイオポリマー吸着性組成物]
 本発明のバイオポリマー吸着性組成物は、化学吸着性官能基含有高分子(A)と、親水性マトリクス高分子(B)とを少なくとも含む組成物である。
[Biopolymer adsorptive composition]
The biopolymer adsorbing composition of the present invention is a composition comprising at least a chemically adsorbing functional group-containing polymer (A) and a hydrophilic matrix polymer (B).
[化学吸着性官能基含有高分子(A)]
 化学吸着性官能基含有高分子(A)は、化学吸着性を有する官能基を有する構成単位で少なくとも構成され、この構成単位は、主鎖としておよび/または側鎖として高分子の中に存在する。
[Chemically Adsorbing Functional Group-Containing Polymer (A)]
The chemisorbable functional group-containing polymer (A) is at least composed of a structural unit having a chemisorbable functional group, and this structural unit exists in the polymer as a main chain and / or as a side chain. .
 化学吸着性を有する官能基としては、バイオポリマーに対して、水素結合、イオン結合、およびキレート結合からなる群から選択された少なくとも一種の結合の形成能を有する官能基(好ましくはキレート形成基、カチオン性イオン交換基、アニオン性イオン交換基など)が挙げられ、バイオポリマーに対する吸着性を有する限り、特に限定されない。 The functional group having chemisorbability is a functional group having a capability of forming at least one kind of bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond (preferably a chelate-forming group, A cationic ion-exchange group, an anion ion-exchange group, etc.), and is not particularly limited as long as it has adsorptivity to a biopolymer.
 官能基は、例えば、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む化学吸着性官能基であってもよい。
 具体的には、そのような官能基としては、アミノ基(1級アミノ基、2級アミノ基、3級アミノ基)、4級アンモニウム基、イミニウム基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基、ヒドロキシル基、カルボキシル基、スルホネート基、スルホン酸基、スルホニウム基、メルカプト基、チオウレア基、ホスホネート基、ホスホン酸基、ホスホニウム基などが挙げられる。それらは塩の状態で存在していてもよい。これらの官能基は、単独でまたは二種以上組み合わせて高分子(A)中に存在していてもよい。また、これらの官能基は複合化していてもよく、その場合、例えば、イミノジ酢酸基、アミノリン酸基、アミドキシム基、メチルグルカミン基、ジチオカルバミン酸基などのキレート形成基であってもよい。これらのうち、好ましい官能基としては、アミノ基、4級アンモニウム基、イミニウム基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基およびそれらの塩が挙げられる。
The functional group may be a chemisorbable functional group containing at least one element selected from the group consisting of N, S, P and O, for example.
Specifically, such functional groups include amino groups (primary amino groups, secondary amino groups, tertiary amino groups), quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups. Group, quaternary pyridinium group, hydroxyl group, carboxyl group, sulfonate group, sulfonic acid group, sulfonium group, mercapto group, thiourea group, phosphonate group, phosphonic acid group, phosphonium group and the like. They may be present in a salt state. These functional groups may be present alone or in combination of two or more in the polymer (A). These functional groups may be complexed, and in that case, for example, a chelate-forming group such as an iminodiacetic acid group, an aminophosphoric acid group, an amidoxime group, a methylglucamine group, or a dithiocarbamic acid group may be used. Among these, preferred functional groups include amino groups, quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups, quaternary pyridinium groups, and salts thereof.
 このような官能基を有する構成単位は、例えば、官能基を有するエチレン不飽和性モノマー(アリルアミン、ジアリルジメチルアンモニウムハライドなど)や、官能基形成可能な環構造含有モノマー(例えば、エチレンイミン)を重合することにより導入してもよい。 The structural unit having such a functional group, for example, polymerizes an ethylenically unsaturated monomer having a functional group (such as allylamine or diallyldimethylammonium halide) or a ring structure-containing monomer capable of forming a functional group (for example, ethyleneimine). May be introduced.
 または、スチレン系樹脂、ポリ(メタ)アクリレート系樹脂、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリフェニレンオキサイド、ポリイミド等を母体樹脂として、この母体樹脂に対して、スルホン化、加水分解、アミノ化、リン酸化などの公知の方法により官能基を導入してもよい。なお、必要に応じて、母体樹脂は、ジビニルベンゼンなどの架橋性構成単位を有していてもよい。 Alternatively, styrene resin, poly (meth) acrylate resin, polysulfone, polyethersulfone, polyetheretherketone, polyphenylene oxide, polyimide, etc. are used as the base resin, and the base resin is sulfonated, hydrolyzed, and aminated. The functional group may be introduced by a known method such as phosphorylation. If necessary, the base resin may have a crosslinkable structural unit such as divinylbenzene.
 例えば、化学吸着性官能基含有高分子(A)は、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリアミック酸などのアニオン系ポリマーであってもよいし;ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸、ポリヌクレオチド、およびそれらの塩などのカチオン性高分子であってもよい。このような高分子は、単独でまたは二種以上組み合わせて使用してもよい。 For example, the chemisorbable functional group-containing polymer (A) is an anion such as polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymaleic acid, polyamic acid, etc. Polyethyleneimine, polyallylamine, polyvinylamine, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride Cationic polymers such as polynucleotides and salts thereof may be used. Such polymers may be used alone or in combination of two or more.
 これらのうち、親水性マトリクス高分子と組み合わせて、バイオポリマーをより効率よく吸着する観点から、カチオン性高分子が好ましく、特に、高カチオン密度を有する高分子(例えば、ポリエチレンイミン、ポリアリルアミンなど)が好ましい。 Among these, a cationic polymer is preferable from the viewpoint of more efficiently adsorbing a biopolymer in combination with a hydrophilic matrix polymer, and particularly a polymer having a high cation density (for example, polyethyleneimine, polyallylamine, etc.). Is preferred.
 化学吸着性官能基含有高分子(A)の重量平均分子量は、官能基の種類などに応じて適宜好ましい範囲を設定することが可能であるが、例えば、化学吸着性官能基含有高分子(A)の重量平均分子量は、5000~100000程度の幅広い範囲から選択可能であり、好ましくは6000~90000程度、より好ましくは7000~80000程度であってもよい。なお、重量平均分子量は、例えばGPCを用いて求めることができる。 The weight average molecular weight of the chemisorbable functional group-containing polymer (A) can be appropriately set within a preferable range depending on the type of the functional group. For example, the chemisorbable functional group-containing polymer (A ) Can be selected from a wide range of about 5000 to 100,000, preferably about 6000 to 90,000, more preferably about 7000 to 80,000. In addition, a weight average molecular weight can be calculated | required, for example using GPC.
[親水性マトリクス高分子(B)]
 親水性マトリクス高分子(B)は、非イオン交換性である。そして、化学吸着性官能基含有高分子(A)を所定の範囲において分散することが可能である限り、各種親水性高分子を用いることができる。
 ここで、マトリクス高分子(B)が非イオン交換性であるとは、マトリクス高分子(B)のイオン交換容量(IEC)が0.01mmol/g以下であることを意味している。なお、イオン交換容量は、後述する実施例に記載された方法により測定された値を示す。
[Hydrophilic matrix polymer (B)]
The hydrophilic matrix polymer (B) is non-ion exchangeable. Various hydrophilic polymers can be used as long as the chemisorbable functional group-containing polymer (A) can be dispersed within a predetermined range.
Here, that the matrix polymer (B) is non-ion exchange means that the ion exchange capacity (IEC) of the matrix polymer (B) is 0.01 mmol / g or less. In addition, ion exchange capacity shows the value measured by the method described in the Example mentioned later.
 また、親水性マトリクス高分子(B)は、Fedorの推算法により算出した凝集エネルギー密度(Ecoh)とモル分子容(V)を用いて、下記式にて算出された溶解度パラメータ(δ)が、22以上である高分子であってもよい。好ましくは、溶解度パラメータ(δ)は、24以上であり、25以上がさらに好ましい。なお、溶解度パラメータの上限は特に限定されないが、例えば、35程度であってもよい。
 δ=[ΣEcoh/ΣV]1/2
 親水性高分子としては、例えば、繰り返し単位中に水酸基、エーテル基、カチオン性基、アニオン性基、アミド基等の親水性基を有する高分子などが挙げられる。
The hydrophilic matrix polymer (B) has a solubility parameter (δ) calculated by the following formula using the cohesive energy density (Ecoh) and molar molecular volume (V) calculated by the Fedor's estimation method. The polymer may be 22 or more. Preferably, the solubility parameter (δ) is 24 or more, and more preferably 25 or more. The upper limit of the solubility parameter is not particularly limited, but may be about 35, for example.
δ = [ΣEcoh / ΣV] 1/2
Examples of the hydrophilic polymer include a polymer having a hydrophilic group such as a hydroxyl group, an ether group, a cationic group, an anionic group, and an amide group in a repeating unit.
 具体的には、親水性マトリクス高分子(B)としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、ポリアミド、ポリビニルピロリドン、フェノール樹脂、セルロース誘導体、デキストリン、キチン、キトサンなどを挙げることができる。これらの高分子は、単独でまたは二種以上組み合わせて使用してもよい。 Specifically, the hydrophilic matrix polymer (B) includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly (meth). Examples include acrylamide, polyamide, polyvinyl pyrrolidone, phenol resin, cellulose derivative, dextrin, chitin, and chitosan. These polymers may be used alone or in combination of two or more.
 これらの高分子は、他のコモノマー単位を有していてもよく、該コモノマー単位の含有量は、全モノマー単位中10モル%以下であることが好ましく、5%モル以下であることがより好ましい。 These polymers may have other comonomer units, and the content of the comonomer units is preferably 10 mol% or less, more preferably 5% mol or less in all monomer units. .
 親水性マトリクス高分子(B)の重量平均分子量は、高分子の種類に応じて適宜好ましい範囲を設定することが可能であるが、化学吸着性官能基含有高分子(A)を親水性マトリクス高分子(B)の内部に保持する観点から、例えば、親水性マトリクス高分子(B)の重量平均分子量は、少なくとも5000以上(例えば、5000~100000)であってもよく、好ましくは10000以上であってもよい。なお、重量平均分子量は、例えばGPCを用いて求めることができる。 The weight average molecular weight of the hydrophilic matrix polymer (B) can be appropriately set in accordance with the type of the polymer. From the viewpoint of maintaining inside the molecule (B), for example, the weight average molecular weight of the hydrophilic matrix polymer (B) may be at least 5000 or more (eg, 5000 to 100,000), preferably 10,000 or more. May be. In addition, a weight average molecular weight can be calculated | required, for example using GPC.
 好ましい親水性マトリクス高分子(B)としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール(例えば、ポリビニルホルマール、ポリビニルブチラール)、及びポリアミド(例えば、ポリアミド6、ポリアミド10、ポリアミド6,6、ポリアミド11、ポリアミド12、ポリアミド6,12、ポリアミド6,10、ポリアミド6/6,6共重合体、ポリアミド6,6/6,10共重合体、ポリアミド6,11、ポリアミド6,6/6,10/6共重合体等)などが挙げられ、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体がより好ましく、高い親水性を有するだけでなく、吸着特性と耐久性に優れる観点から、エチレン-ビニルアルコール共重合体が特に好ましい。 Preferred hydrophilic matrix polymers (B) include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), and polyamide (eg, polyamide 6, polyamide 10, polyamide 6,6). , Polyamide 11, polyamide 12, polyamide 6,12, polyamide 6,10, polyamide 6 / 6,6 copolymer, polyamide 6,6 / 6,10 copolymer, polyamide 6,11, polyamide 6,6 / 6 , 10/6 copolymer), and the like. Polyvinyl alcohol and ethylene-vinyl alcohol copolymer are more preferable. From the viewpoint of not only having high hydrophilicity but also excellent adsorption characteristics and durability, ethylene-vinyl. Alcohol copolymers are particularly preferred.
 エチレン-ビニルアルコール共重合体において、エチレン単位の含量は、全モノマー単位中20~60モル%であることが好ましく、より好ましくは25~55モル%、特に好ましくは35~48モル%であってもよい。エチレン含量が少なすぎると、成形体の耐久性が悪くなるおそれがある。一方、エチレン含量が多すぎると、親水性が低下するおそれがある。 In the ethylene-vinyl alcohol copolymer, the content of ethylene units is preferably 20 to 60 mol%, more preferably 25 to 55 mol%, particularly preferably 35 to 48 mol% in the total monomer units. Also good. If the ethylene content is too small, the durability of the molded article may be deteriorated. On the other hand, when there is too much ethylene content, there exists a possibility that hydrophilicity may fall.
 エチレン-ビニルアルコール系共重合体のビニルエステル成分のけん化度は、90モル%以上が好ましく、95モル%以上がより好ましく、99.5モル%以上が特に好ましい。けん化度が90モル%未満の場合、マトリクスとしての成形性が悪くなる虞がある。 The saponification degree of the vinyl ester component of the ethylene-vinyl alcohol copolymer is preferably 90 mol% or more, more preferably 95 mol% or more, and particularly preferably 99.5 mol% or more. When the saponification degree is less than 90 mol%, the moldability as a matrix may be deteriorated.
 なおここで、エチレン-ビニルアルコール系共重合体がけん化度の異なる2種類以上の配合物からなる場合には、配合重量比から算出される平均値をけん化度とする。 Here, when the ethylene-vinyl alcohol copolymer is composed of two or more kinds of blends having different saponification degrees, the average value calculated from the blending weight ratio is defined as the saponification degree.
 また、エチレン-ビニルアルコール系共重合体は、メルトフローレート(MFR)(210℃、荷重2160g)で評価してもよく、その場合にメルトフローレート(MFR)(210℃、荷重2160g)は、0.1g/分以上が好ましく、0.5g/分以上がより好ましい。0.1g/分未満の場合、強度が低下する虞がある。なお、メルトフローレートの上限は通常用いられる範囲であればよく、例えば、25g/分以下であってもよい。 Further, the ethylene-vinyl alcohol copolymer may be evaluated by a melt flow rate (MFR) (210 ° C., load 2160 g). In this case, the melt flow rate (MFR) (210 ° C., load 2160 g) is 0.1 g / min or more is preferable, and 0.5 g / min or more is more preferable. If it is less than 0.1 g / min, the strength may decrease. In addition, the upper limit of a melt flow rate should just be the range normally used, for example, 25 g / min or less may be sufficient.
 なお、ポリビニルアルコールに関しては、粘度平均重合度で規定してもよく、化学吸着性官能基含有高分子(A)を所定の分散径で分散できる限り特に限定されず、30℃水溶液の粘度から求めた粘度平均重合度が、例えば100~15000程度の幅広い範囲から選択できる。マトリクス高分子としての耐久性を向上させる観点から、高重合度のものを用いるのが好ましく、その場合、例えば、粘度平均重合度は好ましくは800~13000程度、さらに好ましくは1000~10000程度であってもよい。 Polyvinyl alcohol may be defined by the viscosity average degree of polymerization, and is not particularly limited as long as the chemically adsorbable functional group-containing polymer (A) can be dispersed with a predetermined dispersion diameter, and is determined from the viscosity of a 30 ° C. aqueous solution. The viscosity average degree of polymerization can be selected from a wide range of about 100 to 15000, for example. From the viewpoint of improving the durability of the matrix polymer, it is preferable to use those having a high degree of polymerization. In this case, for example, the viscosity average degree of polymerization is preferably about 800 to 13000, more preferably about 1000 to 10,000. May be.
 また、ポリビニルアルコールのけん化度も、目的に応じて適宜選択でき特に限定されるものではないが、例えば、88モル%以上、好ましくは90モル%以上、さらに好ましくは95モル%以上であってもよい。特に耐久性を向上させる観点からは、けん化度98モル%以上のものが好ましい。 Further, the degree of saponification of polyvinyl alcohol can be appropriately selected according to the purpose and is not particularly limited. For example, it may be 88 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. Good. In particular, from the viewpoint of improving durability, those having a saponification degree of 98 mol% or more are preferred.
[化学吸着性官能基含有高分子(A)と親水性マトリクス高分子(B)との質量比]
 本発明のバイオポリマー吸着性組成物における、化学吸着性官能基含有高分子(A)と親水性マトリクス高分子(B)との割合は、高分子(A)が所定の範囲で分散する限り特に限定されないが、例えば、質量比で高分子(A)/高分子(B)=1/99~70/30程度であってもよく、好ましくは5/95~65/45程度、より好ましくは8/92~60/40程度であってもよい。高分子(A)が多すぎると、組成物の経時的な吸着保持性を損なう恐れがあり、高分子(A)が少ないと、吸着性能が低下する傾向にある。
[Mass ratio between the chemisorbable functional group-containing polymer (A) and the hydrophilic matrix polymer (B)]
In the biopolymer adsorbing composition of the present invention, the ratio of the chemically adsorbing functional group-containing polymer (A) and the hydrophilic matrix polymer (B) is particularly limited as long as the polymer (A) is dispersed within a predetermined range. Although not limited, for example, the mass ratio may be about polymer (A) / polymer (B) = 1/99 to 70/30, preferably about 5/95 to 65/45, more preferably 8 It may be about / 92 to 60/40. If the amount of the polymer (A) is too much, there is a risk that the adsorption retention of the composition with time will be impaired. If the amount of the polymer (A) is small, the adsorption performance tends to be lowered.
[その他の成分]
 なお、本発明において、バイオポリマー吸着性組成物は、本発明の効果を阻害しない範囲内で、樹脂成分として、化学吸着性官能基含有高分子(A)及び親水性マトリクス高分子(B)以外のポリマー高分子を含んでいてもよい。また、バイオポリマー吸着性組成物は、必要に応じて、例えば、架橋剤、酸化防止剤、安定剤、滑剤、加工助剤、帯電防止剤、着色剤、消泡剤、分散剤などの各種添加剤を含んでいてもよい。
[Other ingredients]
In the present invention, the biopolymer adsorbing composition is used as a resin component other than the chemically adsorbing functional group-containing polymer (A) and the hydrophilic matrix polymer (B) as long as the effects of the present invention are not impaired. The polymer polymer may be included. In addition, the biopolymer adsorbent composition may be added with various additives such as a cross-linking agent, an antioxidant, a stabilizer, a lubricant, a processing aid, an antistatic agent, a colorant, an antifoaming agent, and a dispersing agent as necessary. An agent may be included.
 特に、バイオポリマー吸着性組成物は、耐久性や膨潤性を制御する観点から、架橋剤を含んでいてもよい。架橋剤は、化学吸着性官能基含有高分子(A)および親水性マトリクス高分子(B)の種類に応じて、公知の架橋剤から適宜選択することができる。 In particular, the biopolymer adsorbing composition may contain a crosslinking agent from the viewpoint of controlling durability and swelling property. A crosslinking agent can be suitably selected from a well-known crosslinking agent according to the kind of chemisorbable functional group containing polymer (A) and hydrophilic matrix polymer (B).
[バイオポリマー吸着性組成物の製造方法]
 本発明に係るバイオポリマー吸着性組成物は、化学吸着性官能基含有高分子(A)および親水性マトリクス高分子(B)を含んでおり、前記高分子(A)が前記高分子(B)中に所定の分散径の範囲で存在している限り、その製造方法は特に限定されず、用いられる高分子の種類に応じて各種方法により製造することができる。
[Method for producing biopolymer adsorbing composition]
The biopolymer adsorbing composition according to the present invention includes a chemically adsorbing functional group-containing polymer (A) and a hydrophilic matrix polymer (B), and the polymer (A) is the polymer (B). As long as it exists in the range of a predetermined dispersion diameter, the manufacturing method is not specifically limited, It can manufacture by various methods according to the kind of polymer used.
 好適な製造方法としては、化学吸着性官能基含有高分子(A)および親水性マトリクス高分子(B)及び任意成分を、二軸型の混練機を用いて溶融混練する方法(溶融混練法)が挙げられる。当該溶融混練法によれば、化学吸着性官能基含有高分子(A)が親水性マトリクス高分子(B)に対して、所定の範囲の平均分散径で分散した組成物を得ることができる。 As a suitable production method, a method of melt-kneading the chemisorbable functional group-containing polymer (A), the hydrophilic matrix polymer (B) and an optional component using a biaxial kneader (melt kneading method) Is mentioned. According to the melt kneading method, it is possible to obtain a composition in which the chemically adsorbing functional group-containing polymer (A) is dispersed with respect to the hydrophilic matrix polymer (B) with an average dispersion diameter in a predetermined range.
 当該溶融混練方法としては、具体的には、例えば、親水性マトリクス高分子(B)を二軸押出機により溶融混練し、そこへ化学吸着性官能基含有高分子(A)をサイドフィーダーから所定量添加して、これらを混合して実施することができる。 Specifically, as the melt kneading method, for example, the hydrophilic matrix polymer (B) is melt kneaded by a twin screw extruder, and the chemisorbable functional group-containing polymer (A) is placed from the side feeder. A fixed amount can be added and these can be mixed and implemented.
 高分子(A)を添加した後の混練温度は、高分子(A)の所望の分散径に応じて適宜設定することができるが、例えば、混練温度は、親水性マトリクス高分子(B)の融点をMpとすると、Mp-50℃以上であってもよく、好ましくはMp℃以上、でより好ましくはMp+10℃以上であってもよい。混練温度の上限は、通常、親水性マトリクス高分子の分解温度以下である。 The kneading temperature after the addition of the polymer (A) can be appropriately set according to the desired dispersion diameter of the polymer (A). For example, the kneading temperature is the hydrophilic matrix polymer (B). If the melting point is Mp, it may be Mp−50 ° C. or higher, preferably Mp ° C. or higher, and more preferably Mp + 10 ° C. or higher. The upper limit of the kneading temperature is usually below the decomposition temperature of the hydrophilic matrix polymer.
 また、高分子(A)を添加した後の混練時間は、高分子(A)の量などに応じて適宜設定することが出来るが、例えば高分子(A)を混練機に投入、1分以上混練することが好ましく、2分以上混練することがより好ましい。なお樹脂の熱劣化を防ぐ観点から、混練時間は30分以下であってもよい。 The kneading time after the addition of the polymer (A) can be appropriately set according to the amount of the polymer (A) and the like. For example, the polymer (A) is charged into the kneader for 1 minute or more. It is preferable to knead, and it is more preferable to knead for 2 minutes or more. The kneading time may be 30 minutes or less from the viewpoint of preventing thermal deterioration of the resin.
 さらに、溶融混練物を押出成形して各種形状の成形体とすることもでき、さらに、架橋剤を含む溶液に浸漬させ架橋処理を施すことができるし、また、混練時に架橋剤を加えて、ポリマーを溶融混練するとともに架橋結合の導入を行うこともできる。さらに、成形体を粉砕して粉砕物(例えば、粒子状)とすることもできる。 Furthermore, the melt-kneaded product can be extruded to form molded bodies of various shapes, and further, can be immersed in a solution containing a crosslinking agent to be subjected to a crosslinking treatment, and a crosslinking agent is added during the kneading, The polymer can be melt-kneaded and a crosslink can be introduced. Furthermore, the molded body can be pulverized into a pulverized product (for example, in a particulate form).
 バイオポリマー吸着性組成物の別の製造方法としては、例えば、化学吸着性官能基含有高分子(A)および親水性マトリクス高分子(B)及び任意成分の混合液を調製する。溶媒は通常、水を使用するが、ジメチルスルホキシド等の有機溶媒であっても差し支えない。双方の高分子を溶媒に添加して攪拌しながら昇温することで良好な性状の溶液を得ることができる。 As another method for producing a biopolymer adsorbing composition, for example, a mixed liquid of a chemically adsorbing functional group-containing polymer (A) and a hydrophilic matrix polymer (B) and an arbitrary component is prepared. As the solvent, water is usually used, but an organic solvent such as dimethyl sulfoxide may be used. A solution with good properties can be obtained by adding both polymers to a solvent and raising the temperature while stirring.
 化学吸着性官能基含有高分子(A)および親水性マトリクス高分子(B)を添加した後の混合方法および混合時間は、高分子(A)の所望の分散径に応じて適宜設定することができるが、例えば高分子(A)の樹脂を混合機に投入、1分以上混合することが好ましく、2分以上混練することがより好ましい。なお加熱する場合、樹脂の熱劣化を防ぐ観点から、混合時間は30分以下であってもよい。 The mixing method and mixing time after the addition of the chemisorbable functional group-containing polymer (A) and the hydrophilic matrix polymer (B) can be appropriately set according to the desired dispersion diameter of the polymer (A). However, for example, the polymer (A) resin is charged into a mixer and mixed for 1 minute or more, and more preferably kneaded for 2 minutes or more. In the case of heating, the mixing time may be 30 minutes or less from the viewpoint of preventing thermal degradation of the resin.
 得られた溶液をキャスト製膜などにより成形し、各種形状の成形体とすることができる。また、この成形体を、さらに、架橋剤を含む溶液に浸漬させ架橋処理を施してもよい。 The obtained solution can be molded by cast film formation or the like to obtain molded bodies of various shapes. Moreover, this molded body may be further dipped in a solution containing a crosslinking agent and subjected to a crosslinking treatment.
[バイオポリマー吸着性組成物]
 このようにして得られたバイオポリマー吸着性組成物は、化学吸着性官能基含有高分子(A)と、親水性マトリクス高分子(B)とを含み、前記高分子(A)は前記高分子(B)中に平均分散径10000nm以下(例えば1~10000nm)で分散しており、水中に存在するバイオポリマーを効率よく吸着することができる。
[Biopolymer adsorptive composition]
The biopolymer adsorptive composition thus obtained contains a chemisorbable functional group-containing polymer (A) and a hydrophilic matrix polymer (B), and the polymer (A) is the polymer. In (B), it is dispersed with an average dispersion diameter of 10000 nm or less (for example, 1 to 10000 nm), and the biopolymer existing in water can be adsorbed efficiently.
 化学吸着性官能基含有高分子(A)と、親水性マトリクス高分子(B)との平均分散径については、後述する実施例に記載された方法により測定することが可能であり、平均分散径は、好ましくは8000nm以下(例えば1~7000nm)、より好ましくは6000nm以下(例えば5~5000nm)、さらに好ましくは4000nm以下(例えば10~3000nm)、特に好ましくは2000nm以下(例えば50~1000nm)であってもよい。なお、平均分散径は、後述する実施例に記載された方法により測定された値を示す。 The average dispersion diameter of the chemisorbable functional group-containing polymer (A) and the hydrophilic matrix polymer (B) can be measured by the method described in the examples described later. Is preferably 8000 nm or less (eg 1 to 7000 nm), more preferably 6000 nm or less (eg 5 to 5000 nm), further preferably 4000 nm or less (eg 10 to 3000 nm), particularly preferably 2000 nm or less (eg 50 to 1000 nm). May be. In addition, an average dispersion diameter shows the value measured by the method described in the Example mentioned later.
 本発明のバイオポリマー吸着性組成物は、溶存有機物のうち、少なくともバイオポリマーを吸着することが可能であり、バイオポリマーだけでなく、被処理水中に存在する各種溶存有機物を吸着することが可能である。
 被処理水には、各種溶存有機物が存在しているが、本発明のバイオポリマー吸着性組成物は、従来吸着が困難であった溶存有機物、特に粒子径0.45μm以下の有機物(例えば、フミン酸やフルボ酸などの芳香族系有機物、界面活性剤等の合成化学物質、バイオポリマーなど)を効率よく吸着することが可能である。
The biopolymer adsorbing composition of the present invention can adsorb at least biopolymers among dissolved organic substances, and can adsorb not only biopolymers but also various dissolved organic substances present in the water to be treated. is there.
Although various dissolved organic substances exist in the water to be treated, the biopolymer adsorbing composition of the present invention is a dissolved organic substance that has been difficult to be adsorbed in the past, particularly an organic substance having a particle size of 0.45 μm or less (for example, humin). It is possible to efficiently adsorb aromatic organic substances such as acids and fulvic acids, synthetic chemical substances such as surfactants, biopolymers, and the like.
 本発明のバイオポリマー吸着性組成物は、溶存有機物のうち、特に、親水性が高いバイオポリマーの吸着に優れている。バイオポリマーは、各種原水中に存在する溶存有機物の一種であり、一般的には、みかけ分子量が10万Da以上の多糖類およびタンパク質とされている。 The biopolymer adsorptive composition of the present invention is particularly excellent in adsorbing biopolymers having high hydrophilicity among dissolved organic substances. Biopolymers are a kind of dissolved organic substances present in various raw waters. Generally, biopolymers are polysaccharides and proteins having an apparent molecular weight of 100,000 Da or more.
 バイオポリマーの吸着性に優れる理由は定かではないが、このような特定の分散径を有した状態で、化学吸着性官能基含有高分子(A)が、非イオン交換性の親水性マトリクス高分子(B)中に存在するためか、市販のイオン交換性樹脂では吸着することが非常に困難であったバイオポリマーを、本発明の組成物は、効率よく回収することが可能である。これは、後述する比較例にも示されるように、市販のイオン交換樹脂では、吸着性官能基が存在しているにも係らず、ほとんどバイオポリマーを吸着できないという事実を考えると、非常に驚くべき効果である。 The reason why the biopolymer adsorbability is excellent is not clear, but in such a state having a specific dispersion diameter, the chemisorbable functional group-containing polymer (A) is a non-ion-exchangeable hydrophilic matrix polymer. Because of the presence in (B), the composition of the present invention can efficiently recover a biopolymer that was very difficult to adsorb with a commercially available ion exchange resin. This is very surprising in view of the fact that commercially available ion exchange resins hardly adsorb biopolymers even though there are adsorptive functional groups, as shown in Comparative Examples described later. It should be an effect.
 バイオポリマーとは、親水性の高分子量(例えば、10万ダルトン以上)を有する化合物(例えば、多糖類およびタンパク質)とされている。 Biopolymers are compounds (for example, polysaccharides and proteins) having hydrophilic high molecular weight (for example, 100,000 daltons or more).
 より詳細には、バイオポリマーは、Stefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定したAフラクション、例えばLC-OCDによる保留時間が、25分以上38分以下の成分であってもよい。実施例では、上記記載された方法に基づくLC-OCD(DOC-Labor社製)の分析にて、25分以上38分以下の保留時間の成分をバイオポリマーとして測定している。
 なお、フミン質は、同じ条件下での測定におけるBフラクション、例えば保留時間38分を超えて50分以下の成分であってもよい。
More specifically, the biopolymer has an A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, a retention time by LC-OCD of 25 minutes to 38 minutes. The following components may be used. In the examples, a component having a holding time of 25 minutes or more and 38 minutes or less is measured as a biopolymer in the analysis of LC-OCD (manufactured by DOC-Labor) based on the above-described method.
Note that the humic substance may be a B fraction in the measurement under the same conditions, for example, a component exceeding the holding time of 38 minutes and not more than 50 minutes.
 バイオポリマーは、ベンゼン環などの不飽和結合が少ないことから、バイオポリマーは主に親水性の高い有機物で構成されており、例えば、SUVA値が1.0[L/(m・mg)]以下を示す有機物で構成されていてもよい。
 一方、フミン質は、ベンゼン環などUV吸収性を有する構造が含まれているため、フミン質は、主に疎水性が高い有機物で構成されており、例えば、SUVA値が2.0[L/(m・mg)]以上を示す有機物で構成されていてもよい。
Since biopolymers have few unsaturated bonds such as benzene rings, biopolymers are mainly composed of highly hydrophilic organic substances. For example, the SUVA value is 1.0 [L / (m · mg)] or less. It may be composed of an organic material showing.
On the other hand, since the humic substance includes a UV-absorbing structure such as a benzene ring, the humic substance is mainly composed of an organic substance having high hydrophobicity. For example, the SUVA value is 2.0 [L / (M · mg)] It may be composed of an organic material showing the above.
 なお、SUVA値は、以下の式で求められる。
 SUVA(L/mg-C・m)=UV(m-1)/DOC(mg-C/L)
The SUVA value is obtained by the following formula.
SUVA (L / mg-C · m) = UV (m −1 ) / DOC (mg-C / L)
 なお、ここで、SUVA値を算出するための各パラメータはStefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定されたものであり「面積値」とは、LC-OCDにより得られる面積値を表し、「UV」とは、波長254nmでの吸光度、「DOC」とは供試サンプル中のDOC濃度(mg-C/L)を示している。 Here, each parameter for calculating the SUVA value was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, and "area value" The area value obtained by LC-OCD is expressed, “UV” indicates the absorbance at a wavelength of 254 nm, and “DOC” indicates the DOC concentration (mg-C / L) in the test sample.
 UV値算出方法
(i)バイオポリマーのUV=供試サンプル全体のUV×スペクトル中のバイオポリマー(保留時間t:25分≦t≦38分)の面積値/スペクトル全体の面積値
(ii)フミン質のUV=供試サンプル全体のUV×スペクトル中のフミン質(保留時間t:38分<t≦50分)の面積値/スペクトル全体の面積値
UV value calculation method (i) UV of biopolymer = UV of entire test sample × area value of biopolymer in spectrum (holding time t b : 25 minutes ≦ t b ≦ 38 minutes) / area value of entire spectrum (ii ) humic humic substance of UV = test sample total UV × in the spectrum of (holding time t h: 38 min <area value / spectrum total area values of t h ≦ 50 minutes)
 DOC値算出方法
(i)バイオポリマーのDOC=供試サンプル全体のDOC×スペクトル中のバイオポリマー(保留時間t:25分≦t≦38分)の面積値/スペクトル全体の面積値
(ii)フミン質のDOC=供試サンプル全体のDOC×スペクトル中のフミン質(保留時間t:38分<t≦50分)の面積値/スペクトル全体の面積値
DOC value calculation method (i) DOC of biopolymer = DOC of the entire test sample x area value of biopolymer in the spectrum (holding time t b : 25 minutes ≤ t b ≤ 38 minutes) / area value of the entire spectrum (ii ) Humic DOC = DOC of the entire test sample x area value of humic substance in the spectrum (holding time t h : 38 minutes <t h ≤ 50 minutes) / area value of the entire spectrum
 本発明のバイオポリマー吸着性組成物では、被処理水におけるバイオポリマーの吸着率(すなわち、被処理水からのバイオポリマー除去率)が、例えば15%以上、好ましくは20%以上、さらに好ましくは25%以上であってもよい。なお、吸着率は、後述する実施例に記載された方法により測定された値を示す。 In the biopolymer adsorbing composition of the present invention, the adsorption rate of the biopolymer in the treated water (that is, the removal rate of the biopolymer from the treated water) is, for example, 15% or more, preferably 20% or more, more preferably 25. % Or more. In addition, an adsorption rate shows the value measured by the method described in the Example mentioned later.
 本発明のバイオポリマー吸着性組成物は、例えば、イオン交換容量が0.1mmol/g以上(例えば、0.1~15mmol/g)であってもよく、好ましくは1mmol/g以上(例えば、1~12mmol/g)、より好ましくは1.5mmol/g以上(例えば、1.5~11mmol/g)であってもよい。
 なお、イオン交換容量は、吸着性官能基の種類に応じて、カチオン交換容量、アニオン交換容量のいずれについても適用することができる。
 イオン交換容量が高いほど、吸着性が良好となる傾向があるが、イオン交換容量が高すぎると吸着性の保持性能が低減する傾向にある。
The biopolymer adsorbing composition of the present invention may have, for example, an ion exchange capacity of 0.1 mmol / g or more (eg, 0.1 to 15 mmol / g), preferably 1 mmol / g or more (eg, 1 To 12 mmol / g), more preferably 1.5 mmol / g or more (for example, 1.5 to 11 mmol / g).
The ion exchange capacity can be applied to either the cation exchange capacity or the anion exchange capacity depending on the type of the adsorptive functional group.
The higher the ion exchange capacity, the better the adsorptivity. However, if the ion exchange capacity is too high, the adsorptive retention performance tends to decrease.
 また、本発明のバイオポリマー吸着性組成物は、その吸着性能を示す指標として、モデル物質としてアルギン酸ナトリウムを用いた場合、その吸着率が、例えば、20%以上であってもよく、好ましくは30%以上であってもよく、より好ましくは40%以上であってもよく、特に好ましくは50%以上であってもよい。なお、この吸着率は、後述する実施例に記載された方法により測定された値を示す。 Further, the biopolymer adsorbing composition of the present invention may have an adsorption rate of, for example, 20% or more, preferably 30 when sodium alginate is used as a model substance as an index indicating the adsorption performance. % Or more, more preferably 40% or more, and particularly preferably 50% or more. In addition, this adsorption rate shows the value measured by the method described in the Example mentioned later.
 また、耐久性の観点から、本発明のバイオポリマー吸着性組成物は、煮沸試験を行った場合の減量分が、例えば、20質量%以下であってもよく、好ましくは10質量%以下であってもよく、さらに好ましくは7質量%以下、特に好ましくは5質量%以下であってもよい。なお、煮沸試験を行った場合の減量分については、後述する実施例に記載された方法により測定された値を示す。 Further, from the viewpoint of durability, the biopolymer adsorbent composition of the present invention may have a weight loss when a boiling test is performed, for example, 20% by mass or less, and preferably 10% by mass or less. It may be more preferably 7% by mass or less, particularly preferably 5% by mass or less. In addition, about the weight loss part at the time of performing a boiling test, the value measured by the method described in the Example mentioned later is shown.
 さらに、バイオポリマー吸着性組成物の吸着性を維持する観点から、例えば、本発明のバイオポリマー吸着性組成物は、温度60℃で1週間温水に浸漬させた場合の吸着性保持率が45%以上であってもよく、好ましくは55%以上であってもよく、より好ましくは65%以上であってもよく、特に好ましくは75%以上であってもよい。なお、吸着性保持率は、後述する実施例に記載された方法により測定された値を示す。 Furthermore, from the viewpoint of maintaining the adsorptivity of the biopolymer adsorbent composition, for example, the biopolymer adsorbent composition of the present invention has an adsorbability retention rate of 45% when immersed in warm water at a temperature of 60 ° C. for 1 week. It may be above, preferably 55% or more, more preferably 65% or more, and particularly preferably 75% or more. In addition, an adsorptive retention rate shows the value measured by the method described in the Example mentioned later.
 本発明のバイオポリマー吸着性組成物は、バイオポリマーを吸着できる限り、その形状は特に限定されず、粒子状、フレーク状、繊維状、中空糸状、シート状、織編物状、不織布状などあるいはそれらの加工品など各種の形状から選択することができる。吸着効率を向上させる観点から、バイオポリマー吸着性組成物は、粒子状[球状または非球状(例えば、粉砕物などの異形粒子状)]または繊維状であるのが好ましい。 The shape of the biopolymer adsorbent composition of the present invention is not particularly limited as long as the biopolymer can be adsorbed, and is in the form of particles, flakes, fibers, hollow fibers, sheets, woven / knitted fabrics, nonwoven fabrics, etc. It is possible to select from various shapes such as processed products. From the viewpoint of improving the adsorption efficiency, the biopolymer adsorbent composition is preferably particulate [spherical or non-spherical (for example, irregularly shaped particles such as a pulverized product)] or fibrous.
 バイオポリマー吸着性組成物が粒子状の場合、適宜粉砕により目的の粒子径に調整すれば良いが、粒子径は1μm~5000μmが好ましく、10μm~4000μmがさらに好ましく、20μm~3000μmが最も好ましい。粒子径が小さすぎる場合、微粉が舞い易いなど取り扱いが難しい。粒子径が大きすぎる場合、吸着性能が充分に得られないことがある。なお粒子径は、篩分けにより分級された値を示す。 When the biopolymer-adsorbing composition is in the form of particles, it may be adjusted to the desired particle size by appropriate pulverization, but the particle size is preferably 1 μm to 5000 μm, more preferably 10 μm to 4000 μm, and most preferably 20 μm to 3000 μm. When the particle size is too small, handling is difficult, for example, the fine powder tends to fly. If the particle size is too large, sufficient adsorption performance may not be obtained. In addition, a particle diameter shows the value classified by sieving.
 バイオポリマー吸着性組成物が繊維状である場合、その平均繊維径は特に制限はないが、0.1~1000μmの幅広い範囲から選択することができ、例えば1~500μmであってもよく、好ましくは2~200μmであってもよい。なお、平均繊維径は、JIS L 0105で規定される標準状態の繊維の10箇所をマイクロメーターにより繊維径を測定し、その平均値を平均繊維径として算出できる。
 また、繊維としては、連続繊維であってもよいし、短繊維であってもよい。短繊維の場合、繊維長は、例えば、0.1~100mm(例えば、1~100mm)程度であってもよく、好ましくは0.5~80mm(例えば、5~80mm)程度、より好ましくは10~50mm程度であってもよい。
When the biopolymer adsorbing composition is fibrous, the average fiber diameter is not particularly limited, but can be selected from a wide range of 0.1 to 1000 μm, and may be 1 to 500 μm, for example. May be 2 to 200 μm. The average fiber diameter can be calculated as an average fiber diameter by measuring the fiber diameter at 10 locations of fibers in a standard state defined by JIS L 0105 with a micrometer.
Moreover, as a fiber, a continuous fiber may be sufficient and a short fiber may be sufficient. In the case of short fibers, the fiber length may be, for example, about 0.1 to 100 mm (for example, 1 to 100 mm), preferably about 0.5 to 80 mm (for example, 5 to 80 mm), more preferably 10 It may be about 50 mm.
[水処理方法]
 本発明は、別の実施形態として、水処理方法についても包含する。水処理方法は、バイオポリマーを含有する被処理水と、バイオポリマー吸着性組成物とを接触させ、バイオポリマーを吸着する吸着工程を少なくとも備えている。
 被処理水は、自然環境下、人工環境下で得られるさまざまな水を被処理水として利用可能であり、バイオポリマーを含有する限り特に限定されないが、例えば、海水、一般の河川水、湖沼水、土壌溶出水、用水、生物処理水、下水処理やし尿処理施設での生物処理水や三次処理などの高度処理水、各種工場排水などが挙げられる。
[Water treatment method]
The present invention includes a water treatment method as another embodiment. The water treatment method includes at least an adsorption step in which water to be treated containing a biopolymer is brought into contact with the biopolymer adsorbing composition to adsorb the biopolymer.
The water to be treated is not particularly limited as long as various kinds of water obtained in a natural environment or an artificial environment can be used as the water to be treated and contains a biopolymer. For example, seawater, general river water, lake water Soil elution water, irrigation water, biologically treated water, biologically treated water in sewage treatment and human waste treatment facilities, highly treated water such as tertiary treatment, and various factory effluents.
 吸着工程では、被処理水と、バイオポリマー吸着性組成物とを接触させることができる限り特に限定されず、例えば、被処理水へ吸着材を添加し、公知の方法で撹拌することにより吸着処理を行ってもよいし;親水性高分子吸着材を充てんしたカラムに対し、被処理水を通液させることにより吸着処理を行ってもよい。また、吸着工程は、一段であってもよいし、多段であってもよい。
 また、吸着工程では、吸着処理後、必要に応じて公知の方法により固液分離工程を行ってもよく、固液分離工程により、吸着処理後の吸着材を吸着処理液から除去してもよい。
The adsorption process is not particularly limited as long as the water to be treated and the biopolymer adsorbent composition can be brought into contact with each other. For example, the adsorption treatment is performed by adding an adsorbent to the water to be treated and stirring the solution using a known method. The adsorption treatment may be carried out by passing water to be treated through a column filled with a hydrophilic polymer adsorbent. Further, the adsorption step may be a single step or a multi-step.
In the adsorption step, after the adsorption treatment, the solid-liquid separation step may be performed by a known method as necessary, and the adsorbent after the adsorption treatment may be removed from the adsorption treatment liquid by the solid-liquid separation step. .
 吸着工程では、被処理水中の溶存有機物を効率よく吸着することができ、特に、上述のようにバイオポリマーの吸着を効率よく行うことができる。 In the adsorption step, dissolved organic substances in the water to be treated can be adsorbed efficiently, and in particular, the biopolymer can be adsorbed efficiently as described above.
 また、水処理方法は、吸着工程により得られた吸着処理水を膜ろ過するろ過工程を、さらに備えていてもよい。 Further, the water treatment method may further include a filtration step of membrane-filtering the adsorption treated water obtained by the adsorption step.
 これらのろ過膜は、モジュール化されていてもよい。例えば、平膜状の場合はスパイラル型、プリーツ型、プレート・アンド・フレーム型、円盤状のディスクを積み重ねたディスクタイプであってもよく、中空糸膜の場合は、中空糸をU字状やI字状に束ねて容器に
収納した中空糸膜型であってもよい。
These filtration membranes may be modularized. For example, in the case of a flat membrane, a spiral type, a pleat type, a plate-and-frame type, or a disc type in which discs are stacked may be used. It may be a hollow fiber membrane type bundled in an I shape and stored in a container.
 本発明の水処理方法では、発明の効果を損なわない範囲で、必要に応じて、既存の水処理方法と組み合わせてもよい。既存の水処理方法としては、例えば、砂ろ過処理、凝集沈殿処理、オゾン処理、既存の吸着材や活性炭などを用いた吸着処理、生物処理などが挙げられる。これらの処理は、単独でまたは二種以上組み合わせて行ってもよい。 The water treatment method of the present invention may be combined with an existing water treatment method as necessary within a range not impairing the effects of the invention. Examples of the existing water treatment method include sand filtration treatment, coagulation sedimentation treatment, ozone treatment, adsorption treatment using an existing adsorbent or activated carbon, biological treatment, and the like. These treatments may be performed singly or in combination of two or more.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、各数値は以下の方法によって測定した。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. Each numerical value was measured by the following method.
(イオン交換容量:IECの測定)
 アニオン交換容量に関しては、得られた樹脂組成物サンプル0.1gを0.5MのNaNO水溶液に1時間浸漬し、イオン交換水で洗浄した。その後、0.1MのNaCl水溶液に浸漬して、再度塩化物イオンに置換し、遊離した硝酸イオンA(mol)をイオンクロマトグラフィーICS-1600(日本ダイオネクス(株)製)で定量した。次に、用いた樹脂組成物サンプルをイオン交換水で十分に水洗した後、真空乾燥機「DP32」(ヤマト科学(株)製)にて温度50℃、60時間真空乾燥させ、乾燥重量Wa(g)を測定した。アニオン交換容量は次式を用いて算出した。
    イオン交換容量=A×1000/Wa[mmol/g]
(Ion exchange capacity: IEC measurement)
Regarding the anion exchange capacity, 0.1 g of the obtained resin composition sample was immersed in a 0.5 M NaNO 3 aqueous solution for 1 hour and washed with ion exchange water. Thereafter, the sample was immersed in a 0.1 M NaCl aqueous solution to be substituted with chloride ions again, and the liberated nitrate ion A (mol) was quantified by ion chromatography ICS-1600 (manufactured by Nippon Dionex Co., Ltd.). Next, after thoroughly washing the resin composition sample used with ion-exchanged water, it was vacuum-dried at a temperature of 50 ° C. for 60 hours in a vacuum dryer “DP32” (manufactured by Yamato Scientific Co., Ltd.), and a dry weight Wa ( g) was measured. The anion exchange capacity was calculated using the following formula.
Ion exchange capacity = A × 1000 / Wa [mmol / g]
 一方、カチオン交換容量については次の方法によって測定した。0.5MKCl水溶液に1時間浸漬し、イオン交換水で洗浄した。その後、0.1MのNaCl水溶液に浸漬して、ナトリウムイオンに置換し、遊離したカリウムイオンB(mol)をイオンクロマトグラフィーICS-1600(日本ダイオネクス(株)製)で定量した。次に用いた樹脂組成物サンプルをイオン交換水で十分に水洗した後、真空乾燥機「DP32」(ヤマト科学(株)製)にて温度50℃、60時間真空乾燥させ、乾燥重量Wb(g)を測定した。アニオン交換容量は次式を用いて算出した。
    イオン交換容量=B×1000/Wb[mmol/g]
On the other hand, the cation exchange capacity was measured by the following method. It was immersed in a 0.5 M KCl aqueous solution for 1 hour and washed with ion exchange water. Thereafter, the sample was immersed in a 0.1 M NaCl aqueous solution to replace with sodium ions, and the liberated potassium ions B (mol) were quantified by ion chromatography ICS-1600 (manufactured by Nippon Dionex Co., Ltd.). Next, after thoroughly washing the resin composition sample used with ion-exchanged water, it was vacuum-dried at a temperature of 50 ° C. for 60 hours in a vacuum dryer “DP32” (manufactured by Yamato Scientific Co., Ltd.), and the dry weight Wb (g ) Was measured. The anion exchange capacity was calculated using the following formula.
Ion exchange capacity = B × 1000 / Wb [mmol / g]
(化学吸着性官能基含有高分子(A)の平均分散径:nm)
 以下の実施例で得られた樹脂組成物を、クライオミクロトームにて厚さ65~80nmに薄膜切片を作製した。また、観察画像中でコントラストを付与するためにRuOで気相染色を行ったものを観察用切片とした。分析に使用した装置は日本電子製JEM-2100Fであり、加速電圧は200kV、設定倍率は2000倍、5000倍でTEM像の撮影を行った後、高分子(A)の平均分散径を見積もった。
(Average dispersion diameter of the chemisorbable functional group-containing polymer (A): nm)
Thin sections of the resin compositions obtained in the following examples were prepared with a cryomicrotome to a thickness of 65 to 80 nm. Further, an observation section was obtained by performing gas phase dyeing with RuO 4 to give contrast in the observation image. The apparatus used for the analysis was JEOL JEM-2100F, and after taking a TEM image at an acceleration voltage of 200 kV, a setting magnification of 2000 times and 5000 times, the average dispersion diameter of the polymer (A) was estimated. .
(煮沸試験における減量分)
 得られた樹脂組成物サンプルを105℃で4時間乾燥して、煮沸試験前のサンプルの質量を秤量した後(質量Ag)、100℃の水中で30分煮沸し、同様の条件で乾燥して煮沸試験後のサンプルの質量を秤量した(質量Bg)。
 煮沸減量分=(A-B)/A×100 (質量%)
(Weight loss in boiling test)
The obtained resin composition sample was dried at 105 ° C. for 4 hours, weighed the mass of the sample before the boiling test (mass Ag), boiled in water at 100 ° C. for 30 minutes, and dried under the same conditions. The mass of the sample after the boiling test was weighed (mass Bg).
Boiling loss = (A−B) / A × 100 (mass%)
(アルギン酸ナトリウムの吸着率)
 バイオポリマーのモデル物質と考えるアルギン酸ナトリウム(和光純薬工業株式会社、アルギン酸ナトリウム)の吸着評価を実施した。以下の実施例と比較例で作製した樹脂5.0gをアルギン酸ナトリウム水溶液1000g(4.3mg-C/L)に添加し、6連式のマグネチックホットスターラーにより攪拌した(180rpm、25℃)。240分攪拌後、上澄み液25mlを全有機炭素計によって評価し、該樹脂によるアルギン酸の吸着率を以下のように評価した。
 アルギン酸の吸着率=(吸着評価前のアルギン酸濃度―吸着評価後のアルギン酸濃度)/吸着評価前のアルギン酸濃度×100(%)
(Adsorption rate of sodium alginate)
Adsorption evaluation of sodium alginate (Wako Pure Chemical Industries, Ltd., sodium alginate) considered as a biopolymer model substance was carried out. 5.0 g of resins prepared in the following examples and comparative examples were added to 1000 g (4.3 mg-C / L) of an aqueous sodium alginate solution, and the mixture was stirred with a six-unit magnetic hot stirrer (180 rpm, 25 ° C.). After stirring for 240 minutes, 25 ml of the supernatant was evaluated with a total organic carbon meter, and the adsorption rate of alginic acid by the resin was evaluated as follows.
Adsorption rate of alginic acid = (alginic acid concentration before adsorption evaluation−alginic acid concentration after adsorption evaluation) / alginic acid concentration before adsorption evaluation × 100 (%)
(吸着性保持率)
 得られた樹脂組成物サンプルを最初に60℃温水中で1週間浸漬させた後で、上述と同様のアルギン酸ナトリウムの吸着評価を実施した。上述のように浸漬を行った樹脂組成物サンプルの吸着量(A)と、浸漬を行っていない温水樹脂組成物サンプルの吸着量(B)とを比較し、バイオポリマー吸着性組成物の持続的な吸着性能を示すパラメータである保持率を算出した。
 保持率=A/B×100(%)
(Adsorption retention rate)
The obtained resin composition sample was first immersed in warm water at 60 ° C. for 1 week, and then the adsorption evaluation of sodium alginate as described above was performed. The amount of adsorption (A) of the resin composition sample immersed as described above is compared with the amount of adsorption (B) of the hot water resin composition sample not immersed. The retention rate, which is a parameter indicating a good adsorption performance, was calculated.
Retention rate = A / B x 100 (%)
(河川水での吸着評価)
 印旛沼(千葉県)から採取した表流水で上記と同様の吸着実験を行った(表流水、溶存有機物濃度=3.6mg-C/L、バイオポリマーのSUVA値:0.21(L/mg-C・m)、フミン質のSUVA値:3.3(L/mg-C・m)、pH=8.7)を用い、被処理水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに、得られた樹脂組成物サンプルを5g投入し、25℃にて2時間攪拌した。攪拌後の上澄み液を取り出して、HPLC(DOC-Labor、Hubers)を用いて吸着後の評価を行い、上澄み液中に含まれるバイオポリマー濃度(mg-C/L)を分析、上述の範囲に存在するピーク面積からバイオポリマー吸着率を評価した。吸着率算出には以下の式を用いた。
(a)バイオポリマー吸着率=(吸着評価前のバイオポリマー濃度―吸着評価後のバイオポリマー濃度)/吸着評価前のバイオポリマー濃度×100(%)
(Adsorption evaluation in river water)
An adsorption experiment similar to the above was conducted with surface water collected from Inba Marsh (Chiba Prefecture) (surface water, dissolved organic matter concentration = 3.6 mg-C / L, biopolymer SUVA value: 0.21 (L / mg) -C · m), the humic substance SUVA value: 3.3 (L / mg-C · m), pH = 8.7), water to be treated was first filtered with a stainless mesh cartridge filter with an exclusion diameter of 2 μm ( The insoluble matter was removed by filtration with TMP-2 (manufactured by Advantech), and 5 g of the obtained resin composition sample was added to 1 L of the filtered water and stirred at 25 ° C. for 2 hours. The supernatant liquid after stirring is taken out, and the post-adsorption evaluation is performed using HPLC (DOC-Labor, Hubers), and the biopolymer concentration (mg-C / L) contained in the supernatant liquid is analyzed. The biopolymer adsorption rate was evaluated from the existing peak area. The following formula was used for calculating the adsorption rate.
(A) Biopolymer adsorption rate = (Biopolymer concentration before adsorption evaluation−Biopolymer concentration after adsorption evaluation) / Biopolymer concentration before adsorption evaluation × 100 (%)
 また、バイオポリマー濃度は、以下の方法により測定した。
 バイオポリマー濃度は、高速液体クロマトグラフィー(HPLC)に湿式全有機炭素計測器(OCD計)を接続したLC-OCD(DOC-Labor製)により測定する。測定は、Stefan A. Huber et al. “Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography -organic carbon detection -organic nitrogen detection (LC-OCD-OND)” Water Research 45 (2011) pp879-885に記載された方法に準じ、以下の条件下で行い、25分以上38分以下の保留時間の成分をバイオポリマーとして測定した。
流速:1.1mL/min
サンプル注入量:1mL
カラム:250mm×20mm、TSK HW50S
UV波長:254nm
OCD計:酸注入量 0.2mL/min
溶離液:pH6.85 リン酸バッファ
酸性化溶液:1L超純水に対し、4mLO-リン酸(85%)およびペルオキソ二硫酸カリウム0.5gを添加
The biopolymer concentration was measured by the following method.
The biopolymer concentration is measured by LC-OCD (manufactured by DOC-Labor) in which a wet total organic carbon meter (OCD meter) is connected to high performance liquid chromatography (HPLC). Stefan A. Huber et al. “Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography -organic carbon detection -organic nitrogen detection (LC-OCD-OND)” Water Research 45 (2011) pp879-885 In accordance with the method described in 1), it was carried out under the following conditions, and a component having a holding time of 25 minutes or more and 38 minutes or less was measured as a biopolymer.
Flow rate: 1.1 mL / min
Sample injection volume: 1 mL
Column: 250 mm x 20 mm, TSK HW50S
UV wavelength: 254 nm
OCD meter: Acid injection rate 0.2mL / min
Eluent: pH 6.85 Phosphate buffer acidified solution: Add 4 mL O-phosphoric acid (85%) and 0.5 g potassium peroxodisulfate to 1 L ultrapure water
[実施例1]
 エチレン含量が27モル%であるエチレン-ビニルアルコール共重合体((株)クラレ製、「エバールL-104」)と、重量平均分子量10000のポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)を用いた。
[Example 1]
An ethylene-vinyl alcohol copolymer having an ethylene content of 27 mol% (“Eval L-104” manufactured by Kuraray Co., Ltd.) and polyethyleneimine having a weight average molecular weight of 10,000 (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP- 200 ").
 まず、前述のエチレン-ビニルアルコール共重合体をラボプラストミルにより210℃で溶融混練して、そこへ、ポリエチレンイミンの含有量が3質量部、エチレン-ビニルアルコール共重合体が97質量部となるようにポリエチレンイミンを添加して、2種ポリマーを混合し5分間混練した。得られた混練物を冷却後、粉砕機による粉砕処理を施し、篩分けにより粒子径200~500μmの粒子状物を得た。続いて、この粒子状物をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2質量%濃度の25℃の水溶液中で架橋処理を行い、バイオポリマー吸着性組成物を得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価等の結果を表1に示す。 First, the above-mentioned ethylene-vinyl alcohol copolymer is melt-kneaded at 210 ° C. with a lab plast mill, so that the polyethyleneimine content is 3 parts by mass and the ethylene-vinyl alcohol copolymer is 97 parts by mass. Thus, polyethyleneimine was added, and the two polymers were mixed and kneaded for 5 minutes. The obtained kneaded product was cooled and then pulverized by a pulverizer to obtain a particulate material having a particle size of 200 to 500 μm by sieving. Subsequently, the particulate material was subjected to a crosslinking treatment in an aqueous solution of 25% by weight of an epoxy compound (manufactured by Nagase ChemteX Corporation, “Denacol EX-810”) at a concentration of 2% by mass to obtain a biopolymer adsorbing composition. It was. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
[実施例2~8]
 表1に記載するように、実施例2では配合比を変更、実施例3~8ではエチレン-ビニルアルコール共重合体の種類と配合を変更した以外は実施例1と同じ条件でバイオポリマー吸着性組成物を得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価等の結果を表1に示す。
[Examples 2 to 8]
As described in Table 1, biopolymer adsorptivity under the same conditions as in Example 1 except that the blending ratio was changed in Example 2, and the types and blends of ethylene-vinyl alcohol copolymers were changed in Examples 3 to 8. A composition was obtained. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
[実施例9]
 粘度平均重合度1700、けん化度98.5モル%のポリビニルアルコール70gをイオン交換水630gに溶解させ、上述のポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)30gを均一分散させて、PETフィルム上にウェット状態で1200μmキャスト製膜を行い、乾燥し、所望のフィルムを得た。次いで、2mol/Lの硫酸ナトリウムの水溶液に24時間浸漬させ、該水溶液にpHが1.0になるように濃硫酸を加えた後、0.5体積%グルタルアルデヒド水溶液で前記フィルムの架橋処理を50℃で2時間実施した。ここで、グルタルアルデヒド水溶液としては、石津製薬株式会社製「グルタルアルデヒド」(25体積%)を水で希釈したものを用いた。得られたフィルムを取り出し、粉砕機による粉砕処理を施し、篩分けにより小片状バイオポリマー吸着性組成物(径100~500μm)を得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価等の結果を表1に示す。
[Example 9]
70 g of polyvinyl alcohol having a viscosity average polymerization degree of 1700 and a saponification degree of 98.5 mol% is dissolved in 630 g of ion-exchanged water, and 30 g of the above-mentioned polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200”) is uniformly dispersed. Then, a 1200 μm cast film was formed on a PET film in a wet state and dried to obtain a desired film. Next, the film was immersed in an aqueous solution of 2 mol / L sodium sulfate for 24 hours, concentrated sulfuric acid was added to the aqueous solution so that the pH was 1.0, and then the film was crosslinked with an aqueous 0.5 volume% glutaraldehyde solution. It was carried out at 50 ° C. for 2 hours. Here, as the glutaraldehyde aqueous solution, a product obtained by diluting “glutaraldehyde” (25% by volume) manufactured by Ishizu Pharmaceutical Co., Ltd. with water was used. The obtained film was taken out, pulverized by a pulverizer, and sieved to obtain a small-piece biopolymer adsorbing composition (diameter: 100 to 500 μm). Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
[実施例10、11]
 実施例9の架橋処理を2時間から、実施例10では1時間、実施例11では30分の処理時間に変更したこと以外は同条件で作製したバイオポリマー吸着性組成物をそれぞれ得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価等の結果を表1に示す。
[Examples 10 and 11]
Biopolymer adsorptive compositions prepared under the same conditions were obtained except that the crosslinking treatment of Example 9 was changed from 2 hours to 1 hour in Example 10 and 30 minutes in Example 11. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
[実施例12、13]
 実施例5の条件でA成分を、実施例12では重量平均分子量15000のポリアリルアミン(ニットーボーメディカル(株)製、「PAA-15C」)に変更、実施例13では重量平均分子量30000のジアリルジメチルアンモニウムクロライド重合体(ニットーボーメディカル(株)製、「PAS-H-5L」)に変更した以外は同条件で作製したバイオポリマー吸着性組成物をそれぞれ得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価の結果を表1に示す。 
[Examples 12 and 13]
The component A under the conditions of Example 5 was changed to polyallylamine having a weight average molecular weight of 15000 in Example 12 (“PAA-15C” manufactured by Nittobo Medical Co., Ltd.). In Example 13, diallyldimethylammonium having a weight average molecular weight of 30000 was used. Biopolymer adsorptive compositions prepared under the same conditions were obtained except that the polymer was changed to a chloride polymer (“PAS-H-5L” manufactured by Nitto Bo Medical Co., Ltd.). Table 1 shows the results of the adsorption property evaluation using the obtained biopolymer adsorbent composition.
[実施例14]
 実施例1からエチレン-ビニルアルコール共重合体から表1に記載する条件に変更して、バイオポリマー吸着性組成物を得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価等の結果を表1に示す。
[Example 14]
The biopolymer adsorptive composition was obtained by changing the ethylene-vinyl alcohol copolymer from Example 1 to the conditions described in Table 1. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
[実施例15]
 実施例1でラボプラストミルの混練温度を160℃に設定して1分間の溶融混練を行った以外は実施例1と同条件で作製することでバイオポリマー吸着性組成物を得た。得られたバイオポリマー吸着性組成物を用いた吸着特性評価等の結果を表1に示す。
[Example 15]
A biopolymer adsorbing composition was obtained by producing under the same conditions as in Example 1 except that the kneading temperature of Laboplast Mill was set to 160 ° C. in Example 1 and melt kneading was performed for 1 minute. Table 1 shows the results of evaluation of adsorption characteristics and the like using the obtained biopolymer adsorbent composition.
[比較例1]
 実施例4でポリエチレンイミン成分を添加していない以外は実施例4と同様の条件で樹脂組成物を得た。得られた樹脂組成物の吸着特性評価等の結果を表1に示す。
[Comparative Example 1]
A resin composition was obtained under the same conditions as in Example 4 except that the polyethyleneimine component was not added in Example 4. Table 1 shows the results of the adsorption characteristics evaluation and the like of the obtained resin composition.
[比較例2]
 実施例5でポリエチレンイミン成分を添加していない以外は実施例5と同様の条件で樹脂組成物を得た。得られた樹脂組成物の吸着特性評価等の結果を表1に示す。
[Comparative Example 2]
A resin composition was obtained under the same conditions as in Example 5 except that the polyethyleneimine component was not added in Example 5. Table 1 shows the results of the adsorption characteristics evaluation and the like of the obtained resin composition.
[比較例3]
 実施例9でポリエチレンイミン成分を添加していない以外は実施例9と同様の条件で樹脂組成物を得た。得られた樹脂組成物の吸着特性評価等の結果を表1に示す。
[Comparative Example 3]
A resin composition was obtained under the same conditions as in Example 9 except that the polyethyleneimine component was not added in Example 9. Table 1 shows the results of the adsorption characteristics evaluation and the like of the obtained resin composition.
[比較例4,5]
 比較例4では、スチレン系四級アンモニウム型である市販イオン交換樹脂((株)三菱化学製、「ダイヤイオンSA-10A」)、比較例5ではスチレン系ポリアミン型である市販イオン交換樹脂((株)三菱化学製「ダイヤイオンWA-20」)を使用して、該吸着材の吸着特性評価を評価した。結果を表1に示す。
[Comparative Examples 4 and 5]
In Comparative Example 4, a commercially available ion exchange resin ("Diaion SA-10A" manufactured by Mitsubishi Chemical Corporation) that is a styrene quaternary ammonium type, and in Comparative Example 5, a commercially available ion exchange resin that is a styrene polyamine type (( Evaluation of adsorption properties of the adsorbent was evaluated using “Diaion WA-20” manufactured by Mitsubishi Chemical Corporation. The results are shown in Table 1.
[比較例6]
 実施例2でラボプラストミルの混練温度を160℃に設定して1分間の溶融混練を行った以外は実施例2と同条件で混練物を得た。PEIの平均分散径は20000nmであった。得られた混練物を冷却後、粉砕機による粉砕処理を試みたが、樹脂の粘着が著しく、粉砕物をほとんど得ることができなかった。少量得られた粒子を用い、吸着特性評価に供したが、PEI成分の溶出が著しく、評価できなかった。
[Comparative Example 6]
A kneaded material was obtained under the same conditions as in Example 2 except that the kneading temperature of Laboplast Mill was set to 160 ° C. in Example 2 and melt kneading was performed for 1 minute. The average dispersion diameter of PEI was 20000 nm. After the obtained kneaded product was cooled, a pulverization treatment with a pulverizer was attempted, but the adhesion of the resin was so great that almost no pulverized product could be obtained. Although a small amount of the particles obtained were used for the adsorption property evaluation, the elution of the PEI component was remarkable and could not be evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~15に示すように、親水性マトリクス高分子に対して、化学吸着性官能基を有する高分子を所定の平均分散径を有する状態で組み合わせた組成物は、市販のイオン交換樹脂である比較例4および5と比べ、バイオポリマーを高い吸着率で吸着することが可能である。
 また、例えば、図1に示すように、実施例2で得られたバイオポリマー吸着性組成物では、化学吸着性官能基含有高分子(A)が、マトリクス高分子(B)において、均一な分散径で分散している。
As shown in Examples 1 to 15, a composition obtained by combining a polymer having a chemical adsorption functional group with a hydrophilic matrix polymer in a state having a predetermined average dispersion diameter is a commercially available ion exchange resin. Compared with certain Comparative Examples 4 and 5, it is possible to adsorb the biopolymer with a high adsorption rate.
For example, as shown in FIG. 1, in the biopolymer adsorbing composition obtained in Example 2, the chemically adsorbing functional group-containing polymer (A) is uniformly dispersed in the matrix polymer (B). Dispersed by diameter.
 特に、平均分散径が10000nm以下(特に7500nm以下)であるとともに、イオン交換容量が0.3mmol/g以上である実施例1~13は、比較例4および5と比べると、アルギン酸ナトリウムをモデル物質とした場合に7倍以上の吸着率を示し、河川水における吸着率についても6倍以上の吸着率を示している。
 さらに、煮沸試験における減量分が10質量%以下である実施例1~9および12~15では、吸着性保持率も良好である傾向にある。これらの実施例のうち、イオン交換容量が0.5~10mmol/gの範囲内に存在するものは、特に、吸着保持率が良好である。
In particular, Examples 1 to 13 having an average dispersion diameter of 10000 nm or less (particularly 7500 nm or less) and an ion exchange capacity of 0.3 mmol / g or more are compared with Comparative Examples 4 and 5 in that sodium alginate is a model substance. In this case, the adsorption rate is 7 times or more, and the adsorption rate in river water is also 6 times or more.
Further, in Examples 1 to 9 and 12 to 15 in which the weight loss in the boiling test is 10% by mass or less, the adsorptive retention rate tends to be good. Among these examples, those having an ion exchange capacity in the range of 0.5 to 10 mmol / g have particularly good adsorption retention.
 一方、市販のイオン交換樹脂である比較例4および5は、実施例と比べてバイオポリマーの吸着率が悪く、その吸着率は、化学吸着性官能基含有高分子(A)を含まない比較例1~3とほぼ同程度である。 On the other hand, Comparative Examples 4 and 5, which are commercially available ion exchange resins, have a poor biopolymer adsorption rate compared to the Examples, and the adsorption rate does not include the chemically adsorbing functional group-containing polymer (A). It is almost the same as 1-3.
 本発明によれば、溶存有機物を吸着可能であり、特に、従来吸着が困難であったバイオポリマーを効率よく吸着することができる組成物を提供することができる。このような組成物は、バイオポリマー吸着材として、各種原水を水処理する際に、有効に利用することができる。 According to the present invention, it is possible to provide a composition capable of adsorbing dissolved organic matter, and in particular, capable of efficiently adsorbing biopolymers that have been difficult to adsorb. Such a composition can be effectively used as a biopolymer adsorbent when various raw waters are treated with water.
 以上のとおり、本発明の好適な実施形態を説明したが、本発明の趣旨を逸脱しない範囲で、種々の追加、変更または削除が可能であり、そのようなものも本発明の範囲内に含まれる。 As described above, the preferred embodiments of the present invention have been described. However, various additions, modifications, or deletions are possible without departing from the spirit of the present invention, and such modifications are also included in the scope of the present invention. It is.

Claims (14)

  1.  化学吸着性官能基含有高分子(A)と、親水性マトリクス高分子(B)とを含む組成物であって、
     前記親水性マトリクス高分子(B)は、非イオン交換性であり、
     前記高分子(A)は前記高分子(B)中に平均分散径10000nm以下で分散しており、且つ
     被処理水中に存在するバイオポリマーの吸着性に優れるバイオポリマー吸着性組成物。
    A composition comprising a chemisorbable functional group-containing polymer (A) and a hydrophilic matrix polymer (B),
    The hydrophilic matrix polymer (B) is non-ion exchangeable,
    The polymer (A) is dispersed in the polymer (B) with an average dispersion diameter of 10000 nm or less, and is a biopolymer adsorbent composition excellent in the adsorptivity of a biopolymer present in water to be treated.
  2.  請求項1において、イオン交換容量が0.1mmol/g以上であるバイオポリマー吸着性組成物。 The biopolymer adsorbent composition according to claim 1, wherein the ion exchange capacity is 0.1 mmol / g or more.
  3.  請求項1または2において、化学吸着性官能基が、バイオポリマーに対して、水素結合、イオン結合、およびキレート結合からなる群から選択された少なくとも一種の結合の形成能を有するバイオポリマー吸着性組成物。 3. The biopolymer adsorbing composition according to claim 1, wherein the chemisorbable functional group has an ability to form at least one type of bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond to the biopolymer. object.
  4.  請求項1から3のいずれか一項のバイオポリマー吸着性組成物において、化学吸着性官能基含有高分子(A)中の化学吸着性官能基が、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む化学吸着性官能基である、バイオポリマー吸着性組成物。 The biopolymer adsorbent composition according to any one of claims 1 to 3, wherein the chemisorbable functional group in the chemisorbable functional group-containing polymer (A) is selected from the group consisting of N, S, P and O. A biopolymer adsorbing composition, which is a chemisorbing functional group containing at least one selected element.
  5.  請求項1から4のいずれか一項のバイオポリマー吸着性組成物において、バイオポリマーが、Stefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定した、LC-OCDによる保留時間が、25~38分の成分を含む、バイオポリマー吸着性組成物。 The biopolymer adsorbent composition according to any one of claims 1 to 4, wherein the biopolymer was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885. A biopolymer adsorbent composition comprising a component having a retention time by OCD of 25 to 38 minutes.
  6.  請求項1から5のいずれか一項において、親水性マトリクス高分子(B)は、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンから選択される少なくとも1種である、バイオポリマー吸着性組成物。 6. The hydrophilic matrix polymer (B) according to claim 1, wherein the hydrophilic matrix polymer (B) is polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene. A biopolymer adsorbing composition, which is at least one selected from oxides, poly (meth) acrylamides, polyamides, polyvinylpyrrolidone, cellulose derivatives, dextrin, chitin, and chitosan.
  7.  請求項1から6のいずれか一項のバイオポリマー吸着性組成物において、親水性マトリクス高分子(B)が、ポリビニルアルコールおよびエチレン-ビニルアルコール系共重合体から選択される少なくとも1種である、バイオポリマー吸着性組成物。 The biopolymer adsorbing composition according to any one of claims 1 to 6, wherein the hydrophilic matrix polymer (B) is at least one selected from polyvinyl alcohol and an ethylene-vinyl alcohol copolymer. Biopolymer adsorptive composition.
  8.  請求項1から7のいずれか一項において、化学吸着性官能基含有高分子(A)は、カチオン性高分子である、バイオポリマー吸着性組成物。 The biopolymer adsorbing composition according to any one of claims 1 to 7, wherein the chemically adsorbing functional group-containing polymer (A) is a cationic polymer.
  9.  請求項8において、カチオン性高分子が、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸、ポリヌクレオチド、およびそれらの塩からなる群から選択される少なくとも1種である、バイオポリマー吸着性組成物。 9. The cationic polymer according to claim 8, wherein the cationic polymer is polyethyleneimine, polyallylamine, polyvinylamine, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide, polydimethylaminoethyl. A biopolymer adsorbing composition which is at least one selected from the group consisting of methacrylate hydrochloride, polynucleotide, and salts thereof.
  10.  請求項1から9のいずれか一項において、化学吸着性官能基含有高分子(A)と、マトリクス高分子(B)との割合(質量比)が、高分子(A)/高分子(B)=1/99~70/30である、バイオポリマー吸着性組成物。 In any 1 item | term of Claim 1-9, the ratio (mass ratio) of a chemisorbable functional group containing polymer (A) and a matrix polymer (B) is polymer (A) / polymer (B ) = 1/99 to 70/30, the biopolymer adsorbing composition.
  11.  請求項1から10のいずれか一項において、煮沸試験を行った場合の減量分が20質量%以下である、バイオポリマー吸着性組成物。 The biopolymer adsorptive composition according to any one of claims 1 to 10, wherein a weight loss when a boiling test is performed is 20% by mass or less.
  12.  請求項1から11のいずれか一項において、温度60℃で1週間温水に浸漬させた場合の吸着性保持率が50%以上である、バイオポリマー吸着性組成物。 The biopolymer adsorbent composition according to any one of claims 1 to 11, wherein the adsorbability retention rate when immersed in warm water at a temperature of 60 ° C for 1 week is 50% or more.
  13.  バイオポリマーを含有する被処理水と、請求項1~12のいずれか一項に記載のバイオポリマー吸着性組成物とを接触させ、少なくともバイオポリマーを吸着する吸着工程を少なくとも備える水処理方法。 A water treatment method comprising at least an adsorption step of bringing a water to be treated containing a biopolymer into contact with the biopolymer adsorbing composition according to any one of claims 1 to 12 and adsorbing at least the biopolymer.
  14.  請求項13の水処理方法において、吸着工程により得られた吸着処理水を膜ろ過するろ過工程を、さらに備える水処理方法。 The water treatment method according to claim 13, further comprising a filtration step of membrane-filtering the adsorption treated water obtained by the adsorption step.
PCT/JP2014/080910 2013-11-25 2014-11-21 Biopolymer-adsorbing composition and water treatment method using same WO2015076370A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013243149A JP2017019881A (en) 2013-11-25 2013-11-25 Biopolymer adsorptive composition and water treatment method using the same
JP2013-243149 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076370A1 true WO2015076370A1 (en) 2015-05-28

Family

ID=53179629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080910 WO2015076370A1 (en) 2013-11-25 2014-11-21 Biopolymer-adsorbing composition and water treatment method using same

Country Status (2)

Country Link
JP (1) JP2017019881A (en)
WO (1) WO2015076370A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536730A (en) * 2015-12-11 2016-05-04 太原科技大学 Composite nano-adsorbent, and preparation method and application thereof
CN112246231A (en) * 2020-10-16 2021-01-22 李艳艳 Magnetic polyaspartic acid adsorbent and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7106937B2 (en) * 2018-03-30 2022-07-27 栗田工業株式会社 PARTICLE REMOVAL MEMBRANE, PARTICLE REMOVAL DEVICE, AND PARTICLE REMOVAL METHOD

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018138A1 (en) * 2005-08-05 2007-02-15 Shiga Prefecture Material for transfer of substance in liquid comprising polymer blend
JP2009247244A (en) * 2008-04-03 2009-10-29 Universal Bio Research Co Ltd Method for separating and recovering organism-related material
JP2011219747A (en) * 2010-03-24 2011-11-04 Kuraray Co Ltd Metal ion adsorptive composition, metal ion adsorptive material, and metal recovery method
JP2012067268A (en) * 2010-09-27 2012-04-05 Kuraray Co Ltd Composition, metal ion adsorbent, and metal recovery method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018138A1 (en) * 2005-08-05 2007-02-15 Shiga Prefecture Material for transfer of substance in liquid comprising polymer blend
JP2009247244A (en) * 2008-04-03 2009-10-29 Universal Bio Research Co Ltd Method for separating and recovering organism-related material
JP2011219747A (en) * 2010-03-24 2011-11-04 Kuraray Co Ltd Metal ion adsorptive composition, metal ion adsorptive material, and metal recovery method
JP2012067268A (en) * 2010-09-27 2012-04-05 Kuraray Co Ltd Composition, metal ion adsorbent, and metal recovery method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536730A (en) * 2015-12-11 2016-05-04 太原科技大学 Composite nano-adsorbent, and preparation method and application thereof
CN112246231A (en) * 2020-10-16 2021-01-22 李艳艳 Magnetic polyaspartic acid adsorbent and preparation method thereof

Also Published As

Publication number Publication date
JP2017019881A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
Nadour et al. Removal of Diclofenac, Paracetamol and Metronidazole using a carbon-polymeric membrane
Susanto et al. Ultrafiltration of polysaccharide–protein mixtures: elucidation of fouling mechanisms and fouling control by membrane surface modification
Wei et al. Carboxymethyl cellulose fiber as a fast binding and biodegradable adsorbent of heavy metals
Vatanpour et al. Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification
WO2015076371A1 (en) Hydrophilic polymeric adsorbent and water treatment method employing same
EP3448928B1 (en) Hybrid membrane comprising crosslinked cellulose
Dutta et al. Aromatic conjugated polymers for removal of heavy metal ions from wastewater: a short review
Lavanya et al. Fouling resistant functional blend membrane for removal of organic matter and heavy metal ions
Mashabi et al. Chitosan-or glycidyl methacrylate-based adsorbents for the removal of dyes from aqueous solutions: a review
WO2015178458A1 (en) Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
JP2017018843A (en) Water treatment method, water treatment polymer adsorbent, and regeneration method therefor
Liakos et al. 3D printed composites from heat extruded polycaprolactone/sodium alginate filaments and their heavy metal adsorption properties
KR102351290B1 (en) Chitosan-Gelatin Hydrogels for heavy metal adsorption and chitosan-gelatin hydrogels manufactured by the same method
WO2015076370A1 (en) Biopolymer-adsorbing composition and water treatment method using same
An et al. Effective phosphate removal from synthesized wastewater using copper–chitosan bead: Batch and fixed-bed column studies
JP2020529917A5 (en)
Zhou et al. Grafting polymerization of acrylic acid onto chitosan-cellulose hybrid and application of the graft as highly efficient ligand for elimination of water hardness: Adsorption isotherms, kinetic modeling and regeneration
JP2016215147A (en) Membrane fouling factor agent absorbent
JP2017094259A (en) Membrane fouling inhibitor
Samoila et al. Chitin and chitosan for water purification
Li et al. Pectin-blended anionic polysaccharide films for cationic contaminant sorption from water
JP2016215156A (en) Safety filter for water treatment
Verma et al. Sericin‐coated polymeric microfiltration membrane for removal of drug‐based micropollutants
Dutta et al. Interpenetrating polymer networks for desalination and water remediation: A comprehensive review of research trends and prospects
JP2017018842A (en) Hydrophilic polymer adsorbent material and water treatment method using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14863827

Country of ref document: EP

Kind code of ref document: A1