WO2015076371A1 - Hydrophilic polymeric adsorbent and water treatment method employing same - Google Patents

Hydrophilic polymeric adsorbent and water treatment method employing same Download PDF

Info

Publication number
WO2015076371A1
WO2015076371A1 PCT/JP2014/080911 JP2014080911W WO2015076371A1 WO 2015076371 A1 WO2015076371 A1 WO 2015076371A1 JP 2014080911 W JP2014080911 W JP 2014080911W WO 2015076371 A1 WO2015076371 A1 WO 2015076371A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
adsorbent
hydrophilic polymer
adsorption
membrane
Prior art date
Application number
PCT/JP2014/080911
Other languages
French (fr)
Japanese (ja)
Inventor
森川圭介
立花祐貴
涌井孝
藤原直樹
渡辺義公
山村寛
Original Assignee
株式会社クラレ
学校法人 中央大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013243150A external-priority patent/JP2017018842A/en
Priority claimed from JP2014053175A external-priority patent/JP2017018843A/en
Priority claimed from JP2014053176A external-priority patent/JP2017018844A/en
Application filed by 株式会社クラレ, 学校法人 中央大学 filed Critical 株式会社クラレ
Publication of WO2015076371A1 publication Critical patent/WO2015076371A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3425Regenerating or reactivating of sorbents or filter aids comprising organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1515Three-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the present invention relates to an adsorbent having adsorptivity to organic carbon (particularly a causative substance that causes membrane fouling) contained in raw water obtained from a natural environment or an artificial environment, and a water treatment using the same. Regarding the method.
  • DOC dissolved organic carbon
  • Patent Document 1 DOC is a term encompassing organic carbon, organic colorants, and natural organic substances, and humic acid and fulvic acid, which is a mixture of organic compounds formed by decomposition of plant residues. Such humic substances are also included, and the main compounds and materials constituting the DOC are soluble and cannot be easily separated from water.
  • patent document 1 a. Adding an ion exchange resin to water containing dissolved organic carbon; b. Dispersing the resin in the water to allow adsorption of the dissolved organic carbon onto the resin; and c. It proposes a method for removing dissolved organic carbon from water by separating the resin loaded with the dissolved organic carbon from the water. And d. A process for regenerating a resin loaded with organic carbon has also been proposed.
  • ultrafiltration (UF) membrane microfiltration (MF) membrane, nanofiltration (NF) membrane, reverse osmosis (RO) in the field of water treatment such as water purification, ultrapure water, pharmaceutical water, domestic water purification, wastewater purification, etc.
  • UF ultrafiltration
  • MF microfiltration
  • NF nanofiltration
  • RO reverse osmosis
  • Membranes are becoming popular. Although these membrane filtrations allow high-level water treatment, on the other hand, membranes used for water treatment cause membrane fouling as the operating time elapses.
  • Biofouling which is membrane contamination with organic carbon, is a physically irreversible fouling and is currently a major problem in water treatment by membrane filtration.
  • a water treatment method has been proposed in which an activated carbon treatment, an adsorption treatment with a porous inorganic adsorbent, a coagulation treatment, a treatment using ozone treatment, or the like is provided in the front stage of the filtration membrane.
  • the adsorptivity of organic carbon is insufficient in the activated carbon treatment or the adsorption treatment with the porous inorganic adsorbent.
  • the agglomeration treatment has a drawback that a large amount of an aggregating agent such as ferric chloride needs to be added when the organic carbon concentration increases. Further, there is a problem that aggregation of organic carbon having high hydrophilicity becomes incomplete.
  • Ozone treatment has the problem of disinfection by-products such as bromic acid, and alternative techniques are required.
  • Non-Patent Document 1 the causative substances of physically irreversible membrane fouling are aromatic carbons such as humic acid and fulvic acid among organic carbons. It has been reported that biopolymers such as saccharides and proteins, which are organic carbons having relatively higher hydrophilicity than hydrophobic substances having a family ring, are the main causes. Further, in Non-Patent Document 2, the phenomenon that the RO membrane permeation performance is reduced is caused by biofouling caused by the growth of microorganisms, and the biofouling is greatly contributed by polysaccharides that are nutrients for microorganisms. Has been reported.
  • Patent Document 2 proposes a removal method using a colloidal adsorbent as a technique for adsorbing and removing saccharides.
  • Patent Document 3 exemplifies zeolite and activated carbon, and a regeneration method is also proposed.
  • Patent Document 4 proposes a method of using, as an adsorbent, particles made of a cationic polymer that swells in water and does not substantially dissolve in water.
  • the adsorbent of the invention of Patent Document 1 is mainly an adsorbent having a hydrophobic main skeleton, organic carbon having a high hydrophilicity, especially a causative substance of physically irreversible membrane fouling is used. It cannot be removed efficiently. Further, with the colloidal adsorbent used in the invention of Patent Document 2, it is difficult to regenerate the adsorbent.
  • the invention of Patent Document 3 discloses a method for removing a biopolymer by physical adsorption using surface pores. However, in the case of physical adsorption using pores, physics using surface pores is disclosed.
  • any of the adsorbents illustrated in the first place requires a large amount of adsorbent because the adsorption performance of the highly hydrophilic biopolymer is insufficient.
  • an adsorbent regeneration method is also exemplified.
  • an aqueous medium that is a regeneration medium is formed even inside an adsorbent having a hydrophobic resin as a main skeleton. Since the medium does not penetrate sufficiently, there is a concern that the reproduction efficiency is poor. Also in Patent Document 3, it is considered difficult to efficiently remove and regenerate the biopolymer clogged in the pores.
  • the particles made of the cationic polymer disclosed in Patent Document 4 have a particle size in water of about 10 to 200 times (that is, 1000 to 200000%) with respect to the particle size when not swollen with water. Since it has an extremely large swellability, it is difficult to handle during the adsorption and regeneration treatment, and has a problem that the liquid permeability is lowered due to adhesion between particles, particularly in a closed environment.
  • the object of the present invention is to efficiently adsorb organic carbon (especially biopolymer) having relatively high hydrophilicity, such as saccharides and proteins, which is a membrane contaminant of membrane filtration in view of the above-described circumstances.
  • An object of the present invention is to provide a polymer adsorbent that can be used.
  • Another object of the present invention is to provide a water treatment method that not only enables efficient water treatment using such a polymer adsorbent, but also maintains the water permeability of the membrane over a long period of time. .
  • Still another object of the present invention is to provide organic carbon contained in raw water obtained from a natural environment or an artificial environment, in particular, a causative substance of physically irreversible membrane fouling, and a biopolymer reported to be the main cause thereof. It is to provide a water treatment method capable of efficiently adsorbing and adsorbing the adsorbent after adsorption by a simple method.
  • the inventors of the present invention have intensively studied to achieve the above object, and as a result, have found the following configurations.
  • the degree of swelling in water at 25 ° C. is 20 to 500% (for example, 20 to 400%), has a hydrophilic polymer as a main skeleton, and at least a part of organic carbon in the water to be treated. It is a hydrophilic polymer adsorbent having a functional group capable of forming a bond with a component (hereinafter referred to as a bond forming group).
  • the bond-forming group has an ability to form at least one bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond with respect to the adsorbed component. It may be. Further, the bond-forming group may be a different type from the hydrophilic group contained in the hydrophilic polymer.
  • the bond-forming group may be a bond-forming group containing at least one element selected from the group consisting of N, S, P and O, for example.
  • the bond-forming group is preferably at least one selected from the group consisting of amino groups, quaternary ammonium groups, and salts thereof.
  • the component adsorbed in the adsorption step may contain a biopolymer.
  • the adsorbed components include components with a retention time of 25 to 38 minutes measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885. May be.
  • the removal rate of the biopolymer may be 15% or more.
  • the hydrophilic polymer adsorbent preferably has higher biopolymer adsorbability than humic adsorbent, for example, biopolymer model water at 25 ° C. (sodium alginate concentration: 4.3 mg-C / L sodium alginate) Aqueous solution) and humic model water (sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution), sodium alginate adsorption rate (A), sodium humate adsorption rate (B), The ratio of (A) / (B) may be 1.0 to 10.
  • the adsorption rate (A) of sodium alginate is 30% or more. There may be.
  • the hydrophilic polymer is polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl.
  • At least one selected from ether, polyalkylene oxide, poly (meth) acrylamide, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinylpyrrolidone, cellulose derivative, dextrin, chitin, and chitosan Also good.
  • the polymer adsorbent may have a hydrophilic polymer as a main skeleton, and a bond-forming group is introduced into the hydrophilic polymer.
  • the polymer adsorbent may be a polymer alloy including a bond-forming group-containing polymer (A) and a hydrophilic matrix polymer (B).
  • the hydrophilic polymer or hydrophilic matrix polymer (B) includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly ( It may contain at least one selected from the group consisting of (meth) acrylamide, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinylpyrrolidone, cellulose derivative, dextrin, chitin, and chitosan.
  • the second configuration of the present invention is as follows: A water treatment method comprising at least an adsorption step in which water to be treated containing organic carbon is brought into contact with the hydrophilic polymer adsorbent to adsorb at least a part of the organic carbon.
  • the water to be treated may be raw water obtained from a natural environment or an artificial environment, and may be, for example, fresh water or water containing salts.
  • the water treatment method may further include a membrane filtration step in which the adsorption treated water obtained in the adsorption step is subjected to membrane filtration by a membrane filtration treatment.
  • the membrane filtration step is performed using at least one membrane selected from the group consisting of an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. Or it may be performed in multiple stages.
  • UF ultrafiltration
  • MF microfiltration
  • NF nanofiltration
  • RO reverse osmosis
  • the water treatment method may further include a regeneration step in which the adsorbent after the adsorption step is brought into contact with an aqueous medium to regenerate the adsorbent.
  • the aqueous medium used in the regeneration step may be water or a metal ion-containing aqueous solution (for example, an alkali metal ion-containing aqueous solution).
  • the temperature of the aqueous medium may be about 40 ° C. to 110 ° C.
  • the present invention is a polymer adsorbent used for water treatment
  • the polymer adsorbent is a hydrophilic polymer adsorbent having a degree of swelling of 20 to 500% in water at 25 ° C.
  • the polymer adsorbent includes a polymer adsorbent that can adsorb at least a part of organic carbon contained in raw water and can be regenerated after the adsorption step. May be.
  • an adsorbent regeneration method in which the polymer adsorbent adsorbing at least part of organic carbon contained in raw water is regenerated by contact with an aqueous medium. It may be included.
  • the first configuration of the present invention by using a specific hydrophilic polymer adsorbent, organic carbon contained in raw water, which has been difficult to remove in the past, particularly physically irreversible membrane fouling is generated.
  • Causative substances especially highly hydrophilic biopolymers such as sugars and proteins
  • the second configuration of the present invention by performing water treatment using the hydrophilic polymer adsorbent, organic carbon in the adsorption treated water (water subjected to the adsorption treatment), particularly the cause of membrane fouling. The amount of substance can be reduced.
  • the adsorbent after the adsorption step can be regenerated by simply desorbing the adsorbent from the adsorbent by contact with an aqueous medium. Furthermore, if necessary, the regenerated adsorbent can be effectively used again for the adsorption treatment.
  • membrane fouling when using the adsorption treated water that has undergone the adsorption treatment, when combined with various membrane filtration steps, membrane fouling, particularly physically, can be achieved by a simple method. It is possible to suppress the occurrence of irreversible membrane fouling and maintain the water permeability of the filtration membrane over a long period of time.
  • the hydrophilic polymer adsorbent can also be packed into a column.
  • a simple method is obtained by combining the organic carbon removal step by using the column and the membrane filtration step.
  • the water permeability can be maintained for a long time.
  • the hydrophilic polymer adsorbent which is the first embodiment of the present invention will be described.
  • the hydrophilic polymer adsorbent according to the first embodiment has a swelling degree of 20 to 500% in water at 25 ° C., and has a functionality capable of forming a bond with at least a part of the organic carbon in the water to be treated. It is a hydrophilic polymer adsorbent having a group (hereinafter referred to as a bond-forming group).
  • the wettability to water is increased, and at least some components of organic carbon, especially the causative substances that cause physically irreversible membrane fouling, are adsorbed by appropriate swelling. It can penetrate into the material.
  • the internal adsorptive functional group can also be used effectively, and clogging with organic carbon is unlikely to occur, so that excellent organic carbon removing ability can be expressed.
  • the infiltrated component is captured by an interaction such as a hydrogen bond, a coordination bond, a chelate bond, or an ionic bond by a group capable of forming a bond with this component (bond-forming group), and the adsorbent Efficiently removes at least some components of organic carbon, especially those that cause physically irreversible membrane fouling (especially biopolymers that are beginning to be considered to be highly hydrophilic and a concern for membrane contamination) It is presumed that it can be adsorbed.
  • the degree of swelling of the hydrophilic polymer adsorbent in water at 25 ° C.
  • the degree of swelling is controlled within a predetermined range, even when a hydrophilic polymer is used as the main skeleton, while suppressing the deterioration of the handleability of the adsorbent due to excessive swelling, It is possible to adsorb organic carbon efficiently.
  • the hydrophilic polymer adsorbent has a controlled degree of swelling, unlike the cationic polymer described in Patent Document 4 that swells in water and does not substantially dissolve in water, the hydrophilic polymer adsorbent is previously swollen in water. You may make it contact with to-be-processed water, without performing a process.
  • swelling property is controlled, even if it is a water-containing state, it is excellent in the distribution
  • the hydrophilic polymer adsorbent is a functional group capable of forming a bond with at least a part of the organic carbon contained in the raw water (especially a causative substance that causes physically irreversible membrane fouling) ( Or a bond-forming group).
  • the bond-forming group can form various bonds (for example, hydrogen bond, coordination bond, chelate bond, ionic bond, etc.) with the adsorbing component. By such various bonds, the component can be adsorbed to the adsorbent.
  • examples of the bond-forming group include a hydrogen bond-forming group, a chelate-forming group, a cationic ion-exchange group, and an anion ion-exchange group.
  • the organic carbon contained in the raw water with respect to the adsorbent particularly physical There is no particular limitation as long as adsorbability to a causative substance that causes irreversible membrane fouling can be imparted.
  • the bond-forming group may be a bond-forming group containing at least one element selected from the group consisting of N, S, P and O, for example.
  • functional groups include amino groups (primary amino groups, secondary amino groups, tertiary amino groups), quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups.
  • These functional groups may be present in a salt state.
  • These functional groups may be present alone or in combination of two or more.
  • preferred functional groups include amino groups, quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups, quaternary pyridinium groups, and salts thereof, more preferably amino groups. Quaternary ammonium groups and their salts are mentioned.
  • the hydrophilic polymer adsorbent has a hydrophilic polymer as a main skeleton, and when the hydrophilic polymer is produced, a bond-forming group may be introduced by polymerization or post-modification.
  • the bond-forming group may be introduced by alloying the component having a hydrophilic polymer component.
  • the hydrophilic polymer adsorbent may have a hydrophilic polymer as a main skeleton, and the hydrophilic polymer itself may have a bond-forming group in its structure.
  • the hydrophilic polymer adsorbent can introduce a bond-forming group into the main chain or side chain by homopolymerizing or copolymerizing a monomer (or a derivative thereof) containing the bond-forming group.
  • the copolymerization may be a copolymerization of monomers (or derivatives thereof) containing a bond-forming group, a monomer (or derivative thereof) containing a bond-forming group, and a monomer (not containing a bond-forming group). Or copolymerization thereof).
  • the hydrophilic polymer adsorbent may have a hydrophilic polymer as a main skeleton, and a bond forming group may be introduced into the hydrophilic polymer.
  • a bond-forming group may be introduced by post-modification.
  • the bond-forming group to be introduced may be a different type of functional group from the hydrophilic group of the hydrophilic polymer.
  • the amount of the bond-forming group introduced is 2 to 100 mol%, preferably 3 to 95 mol%, more preferably 5 to 90 mol%, based on the total number of monomer units in the polymer. There may be.
  • the polymer adsorbent may have a hydrophilic polymer as a main skeleton and a bond-forming group is introduced into the hydrophilic polymer.
  • a polymer alloy in which a hydrophilic polymer as a main skeleton constitutes a matrix component may be used.
  • the hydrophilic polymer has a solubility parameter ( ⁇ ) calculated by the following formula using the cohesive energy density (Ecoh) and molar molecular volume (V) calculated by the Fedor's estimation method. A certain polymer may be sufficient.
  • the solubility parameter ( ⁇ ) is preferably 24 or more, and more preferably 25 or more.
  • the upper limit of the solubility parameter is not particularly limited, but may be about 35, for example.
  • hydrophilic polymer examples include a polymer having a hydrophilic group such as a hydroxyl group, an ether group, a cationic group, an anionic group, and an amide group in a repeating unit.
  • hydrophilic polymer examples include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, Poly (meth) acrylamide, cationic polymer (eg, polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide , Polydimethylaminoethyl methacrylate hydrochloride, polynucleotide ), Anionic polymers (for example, polystyrene sulfonic acid, polyvinyl sulfate, poly (methacryl
  • These polymers may have other comonomer units (eg, monomer units having unsaturated carboxylic acid units such as maleic acid, itaconic acid, acrylic acid, silanol groups, aldehyde groups, or sulfonic acid groups). Good.
  • the content of the comonomer unit is preferably 10 mol% or less, more preferably 5% mol or less in all monomer units.
  • the weight average molecular weight of the hydrophilic polymer can be appropriately set in accordance with the type of the polymer.
  • the weight average molecular weight of the hydrophilic polymer is at least 5000 or more (for example, from 5000 to 100,000), preferably 10,000 or more.
  • a weight average molecular weight can be calculated
  • Particularly preferred hydrophilic polymers include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (polyvinyl formal, polyvinyl butyral), and polyamide (for example, polyamide 6, polyamide 10, polyamide 6,6, polyamide 11, polyamide). 12, polyamide 6,12, polyamide 6,10, polyamide 6 / 6,6 copolymer, polyamide 6,6 / 6,10 copolymer, polyamide 6,11, polyamide 6,6 / 6,10 / 6
  • An ethylene-vinyl alcohol copolymer is particularly preferable from the viewpoint of not only water resistance but also excellent organic carbon (particularly biopolymer) adsorption performance, moldability and hydrophilicity.
  • the content of ethylene units is preferably 20 to 60 mol%, more preferably 25 to 55 mol% (for example, 25 to 50 mol%) in all monomer units. Good. If the ethylene content is too small, the durability may deteriorate. On the other hand, when there is too much ethylene content, there exists a possibility that hydrophilicity may fall.
  • the polyvinyl alcohol may be defined by the viscosity average degree of polymerization, and the viscosity average degree of polymerization obtained from the viscosity of the 30 ° C. aqueous solution can be selected from a wide range of about 100 to 15000, for example. From the viewpoint of improving durability, those having a high degree of polymerization are preferably used. In this case, for example, the viscosity average degree of polymerization is preferably about 800 to 13000, and more preferably about 1000 to 10,000.
  • the degree of saponification of polyvinyl alcohol can be appropriately selected according to the purpose and is not particularly limited. For example, it may be 88 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. Good. In particular, from the viewpoint of improving durability, those having a saponification degree of 98 mol% or more are preferred.
  • the polymer adsorbent of the present invention uses the above hydrophilic polymer as a matrix component and is alloyed with a component having a bond-forming functional group (bond-forming group) to convert the bond-forming group into a hydrophilic polymer. It may be introduced. From the viewpoint of ease of introduction, the polymer adsorbent is preferably a polymer alloy of a bond-forming group-containing polymer (A) and a hydrophilic polymer matrix (B).
  • the bond-forming group-containing polymer (or chemisorbable functional group-containing polymer) (A) is polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA).
  • Anionic polymers such as polymaleic acid and polyamic acid; polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide
  • Cationic polymers such as polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride, and polynucleotide may be used. Such polymers may be used alone or in combination of two or more.
  • adsorbing organic carbon contained in raw water particularly causative substances (particularly biopolymers) that cause physically irreversible membrane fouling, in combination with a hydrophilic matrix polymer.
  • a polymer having a high cation density for example, polyethyleneimine, polyallylamine, etc. is preferable.
  • the hydrophilic matrix polymer (B) may be the predetermined hydrophilic polymer described above.
  • the bond-forming group-containing polymer (A) and the hydrophilic matrix polymer (B) in the alloy of the bond-forming group-containing polymer (A) and the hydrophilic polymer matrix (B). ) Is not particularly limited as long as the polymer (A) is dispersed within a predetermined range.
  • the polymer (A) / polymer (B) is approximately 1/99 to 70/30 in mass ratio. It may be about 5/95 to 65/45, more preferably about 8/92 to 60/40.
  • the polymer (A) is preferably dispersed in the hydrophilic matrix polymer (B).
  • the hydrophilic polymer adsorbent having organic carbon adsorptivity contains other polymer polymers as a resin component or a forming component within a range not impairing the effects of the present invention. Also good.
  • the hydrophilic polymer adsorbent of the present invention is, for example, a cross-linking agent, an antioxidant, a stabilizer, a lubricant, a processing aid, an antistatic agent, a colorant, an antifoaming agent, a dispersing agent, etc. if necessary. These various additives may be included.
  • the degree of swelling at 25 ° C. is 20 to 500% (for example, 20 to 400) in terms of mass% from the viewpoint of enabling the adsorption of biopolymers and improving the handling properties. %), Preferably 30 to 450%, more preferably 40 to 400%.
  • the swelling degree of the hydrophilic polymer adsorbent may be more preferably about 40 to 300% (for example, 40 to 200%), and still more preferably about 50 to 200% (for example, 50 to 160%). It may be.
  • the swelling degree of a hydrophilic polymer adsorbent shows the value measured by the method described in the Example mentioned later.
  • the swelling property of the hydrophilic polymer adsorbent may be controlled by crosslinking with a crosslinking agent and / or low swelling property or non-swelling property with respect to the bond-forming group-containing polymer (A). It may be controlled as an alloy material combining a hydrophilic matrix polymer (for example, ethylene-vinyl alcohol copolymer and polyamide).
  • a hydrophilic matrix polymer for example, ethylene-vinyl alcohol copolymer and polyamide
  • the hydrophilic polymer adsorbent of the present invention is preferably crosslinked with a crosslinking agent from the viewpoint of controlling durability and swelling property.
  • the crosslinking agent can be appropriately determined according to the type of the crosslinking reactive group of the hydrophilic polymer. For example, an epoxy group, a carboxyl group, a halogen group, an acid anhydride group, an acid halide group, a formyl group, N -A compound containing at least two functional groups of at least one or two or more selected from chloroformyl group, chloroformate group, amidinyl group, isocyanate group, vinyl group, aldehyde group, azetidine group, carbodiimide group, etc. It is done.
  • zirconyl crosslinking agents zirconyl nitrate, ammonium zirconium carbonate, zirconyl chloride, zirconyl acetate, zirconyl sulfate
  • titanium crosslinking agents titanium crosslinking agent, titanium lactate, titanium diisopropoxybis (triethanolamate)
  • Such a cross-linking agent can use various commercially available cross-linking agents, and is not particularly limited, but is selected from epoxy groups, halogen groups, isocyanate groups, vinyl groups, aldehyde groups, azetidine groups, carbodiimide groups, and the like.
  • a compound containing at least two functional groups of at least one kind or two or more kinds is preferred.
  • the crosslinking structure may be introduced with a crosslinking agent by using a copolymer component such as a divinyl monomer during the synthesis of the hydrophilic polymer adsorbent.
  • a copolymer component such as a divinyl monomer
  • melt kneading method in which the components of the hydrophilic polymer adsorbent, the crosslinking agent, and if necessary, optional components are melt kneaded using a biaxial kneader or the like can be mentioned. According to the melt kneading method, there is an advantage that it is easy to obtain an adsorbent in which each component is uniformly dispersed.
  • the hydrophilic polymer adsorbent material is molded by melt molding, solution molding, etc. to form molded bodies of various shapes
  • the molded body is immersed in a solution containing a crosslinking agent to introduce a crosslinked structure.
  • melt molding for example, a hydrophilic polymer adsorbent material excluding at least a crosslinking agent is melt-kneaded using a biaxial kneader or the like, and the melt-kneaded material is formed into various shapes by extrusion molding, injection molding, or the like.
  • the molded body may be subjected to crosslinking treatment by dipping in a solution containing a crosslinking agent.
  • a mixed solution is prepared using an appropriate solvent, and using this mixed solution, cast film formation or dry spinning, After obtaining a film-like or fibrous shaped body by wet spinning or the like, the shaped body may be dipped in a solution containing a crosslinking agent and subjected to a crosslinking treatment.
  • Such a polymer adsorbent is particularly excellent in absorbability of biopolymer, and biopolymer model water at 25 ° C. (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) and humic model water (
  • sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) and humic model water
  • sodium alginate is used as the biopolymer model
  • sodium humate is used as the humic model.
  • each adsorption rate shows the value measured by the method described in the Example mentioned later.
  • the polymer adsorbent used in the present invention has an adsorption rate (A) of sodium alginate in biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) at 25 ° C., for example. , 30% or more, preferably 35% or more, and more preferably 45% or more.
  • A adsorption rate of sodium alginate in biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) at 25 ° C., for example. , 30% or more, preferably 35% or more, and more preferably 45% or more.
  • A adsorption rate
  • the hydrophilic polymer adsorbent can have various shapes as long as it can be used for adsorption treatment of at least a part of the organic carbon in the water to be treated (for example, biopolymer). It may be a shape, a fiber shape, various three-dimensional shapes or the like. From the viewpoint of improving the adsorption efficiency, the hydrophilic polymer adsorbent is preferably in the form of particles or fibers.
  • the particle diameter is not particularly limited, and can be selected from a wide range of 0.5 ⁇ m to 20 mm.
  • the particle diameter may be 1 ⁇ m or more, 10 ⁇ m or more, or 100 ⁇ m or more.
  • the particle diameter may be 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less.
  • the particle size is preferably 1 ⁇ m to 5000 ⁇ m, more preferably 10 ⁇ m to 4000 ⁇ m, and most preferably 20 ⁇ m to 3000 ⁇ m.
  • a particle diameter shows the value classified by sieving.
  • the average particle diameter of the polymer adsorbent in a swollen state in 25 ° C. water may be, for example, 1 ⁇ m or more depending on the purpose, and may be 5 ⁇ m or more, 50 ⁇ m or more, more than 100 ⁇ m (for example, 110 ⁇ m or more). It may be 150 ⁇ m or more, or 200 ⁇ m or more.
  • the average particle diameter of the polymer adsorbent in a swollen state in 25 ° C. water may be 10 mm or less, 4.5 mm or less, 3.5 mm or less, or 3 mm. It may be the following. In addition, an average particle diameter shows the value measured by the method described in the Example mentioned later.
  • the average fiber diameter is not particularly limited, but can be selected from a wide range of 0.1 to 1000 ⁇ m, for example, 1 to 500 ⁇ m, preferably 2 It may be up to 200 ⁇ m.
  • the average fiber diameter can be calculated as an average fiber diameter by measuring the fiber diameter at 10 locations of fibers in a standard state defined by JIS L 0105 with a micrometer.
  • a continuous fiber may be sufficient and a short fiber may be sufficient.
  • the fiber length may be, for example, about 0.1 to 100 mm (for example, 1 to 100 mm), preferably about 0.5 to 80 mm (for example, 5 to 80 mm), more preferably 10 It may be about 50 mm.
  • Water treatment method 2nd Embodiment of this invention is equipped with the to-be-processed water containing organic carbon, and a specific hydrophilic polymer adsorbent, and is provided with the adsorption
  • Water treatment method may include a filtration step of performing membrane filtration on the adsorption-treated water subjected to the adsorption treatment.
  • the water to be treated can use various raw waters obtained in natural and artificial environments as water to be treated, it contains organic carbon, especially the causative substances that cause physically irreversible membrane fouling.
  • organic carbon especially the causative substances that cause physically irreversible membrane fouling.
  • as raw water in general river water, lake water, seawater (salt content 2 to 4% by mass), brackish water (salt content 0.5 to 2% by mass), oil fields and gas fields
  • Examples include associated water generated, soil elution water, irrigation water, biologically treated water, biologically treated water in sewage treatment and human waste treatment facilities, highly treated water such as tertiary treatment, and various factory effluents.
  • the raw water that is the treated water may contain organic carbon, particularly a causative substance that causes physically irreversible membrane fouling, and water that contains 0.5% by mass or more of salt,
  • organic carbon particularly a causative substance that causes physically irreversible membrane fouling
  • water that contains 0.5% by mass or more of salt For example, water containing various salts obtained from raw water in the natural environment, such as water with higher salt concentration, obtained by treating the raw water such as seawater, is used as raw water that is to be treated. Can do.
  • the water to be treated may have a salt concentration of 0.5% by mass or more (for example, about 0.5 to 30% by mass), 1% by mass or more, or 2% by mass or more.
  • Examples of the salt in the water to be treated include alkali metal salts such as sodium chloride and potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate. Can be calculated as the concentration of the total amount of these salts.
  • the salt may be a salt that makes the aqueous solution neutral.
  • the organic carbon contained in the raw water usually means an organic compound constituting the total organic carbon (TOC) contained in the raw water described above.
  • the organic carbon includes dissolved organic carbon (Dissolved Organic carbon) and particulate organic carbon (POC).
  • the causative substance that causes physically irreversible membrane fouling is a kind of organic carbon, and it is difficult to remove substances that are difficult to remove by means such as physical backwashing when performing membrane filtration. I mean.
  • specific causative substances are still under study, when the treated water that has undergone the adsorption process of the present invention is supplied to the membrane treatment process, the treated water is supplied to the membrane treatment process without going through the adsorption process. Thus, the lifetime of the film in the film processing step can be improved. Therefore, even if the causative substance is not specifically identified, it is possible to confirm that the amount of causative substance that causes physically irreversible membrane fouling can be reduced by the adsorption process.
  • the causative substances adsorbed in the adsorption process belong to organic substances having a particle diameter of 0.45 ⁇ m or less that are considered difficult to desorb when physically adsorbed. It may be a substance.
  • organic substances having a particle size of 0.45 ⁇ m or less include aromatic-containing organic substances such as humic acid and fulvic acid, synthetic chemical substances such as surfactants, biopolymers, etc.
  • the adsorbed component is a hydrophilic compound having 100,000 daltons or more, and the retention time during which a humic signal peak appears in LC-OCD in which a wet total organic carbon measuring instrument is connected to high performance liquid chromatography. It may be a substance that exhibits a signal peak in a shorter holding time.
  • the adsorption step it is preferable to adsorb at least the biopolymer as a component of at least a part of the causative substance by the polymer adsorbent.
  • Biopolymers are compounds (for example, polysaccharides and proteins) having hydrophilic high molecular weight (for example, 100,000 daltons or more). More specifically, the A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, the retention time by LC-OCD is 25 to 38 minutes. There may be. In the examples, a component having a holding time of 25 minutes or more and 38 minutes or less is measured as a biopolymer in the analysis of LC-OCD (manufactured by DOC-Labor) based on the above-described method. Further, the humic substance may be a B fraction in the measurement under the same conditions, for example, a component exceeding the holding time of 38 minutes and not more than 50 minutes.
  • Biopolymers are mainly composed of organic substances with few hydrophobic structures such as benzene rings and mainly high hydrophilicity.
  • biopolymers are composed of organic substances exhibiting an SUVA value of 1.0 [L / (m ⁇ mg)] or less. May be.
  • the humic substance contains not only a UV-absorbing structure because it contains a benzene ring, but also has a high hydrophobicity, for example, an SUVA value of 2.0 [L / (m ⁇ mg)] or more It may be composed of an organic material showing.
  • SUVA (L / mg-C ⁇ m) UV (m ⁇ 1 ) / DOC (mg-C / L)
  • each parameter for calculating the SUVA value was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, and "area value" The area value obtained by LC-OCD is expressed, “UV” indicates the absorbance at a wavelength of 254 nm, and “DOC” indicates the DOC concentration (mg-C / L) in the test sample.
  • DOC of biopolymer DOC of the entire test sample x area value of biopolymer in the spectrum (holding time t b : 25 minutes ⁇ t b ⁇ 38 minutes) / area value of the entire spectrum
  • Humic DOC DOC of the entire test sample x area value of humic substance in the spectrum (holding time t h : 38 minutes ⁇ t h ⁇ 50 minutes) / area value of the entire spectrum
  • the ion-exchange resins and chelate resins mainly composed of hydrophobic polymers such as styrene that are currently on the market have organic carbon contained in raw water, especially physically irreversible membrane fouling.
  • the resulting causative substance cannot be adsorbed efficiently.
  • a specific hydrophilic polymer adsorbent for example, even hydrophilic organic carbon can be adsorbed efficiently.
  • the adsorption step it is not particularly limited as long as the water to be treated and the hydrophilic polymer adsorbent can be brought into contact.
  • the adsorbent is added to the water to be treated, and known as necessary.
  • the adsorption treatment may be carried out by stirring by a method; or the adsorption treatment may be carried out by passing water to be treated through a column filled with a hydrophilic polymer adsorbent as a continuous type.
  • the adsorption step may be a single step or a multi-step.
  • the solid-liquid separation step may be performed by a known method as necessary, and the adsorbent after the adsorption treatment may be removed from the adsorption treatment liquid by the solid-liquid separation step. .
  • the temperature of the water to be treated in the adsorption step can be selected as long as the causative substance can be adsorbed.
  • the temperature of the water to be treated is, for example, 0 to 40 ° C. from the viewpoint of adsorptivity. It may be 5 to 35 ° C, more preferably 10 to 33 ° C.
  • the temperature of the water to be treated may be, for example, 10 to 40 ° C., preferably 15 to 35 ° C., more preferably 18 to 33 ° C. from the viewpoint of adsorptivity. May be.
  • the amount of adsorbent used for the water to be treated can be appropriately selected according to the type of water to be treated, the form of the adsorbent, etc.
  • the amount of adsorbent is It can be selected from a wide range of 0.05 to 50 g per liter of treated water, and may be, for example, about 0.05 to 30 g, preferably about 0.1 to 10 g.
  • the amount of the adsorbent may be about 0.1 to 50 g, preferably about 0.5 to 30 g, per liter of water to be treated. *
  • the adsorbent when the adsorbent is immersed in the water to be treated and stirred, the adsorbent may be stirred by mechanical stirring or bubble stirring.
  • the peripheral speed When performing mechanical stirring, the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 15 m / s.
  • the flow rate of the water to be treated to the column is, for example, the superficial velocity that is a value obtained by dividing the treated water flow rate by the adsorbent volume. It may be about 0.5 ⁇ 500h -1 (for example, about 0.5 ⁇ 200h -1), preferably about 1 ⁇ 300h -1 (for example, about 1 ⁇ 150h -1).
  • the removal rate (or adsorption rate) of the biopolymer from the water to be treated may be, for example, 15% or more, preferably 20% or more, more preferably 30% or more.
  • a removal rate shows the value measured by the method described in the Example mentioned later. If the removal rate is too low, the effect of suppressing membrane contamination in the subsequent membrane filtration step may not be sufficient.
  • the adsorption-treated water (or supply water) subjected to the adsorption treatment may be subjected to membrane filtration in the membrane filtration step, if necessary.
  • membrane filtration By combining such membrane filtration, it is possible to purify water according to the application.
  • the membrane filtration step may be a single step or multiple steps. About the kind of film
  • the membrane filtration step is performed appropriately using a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), a reverse osmosis (RO) membrane, etc., depending on the purpose of water treatment. be able to.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • NF membrane nanofiltration membrane
  • RO reverse osmosis
  • the adsorption process can reduce the amount of organic carbon contained in the raw water, particularly the causative substance that causes physically irreversible membrane fouling. It is possible to efficiently suppress the occurrence of membrane fouling.
  • these membranes may be used alone or in one or more stages for membrane filtration, or a plurality of types of membranes may be combined, and each one or more stages may be used for membrane filtration.
  • the membrane water may be further filtered with an NF membrane or a reverse osmosis (RO) membrane after membrane filtration treatment of the treated water supplied with the MF membrane or UF membrane.
  • RO reverse osmosis
  • the membrane material of the filtration membrane in the membrane filtration step is not particularly limited, and any known material can be applied.
  • the film material for the UF film and the MF film include cellulose acetate, polyacrylonitrile, polyethylene, polyethersulfone, polysulfone, polypropylene, polyvinylidene fluoride, and ceramic.
  • the film material of the NF film include polyamide-based, polypiperazine amide-based, polyester amide-based, or water-soluble vinyl polymer crosslinked.
  • Examples of the membrane material for the RO membrane include cellulose acetate and polyamide.
  • the membrane form is not particularly limited, and may be any shape such as a flat membrane, a tubular membrane, and a hollow fiber membrane.
  • the film thickness may be in the range of 10 ⁇ m to 1 mm, and in the case of a hollow fiber membrane, the inner diameter may be about 0.2 to 2 mm and the outer diameter may be about 0.4 to 5 mm.
  • the filtration membrane may have a fine porous structure such as a network structure, a honeycomb structure, or a fine gap structure.
  • filtration membranes may be modularized. For example, in the case of a flat membrane, a spiral type, a pleat type, a plate-and-frame type, or a disc type in which discs are stacked may be used. It may be a hollow fiber membrane type bundled in an I shape and stored in a container.
  • the filtration flow rate can be appropriately set according to the type of water supplied to the membrane, the type of filtration membrane, and the like. For example, when filtration is performed by the cross flow method, the filtration flow rate is from flux 0.5 to
  • the liquid may be passed through the filtration membrane at 5.0 (m 3 / m 2 / day), and may preferably be from Flux 1.0 to 4.0 (m 3 / m 2 / day).
  • organic carbon that is a causative substance of membrane fouling is caused from water supplied to the filtration membrane. Substances can be reduced. As a result, it is possible to suppress the occurrence of membrane fouling (particularly physically irreversible membrane fouling) in the filtration membrane, and it is possible to suppress the reduction of water permeability of the filtration membrane due to clogging of the filtration membrane. . Furthermore, since the amount of the causative substance in the supply water can be reduced, membrane fouling can be suppressed, the frequency of cleaning, the amount of cleaning chemical used can be reduced, and the life of the membrane can be extended.
  • the water treatment method of the present invention may be combined with an existing water treatment method as necessary within a range not impairing the effects of the invention.
  • the existing water treatment method include sand filtration treatment, coarse filtration treatment, coagulation sedimentation treatment, ozone treatment, adsorption treatment using an existing adsorbent or activated carbon, biological treatment, and the like. These treatments may be performed singly or in combination of two or more. Further, these water treatments may be appropriately performed before and / or after the adsorption treatment.
  • water from which particles having a particle diameter of 5 ⁇ m or more, preferably particles of 1 ⁇ m or more, more preferably particles larger than 0.45 ⁇ m are excluded by pretreatment for adsorption is used as water to be treated in the adsorption step.
  • particles having a particle diameter of 5 ⁇ m or more, preferably particles of 1 ⁇ m or more, more preferably particles larger than 0.45 ⁇ m are excluded by pretreatment for adsorption is used as water to be treated in the adsorption step. preferable.
  • the adsorbent that has adsorbed at least a part of the organic carbon in the adsorption step is separated by a known filtering means as necessary and is supplied to the regeneration step.
  • the adsorption-treated water that has been subjected to solid-liquid separation by filtering the adsorbent may be used in a membrane filtration step as needed, and membrane filtered in the filtration step.
  • the adsorbent may be regenerated by bringing an adsorbent that has adsorbed at least a part of the organic carbon into contact with an aqueous medium.
  • the aqueous medium is a medium composed of a liquid containing water as a main component (for example, 50% by mass or more), and may be, for example, water or an aqueous solution containing metal ions. Further, the contact with the aqueous medium in the regeneration step may be one stage or multiple stages, and in the case of multiple stages, a plurality of types of aqueous media may be used separately.
  • the metal ion used in the metal ion-containing aqueous solution is not particularly limited as long as the causative substance can be eliminated, but typically includes an alkali metal ion, specifically, an aqueous sodium chloride solution, Examples include potassium chloride aqueous solution, lithium chloride aqueous solution, sodium carbonate, potassium carbonate, lithium carbonate and the like.
  • the aqueous medium may be a metal ion-containing aqueous solution containing the same type of metal ions as the salts present in the water to be treated.
  • the concentration of the metal ion-containing aqueous solution can be selected from a wide range of, for example, about 0.1 to 50% by mass as a solute ratio with respect to water, and a low concentration (for example, about 0.1 to 10% by mass, preferably 0.3 to 8% by mass, more preferably about 0.5 to 8% by mass), and high concentration (for example, about 10 to 50% by mass, preferably 15 to 45% by mass, more preferably 20 to 40% by mass).
  • the temperature of the aqueous medium used in the regeneration step may be equal to or higher than the temperature of the liquid to be treated in the adsorption step, and preferably set to be higher than the temperature of the liquid to be treated in the adsorption step. Good.
  • the regeneration step is not particularly limited as long as the aqueous medium and the hydrophilic polymer regeneration material can be brought into contact with each other.
  • an adsorbent is added to the aqueous medium, and if necessary, a known method is used.
  • the regeneration treatment may be carried out by stirring; or as a continuous type, the regeneration treatment may be carried out by passing an aqueous medium through a column filled with a polymer adsorbent. Further, the regeneration step may be a single step or multiple steps.
  • an appropriate temperature can be selected as long as the causative substance can be eliminated, but the temperature of the aqueous medium is, for example, 40 to 110 ° C. from the viewpoint of elimination.
  • the temperature may be 45 to 100 ° C, more preferably 50 to 90 ° C.
  • the amount of the aqueous medium used for the adsorbent can be appropriately selected according to the type of the aqueous medium, the form of the adsorbent, the type of regeneration process (batch type or continuous type), and the like.
  • the adsorbent may be stirred by mechanical stirring, bubble stirring, or the like.
  • the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 18 m / s. *
  • the adsorbent regenerated by the regeneration step may be separated by a known filtering means as necessary and may be provided again to the adsorption step.
  • the adsorbent in the regeneration process, can be efficiently regenerated by contact with the aqueous medium.
  • the adsorption rate of the adsorbent before and after the regeneration treatment can be evaluated as regeneration efficiency.
  • the regeneration efficiency may be 30% or more, preferably 50% or more, more preferably May be 80% or more, particularly preferably 90% or more. Note that the regeneration efficiency is a value measured by a method described in Examples described later.
  • an adsorption step in which raw water containing organic carbon is brought into contact with a polymer adsorbent, and at least a part of the organic carbon is adsorbed by the polymer adsorbent;
  • a water treatment method comprising at least a regeneration step of bringing the adsorbent adsorbing the components into contact with an aqueous medium and regenerating the adsorbent,
  • the polymer adsorbent may include a water treatment method that is a hydrophilic polymer adsorbent having a hydrophilic polymer as a main skeleton and having a specific functional group.
  • wettability to water is increased by using a hydrophilic polymer as a main skeleton, and at least a part of organic carbon, particularly a causative substance that causes physically irreversible membrane fouling is adsorbed.
  • the infiltrated component is, for example, an adsorbent having a group capable of forming a bond with this component (bond-forming group) such as a hydrogen bond, a coordinate bond, an ionic bond, or a chelate bond.
  • adsorbents are beginning to be considered at least some components of organic carbon, especially causative agents that cause physically irreversible membrane fouling (especially highly hydrophilic and a concern for membrane contamination) (Iii) Furthermore, the adsorbent after the adsorption treatment can be efficiently regenerated because the bond is broken by contacting with an aqueous medium. It is estimated.
  • Average particle size The average particle size of the adsorbents used in Examples and Comparative Examples was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd.) after being immersed in water at 25 ° C. for 12 hours.
  • Average fiber diameter As for the average fiber diameter described in the examples, the fiber diameter was measured at 10 points of the obtained fiber with a micrometer, and the average value was defined as the average fiber diameter.
  • Biopolymer removal rate (Biopolymer concentration before adsorption step ⁇ Biopolymer concentration after adsorption step) / (Biopolymer concentration before adsorption step) ⁇ 100 (%)
  • Removal rate of humic substance (humic substance concentration before adsorption process ⁇ humic substance concentration after adsorption process) / (humic substance concentration before adsorption process) ⁇ 100 (%)
  • Example 1-1 Polyvinyl alcohol (“PVA-117” manufactured by Kuraray Co., Ltd.) 88 parts by mass and polyallylamine (“PAA-15C” manufactured by Nitto Bo Medical Co., Ltd.) 12 parts by mass are used, and these resins are dissolved in water. I let you. The solution was wet-spun into a saturated sodium sulfate bath at 40 ° C. from a nozzle having a diameter of 0.08 mm and a pore number of 1000, and taken up at a speed of 15 m / min. The formed yarn was further wet-drawn 2 times, dried at 130 ° C., and subjected to dry heat drawing 5 times at 230 ° C.
  • PVA-117 manufactured by Kuraray Co., Ltd.
  • PAA-15C polyallylamine
  • This fiber was further immersed in a 40 ° C. solution of 1% glutaraldehyde and 2% maleic acid to perform a crosslinking treatment to obtain a target adsorbent (fiber diameter 10 ⁇ m, fiber length 3 cm).
  • the degree of swelling of the obtained adsorbent at 25 ° C. was 65%.
  • the insoluble matter was removed by filtering with a mesh cartridge filter (TMP-2, manufactured by Advantech), and 5 g of the obtained hydrophilic polymer adsorbent was added to 1 L of the filtered water at 25 ° C. for 4 hours.
  • Laboplast mill contains 60 parts by mass of an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “F-101B”) and 40 parts by mass of polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200”). After being melt-kneaded at 210 ° C., pulverization was performed to obtain a composite having a particle size of 0.6 to 1.2 mm. Further, this composite was subjected to a crosslinking treatment with a 2% solution of an epoxy compound (Denacol EX-810 (trade name) manufactured by Nagase ChemteX Corp.) at 25 ° C.
  • an epoxy compound (Denacol EX-810 (trade name) manufactured by Nagase ChemteX Corp.) at 25 ° C.
  • a target adsorbent particle diameter of 0.6 to 1). 0.2 mm.
  • the degree of swelling of the obtained adsorbent in 25 ° C. water was 125%.
  • the insoluble matter was removed by filtering with a stainless mesh cartridge filter (TMP-2, manufactured by Advantech), and 5 g of the obtained hydrophilic polymer adsorbent was added to 1 L of the filtered water at 4 ° C. Shaking time.
  • Example 1-3 75 parts of ethylene-vinyl alcohol copolymer (“E-105B” manufactured by Kuraray Co., Ltd.) and 25 parts of polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) were tested at 210 After melt-kneading at 0 ° C., a pulverization treatment was performed to obtain a composite having a particle size of 0.1 to 0.2 mm.
  • This composite was subjected to a crosslinking treatment with a 25% solution of an epoxy compound (Denacol EX-810 (trade name) manufactured by Nagase ChemteX Corp.) at 2% to obtain a target adsorbent (particle diameter of 0.1 to 0.2 mm). )
  • the degree of swelling of the obtained adsorbent in 25 ° C. water was 82%.
  • the water to be treated was adsorbed and filtered in the same manner as in Example 1-2.
  • the long-term water permeability was A. The results are shown in Table 1.
  • Table 1 When the molecular weight distribution of the organic substance contained in the water to be used used in Example 1-3 was measured by LC-OCD, a spectrum as shown in FIG. 1 was obtained.
  • Example 1-4 A vinyl alcohol polymer having a mercapto group at the end was synthesized by the method described in JP-A-59-187005. The content (degree of saponification) of the vinyl alcohol unit determined by 1H-NMR measurement was 98.5 mol%, and the viscosity average degree of polymerization measured according to JIS K6726 was 1500. Next, 563 g of water and 110 g of the above-mentioned terminal mercapto group-containing polyvinyl alcohol were charged, and the mixture was heated to 95 ° C. with stirring in a nitrogen atmosphere to dissolve the polyvinyl alcohol, and then cooled to room temperature.
  • the content of the polymerizable unsaturated monomer in the copolymer, that is, in the polymer was measured.
  • the ratio of the number of vinylbenzyltrimethylammonium chloride monomer units to the total number of monomer units was 10 mol%.
  • 50 g of an aqueous solution of the polymer was added, and ion exchange water was added to prepare a solid concentration of 15%.
  • This aqueous solution was cast on a polyethylene terephthalate film using an applicator and dried at 80 ° C. for 30 minutes. The film thus obtained was heat treated at 170 ° C. for 30 minutes to cause physical crosslinking.
  • the membrane was immersed in 1 L of an aqueous solution in which 350 g of sodium sulfate was dissolved, concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and the membrane was further immersed as a 3% aqueous solution of glutaraldehyde.
  • Crosslinking treatment was carried out at 3 ° C. for 3 hours.
  • the membrane was washed with ion exchange water and dried to obtain a membrane having a thickness of 70 ⁇ m. This film was cut into 2 mm squares to form adsorbents.
  • the degree of swelling of the obtained adsorbent in water at 25 ° C. was 30%.
  • the water to be treated was adsorbed and filtered in the same manner as in Example 1-2.
  • the long-term water permeability was B. The results are shown in Table 1.
  • Example 1-2 As an adsorbent, water treatment was performed in the same manner as in Example 1-2 except that a commercially available granular activated carbon (Charcoal activated, manufactured by Wako Pure Chemical Industries, Ltd.) having a swelling degree in water at 25 ° C. of 58% was used. As a result of evaluating the water permeability of the manufactured MF membrane (Asahi Kasei Co., Ltd., pore size: 0.1 ⁇ m), the long-term water permeability was C. The results are shown in Table 1.
  • PVDF MF was prepared by performing water treatment in the same manner as in Example 1-2 except that a commercially available anion adsorbent (Amberlite IR A400, manufactured by Sigma-Aldrich) having a degree of swelling of 98% in water at 25 ° C. was used.
  • a commercially available anion adsorbent Amberlite IR A400, manufactured by Sigma-Aldrich
  • the long-term water permeability was C. The results are shown in Table 1.
  • Example 1-5 As a result of evaluating the water permeability of a polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut off 100 kDa) using treated water adsorbed with the adsorbent used in Example 1-3, long-term water permeability The sex was A. The results are shown in Table 2.
  • PAN polyacrylonitrile
  • Comparative Example 1-1 long-term water permeability cannot be obtained unless a process for removing organic carbon is provided. Further, as seen in Comparative Examples 1-2 and 1-3, when an adsorbent mainly composed of a hydrophobic structure such as commercially available activated carbon or ion exchange resin is used, part of organic carbon can be removed. However, since the removal ability of biopolymer is low, sufficient long-term water permeability cannot be obtained.
  • the crosslinked polymer having quaternary ammonium as in Comparative Example 1-4 has a problem that the degree of swelling is too high.
  • Examples 2-1 to 2-10 Comparative Examples 2-1 to 2-5, Examples 3-1 to 3-5, and Comparative Examples 3-1 to 3-3, the adsorption characteristics and regeneration characteristics of the adsorbents are shown. evaluated. The evaluation of the degree of swelling, the average particle diameter of the adsorbent, and the average fiber diameter were evaluated by the methods performed for Examples 1-1 to 1-5.
  • Adsorption rate of biopolymer Adsorption rate of biopolymer
  • Adsorption evaluation of sodium alginate was carried out as a biopolymer model substance.
  • 1 L of model river water 1 concentration of sodium alginate was obtained from 5.0 g of the adsorbent obtained in each Example and Comparative Example (the mass in the state dried in a vacuum dryer for 12 hours, the same in the following description).
  • the supernatant before and after shaking was analyzed by LC-OCD, and the adsorption rate of sodium humate as humic substance by the adsorbent was evaluated as follows.
  • Humic acid adsorption rate (sodium humate concentration before adsorption evaluation ⁇ sodium humate concentration after adsorption evaluation) / sodium humate concentration before adsorption evaluation ⁇ 100 (%)
  • Ratio of adsorption rate of biopolymer and humic substance adsorption rate of biopolymer / adsorption rate of humic substance
  • polyethyleneimine manufactured by Nippon Shokubai Co., Ltd., “Epomin SP”
  • this particle was subjected to a crosslinking treatment with a 25% solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) for 1 hour, filtered and stirred with a large amount of hot water at 80 ° C.
  • the target adsorbent 2-1 was obtained as shown in Table 3.
  • the obtained adsorbent had a degree of swelling in 25 ° C. water of 105% and an average particle size of 0.7 mm.
  • the obtained adsorbent 2-1 was immersed and shaken in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent was filtered off, immersed in a 0.25% NaCl aqueous solution adjusted to 60 ° C., and shaken for 24 hours to regenerate the adsorbent. Thereafter, the regenerated adsorbent was collected by filtration.
  • the regenerated adsorbent collected by filtration was immersed and infiltrated in the model river water 1, and the sodium alginate adsorption test was performed again.
  • Table 4 shows the adsorption rate of sodium alginate and sodium humate of the obtained adsorbent and the adsorption rate of sodium alginate of the regenerated adsorbent.
  • this particle was subjected to a crosslinking treatment with a 25% solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) for 1 hour, filtered and stirred with a large amount of hot water at 80 ° C.
  • the target adsorbent 2-2 was obtained as shown in Table 3.
  • the obtained adsorbent had a degree of swelling in 25 ° C. water of 88% and an average particle size of 0.6 mm.
  • the obtained adsorbent 2-2 was immersed and shaken in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent was filtered, immersed in water adjusted to 80 ° C., shaken for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
  • the regenerated adsorbent collected by filtration was immersed in the model river water 1 and shaken, and an adsorption test for sodium alginate was performed again.
  • Table 4 shows evaluation results of adsorption and regeneration of the obtained adsorbent.
  • Example 2-3 As shown in Table 4, the adsorption and regeneration were evaluated in the same manner as in Example 2-2, except that the sample was immersed in a 0.25% NaCl aqueous solution adjusted to 25 ° C. and shaken for 24 hours. It was. The evaluation results are shown in Table 4.
  • Example 2-4 Adsorption and regeneration were evaluated in the same manner as in Example 2-2, except that the sample was immersed in water adjusted to 70 ° C. and shaken for 1 hour. The evaluation results are shown in Table 4.
  • this particle was subjected to a crosslinking treatment with a 25% solution of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, filtered, and then immersed in a large amount of hot water at 80 ° C.
  • an epoxy compound manufactured by Nagase ChemteX Corp., “Denacol EX-810”
  • the target adsorbent 2-3 was obtained as shown in Table 3.
  • the resulting adsorbent had a degree of swelling in 25 ° C. water of 46% and an average particle size of 0.5 mm.
  • the obtained adsorbent 2-3 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
  • the adsorbent is filtered off, immersed in a 2.5% Na 2 CO 3 aqueous solution adjusted to 60 ° C. and shaken for 24 hours to regenerate the adsorbent. went. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
  • the regenerated adsorbent collected by filtration was immersed in the model river water 1 and shaken, and an adsorption test for sodium alginate was performed again.
  • Table 4 shows evaluation results of adsorption and regeneration of the obtained adsorbent.
  • Example 2-6 In Example 2-1, Example 2 was performed except that the adsorbent after the crosslinking treatment was washed with a large amount of 3.5% NaCl 80 ° C. hot water and Model Seawater 1 and Model Seawater 2 were used. The adsorption test was conducted in the same manner as -1. After the adsorption process of sodium alginate from the model seawater 1, the adsorbent was filtered off, immersed in water adjusted to 90 ° C., shaken for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration. The regenerated adsorbent was immersed in the model seawater 1 and shaken, and an adsorption test for sodium alginate was performed again. Table 4 shows evaluation results of adsorption and regeneration of the obtained adsorbent.
  • Examples 2-1 to 2-5 can adsorb both sodium alginate and sodium humate from the model river water, and are particularly excellent in sodium alginate adsorbability. .
  • the ratio (A) / (B) of the adsorption rate (A) of sodium alginate and the adsorption rate (B) of sodium humate is 1.5 times or more. Therefore, the adsorbent of the present invention suggests that the biopolymer can be adsorbed efficiently even when, for example, more humic substances are present than the biopolymer.
  • sodium alginate can be adsorbed at a high adsorption rate even from model seawater 1.
  • Examples 2-1 to 2-6 when the regeneration treatment is performed on the adsorbent on which sodium alginate is adsorbed, the adsorbent after the regeneration treatment again adsorbs sodium alginate with a high adsorption rate.
  • the regeneration efficiency is 70% or more in Examples 2-1 to 2-2 and 2-4 to 2-6, and in particular, Examples 2-1 to 2-2 and 2-5 to In 2-6, it is 95% or more.
  • the temperature of the aqueous medium used in the regeneration treatment is 50 ° C. or higher, the regeneration efficiency tends to be high.
  • TMP-2 stainless mesh cartridge filter
  • Example 2-8 The adsorbent 2-2 after contact with the raw water in Example 2-7 was recovered by filtration, and the NaCl 2 . After regenerating for 24 hours using a 5% aqueous solution, it was again contacted with raw water in the same manner as in Example 2-7 to obtain treated water.
  • the long-term water permeability was A. The results are shown in Table 6.
  • TMP-2 stainless mesh cartridge filter with an exclusion diameter of 2 ⁇ m.
  • Example 2-10 The adsorbent 2-2 that had been brought into contact with the raw water in Example 2-9 was collected by filtration, regenerated for 1 hour using water at 80 ° C., and then again with the raw water as in Example 2-7. It was made to contact and the treated water was obtained.
  • PAN polyacrylonitrile
  • UF membrane As a result of evaluating the water permeability of a polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut-off 100 kDa), the long-term water permeability was A. The results are shown in Table 6.
  • Example 2-5 Evaluation was performed in the same manner as in Example 2-7, except that a commercially available granular activated carbon (manufactured by Kuraray Chemical Co., Ltd., “Kuraray Coal GW20 / 40”) was used as the adsorbent.
  • the long-term water permeability was B. The results are shown in Table 5.
  • the particles were subjected to a crosslinking treatment with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, and after filtration, a large amount of NaCl 3.5 ° C. at 80 ° C.
  • the intended adsorbent 3-1 was obtained by immersing in a 100% aqueous solution and washing with stirring.
  • the degree of swelling of the obtained adsorbent in 25 ° C. water was 97% and the average particle size was 0.7 mm.
  • the obtained adsorbent 3-1 was immersed and shaken in each of model seawater 1 and model 2, and the adsorption rate of sodium alginate and sodium humate was determined.
  • the evaluation results are shown in Table 8.
  • the particles were subjected to a crosslinking treatment with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, and after filtration, a large amount of NaCl 3.5 ° C. at 80 ° C.
  • the intended adsorbent 3-2 was obtained by immersing in a 100% aqueous solution and washing with stirring.
  • the obtained adsorbent had a degree of swelling in 25 ° C. water of 88% and an average particle size of 0.6 mm.
  • the obtained adsorbent 3-2 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined.
  • the evaluation results are shown in Table 8.
  • the particles were subjected to a crosslinking treatment with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, and after filtration, a large amount of NaCl 3.5 ° C. at 80 ° C.
  • the intended adsorbent 3-3 was obtained by immersion in an aqueous solution of 100% and washing with stirring.
  • the obtained adsorbent had a degree of swelling in 25 ° C. water of 110% and an average particle diameter of 0.8 mm.
  • the obtained adsorbent 3-3 was immersed and shaken in each of model brackish water 1 and model brackish water 2, and the adsorption rate of sodium alginate and sodium humate was determined.
  • the evaluation results are shown in Table 8.
  • the resin composition was such that these resins were dissolved in water.
  • the solution was wet-spun into a saturated sodium sulfate bath at 40 ° C. from a nozzle having a diameter of 0.08 mm and a pore number of 1000, and taken up at a speed of 15 m / min.
  • the formed yarn was further wet-drawn 2 times, dried at 130 ° C., and subjected to dry heat drawing 5 times at 230 ° C.
  • This fiber was further immersed in a 40 ° C. solution of 1% glutaraldehyde and 2% maleic acid for crosslinking treatment, then washed with water, then washed with an aqueous NaOH solution, and further immersed in an aqueous 3.5% NaCl solution.
  • the target adsorbent 3-4 (average fiber diameter 10 ⁇ m, fiber length 3 cm) was obtained by washing with stirring. The degree of swelling of the obtained adsorbent in 25 ° C. water was 65%.
  • the obtained adsorbent 3-4 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined.
  • the evaluation results are shown in Table 8.
  • Example 3-5 A vinyl alcohol polymer having a mercapto group at the end was synthesized by the method described in JP-A-59-187005.
  • the vinyl alcohol unit content (degree of saponification) determined by 1 H-NMR measurement was 98.5 mol%, and the viscosity average degree of polymerization measured according to JIS K6726 was 1500.
  • 563 g of water and 110 g of the above-mentioned terminal mercapto group-containing polyvinyl alcohol were charged, and the mixture was heated to 95 ° C. with stirring in a nitrogen atmosphere to dissolve the polyvinyl alcohol, and then cooled to room temperature.
  • the content of the polymerizable unsaturated monomer in the copolymer that is, in the polymer
  • the ratio of the number of vinylbenzyltrimethylammonium chloride monomer units to the total number of monomer units was 10 mol%.
  • 50 g of an aqueous solution of the polymer was added, and ion exchange water was added to prepare a solid concentration of 15%.
  • This aqueous solution was cast on a polyethylene terephthalate film using an applicator and dried at 80 ° C. for 30 minutes. The film thus obtained was heat treated at 170 ° C. for 30 minutes to cause physical crosslinking.
  • the membrane was immersed in 1 L of an aqueous solution in which 350 g of sodium sulfate was dissolved, concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and the membrane was further immersed as a 3% aqueous solution of glutaraldehyde.
  • Crosslinking treatment was carried out at 3 ° C. for 3 hours.
  • the membrane was washed with ion-exchanged water and a 3.5% aqueous solution of NaCl and dried to obtain a membrane having a thickness of 70 ⁇ m.
  • This membrane was cut into 2 mm squares to obtain the intended adsorbent 3-5 as shown in Table 7.
  • the degree of swelling of the obtained adsorbent in water at 25 ° C. was 30%.
  • the obtained adsorbent 3-5 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined.
  • the evaluation results are shown in Table 8.
  • [Comparative Example 3-2] Commercially available synthetic zeolite with a degree of swelling in water at 25 ° C. of 27% (manufactured by Tosoh Corporation, “synthetic zeolite F-9”, average particle size: 0.9 mm) in a large amount of 80 ° C. NaCl 3.5% aqueous solution. After soaking, stirring and washing, an adsorbent 3-7 was obtained. The obtained adsorbent 3-7 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8, and the adsorbent 3-7 had little adsorption performance for sodium alginate.
  • both sodium alginate and sodium humate can be adsorbed from the model water containing sodium chloride.
  • the ratio (A) / (B) of the adsorption rate (A) of sodium alginate and the adsorption rate (B) of sodium humate is 1.5 times or more. Therefore, the adsorbent of the present invention suggests that the biopolymer can be adsorbed efficiently even when, for example, more humic substances are present than the biopolymer.
  • Examples 3-1 to 3-3 it is possible to adsorb sodium alginate with a high adsorption rate because an ethylene-vinyl alcohol copolymer is used as the main skeleton as the hydrophilic polymer. . Further, as shown in Example 3-4, sodium alginate can be adsorbed at a high adsorption rate even in a fibrous form.
  • Example 3-6 According to Example 3-1, after adsorbing sodium alginate on the adsorbent 3-1, using model water 1, the adsorbent was filtered off. Next, the adsorbent separated by filtration was immersed in pure water adjusted to 80 ° C. and shaken for 1 hour to perform a regeneration treatment. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was obtained again using model water 1 in the same manner as in Example 3-1. Table 9 shows the evaluation results.
  • Example 3-7 In accordance with Example 3-2, model water 1 was used to adsorb sodium alginate on the adsorbent 3-2, and then the adsorbent was filtered off. Next, the adsorbent separated by filtration was immersed in pure water adjusted to 90 ° C. and shaken for 1 hour to perform a regeneration treatment. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was obtained again using model water 1 in the same manner as in Example 3-1. Table 9 shows the evaluation results.
  • Example 3-8 According to Example 3-3, model a brackish water 1 was used to adsorb sodium alginate on the adsorbent 3-3, and then the adsorbent was filtered off. Subsequently, the adsorbent separated by filtration was immersed in a 0.25% NaCl aqueous solution adjusted to 60 ° C. and shaken for 24 hours to perform a regeneration treatment. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was determined again using model brackish water 1 in the same manner as in Example 3-1. Table 9 shows the evaluation results.
  • a hydrophilic polymer adsorbent capable of adsorbing organic carbon, and in particular, capable of efficiently adsorbing biopolymers that have been difficult to adsorb conventionally.
  • Such a composition can be effectively used as an organic carbon adsorbent (particularly, a biopolymer adsorbent) when various raw waters are treated with water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Water Treatment By Sorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Provided are: an adsorbent which has adsorptivity for organic carbon (in particular, substances causing membrane fouling) contained in raw water obtained from natural environments or artificial environments; and a water treatment method in which the adsorbent is used. The adsorbent is a hydrophilic polymeric adsorbent, has a degree of swelling in 25°C water of 20-500%, and has a functional group capable of forming a bond with at least some components of the organic carbon contained in water to be treated (hereinafter, referred to as bond-forming group). The water treatment method includes at least an adsorption step in which organic-carbon-containing water to be treated is brought into contact with the hydrophilic polymeric adsorbent to adsorb the organic carbon thereonto.

Description

親水性高分子吸着材およびそれを用いた水処理方法Hydrophilic polymer adsorbent and water treatment method using the same 関連出願Related applications
 本願は、2013年11月25日に出願した特願2013-243150の優先権、2014年3月17日に出願した特願2014-053175の優先権、および2014年3月17日に出願した特願2014-053176の優先権を主張するものであり、その全体を参照により本出願の一部をなすものとして引用する。 This application is based on the priority of Japanese Patent Application No. 2013-243150 filed on November 25, 2013, the priority of Japanese Patent Application No. 2014-053175 filed on March 17, 2014, and the patent application filed on March 17, 2014. This application claims the priority of application 2014-053176, which is incorporated by reference in its entirety as a part of this application.
 本発明は、自然環境下または人工環境下から得られる原水中に含まれる有機体炭素(特に、膜ファウリングを生じる原因物質)に対して吸着性を有する吸着材、およびそれを用いた水処理方法に関する。 The present invention relates to an adsorbent having adsorptivity to organic carbon (particularly a causative substance that causes membrane fouling) contained in raw water obtained from a natural environment or an artificial environment, and a water treatment using the same. Regarding the method.
 自然環境下または人工環境下から得られる原水に対して水処理を行う場合、そのような原水には、溶存有機炭素(DOC:Dissolved Organic carbon)が存在している。特許文献1によると、DOCは、有機炭素、有機着色剤、及び天然の有機物質を包含する用語であるとともに、植物残留物の分解により形成される有機化合物の混合物であるフミン酸及びフルボ酸のようなフミン質をも包含する用語であり、DOCを構成する主要な化合物及び材料は可溶性であるため、水から容易に分離できないとされている。そして特許文献1では;a.溶解された有機炭素を含む水にイオン交換樹脂を添加し;b.前記樹脂上への前記溶解された有機炭素の吸着を可能にするために前記水に前記樹脂を分散し;そしてc.前記溶解された有機炭素により負荷された樹脂を前記水から分離する工程により、溶解された有機炭素を水から除去する方法を提案している。さらに、d.有機炭素が負荷された樹脂を再生する工程も提案されている。 When water treatment is performed on raw water obtained from a natural environment or an artificial environment, dissolved organic carbon (DOC) exists in such raw water. According to Patent Document 1, DOC is a term encompassing organic carbon, organic colorants, and natural organic substances, and humic acid and fulvic acid, which is a mixture of organic compounds formed by decomposition of plant residues. Such humic substances are also included, and the main compounds and materials constituting the DOC are soluble and cannot be easily separated from water. And in patent document 1; a. Adding an ion exchange resin to water containing dissolved organic carbon; b. Dispersing the resin in the water to allow adsorption of the dissolved organic carbon onto the resin; and c. It proposes a method for removing dissolved organic carbon from water by separating the resin loaded with the dissolved organic carbon from the water. And d. A process for regenerating a resin loaded with organic carbon has also been proposed.
 一方、浄水、超純水、医薬用水、家庭用浄水、排水浄化など水処理の分野で限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、逆浸透(RO)膜が普及しつつある。これらの膜ろ過により、高度な水処理を行うことが可能であるが、その一方で水処理に用いられた膜は、運転時間の経過に伴い膜のファウリングが生ずる。
 また、有機体炭素による膜汚染であるバイオファウリングは、物理的に不可逆的なファウリングであるため、現在、膜ろ過による水処理において大きな問題となっている。
On the other hand, ultrafiltration (UF) membrane, microfiltration (MF) membrane, nanofiltration (NF) membrane, reverse osmosis (RO) in the field of water treatment such as water purification, ultrapure water, pharmaceutical water, domestic water purification, wastewater purification, etc. Membranes are becoming popular. Although these membrane filtrations allow high-level water treatment, on the other hand, membranes used for water treatment cause membrane fouling as the operating time elapses.
Biofouling, which is membrane contamination with organic carbon, is a physically irreversible fouling and is currently a major problem in water treatment by membrane filtration.
 特に、逆浸透(RO)膜を用いて海水などのかん水を淡水化する装置について、社会的な需要が増加している。膜ろ過による海水の淡水化において、海水中に存在する無機物や有機物による膜ファウリングは、造水コスト上昇に繋がる重要な問題である。 Especially, there is an increasing social demand for a device that desalinates brine such as seawater using a reverse osmosis (RO) membrane. In the desalination of seawater by membrane filtration, membrane fouling due to inorganic substances and organic substances present in seawater is an important problem that leads to an increase in water production costs.
 上記問題を解決するため、活性炭処理や多孔質無機吸着材による吸着処理、凝集処理、オゾン処理を用いた処理などをろ過膜の前段に設ける水処理方法が提案されている。しかし、活性炭処理や多孔質無機吸着材による吸着処理では、有機体炭素の吸着性が不十分である。また、凝集処理は、有機体炭素濃度が高くなると、塩化第二鉄などの凝集剤を多量に添加する必要があるという欠点を有している。また、親水性の高い有機体炭素の凝集が不完全になるという問題を有している。オゾン処理は、臭素酸などの消毒副生成物の問題があり、代替技術が求められている。 In order to solve the above problems, a water treatment method has been proposed in which an activated carbon treatment, an adsorption treatment with a porous inorganic adsorbent, a coagulation treatment, a treatment using ozone treatment, or the like is provided in the front stage of the filtration membrane. However, the adsorptivity of organic carbon is insufficient in the activated carbon treatment or the adsorption treatment with the porous inorganic adsorbent. In addition, the agglomeration treatment has a drawback that a large amount of an aggregating agent such as ferric chloride needs to be added when the organic carbon concentration increases. Further, there is a problem that aggregation of organic carbon having high hydrophilicity becomes incomplete. Ozone treatment has the problem of disinfection by-products such as bromic acid, and alternative techniques are required.
 近年、膜ろ過におけるファウリング物質に関する詳細な解析がなされており、非特許文献1では、物理的に不可逆な膜ファウリングの原因物質は、有機体炭素のうち、フミン酸やフルボ酸などの芳香族環を有する疎水性物質よりも、比較的親水性が高い有機体炭素である糖類やたんぱく質などのバイオポリマーが主因であることが報告されている。また、非特許文献2では、RO膜の透過性能を低下させる現象は、微生物の繁殖によるバイオファウリングなどにより引き起こされ、バイオファウリングは微生物の栄養分になる多糖類などが大きく寄与していることが報告されている。 In recent years, detailed analysis has been made on fouling substances in membrane filtration. In Non-Patent Document 1, the causative substances of physically irreversible membrane fouling are aromatic carbons such as humic acid and fulvic acid among organic carbons. It has been reported that biopolymers such as saccharides and proteins, which are organic carbons having relatively higher hydrophilicity than hydrophobic substances having a family ring, are the main causes. Further, in Non-Patent Document 2, the phenomenon that the RO membrane permeation performance is reduced is caused by biofouling caused by the growth of microorganisms, and the biofouling is greatly contributed by polysaccharides that are nutrients for microorganisms. Has been reported.
 糖類の吸着除去技術については、例えば、特許文献2では、コロイド状の吸着剤を用いた除去方法が提案されている。特許文献3ではゼオライトや活性炭などが例示され、再生方法も提案されている。また、特許文献4では、水中で膨潤し実質的に水に溶解しないカチオン性ポリマーからなる粒子を吸着材として用いる方法が提案されている。 For example, Patent Document 2 proposes a removal method using a colloidal adsorbent as a technique for adsorbing and removing saccharides. Patent Document 3 exemplifies zeolite and activated carbon, and a regeneration method is also proposed. Patent Document 4 proposes a method of using, as an adsorbent, particles made of a cationic polymer that swells in water and does not substantially dissolve in water.
特表平10-504995号公報Japanese National Patent Publication No. 10-504995 特開2013-223847号公報JP 2013-223847 A 特開2013-56286号公報JP 2013-56286 A 特許第5218731号公報Japanese Patent No. 5218731
 しかし、特許文献1の発明の吸着材は、主に疎水性の主骨格を有する吸着材が中心であるため、親水性が高い有機体炭素、特に物理的に不可逆な膜ファウリングの原因物質を効率よく除去することはできない。また、特許文献2の発明で用いられるコロイド状の吸着剤では、吸着剤の再生処理を行うことが困難である。また、特許文献3の発明では、表面の細孔を利用した物理吸着によりバイオポリマーを除去する方法が開示されているが、細孔を利用した物理吸着の場合、表面の細孔を利用した物理吸着によりあらゆる有機体炭素を吸着してしまうため、被処理水から、物理的に不可逆な膜ファウリングの原因物質を効率よく除去することができない。さらに、吸着材を飽和状態に吸着させると再生することが困難であるため、吸着および再生の双方を効率よく行うことは、実質的に不可能である。そもそも例示されたいずれの吸着材も親水性が高いバイオポリマーの吸着性能が不充分であるため、多量の吸着材が必要である。 However, since the adsorbent of the invention of Patent Document 1 is mainly an adsorbent having a hydrophobic main skeleton, organic carbon having a high hydrophilicity, especially a causative substance of physically irreversible membrane fouling is used. It cannot be removed efficiently. Further, with the colloidal adsorbent used in the invention of Patent Document 2, it is difficult to regenerate the adsorbent. The invention of Patent Document 3 discloses a method for removing a biopolymer by physical adsorption using surface pores. However, in the case of physical adsorption using pores, physics using surface pores is disclosed. Since all organic carbon is adsorbed by adsorption, it is not possible to efficiently remove physically irreversible substances causing membrane fouling from the water to be treated. Furthermore, since it is difficult to regenerate if the adsorbent is adsorbed in a saturated state, it is virtually impossible to perform both adsorption and regeneration efficiently. In the first place, any of the adsorbents illustrated in the first place requires a large amount of adsorbent because the adsorption performance of the highly hydrophilic biopolymer is insufficient.
 また、特許文献1および3の発明では、吸着材の再生方法も例示されているが、特許文献1に記載の方法では、疎水性樹脂を主骨格にした吸着材内部にまで再生媒体である水性媒体が充分に浸透しないため、再生効率が悪いことが懸念される。特許文献3においても、細孔内に詰まったバイオポリマーを効率的に除去し再生することは困難であると考えられる。 Further, in the inventions of Patent Documents 1 and 3, an adsorbent regeneration method is also exemplified. However, in the method described in Patent Document 1, an aqueous medium that is a regeneration medium is formed even inside an adsorbent having a hydrophobic resin as a main skeleton. Since the medium does not penetrate sufficiently, there is a concern that the reproduction efficiency is poor. Also in Patent Document 3, it is considered difficult to efficiently remove and regenerate the biopolymer clogged in the pores.
 さらに、特許文献4に開示されているカチオン性ポリマーからなる粒子は、水で膨潤していない時の粒子径に対して水中での粒子径は10~200倍(すなわち1000~200000%)程度という極めて大きな膨潤性を有しているため、吸着および再生処理の際の取扱い性が悪く、特に閉塞環境下では粒子同士の固着により通液性が低下するなどの問題点を有している。 Further, the particles made of the cationic polymer disclosed in Patent Document 4 have a particle size in water of about 10 to 200 times (that is, 1000 to 200000%) with respect to the particle size when not swollen with water. Since it has an extremely large swellability, it is difficult to handle during the adsorption and regeneration treatment, and has a problem that the liquid permeability is lowered due to adhesion between particles, particularly in a closed environment.
 本発明の目的は、上述した事情を鑑み、膜ろ過の膜汚染物質である有機体炭素、特に糖類やたんぱく質などの比較的親水性が高い有機体炭素(特にバイオポリマー)を効率的に吸着することができる高分子吸着材を提供することにある。 The object of the present invention is to efficiently adsorb organic carbon (especially biopolymer) having relatively high hydrophilicity, such as saccharides and proteins, which is a membrane contaminant of membrane filtration in view of the above-described circumstances. An object of the present invention is to provide a polymer adsorbent that can be used.
 本発明の別の目的は、このような高分子吸着材を用いて、効率よく水処理をすることができるだけでなく、膜の透水性を長期に維持可能な水処理方法を提供することにある。 Another object of the present invention is to provide a water treatment method that not only enables efficient water treatment using such a polymer adsorbent, but also maintains the water permeability of the membrane over a long period of time. .
 本発明のさらに別の目的は、自然環境下または人工環境下から得られる原水中に含まれる有機体炭素、特に物理的に不可逆な膜ファウリングの原因物質、その主因と報告されているバイオポリマーを効率よく吸着するとともに、簡便な方法により吸着後の吸着材を再生することができる水処理方法を提供することにある。 Still another object of the present invention is to provide organic carbon contained in raw water obtained from a natural environment or an artificial environment, in particular, a causative substance of physically irreversible membrane fouling, and a biopolymer reported to be the main cause thereof. It is to provide a water treatment method capable of efficiently adsorbing and adsorbing the adsorbent after adsorption by a simple method.
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、以下の構成を見出した。 The inventors of the present invention have intensively studied to achieve the above object, and as a result, have found the following configurations.
 すなわち、本発明の第1の構成は、
 25℃水中における膨潤度が20~500%(例えば、20~400%)であり、親水性高分子を主骨格として有しているとともに、被処理水中の有機体炭素のうち、少なくとも一部の成分との結合形成が可能な官能基(以下、結合形成基と称する)を有する親水性高分子吸着材である。
That is, the first configuration of the present invention is as follows.
The degree of swelling in water at 25 ° C. is 20 to 500% (for example, 20 to 400%), has a hydrophilic polymer as a main skeleton, and at least a part of organic carbon in the water to be treated. It is a hydrophilic polymer adsorbent having a functional group capable of forming a bond with a component (hereinafter referred to as a bond forming group).
 例えば、前記親水性高分子吸着材では、結合形成基が、吸着される成分に対して、水素結合、イオン結合、およびキレート結合からなる群から選択された少なくとも一種の結合の形成能を有していてもよい。また、結合形成基は、前記親水性高分子に含まれる親水性基とは異なる種類であってもよい。 For example, in the hydrophilic polymer adsorbent, the bond-forming group has an ability to form at least one bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond with respect to the adsorbed component. It may be. Further, the bond-forming group may be a different type from the hydrophilic group contained in the hydrophilic polymer.
 また、結合形成基は、例えば、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む結合形成基であってもよい。例えば、結合形成基は、アミノ基、4級アンモニウム基およびそれらの塩からなる群から選択された少なくとも一種であるのが好ましい。 The bond-forming group may be a bond-forming group containing at least one element selected from the group consisting of N, S, P and O, for example. For example, the bond-forming group is preferably at least one selected from the group consisting of amino groups, quaternary ammonium groups, and salts thereof.
 前記吸着工程で吸着される成分は、バイオポリマーを含んでいてもよい。また、吸着される成分は、Stefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定した、LC-OCDによる保留時間が、25~38分の成分を含んでいてもよい。 The component adsorbed in the adsorption step may contain a biopolymer. In addition, the adsorbed components include components with a retention time of 25 to 38 minutes measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885. May be.
 前記親水性高分子吸着材においては、吸着対象の成分がバイオポリマーである場合、特に、バイオポリマーの除去率が15%以上であってもよい。 In the hydrophilic polymer adsorbent, when the component to be adsorbed is a biopolymer, the removal rate of the biopolymer may be 15% or more.
 前記親水性高分子吸着材は、バイオポリマー吸着性が、フミン質吸着性よりも高いのが好ましく、例えば、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)およびフミン質モデル水(フミン酸ナトリウム濃度:4.3mg―C/Lのフミン酸ナトリウム水溶液)のそれぞれにおいて、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比が、(A)/(B)=1.0~10であってもよい。また、親水性高分子吸着材では、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)において、アルギン酸ナトリウムの吸着率(A)が、30%以上であってもよい。 The hydrophilic polymer adsorbent preferably has higher biopolymer adsorbability than humic adsorbent, for example, biopolymer model water at 25 ° C. (sodium alginate concentration: 4.3 mg-C / L sodium alginate) Aqueous solution) and humic model water (sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution), sodium alginate adsorption rate (A), sodium humate adsorption rate (B), The ratio of (A) / (B) may be 1.0 to 10. In addition, in the hydrophilic polymer adsorbent, in the biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) at 25 ° C., the adsorption rate (A) of sodium alginate is 30% or more. There may be.
 例えば、前記親水性高分子吸着材では、親水性高分子が、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール(例えば、ポリビニルホルマール、ポリビニルブチラール)、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、カチオン性ポリマー、アニオン性ポリマー、フェノール樹脂、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンのいずれかから選択される少なくとも1種であってもよい。 For example, in the hydrophilic polymer adsorbent, the hydrophilic polymer is polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl. At least one selected from ether, polyalkylene oxide, poly (meth) acrylamide, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinylpyrrolidone, cellulose derivative, dextrin, chitin, and chitosan Also good.
 例えば、高分子吸着材は、親水性高分子を主骨格として有し、その親水性高分子に対し、結合形成基が導入されたものであってもよい。また、高分子吸着材は、結合形成基含有高分子(A)と、親水性マトリクス高分子(B)とを含むポリマーアロイであってもよい。 For example, the polymer adsorbent may have a hydrophilic polymer as a main skeleton, and a bond-forming group is introduced into the hydrophilic polymer. The polymer adsorbent may be a polymer alloy including a bond-forming group-containing polymer (A) and a hydrophilic matrix polymer (B).
 この場合、親水性高分子または親水性マトリクス高分子(B)は、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、カチオン性ポリマー、アニオン性ポリマー、フェノール樹脂、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンからなる群から選択される少なくとも1種を含んでいてもよい。 In this case, the hydrophilic polymer or hydrophilic matrix polymer (B) includes polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, poly ( It may contain at least one selected from the group consisting of (meth) acrylamide, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinylpyrrolidone, cellulose derivative, dextrin, chitin, and chitosan.
 本発明の第2の構成は、
 有機体炭素を含有する被処理水と、前記親水性高分子吸着材とを接触させ、有機体炭素の少なくとも一部の成分を吸着させる吸着工程、を少なくとも備える水処理方法である。被処理水は、自然環境下または人工環境下から得られる原水であってもよく、例えば、淡水であってもよいし、塩類を含む水などであってもよい。
The second configuration of the present invention is as follows:
A water treatment method comprising at least an adsorption step in which water to be treated containing organic carbon is brought into contact with the hydrophilic polymer adsorbent to adsorb at least a part of the organic carbon. The water to be treated may be raw water obtained from a natural environment or an artificial environment, and may be, for example, fresh water or water containing salts.
 前記水処理方法は、さらに、吸着工程により得られた吸着処理水を、膜ろ過処理により膜ろ過する、膜ろ過工程を備えていてもよい。膜ろ過工程は、限外ろ過(UF)膜、精密ろ過(MF)膜、ナノろ過(NF)膜、および逆浸透(RO)膜からなる群から選択される少なくとも一種の膜を用いて、一段または多段にて行われてもよい。 The water treatment method may further include a membrane filtration step in which the adsorption treated water obtained in the adsorption step is subjected to membrane filtration by a membrane filtration treatment. The membrane filtration step is performed using at least one membrane selected from the group consisting of an ultrafiltration (UF) membrane, a microfiltration (MF) membrane, a nanofiltration (NF) membrane, and a reverse osmosis (RO) membrane. Or it may be performed in multiple stages.
 前記水処理方法は、さらに、吸着工程後の吸着材を水性媒体と接触させ、前記吸着材を再生する再生工程を備えていてもよい。 The water treatment method may further include a regeneration step in which the adsorbent after the adsorption step is brought into contact with an aqueous medium to regenerate the adsorbent.
 再生工程で用いられる水性媒体は、水、または金属イオン含有水溶液(例えば、アルカリ金属イオン含有水溶液など)であってもよい。また、水性媒体の温度は、40℃~110℃程度であってもよい。 The aqueous medium used in the regeneration step may be water or a metal ion-containing aqueous solution (for example, an alkali metal ion-containing aqueous solution). The temperature of the aqueous medium may be about 40 ° C. to 110 ° C.
 なお、本発明は別の構成として、水処理に用いられる高分子吸着材であって、
 前記高分子吸着材は、25℃水中における膨潤度が20~500%である親水性高分子吸着材であり、
 前記高分子吸着材は、原水中に含まれる有機体炭素の少なくとも一部の成分を吸着することが可能であるとともに、吸着工程の後、再生して用いることが可能な高分子吸着材を包含してもよい。
In addition, as another configuration, the present invention is a polymer adsorbent used for water treatment,
The polymer adsorbent is a hydrophilic polymer adsorbent having a degree of swelling of 20 to 500% in water at 25 ° C.,
The polymer adsorbent includes a polymer adsorbent that can adsorb at least a part of organic carbon contained in raw water and can be regenerated after the adsorption step. May be.
 本発明はさらに別の構成として、原水中に含まれる有機体炭素の少なくとも一部の成分を吸着している前記高分子吸着材を、水性媒体との接触により再生する、吸着材の再生方法を包含してもよい。 According to another aspect of the present invention, there is provided an adsorbent regeneration method in which the polymer adsorbent adsorbing at least part of organic carbon contained in raw water is regenerated by contact with an aqueous medium. It may be included.
 本発明の第1の構成では、特定の親水性高分子吸着材を用いることにより、従来除去が困難であった原水中に含まれる有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質(特に糖類やたんぱく質といった親水性が高いバイオポリマー)を効率よく吸着することができる。
 本発明の第2の構成では、前記親水性高分子吸着材を用いて水処理を行うことにより、吸着処理水(吸着処理が行われた水)中の有機体炭素、特に膜ファウリングの原因物質の量を低減することができる。
 必要に応じて、吸着工程後の吸着材は、水性媒体との接触により、簡単に吸着材から吸着物質を脱離させて再生することができる。さらに、必要に応じて、再生された吸着材は、再び吸着処理へ有効に用いることができる。
In the first configuration of the present invention, by using a specific hydrophilic polymer adsorbent, organic carbon contained in raw water, which has been difficult to remove in the past, particularly physically irreversible membrane fouling is generated. Causative substances (especially highly hydrophilic biopolymers such as sugars and proteins) can be adsorbed efficiently.
In the second configuration of the present invention, by performing water treatment using the hydrophilic polymer adsorbent, organic carbon in the adsorption treated water (water subjected to the adsorption treatment), particularly the cause of membrane fouling. The amount of substance can be reduced.
If necessary, the adsorbent after the adsorption step can be regenerated by simply desorbing the adsorbent from the adsorbent by contact with an aqueous medium. Furthermore, if necessary, the regenerated adsorbent can be effectively used again for the adsorption treatment.
 さらに、本発明の第2の構成の水処理方法では、前記吸着処理を経た吸着処理水を用いることにより、各種膜ろ過工程と組み合わせた場合、簡便な方法によって、膜ファウリング、特に物理的に不可逆な膜ファウリングが生じるのを抑制し、ろ過膜の透水性を長期にわたり維持することが可能である。 Furthermore, in the water treatment method of the second configuration of the present invention, when using the adsorption treated water that has undergone the adsorption treatment, when combined with various membrane filtration steps, membrane fouling, particularly physically, can be achieved by a simple method. It is possible to suppress the occurrence of irreversible membrane fouling and maintain the water permeability of the filtration membrane over a long period of time.
 特に、前記親水性高分子吸着材は、カラムへ充填することも可能であり、その場合、水処理方法では、カラム使用による有機体炭素除去工程と、膜ろ過工程を組み合わせることにより、簡便な方法によって、長期に渡り透水性を維持することができる。 In particular, the hydrophilic polymer adsorbent can also be packed into a column. In that case, in the water treatment method, a simple method is obtained by combining the organic carbon removal step by using the column and the membrane filtration step. Thus, the water permeability can be maintained for a long time.
実施例1-3で用いられた被処理水について、高速液体クロマトグラフィー(HPLC)に湿式全有機炭素計測器(OCD計)を接続したLC-OCD(DOC-Labor製)により測定された有機体炭素の分子量分布スペクトルを示すグラフである。Organic matter measured by LC-OCD (manufactured by DOC-Labor) connected to a wet total organic carbon measuring instrument (OCD meter) to high performance liquid chromatography (HPLC) with respect to the water to be treated used in Example 1-3 It is a graph which shows the molecular weight distribution spectrum of carbon.
(親水性高分子吸着材)
 本発明の第1実施形態である、親水性高分子吸着材について、説明する。
 第1実施形態の親水性高分子吸着材は、25℃水中における膨潤度が20~500%であり、被処理水中の有機体炭素のうち、少なくとも一部の成分との結合形成が可能な官能基(以下、結合形成基と称する)を有する親水性高分子吸着材である。
(Hydrophilic polymer adsorbent)
The hydrophilic polymer adsorbent which is the first embodiment of the present invention will be described.
The hydrophilic polymer adsorbent according to the first embodiment has a swelling degree of 20 to 500% in water at 25 ° C., and has a functionality capable of forming a bond with at least a part of the organic carbon in the water to be treated. It is a hydrophilic polymer adsorbent having a group (hereinafter referred to as a bond-forming group).
 親水性高分子を主骨格とすることで水に対する濡れ性が高まるとともに、適度な膨潤により、有機体炭素の少なくとも一部の成分、特に物理的に不可逆的な膜ファウリングを生じる原因物質が吸着材内部まで浸透することができる。それにより、内部の吸着性官能基も有効に活用でき、かつ、有機体炭素による目詰まりも起こり難いため、優れた有機体炭素除去能を発現することができる。 By using a hydrophilic polymer as the main skeleton, the wettability to water is increased, and at least some components of organic carbon, especially the causative substances that cause physically irreversible membrane fouling, are adsorbed by appropriate swelling. It can penetrate into the material. As a result, the internal adsorptive functional group can also be used effectively, and clogging with organic carbon is unlikely to occur, so that excellent organic carbon removing ability can be expressed.
 本発明で用いられる親水性高分子吸着材が作用するメカニズムは、定かではないが、以下のようなメカニズムが推測される。(i)親水性高分子を主骨格とすることで水に対する濡れ性が高まり、有機体炭素の少なくとも一部の成分、特に物理的に不可逆的な膜ファウリングを生じる原因物質が吸着材内部まで浸透し、(ii)浸透した成分は、この成分との結合形成が可能な基(結合形成基)により、水素結合、配位結合、キレート結合、イオン結合などの相互作用により捕捉され、吸着材は、有機体炭素の少なくとも一部の成分、特に物理的に不可逆的な膜ファウリングを生じる原因物質(特に、親水性が高く膜汚染の懸念物質と考えられ始めているバイオポリマー)を効率的に吸着することができる、と推測される。(iii)特に、親水性高分子吸着材の25℃水中での膨潤度が特定の範囲にあることで、吸着材内部に存在する結合形成基を有効に活用でき、かつ、有機体炭素による目詰まりも起こり難いため、優れた有機体炭素除去能を発現することができると考えられる。
 (iv)一方、従来のイオン交換樹脂では、ポリスチレンなどの疎水性高分子を主骨格として吸着性官能基を付与したものであるため、原水中に含まれる有機体炭素(特に親水性が高い有機体炭素)が疎水性高分子に対して接近することが困難であり、(v)その場合、接近することができないため、吸着材に水素結合、配位結合、イオン結合などの相互作用を発現する官能基を有する場合であっても、吸着材は原因物質を吸着することができないのではないか、と推測される。
Although the mechanism by which the hydrophilic polymer adsorbent used in the present invention acts is not clear, the following mechanism is assumed. (I) By using a hydrophilic polymer as the main skeleton, the wettability to water is increased, and at least a part of the organic carbon, particularly the causative substance that causes physically irreversible membrane fouling, can reach the inside of the adsorbent. (Ii) The infiltrated component is captured by an interaction such as a hydrogen bond, a coordination bond, a chelate bond, or an ionic bond by a group capable of forming a bond with this component (bond-forming group), and the adsorbent Efficiently removes at least some components of organic carbon, especially those that cause physically irreversible membrane fouling (especially biopolymers that are beginning to be considered to be highly hydrophilic and a concern for membrane contamination) It is presumed that it can be adsorbed. (Iii) In particular, since the degree of swelling of the hydrophilic polymer adsorbent in water at 25 ° C. is in a specific range, the bond-forming groups present in the adsorbent can be effectively used, and Since clogging hardly occurs, it is considered that excellent organic carbon removing ability can be expressed.
(Iv) On the other hand, since conventional ion exchange resins are provided with an adsorptive functional group using a hydrophobic polymer such as polystyrene as a main skeleton, organic carbon contained in the raw water (particularly highly hydrophilic) It is difficult for carbon (airframe) to approach hydrophobic polymers, and (v) in that case, it is not possible to approach, so that interactions such as hydrogen bonds, coordination bonds, and ionic bonds are expressed in the adsorbent. It is presumed that the adsorbent may not be able to adsorb the causative substance even if it has a functional group.
 さらに、膨潤度が所定の範囲に制御されているため、親水性高分子を主骨格とする場合であっても、過度な膨潤により吸着材の取扱い性が悪化することを抑制しつつ、水中における有機体炭素を効率よく吸着することが可能である。
 例えば、親水性高分子吸着材は、膨潤度が制御されているため、特許文献4に記載されている水中で膨潤し実質的に水に溶解しないカチオン性ポリマーと異なって、あらかじめ水への膨潤処理を行うことなく、被処理水と接触させてもよい。また、膨潤性が制御されているため、含水状態であったとしても、流通性に優れている。
Furthermore, since the degree of swelling is controlled within a predetermined range, even when a hydrophilic polymer is used as the main skeleton, while suppressing the deterioration of the handleability of the adsorbent due to excessive swelling, It is possible to adsorb organic carbon efficiently.
For example, since the hydrophilic polymer adsorbent has a controlled degree of swelling, unlike the cationic polymer described in Patent Document 4 that swells in water and does not substantially dissolve in water, the hydrophilic polymer adsorbent is previously swollen in water. You may make it contact with to-be-processed water, without performing a process. Moreover, since swelling property is controlled, even if it is a water-containing state, it is excellent in the distribution | circulation property.
 親水性高分子吸着材は、原水中に含まれる有機体炭素のうち、少なくとも一部の成分(特に物理的に不可逆的な膜ファウリングを生じる原因物質)との結合形成が可能な官能基(または結合形成基)を有している。結合形成基は、吸着成分との各種結合(例えば、水素結合、配位結合、キレート結合、イオン結合など)を形成することが可能である。このような各種結合により、前記成分を吸着材に対して吸着することができる。
 例えば、結合形成基としては、水素結合形成基、キレート形成基、カチオン性イオン交換基、アニオン性イオン交換基などが挙げられ、吸着材に対して、原水中に含まれる有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質への吸着性を付与することができる限り、特に限定されない。
The hydrophilic polymer adsorbent is a functional group capable of forming a bond with at least a part of the organic carbon contained in the raw water (especially a causative substance that causes physically irreversible membrane fouling) ( Or a bond-forming group). The bond-forming group can form various bonds (for example, hydrogen bond, coordination bond, chelate bond, ionic bond, etc.) with the adsorbing component. By such various bonds, the component can be adsorbed to the adsorbent.
For example, examples of the bond-forming group include a hydrogen bond-forming group, a chelate-forming group, a cationic ion-exchange group, and an anion ion-exchange group. The organic carbon contained in the raw water with respect to the adsorbent, particularly physical There is no particular limitation as long as adsorbability to a causative substance that causes irreversible membrane fouling can be imparted.
 結合形成基は、例えば、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む結合形成基であってもよい。
 具体的には、そのような官能基としては、アミノ基(1級アミノ基、2級アミノ基、3級アミノ基)、4級アンモニウム基、イミニウム基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基、水酸基、カルボキシル基、スルホネート基、スルホン酸基、スルホニウム基、メルカプト基、チオウレア基、ホスホネート基、ホスホン酸基、ホスホニウム基などが挙げられる。それらは塩の状態で存在していてもよい。これらの官能基は、単独でまたは二種以上組み合わせて存在していてもよい。これらのうち、好ましい官能基としては、アミノ基、4級アンモニウム基、イミニウム基、イミダゾール基、4級イミダゾリウム基、ピリジル基、4級ピリジニウム基およびそれらの塩が挙げられ、さらに好ましくはアミノ基、4級アンモニウム基およびそれらの塩が挙げられる。
The bond-forming group may be a bond-forming group containing at least one element selected from the group consisting of N, S, P and O, for example.
Specifically, such functional groups include amino groups (primary amino groups, secondary amino groups, tertiary amino groups), quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups. Group, quaternary pyridinium group, hydroxyl group, carboxyl group, sulfonate group, sulfonic acid group, sulfonium group, mercapto group, thiourea group, phosphonate group, phosphonic acid group, phosphonium group and the like. They may be present in a salt state. These functional groups may be present alone or in combination of two or more. Among these, preferred functional groups include amino groups, quaternary ammonium groups, iminium groups, imidazole groups, quaternary imidazolium groups, pyridyl groups, quaternary pyridinium groups, and salts thereof, more preferably amino groups. Quaternary ammonium groups and their salts are mentioned.
 親水性高分子吸着材は、親水性高分子を主骨格として有しており、上記親水性高分子を作製する際に結合形成基を重合や後変性により導入してもよく、結合形成基を有する成分と、親水性高分子成分とをアロイ化することにより結合形成基を導入してもよい。 The hydrophilic polymer adsorbent has a hydrophilic polymer as a main skeleton, and when the hydrophilic polymer is produced, a bond-forming group may be introduced by polymerization or post-modification. The bond-forming group may be introduced by alloying the component having a hydrophilic polymer component.
 例えば、親水性高分子吸着材は、親水性高分子を主骨格として有しており、親水性高分子自体が、その構造中に結合形成基を有していてもよい。
 その場合、親水性高分子吸着材は、結合形成基を含有するモノマー(またはその誘導体)を単独重合または共重合することにより、主鎖または側鎖に結合形成基を導入することが可能である。共重合に際しては、結合形成基を含有するモノマー(またはその誘導体)同士の共重合であってもよいし、結合形成基を含有するモノマー(またはその誘導体)と、結合形成基を含有しないモノマー(またはその誘導体)との共重合であってもよい。
 または、親水性高分子吸着材は、親水性高分子を主骨格として有しており、前記親水性高分子に対して、結合形成基が導入されたものであってもよい。その場合、親水性高分子を作製した後、後変性により結合形成基を導入してもよい。導入される結合形成基は、親水性高分子の親水性基とは、異なる種類の官能基であってもよい。
 結合形成基の導入される量は、該重合体中の単量体単位の総数に対して、2~100モル%、好ましくは、3~95モル%、より好ましくは、5~90モル%であってもよい。
For example, the hydrophilic polymer adsorbent may have a hydrophilic polymer as a main skeleton, and the hydrophilic polymer itself may have a bond-forming group in its structure.
In that case, the hydrophilic polymer adsorbent can introduce a bond-forming group into the main chain or side chain by homopolymerizing or copolymerizing a monomer (or a derivative thereof) containing the bond-forming group. . The copolymerization may be a copolymerization of monomers (or derivatives thereof) containing a bond-forming group, a monomer (or derivative thereof) containing a bond-forming group, and a monomer (not containing a bond-forming group). Or copolymerization thereof).
Alternatively, the hydrophilic polymer adsorbent may have a hydrophilic polymer as a main skeleton, and a bond forming group may be introduced into the hydrophilic polymer. In that case, after forming a hydrophilic polymer, a bond-forming group may be introduced by post-modification. The bond-forming group to be introduced may be a different type of functional group from the hydrophilic group of the hydrophilic polymer.
The amount of the bond-forming group introduced is 2 to 100 mol%, preferably 3 to 95 mol%, more preferably 5 to 90 mol%, based on the total number of monomer units in the polymer. There may be.
 好ましくは、高分子吸着材は、親水性高分子を主骨格として有し、その親水性高分子に対して、結合形成基が導入されたものであってもよい。または、主骨格として親水性高分子がマトリクス成分を構成するポリマーアロイなどであってもよい。
 ここで、親水性高分子は、Fedorの推算法により算出した凝集エネルギー密度(Ecoh)とモル分子容(V)を用いて、下記式にて算出された溶解度パラメータ(δ)が、22以上である高分子であってもよい。溶解度パラメータ(δ)は、好ましくは24以上であり、25以上がさらに好ましい。なお、溶解度パラメータの上限は特に限定されないが、例えば、35程度であってもよい。
 δ=[ΣEcoh/ΣV]1/2
 親水性高分子としては、例えば、繰り返し単位中に水酸基、エーテル基、カチオン性基、アニオン性基、アミド基等の親水性基を有する高分子などが挙げられる。
Preferably, the polymer adsorbent may have a hydrophilic polymer as a main skeleton and a bond-forming group is introduced into the hydrophilic polymer. Alternatively, a polymer alloy in which a hydrophilic polymer as a main skeleton constitutes a matrix component may be used.
Here, the hydrophilic polymer has a solubility parameter (δ) calculated by the following formula using the cohesive energy density (Ecoh) and molar molecular volume (V) calculated by the Fedor's estimation method. A certain polymer may be sufficient. The solubility parameter (δ) is preferably 24 or more, and more preferably 25 or more. The upper limit of the solubility parameter is not particularly limited, but may be about 35, for example.
δ = [ΣEcoh / ΣV] 1/2
Examples of the hydrophilic polymer include a polymer having a hydrophilic group such as a hydroxyl group, an ether group, a cationic group, an anionic group, and an amide group in a repeating unit.
 上記の親水性高分子としては、例えば、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール(例えば、ポリビニルホルマール、ポリビニルブチラール)、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、カチオン性ポリマー(例えば、ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミドアミンデンドリマー、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸塩、ポリヌクレオチドなど)、アニオン性ポリマー(例えば、ポリスチレンスルホン酸、ポリビニル硫酸、ポリ(メタ)アクリル酸、ポリマレイン酸、ポリアミック酸)、フェノール樹脂、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンからなる群より選ばれる少なくとも1種が好適に用いられる。
 これらのポリマーは、他のコモノマー単位(例、マレイン酸、イタコン酸、アクリル酸等の不飽和カルボン酸単位、シラノール基、アルデヒド基、又はスルホン酸基を有するモノマー単位など)を有していてもよい。該コモノマー単位の含有量は、全モノマー単位中10モル%以下であることが好ましく、5%モル以下であることがより好ましい。
Examples of the hydrophilic polymer include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (eg, polyvinyl formal, polyvinyl butyral), polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether, polyalkylene oxide, Poly (meth) acrylamide, cationic polymer (eg, polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide, polydiacryldimethylammonium halide , Polydimethylaminoethyl methacrylate hydrochloride, polynucleotide ), Anionic polymers (for example, polystyrene sulfonic acid, polyvinyl sulfate, poly (meth) acrylic acid, polymaleic acid, polyamic acid), phenol resin, polyamide, polyvinyl pyrrolidone, cellulose derivatives, dextrin, chitin, and chitosan At least one selected from the above is preferably used.
These polymers may have other comonomer units (eg, monomer units having unsaturated carboxylic acid units such as maleic acid, itaconic acid, acrylic acid, silanol groups, aldehyde groups, or sulfonic acid groups). Good. The content of the comonomer unit is preferably 10 mol% or less, more preferably 5% mol or less in all monomer units.
 親水性高分子の重量平均分子量は、高分子の種類に応じて適宜好ましい範囲を設定することが可能であるが、例えば、親水性高分子の重量平均分子量は、少なくとも5000以上(例えば、5000~100000)であってもよく、好ましくは10000以上であってもよい。なお、重量平均分子量は、例えばGPCを用いて求めることができる。 The weight average molecular weight of the hydrophilic polymer can be appropriately set in accordance with the type of the polymer. For example, the weight average molecular weight of the hydrophilic polymer is at least 5000 or more (for example, from 5000 to 100,000), preferably 10,000 or more. In addition, a weight average molecular weight can be calculated | required, for example using GPC.
 特に好ましい親水性高分子としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール(ポリビニルホルマール、ポリビニルブチラール)、及びポリアミド(例えば、ポリアミド6、ポリアミド10、ポリアミド6,6、ポリアミド11、ポリアミド12、ポリアミド6,12、ポリアミド6,10、ポリアミド6/6,6共重合体、ポリアミド6,6/6,10共重合体、ポリアミド6,11、ポリアミド6,6/6,10/6共重合体等)などが挙げられ、耐水性を有するだけでなく、有機体炭素(特にバイオポリマー)の吸着性能、成形性および親水性に優れる観点から、エチレン-ビニルアルコール共重合体が特に好ましい。 Particularly preferred hydrophilic polymers include polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal (polyvinyl formal, polyvinyl butyral), and polyamide (for example, polyamide 6, polyamide 10, polyamide 6,6, polyamide 11, polyamide). 12, polyamide 6,12, polyamide 6,10, polyamide 6 / 6,6 copolymer, polyamide 6,6 / 6,10 copolymer, polyamide 6,11, polyamide 6,6 / 6,10 / 6 An ethylene-vinyl alcohol copolymer is particularly preferable from the viewpoint of not only water resistance but also excellent organic carbon (particularly biopolymer) adsorption performance, moldability and hydrophilicity.
 エチレン-ビニルアルコール共重合体において、エチレン単位の含量は、全モノマー単位中20~60モル%であることが好ましく、より好ましくは25~55モル%(例えば25~50モル%)であってもよい。エチレン含量が少なすぎると、耐久性が悪くなるおそれがある。一方、エチレン含量が多すぎると、親水性が低下するおそれがある。 In the ethylene-vinyl alcohol copolymer, the content of ethylene units is preferably 20 to 60 mol%, more preferably 25 to 55 mol% (for example, 25 to 50 mol%) in all monomer units. Good. If the ethylene content is too small, the durability may deteriorate. On the other hand, when there is too much ethylene content, there exists a possibility that hydrophilicity may fall.
 なお、ポリビニルアルコールに関しては、粘度平均重合度で規定してもよく、30℃水溶液の粘度から求めた粘度平均重合度が、例えば100~15000程度の幅広い範囲から選択できる。耐久性を向上させる観点から、高重合度のものを用いるのが好ましく、その場合、例えば、粘度平均重合度は好ましくは800~13000程度、さらに好ましくは1000~10000程度であってもよい。 The polyvinyl alcohol may be defined by the viscosity average degree of polymerization, and the viscosity average degree of polymerization obtained from the viscosity of the 30 ° C. aqueous solution can be selected from a wide range of about 100 to 15000, for example. From the viewpoint of improving durability, those having a high degree of polymerization are preferably used. In this case, for example, the viscosity average degree of polymerization is preferably about 800 to 13000, and more preferably about 1000 to 10,000.
 また、ポリビニルアルコールのけん化度も、目的に応じて適宜選択でき特に限定されるものではないが、例えば、88モル%以上、好ましくは90モル%以上、さらに好ましくは95モル%以上であってもよい。特に耐久性を向上させる観点からは、けん化度98モル%以上のものが好ましい。 Further, the degree of saponification of polyvinyl alcohol can be appropriately selected according to the purpose and is not particularly limited. For example, it may be 88 mol% or more, preferably 90 mol% or more, more preferably 95 mol% or more. Good. In particular, from the viewpoint of improving durability, those having a saponification degree of 98 mol% or more are preferred.
 また、本発明の高分子吸着材は、上記親水性高分子をマトリクス成分とし、結合形成性官能基(結合形成基)を有する成分とアロイ化することにより、結合形成基を親水性高分子に導入したものであってもよい。導入の容易さの観点から、高分子吸着材は、結合形成基含有高分子(A)と親水性高分子マトリクス(B)のポリマーアロイであるのが好ましい。 Moreover, the polymer adsorbent of the present invention uses the above hydrophilic polymer as a matrix component and is alloyed with a component having a bond-forming functional group (bond-forming group) to convert the bond-forming group into a hydrophilic polymer. It may be introduced. From the viewpoint of ease of introduction, the polymer adsorbent is preferably a polymer alloy of a bond-forming group-containing polymer (A) and a hydrophilic polymer matrix (B).
[結合形成基含有高分子(A)]
 例えば、結合形成基含有高分子(または化学吸着性官能基含有高分子)(A)は、ポリスチレンスルホン酸(PSS)、ポリビニル硫酸(PVS)、ポリアクリル酸(PAA)、ポリメタクリル酸(PMA)、ポリマレイン酸、ポリアミック酸などのアニオン系ポリマーであってもよいし;ポリエチレンイミン、ポリアリルアミン、ポリビニルアミン、ポリアミドアミンデンドリマー、ポリピリジン、ポリビニルピリジン、ポリアミノ酸、ポリジアリルジメチルアンモニウムハライド、ポリビニルベンジルトリメチルアンモニウムハライド、ポリジアクリルジメチルアンモニウムハライド、ポリジメチルアミノエチルメタクリレート塩酸塩、ポリヌクレオチドなどのカチオン性ポリマーであってもよい。このような高分子は、単独でまたは二種以上組み合わせて使用してもよい。
[Bond Forming Group-Containing Polymer (A)]
For example, the bond-forming group-containing polymer (or chemisorbable functional group-containing polymer) (A) is polystyrene sulfonic acid (PSS), polyvinyl sulfate (PVS), polyacrylic acid (PAA), polymethacrylic acid (PMA). , Anionic polymers such as polymaleic acid and polyamic acid; polyethyleneimine, polyallylamine, polyvinylamine, polyamidoamine dendrimer, polypyridine, polyvinylpyridine, polyamino acid, polydiallyldimethylammonium halide, polyvinylbenzyltrimethylammonium halide Cationic polymers such as polydiacryldimethylammonium halide, polydimethylaminoethyl methacrylate hydrochloride, and polynucleotide may be used. Such polymers may be used alone or in combination of two or more.
 これらのうち、親水性マトリクス高分子と組み合わせて、原水中に含まれる有機体炭素、特に物理的に不可逆な膜ファウリングを生じる原因物質(特にバイオポリマー)をより効率よく吸着する観点から、上述のカチオン性ポリマーが好ましく、特に、高カチオン密度を有する高分子(例えば、ポリエチレンイミン、ポリアリルアミンなど)が好ましい。 Among these, from the viewpoint of more efficiently adsorbing organic carbon contained in raw water, particularly causative substances (particularly biopolymers) that cause physically irreversible membrane fouling, in combination with a hydrophilic matrix polymer. In particular, a polymer having a high cation density (for example, polyethyleneimine, polyallylamine, etc.) is preferable.
[親水性マトリクス高分子(B)]
 親水性マトリクス高分子(B)は、上述した所定の親水性高分子であってもよい。
[Hydrophilic matrix polymer (B)]
The hydrophilic matrix polymer (B) may be the predetermined hydrophilic polymer described above.
[結合形成基含有高分子(A)と親水性マトリクス高分子(B)との質量比]
 本発明の親水性高分子吸着材で、結合形成基含有高分子(A)と親水性高分子マトリクス(B)のアロイにおける、結合形成基含有高分子(A)と親水性マトリクス高分子(B)との割合は、高分子(A)が所定の範囲で分散する限り特に限定されないが、例えば、質量比で高分子(A)/高分子(B)=1/99~70/30程度であってもよく、好ましくは5/95~65/45程度、より好ましくは8/92~60/40程度であってもよい。高分子(A)が多すぎると、耐水性が低下する恐れがあり、高分子(A)が少なすぎると、吸着性能が低下する傾向にある。高分子(A)は、親水性マトリクス高分子(B)中に分散しているのが好ましい。
[Mass ratio between the bond-forming group-containing polymer (A) and the hydrophilic matrix polymer (B)]
In the hydrophilic polymer adsorbent of the present invention, the bond-forming group-containing polymer (A) and the hydrophilic matrix polymer (B) in the alloy of the bond-forming group-containing polymer (A) and the hydrophilic polymer matrix (B). ) Is not particularly limited as long as the polymer (A) is dispersed within a predetermined range. For example, the polymer (A) / polymer (B) is approximately 1/99 to 70/30 in mass ratio. It may be about 5/95 to 65/45, more preferably about 8/92 to 60/40. If the amount of the polymer (A) is too much, the water resistance may be lowered, and if the amount of the polymer (A) is too small, the adsorption performance tends to be lowered. The polymer (A) is preferably dispersed in the hydrophilic matrix polymer (B).
[その他の成分]
 なお、本発明において、有機体炭素の吸着性を有する親水性高分子吸着材は、本発明の効果を阻害しない範囲内で、樹脂成分または賦形成分として、その他のポリマー高分子を含んでいてもよい。また、本発明の親水性高分子吸着材は、必要に応じて、例えば、架橋剤、酸化防止剤、安定剤、滑剤、加工助剤、帯電防止剤、着色剤、消泡剤、分散剤などの各種添加剤を含んでいてもよい。
[Other ingredients]
In the present invention, the hydrophilic polymer adsorbent having organic carbon adsorptivity contains other polymer polymers as a resin component or a forming component within a range not impairing the effects of the present invention. Also good. In addition, the hydrophilic polymer adsorbent of the present invention is, for example, a cross-linking agent, an antioxidant, a stabilizer, a lubricant, a processing aid, an antistatic agent, a colorant, an antifoaming agent, a dispersing agent, etc. if necessary. These various additives may be included.
 本発明の親水性高分子吸着材では、バイオポリマーの吸着を可能にするとともに、ハンドリング性を良好にする観点から、25℃における膨潤度が、質量%として、20~500%(例えば20~400%)の範囲内、好ましくは30~450%の範囲内、より好ましくは40~400%の範囲内に保持されていてもよい。親水性高分子吸着材の膨潤度は、さらに好ましくは40~300%(例えば、40~200%)程度であってもよく、さらにより好ましくは50~200%(例えば、50~160%)程度であってもよい。なお、親水性高分子吸着材の膨潤度は、後述する実施例に記載された方法により測定された値を示す。 In the hydrophilic polymer adsorbent of the present invention, the degree of swelling at 25 ° C. is 20 to 500% (for example, 20 to 400) in terms of mass% from the viewpoint of enabling the adsorption of biopolymers and improving the handling properties. %), Preferably 30 to 450%, more preferably 40 to 400%. The swelling degree of the hydrophilic polymer adsorbent may be more preferably about 40 to 300% (for example, 40 to 200%), and still more preferably about 50 to 200% (for example, 50 to 160%). It may be. In addition, the swelling degree of a hydrophilic polymer adsorbent shows the value measured by the method described in the Example mentioned later.
 膨潤度が小さすぎると、有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を含有する溶液との接触が不十分となるためか、物理的に不可逆的な膜ファウリングを生じる原因物質の吸着性が不良となり、また、膨潤度が大きすぎると、過度の膨潤のため通液性が損なわれ、カラム取り出し性が不十分となる。 If the degree of swelling is too small, contact with organic carbon, particularly a solution containing a causative substance that causes physically irreversible membrane fouling may be insufficient, or physically irreversible membrane fouling may be caused. If the resulting causative substance is poorly adsorbed and the degree of swelling is too large, the liquid permeability is impaired due to excessive swelling, and the column take-out property becomes insufficient.
 例えば、親水性高分子吸着材の膨潤性は、架橋剤により架橋することにより制御してもよいし、および/または結合形成基含有高分子(A)に対して、低膨潤性または非膨潤性である親水性マトリクス高分子(例えば、エチレン-ビニルアルコール共重合体、及びポリアミドなど)を組み合わせたアロイ材として制御してもよい。 For example, the swelling property of the hydrophilic polymer adsorbent may be controlled by crosslinking with a crosslinking agent and / or low swelling property or non-swelling property with respect to the bond-forming group-containing polymer (A). It may be controlled as an alloy material combining a hydrophilic matrix polymer (for example, ethylene-vinyl alcohol copolymer and polyamide).
 特に、本発明の親水性高分子吸着材は、耐久性や膨潤性を制御する観点から、架橋剤により架橋していることが好ましい。架橋剤は、親水性高分子の架橋反応性基の種類に応じて適宜決定することができるが、例えば、エポキシ基、カルボキシル基、ハロゲン基、酸無水物基、酸ハライド基、ホルミル基、N-クロロホルミル基、クロロホーメイト基、アミジニル基、イソシアネート基、ビニル基、アルデヒド基、アゼチジン基、カルボジイミド基などから選択される少なくとも1種又は2種以上の官能基を少なくとも2個含む化合物が挙げられる。また、ジルコニル系架橋剤(硝酸ジルコニル、炭酸ジルコニウムアンモニウム、塩化ジルコニル、酢酸ジルコニル、硫酸ジルコニル)、チタン系架橋剤(チタン系架橋剤、チタンラクテート、チタンジイソプロポキシビス(トリエタノールアミネート))などを用いてもよい。このような架橋剤は、市販されている各種架橋剤を利用することができ、特に限定されないが、エポキシ基、ハロゲン基、イソシアネート基、ビニル基、アルデヒド基、アゼチジン基、カルボジイミド基などから選択される少なくとも1種又は2種以上の官能基を少なくとも2個含む化合物が好ましい。 In particular, the hydrophilic polymer adsorbent of the present invention is preferably crosslinked with a crosslinking agent from the viewpoint of controlling durability and swelling property. The crosslinking agent can be appropriately determined according to the type of the crosslinking reactive group of the hydrophilic polymer. For example, an epoxy group, a carboxyl group, a halogen group, an acid anhydride group, an acid halide group, a formyl group, N -A compound containing at least two functional groups of at least one or two or more selected from chloroformyl group, chloroformate group, amidinyl group, isocyanate group, vinyl group, aldehyde group, azetidine group, carbodiimide group, etc. It is done. Also, zirconyl crosslinking agents (zirconyl nitrate, ammonium zirconium carbonate, zirconyl chloride, zirconyl acetate, zirconyl sulfate), titanium crosslinking agents (titanium crosslinking agent, titanium lactate, titanium diisopropoxybis (triethanolamate)), etc. May be used. Such a cross-linking agent can use various commercially available cross-linking agents, and is not particularly limited, but is selected from epoxy groups, halogen groups, isocyanate groups, vinyl groups, aldehyde groups, azetidine groups, carbodiimide groups, and the like. A compound containing at least two functional groups of at least one kind or two or more kinds is preferred.
 例えば、架橋剤による架橋構造の導入は、親水性高分子吸着材を合成時にジビニルモノマーなどの共重合成分を用いることにより、架橋構造を導入してもよい。 For example, the crosslinking structure may be introduced with a crosslinking agent by using a copolymer component such as a divinyl monomer during the synthesis of the hydrophilic polymer adsorbent.
 また、架橋剤と親水性高分子吸着材の構成成分と合わせて溶融混練することにより架橋構造を導入してもよい。
 溶融混練を行う場合、親水性高分子吸着材の構成成分、架橋剤、必要に応じて任意成分を、二軸型の混練機などを用いて溶融混練する方法(溶融混練法)が挙げられる。当該溶融混練法によれば、各成分が均一に分散した吸着材を得ることが容易であるという利点を有する。
Moreover, you may introduce | transduce a crosslinked structure by melt-kneading together with the structural component of a crosslinking agent and a hydrophilic polymer adsorption material.
In the case of performing melt kneading, a method (melt kneading method) in which the components of the hydrophilic polymer adsorbent, the crosslinking agent, and if necessary, optional components are melt kneaded using a biaxial kneader or the like can be mentioned. According to the melt kneading method, there is an advantage that it is easy to obtain an adsorbent in which each component is uniformly dispersed.
 また、一旦、親水性高分子吸着材材料を溶融成形、溶液成形などにより成形し、各種形状の成形体を形成した後、架橋剤を含む溶液に成形体を浸漬させて架橋構造を導入してもよい。
 溶融成形を行う場合、例えば、架橋剤を少なくとも除く親水性高分子吸着材材料を、二軸型の混練機などを用いて溶融混練し、溶融混練物を押出成形、射出成形などにより各種形状の成形体を得た後、この成形体に対して架橋剤を含む溶液に浸漬させ架橋処理を施してもよい。
 また、溶液成形を行う場合、例えば、架橋剤を少なくとも除く親水性高分子吸着材材料から、適当な溶媒を用いて混合液を調製し、この混合液を用いて、キャスト製膜または乾式紡糸、湿式紡糸などにより、膜状または繊維状の成形体を得た後、この成形体に対して架橋剤を含む溶液に浸漬させ架橋処理を施してもよい。
Also, once the hydrophilic polymer adsorbent material is molded by melt molding, solution molding, etc. to form molded bodies of various shapes, the molded body is immersed in a solution containing a crosslinking agent to introduce a crosslinked structure. Also good.
When performing melt molding, for example, a hydrophilic polymer adsorbent material excluding at least a crosslinking agent is melt-kneaded using a biaxial kneader or the like, and the melt-kneaded material is formed into various shapes by extrusion molding, injection molding, or the like. After obtaining a molded body, the molded body may be subjected to crosslinking treatment by dipping in a solution containing a crosslinking agent.
Further, when performing solution molding, for example, from a hydrophilic polymer adsorbent material excluding at least a cross-linking agent, a mixed solution is prepared using an appropriate solvent, and using this mixed solution, cast film formation or dry spinning, After obtaining a film-like or fibrous shaped body by wet spinning or the like, the shaped body may be dipped in a solution containing a crosslinking agent and subjected to a crosslinking treatment.
 このような高分子吸着材は、特にバイオポリマーの吸収性に優れており、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)およびフミン質モデル水(フミン酸ナトリウム濃度:4.3mg―C/Lのフミン酸ナトリウム水溶液)のそれぞれにおいて、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比が、例えば、(A)/(B)=1.0~10程度、好ましくは1.1~9程度、より好ましくは1.3~8程度であってもよい。なお、ここでそれぞれのモデル水において、バイオポリマーモデルとしてはアルギン酸ナトリウムを用い、フミン質モデルとしてはフミン酸ナトリウムを用いている。またそれぞれの吸着率は、後述する実施例に記載された方法により測定された値を示す。 Such a polymer adsorbent is particularly excellent in absorbability of biopolymer, and biopolymer model water at 25 ° C. (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) and humic model water ( In each of the sodium humate concentration: 4.3 mg-C / L sodium humate aqueous solution), the ratio between the adsorption rate of sodium alginate (A) and the adsorption rate of sodium humate (B) is, for example, (A ) / (B) = about 1.0 to 10, preferably about 1.1 to 9, more preferably about 1.3 to 8. In each model water, sodium alginate is used as the biopolymer model, and sodium humate is used as the humic model. Moreover, each adsorption rate shows the value measured by the method described in the Example mentioned later.
 また、本発明で用いられる高分子吸着材は、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)において、アルギン酸ナトリウムの吸着率(A)が、例えば、30%以上であってもよく、好ましくは35%以上であってもよく、さらに好ましくは45%以上であってもよい。吸着率については、後述する実施例に記載された方法により測定された値を示す。 Further, the polymer adsorbent used in the present invention has an adsorption rate (A) of sodium alginate in biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) at 25 ° C., for example. , 30% or more, preferably 35% or more, and more preferably 45% or more. About the adsorption rate, the value measured by the method described in the Example mentioned later is shown.
(親水性高分子吸着材の形状)
 親水性高分子吸着材は、被処理水中の有機体炭素のうち、少なくとも一部の成分(例えば、バイオポリマー)の吸着処理に用いることができる限り、各種形状を有することができ、例えば、粒子状、繊維状、各種立体形状などであってもよい。吸着効率を向上させる観点から、親水性高分子吸着材は、粒子状または繊維状であるのが好ましい。
(Shape of hydrophilic polymer adsorbent)
The hydrophilic polymer adsorbent can have various shapes as long as it can be used for adsorption treatment of at least a part of the organic carbon in the water to be treated (for example, biopolymer). It may be a shape, a fiber shape, various three-dimensional shapes or the like. From the viewpoint of improving the adsorption efficiency, the hydrophilic polymer adsorbent is preferably in the form of particles or fibers.
 親水性高分子吸着材が粒子状である場合、その粒子径は特に制限はなく、0.5μm~20mmの幅広い範囲から選択可能である。例えば、ろ別により固液分離を行う観点から、例えば粒子径は1μm以上であってもよく、10μm以上であってもよく、100μm以上であってもよい。一方で、粒子径は10mm以下であってもよく、5mm以下であってもよく、4mm以下、または3mm以下であってもよい。
 取扱い性および吸着性の観点から、粒子径は1μm~5000μmが好ましく、10μm~4000μmがさらに好ましく、20μm~3000μmが最も好ましい。粒子径が小さすぎる場合、微粉が舞い易いなど取り扱いが難しい。粒子径が大きすぎる場合、吸着性能が充分に得られないことがある。なお粒子径は、篩分けにより分級された値を示す。
When the hydrophilic polymer adsorbent is in the form of particles, the particle diameter is not particularly limited, and can be selected from a wide range of 0.5 μm to 20 mm. For example, from the viewpoint of performing solid-liquid separation by filtration, for example, the particle diameter may be 1 μm or more, 10 μm or more, or 100 μm or more. On the other hand, the particle diameter may be 10 mm or less, 5 mm or less, 4 mm or less, or 3 mm or less.
From the viewpoint of handleability and adsorptivity, the particle size is preferably 1 μm to 5000 μm, more preferably 10 μm to 4000 μm, and most preferably 20 μm to 3000 μm. When the particle size is too small, handling is difficult, for example, the fine powder tends to fly. If the particle size is too large, sufficient adsorption performance may not be obtained. In addition, a particle diameter shows the value classified by sieving.
 また、高分子吸着材の25℃水中での膨潤状態での平均粒子径は、例えば、目的に応じて、1μm以上であってもよく、5μm以上、50μm以上、100μm超(例えば、110μm以上)であってもよく、150μm以上であってもよく、または200μm以上であってもよい。また、高分子吸着材の25℃水中での膨潤状態での平均粒子径は、10mm以下であってもよく、4.5mm以下であってもよく、3.5mm以下であってもよく、3mm以下であってもよい。なお平均粒子径は、後述する実施例に記載された方法により測定された値を示す。 The average particle diameter of the polymer adsorbent in a swollen state in 25 ° C. water may be, for example, 1 μm or more depending on the purpose, and may be 5 μm or more, 50 μm or more, more than 100 μm (for example, 110 μm or more). It may be 150 μm or more, or 200 μm or more. The average particle diameter of the polymer adsorbent in a swollen state in 25 ° C. water may be 10 mm or less, 4.5 mm or less, 3.5 mm or less, or 3 mm. It may be the following. In addition, an average particle diameter shows the value measured by the method described in the Example mentioned later.
 高分子吸着材が繊維状である場合、その平均繊維径は特に制限はないが、0.1~1000μmの幅広い範囲から選択することができ、例えば1~500μmであってもよく、好ましくは2~200μmであってもよい。なお、平均繊維径は、JIS L 0105で規定される標準状態の繊維の10箇所をマイクロメーターにより繊維径を測定し、その平均値を平均繊維径として算出できる。
 また、繊維としては、連続繊維であってもよいし、短繊維であってもよい。短繊維の場合、繊維長は、例えば、0.1~100mm(例えば、1~100mm)程度であってもよく、好ましくは0.5~80mm(例えば、5~80mm)程度、より好ましくは10~50mm程度であってもよい。
When the polymer adsorbent is fibrous, the average fiber diameter is not particularly limited, but can be selected from a wide range of 0.1 to 1000 μm, for example, 1 to 500 μm, preferably 2 It may be up to 200 μm. The average fiber diameter can be calculated as an average fiber diameter by measuring the fiber diameter at 10 locations of fibers in a standard state defined by JIS L 0105 with a micrometer.
Moreover, as a fiber, a continuous fiber may be sufficient and a short fiber may be sufficient. In the case of short fibers, the fiber length may be, for example, about 0.1 to 100 mm (for example, 1 to 100 mm), preferably about 0.5 to 80 mm (for example, 5 to 80 mm), more preferably 10 It may be about 50 mm.
[水処理方法]
 本発明の第2実施形態は、有機体炭素を含有する被処理水と、特定の親水性高分子吸着材とを接触させ、有機体炭素の少なくとも一部の成分を吸着する吸着工程を少なくとも備える水処理方法である。
 好ましくは、前記水処理方法は、前記吸着処理された吸着処理水を膜ろ過するろ過工程と、を備えていてもよい。
[Water treatment method]
2nd Embodiment of this invention is equipped with the to-be-processed water containing organic carbon, and a specific hydrophilic polymer adsorbent, and is provided with the adsorption | suction process which adsorb | sucks at least one component of organic carbon at least. Water treatment method.
Preferably, the water treatment method may include a filtration step of performing membrane filtration on the adsorption-treated water subjected to the adsorption treatment.
(吸着工程)
 被処理水は、自然環境下、人工環境下で得られるさまざまな原水を被処理水として利用可能であり、有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を含有する限り特に限定されないが、例えば、原水としては、一般の河川水、湖沼水、海水(塩分2~4質量%)、汽水(塩分0.5~2質量%)、油田やガス田の採掘の際に発生する随伴水、土壌溶出水、用水、生物処理水、下水処理やし尿処理施設での生物処理水や三次処理などの高度処理水、各種工場排水などが挙げられる。
(Adsorption process)
As long as the water to be treated can use various raw waters obtained in natural and artificial environments as water to be treated, it contains organic carbon, especially the causative substances that cause physically irreversible membrane fouling. Although not particularly limited, for example, as raw water, in general river water, lake water, seawater (salt content 2 to 4% by mass), brackish water (salt content 0.5 to 2% by mass), oil fields and gas fields Examples include associated water generated, soil elution water, irrigation water, biologically treated water, biologically treated water in sewage treatment and human waste treatment facilities, highly treated water such as tertiary treatment, and various factory effluents.
 また、被処理水である原水は、有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を含有するとともに、0.5質量%以上の塩を含む水であってもよく、例えば、海水などの上記原水を処理して得られる、より塩濃度の高い水など、自然環境下の原水に由来して得られるさまざまな塩を含む水を被処理水である原水として利用することができる。その場合、被処理水は、例えば、0.5質量%以上(例えば、0.5~30質量%程度)、1質量%以上、または2質量%以上の塩濃度を有していてもよい。
 被処理水中の塩としては、例えば、塩化ナトリウム、塩化カリウムなどのアルカリ金属塩;塩化マグネシウム、硫酸マグネシウム、塩化カルシウム、硫酸カルシウムなどのアルカリ土類金属塩などが挙げられ、被処理水中の塩濃度は、これらの塩類の総量の濃度として算出することができる。塩は、その水溶液が中性になる塩であってもよい。
Moreover, the raw water that is the treated water may contain organic carbon, particularly a causative substance that causes physically irreversible membrane fouling, and water that contains 0.5% by mass or more of salt, For example, water containing various salts obtained from raw water in the natural environment, such as water with higher salt concentration, obtained by treating the raw water such as seawater, is used as raw water that is to be treated. Can do. In that case, the water to be treated may have a salt concentration of 0.5% by mass or more (for example, about 0.5 to 30% by mass), 1% by mass or more, or 2% by mass or more.
Examples of the salt in the water to be treated include alkali metal salts such as sodium chloride and potassium chloride; alkaline earth metal salts such as magnesium chloride, magnesium sulfate, calcium chloride, and calcium sulfate. Can be calculated as the concentration of the total amount of these salts. The salt may be a salt that makes the aqueous solution neutral.
 ここで、原水中に含まれる有機体炭素とは、通常、上述する原水中に含まれる全有機炭素(TOC:Total Organic Carbon)を構成する有機化合物を意味している。有機体炭素には、溶存有機炭素(Dissolved Organic carbon)、粒子性有機炭素(POC:Particulate Organic Carbon)が含まれている。
 また、物理的に不可逆的な膜ファウリングを生じる原因物質とは、有機体炭素の一種であり、膜ろ過を行う際に、物理的な逆洗などの手段により取り除くことが困難である物質を意味している。具体的な原因物質については未だ研究中ではあるが、本発明の吸着工程を経た処理水を膜処理工程へ供する場合、吸着工程を経ることなく被処理水を膜処理工程へ供する場合と比較して、膜処理工程における膜の寿命を向上することが可能である。
 したがって、原因物質が具体的に特定されていなくとも、吸着工程によって、物理的に不可逆的な膜ファウリングを生じる原因物質の量が低減できていることを確認することが可能である。
Here, the organic carbon contained in the raw water usually means an organic compound constituting the total organic carbon (TOC) contained in the raw water described above. The organic carbon includes dissolved organic carbon (Dissolved Organic carbon) and particulate organic carbon (POC).
In addition, the causative substance that causes physically irreversible membrane fouling is a kind of organic carbon, and it is difficult to remove substances that are difficult to remove by means such as physical backwashing when performing membrane filtration. I mean. Although specific causative substances are still under study, when the treated water that has undergone the adsorption process of the present invention is supplied to the membrane treatment process, the treated water is supplied to the membrane treatment process without going through the adsorption process. Thus, the lifetime of the film in the film processing step can be improved.
Therefore, even if the causative substance is not specifically identified, it is possible to confirm that the amount of causative substance that causes physically irreversible membrane fouling can be reduced by the adsorption process.
 原因物質としてはさまざまな化合物が考えられるが、吸着工程において吸着される原因物質は、物理的に吸着した場合に脱離するのが困難であると考えられる粒子径0.45μm以下の有機物に属する物質であってもよい。
 粒子径0.45μm以下の有機物としては、フミン酸やフルボ酸などの芳香族含有有機物、界面活性剤等の合成化学物質、バイオポリマーなどが挙げられるが、本発明の吸着工程では、例えば、高分子吸着材により原因物質の少なくとも一部の成分が吸着されればよい。
 例えば、吸着される成分は、親水性の10万ダルトン以上を有する化合物であって、高速液体クロマトグラフィーに湿式全有機炭素計測器を接続したLC-OCDにおいて、フミン質の信号ピークが現れる保留時間より短い保留時間において、信号ピークを示す物質であってもよい。
Although various compounds can be considered as causative substances, the causative substances adsorbed in the adsorption process belong to organic substances having a particle diameter of 0.45 μm or less that are considered difficult to desorb when physically adsorbed. It may be a substance.
Examples of organic substances having a particle size of 0.45 μm or less include aromatic-containing organic substances such as humic acid and fulvic acid, synthetic chemical substances such as surfactants, biopolymers, etc. In the adsorption process of the present invention, for example, high It is sufficient that at least a part of the causative substance is adsorbed by the molecular adsorbent.
For example, the adsorbed component is a hydrophilic compound having 100,000 daltons or more, and the retention time during which a humic signal peak appears in LC-OCD in which a wet total organic carbon measuring instrument is connected to high performance liquid chromatography. It may be a substance that exhibits a signal peak in a shorter holding time.
 吸着工程では、高分子吸着材により原因物質の少なくとも一部の成分として、バイオポリマーを少なくとも吸着するのが好ましい。 In the adsorption step, it is preferable to adsorb at least the biopolymer as a component of at least a part of the causative substance by the polymer adsorbent.
 バイオポリマーとは、親水性の高分子量(例えば、10万ダルトン以上)を有する化合物(例えば、多糖類およびタンパク質)とされている。より詳細には、Stefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定したAフラクション、例えばLC-OCDによる保留時間が、25分以上38分以下の成分であってもよい。実施例では、上記記載された方法に基づくLC-OCD(DOC-Labor社製)の分析にて、25分以上38分以下の保留時間の成分をバイオポリマーとして測定している。また、フミン質は、同じ条件下での測定におけるBフラクション、例えば保留時間38分を超えて50分以下の成分であってもよい。 Biopolymers are compounds (for example, polysaccharides and proteins) having hydrophilic high molecular weight (for example, 100,000 daltons or more). More specifically, the A fraction measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, for example, the retention time by LC-OCD is 25 to 38 minutes. There may be. In the examples, a component having a holding time of 25 minutes or more and 38 minutes or less is measured as a biopolymer in the analysis of LC-OCD (manufactured by DOC-Labor) based on the above-described method. Further, the humic substance may be a B fraction in the measurement under the same conditions, for example, a component exceeding the holding time of 38 minutes and not more than 50 minutes.
 バイオポリマーは、ベンゼン環などの疎水性構造が少なく、主に親水性の高い有機物で構成されており、例えば、SUVA値が1.0[L/(m・mg)]以下を示す有機物で構成されていてもよい。
 一方、フミン質は、ベンゼン環などが含まれているため、UV吸収性を有する構造するだけでなく、疎水性が高く、例えば、SUVA値が2.0[L/(m・mg)]以上を示す有機物で構成されていてもよい。
Biopolymers are mainly composed of organic substances with few hydrophobic structures such as benzene rings and mainly high hydrophilicity. For example, biopolymers are composed of organic substances exhibiting an SUVA value of 1.0 [L / (m · mg)] or less. May be.
On the other hand, the humic substance contains not only a UV-absorbing structure because it contains a benzene ring, but also has a high hydrophobicity, for example, an SUVA value of 2.0 [L / (m · mg)] or more It may be composed of an organic material showing.
 なお、SUVA値は、以下の式で求められる。
 SUVA(L/mg-C・m)=UV(m-1)/DOC(mg-C/L)
The SUVA value is obtained by the following formula.
SUVA (L / mg-C · m) = UV (m −1 ) / DOC (mg-C / L)
 なお、ここで、SUVA値を算出するための各パラメータはStefan A. Huber et al. Water Research 45 (2011) pp879-885に記載された方法により測定されたものであり「面積値」とは、LC-OCDにより得られる面積値を表し、「UV」とは、波長254nmでの吸光度、「DOC」とは供試サンプル中のDOC濃度(mg-C/L)を示している。 Here, each parameter for calculating the SUVA value was measured by the method described in Stefan A. Huber et al. Water Research 45 (2011) pp879-885, and "area value" The area value obtained by LC-OCD is expressed, “UV” indicates the absorbance at a wavelength of 254 nm, and “DOC” indicates the DOC concentration (mg-C / L) in the test sample.
 UV値算出方法
(i)バイオポリマーのUV=供試サンプル全体のUV×スペクトル中のバイオポリマー(保留時間t:25分≦t≦38分)の面積値/スペクトル全体の面積値
(ii)フミン質のUV=供試サンプル全体のUV×スペクトル中のフミン質(保留時間t:38分<t≦50分)の面積値/スペクトル全体の面積値
UV value calculation method (i) UV of biopolymer = UV of entire test sample × area value of biopolymer in spectrum (holding time t b : 25 minutes ≦ t b ≦ 38 minutes) / area value of entire spectrum (ii ) humic humic substance of UV = test sample total UV × in the spectrum of (holding time t h: 38 min <area value / spectrum total area values of t h ≦ 50 minutes)
 DOC値算出方法
(i)バイオポリマーのDOC=供試サンプル全体のDOC×スペクトル中のバイオポリマー(保留時間t:25分≦t≦38分)の面積値/スペクトル全体の面積値
(ii)フミン質のDOC=供試サンプル全体のDOC×スペクトル中のフミン質(保留時間t:38分<t≦50分)の面積値/スペクトル全体の面積値
DOC value calculation method (i) DOC of biopolymer = DOC of the entire test sample x area value of biopolymer in the spectrum (holding time t b : 25 minutes ≤ t b ≤ 38 minutes) / area value of the entire spectrum (ii ) Humic DOC = DOC of the entire test sample x area value of humic substance in the spectrum (holding time t h : 38 minutes <t h ≤ 50 minutes) / area value of the entire spectrum
 現在一般に上市されているスチレン系等の疎水性高分子を主骨格とするイオン交換樹脂やキレート樹脂では、このような原水中に含まれる有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を効率よく吸着することができない。しかしながら、本発明では、特定の親水性高分子吸着材を用いることによって、例えば、親水性の有機体炭素であっても、効率よく吸着することが可能となる。 The ion-exchange resins and chelate resins mainly composed of hydrophobic polymers such as styrene that are currently on the market have organic carbon contained in raw water, especially physically irreversible membrane fouling. The resulting causative substance cannot be adsorbed efficiently. However, in the present invention, by using a specific hydrophilic polymer adsorbent, for example, even hydrophilic organic carbon can be adsorbed efficiently.
 吸着工程では、被処理水と、親水性高分子吸着材とを接触させることができる限り特に限定されず、例えば、バッチ式として、被処理水へ吸着材を添加し、必要に応じて公知の方法で撹拌することにより吸着処理を行ってもよいし;連続式として、親水性高分子吸着材を充てんしたカラムに対し、被処理水を通液させることにより吸着処理を行ってもよい。また、吸着工程は、一段であってもよいし、多段であってもよい。
 また、吸着工程では、吸着処理後、必要に応じて公知の方法により固液分離工程を行ってもよく、固液分離工程により、吸着処理後の吸着材を吸着処理液から除去してもよい。
In the adsorption step, it is not particularly limited as long as the water to be treated and the hydrophilic polymer adsorbent can be brought into contact. For example, as a batch type, the adsorbent is added to the water to be treated, and known as necessary. The adsorption treatment may be carried out by stirring by a method; or the adsorption treatment may be carried out by passing water to be treated through a column filled with a hydrophilic polymer adsorbent as a continuous type. Further, the adsorption step may be a single step or a multi-step.
In the adsorption step, after the adsorption treatment, the solid-liquid separation step may be performed by a known method as necessary, and the adsorbent after the adsorption treatment may be removed from the adsorption treatment liquid by the solid-liquid separation step. .
 吸着工程での被処理水の温度は、原因物質を吸着することが出来る限り、適当な温度を選択することができるが、被処理水の温度は、吸着性の観点から、例えば0~40℃であってもよく、好ましくは5~35℃、より好ましくは10~33℃であってもよい。 The temperature of the water to be treated in the adsorption step can be selected as long as the causative substance can be adsorbed. The temperature of the water to be treated is, for example, 0 to 40 ° C. from the viewpoint of adsorptivity. It may be 5 to 35 ° C, more preferably 10 to 33 ° C.
 また被処理水が塩類を含む場合、被処理水の温度は、吸着性の観点から、例えば10~40℃であってもよく、好ましくは15~35℃、より好ましくは18~33℃であってもよい。 When the water to be treated contains salts, the temperature of the water to be treated may be, for example, 10 to 40 ° C., preferably 15 to 35 ° C., more preferably 18 to 33 ° C. from the viewpoint of adsorptivity. May be.
 被処理水に対して用いられる吸着材の量は、被処理水の種類、吸着材の形態などに応じて適宜選択することができるが、例えば、バッチ式の場合、吸着材の量は、被処理水1Lあたり0.05~50gの広い範囲から選択することができ、例えば、0.05~30g程度、好ましくは0.1~10g程度であってもよい。また、被処理水が塩類を含む場合、吸着材の量は、被処理水1Lあたり、0.1~50g程度、好ましくは0.5~30g程度であってもよい。  The amount of adsorbent used for the water to be treated can be appropriately selected according to the type of water to be treated, the form of the adsorbent, etc. For example, in the case of a batch type, the amount of adsorbent is It can be selected from a wide range of 0.05 to 50 g per liter of treated water, and may be, for example, about 0.05 to 30 g, preferably about 0.1 to 10 g. When the water to be treated contains salts, the amount of the adsorbent may be about 0.1 to 50 g, preferably about 0.5 to 30 g, per liter of water to be treated. *
 また、吸着材を被処理水に浸漬し撹拌を行う場合、機械的撹拌、気泡撹拌などにより、吸着材を撹拌してもよい。機械的撹拌を行う場合、周速として0.1~20m/s程度であってもよく、0.3~15m/s程度であってもよい。 In addition, when the adsorbent is immersed in the water to be treated and stirred, the adsorbent may be stirred by mechanical stirring or bubble stirring. When performing mechanical stirring, the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 15 m / s.
 一方で、連続式の場合、カラムに充填された吸着材に対して、被処理水のカラムへの通液速度は、例えば、処理水流速を吸着材容積で割った値である空塔速度として0.5~500h-1程度(例えば0.5~200h-1程度)であってもよく、好ましくは1~300h-1程度(例えば1~150h-1程度)であってもよい。 On the other hand, in the case of the continuous type, with respect to the adsorbent packed in the column, the flow rate of the water to be treated to the column is, for example, the superficial velocity that is a value obtained by dividing the treated water flow rate by the adsorbent volume. it may be about 0.5 ~ 500h -1 (for example, about 0.5 ~ 200h -1), preferably about 1 ~ 300h -1 (for example, about 1 ~ 150h -1).
 吸着工程では、被処理水中の有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を効率よく吸着することができ、特に、上述のようにバイオポリマーの吸着を効率よく行うことができる。例えば、吸着工程では、被処理水からのバイオポリマーの除去率(または吸着率)が、例えば15%以上であってもよく、好ましくは20%以上、より好ましくは30%以上であってもよい。なお、除去率は、後述する実施例に記載された方法により測定された値を示す。除去率が低すぎる場合、後段の膜ろ過工程における膜汚染の抑制効果が十分でない場合がある。 In the adsorption process, organic carbon in the water to be treated, particularly the causative substance that causes physically irreversible membrane fouling, can be efficiently adsorbed, and in particular, the biopolymer can be adsorbed efficiently as described above. Can do. For example, in the adsorption step, the removal rate (or adsorption rate) of the biopolymer from the water to be treated may be, for example, 15% or more, preferably 20% or more, more preferably 30% or more. . In addition, a removal rate shows the value measured by the method described in the Example mentioned later. If the removal rate is too low, the effect of suppressing membrane contamination in the subsequent membrane filtration step may not be sufficient.
(膜ろ過工程)
 吸着工程の後、吸着処理された吸着処理水(または供給水)は、必要に応じて、膜ろ過工程において膜ろ過されてもよい。このような膜ろ過を組み合わせることにより、用途に応じた浄水化を行うことができる。膜ろ過工程は、一段であってもよいし、多段であってもよい。膜ろ過工程の膜の種類については、同一の膜を用いても良いし、異なる種類の膜を組み合わせてもよい。
(Membrane filtration process)
After the adsorption step, the adsorption-treated water (or supply water) subjected to the adsorption treatment may be subjected to membrane filtration in the membrane filtration step, if necessary. By combining such membrane filtration, it is possible to purify water according to the application. The membrane filtration step may be a single step or multiple steps. About the kind of film | membrane of a membrane filtration process, the same film | membrane may be used and a different kind of film | membrane may be combined.
 膜ろ過工程は、水処理の目的に応じて、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、ナノろ過膜(NF膜)、逆浸透(RO)膜などを適宜用いて行うことができる。
 本発明では、吸着工程により、原水中に含まれる有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質の量を低減することができるため、いずれの膜を用いた場合でも、膜ファウリングの発生を効率よく抑制することが可能である。
The membrane filtration step is performed appropriately using a microfiltration membrane (MF membrane), an ultrafiltration membrane (UF membrane), a nanofiltration membrane (NF membrane), a reverse osmosis (RO) membrane, etc., depending on the purpose of water treatment. be able to.
In the present invention, the adsorption process can reduce the amount of organic carbon contained in the raw water, particularly the causative substance that causes physically irreversible membrane fouling. It is possible to efficiently suppress the occurrence of membrane fouling.
 膜ろ過工程では、これらの膜を単独で一段以上用いて膜ろ過を行ってもよいし、複数の種類の膜を組み合わせ、それぞれ一段以上用いて膜ろ過を行ってもよい。
 また、複数の種類の膜を組み合わせる場合、MF膜またはUF膜で供給処理された処理水を膜ろ過処理した後、NF膜または逆浸透(RO)膜でさらに膜ろ過処理を行ってもよい。
In the membrane filtration step, these membranes may be used alone or in one or more stages for membrane filtration, or a plurality of types of membranes may be combined, and each one or more stages may be used for membrane filtration.
When a plurality of types of membranes are combined, the membrane water may be further filtered with an NF membrane or a reverse osmosis (RO) membrane after membrane filtration treatment of the treated water supplied with the MF membrane or UF membrane.
 膜ろ過工程におけるろ過膜の膜素材としては、特に限定されず、公知のものはいずれも適用可能である。例えば、UF膜やMF膜の膜素材としては、酢酸セルロース、ポリアクリロニトリル、ポリエチレン、ポリエーテルスルホン、ポリスルホン、ポリプロピレン、ポリフッ化ビニリデン、セラミックなどが挙げられる。NF膜の膜素材としては、ポリアミド系、ポリピペラジンアミド系、ポリエステルアミド系、あるいは水溶性のビニルポリマーを架橋したものなどが挙げられる。また、RO膜の膜素材としては、酢酸セルロース系、ポリアミド系などが挙げられる。 The membrane material of the filtration membrane in the membrane filtration step is not particularly limited, and any known material can be applied. For example, examples of the film material for the UF film and the MF film include cellulose acetate, polyacrylonitrile, polyethylene, polyethersulfone, polysulfone, polypropylene, polyvinylidene fluoride, and ceramic. Examples of the film material of the NF film include polyamide-based, polypiperazine amide-based, polyester amide-based, or water-soluble vinyl polymer crosslinked. Examples of the membrane material for the RO membrane include cellulose acetate and polyamide.
 膜形態については、特に限定されず、平膜、管状膜、中空糸膜等、いずれの形状のものでもよい。たとえば膜厚は、10μm~1mmの範囲、中空糸膜の場合、内径が0.2~2mm程度、外径が0.4~5mm程度であってもよい。また、ろ過膜は、網目状構造、ハニカム状構造、微細間隙構造などの微細多孔質構造を有していてもよい。 The membrane form is not particularly limited, and may be any shape such as a flat membrane, a tubular membrane, and a hollow fiber membrane. For example, the film thickness may be in the range of 10 μm to 1 mm, and in the case of a hollow fiber membrane, the inner diameter may be about 0.2 to 2 mm and the outer diameter may be about 0.4 to 5 mm. The filtration membrane may have a fine porous structure such as a network structure, a honeycomb structure, or a fine gap structure.
 これらのろ過膜は、モジュール化されていてもよい。例えば、平膜状の場合はスパイラル型、プリーツ型、プレート・アンド・フレーム型、円盤状のディスクを積み重ねたディスクタイプであってもよく、中空糸膜の場合は、中空糸をU字状やI字状に束ねて容器に
収納した中空糸膜型であってもよい。
These filtration membranes may be modularized. For example, in the case of a flat membrane, a spiral type, a pleat type, a plate-and-frame type, or a disc type in which discs are stacked may be used. It may be a hollow fiber membrane type bundled in an I shape and stored in a container.
 ろ過流量は、膜への供給水の種類、ろ過膜の種類、などに応じて適宜設定することが可能であるが、例えば、クロスフロー方式でろ過を行う場合、ろ過流量は、Flux0.5~5.0(m/m/日)でろ過膜に対して通液してもよく、好ましくはFlux1.0~4.0(m/m/日)であってもよい。 The filtration flow rate can be appropriately set according to the type of water supplied to the membrane, the type of filtration membrane, and the like. For example, when filtration is performed by the cross flow method, the filtration flow rate is from flux 0.5 to The liquid may be passed through the filtration membrane at 5.0 (m 3 / m 2 / day), and may preferably be from Flux 1.0 to 4.0 (m 3 / m 2 / day).
 本発明の水処理方法では、特定の吸着工程を行うことで、ろ過膜への供給水から、膜ファウリングの原因物質である有機体炭素、特に物理的に不可逆的な膜ファウリングを生じる原因物質を低減させることができる。その結果、ろ過膜に膜ファウリング(特に物理的に不可逆な膜ファウリング)が発生するのを抑制し、ろ過膜の目詰まりにより、ろ過膜の透水性が低下するのを抑制することが出来る。
 さらに、供給水中の原因物質の量を低減することができるため、膜ファウリングを抑制することができ、洗浄頻度や洗浄薬品の使用量低減、膜の使用寿命を延命化することができる。
In the water treatment method of the present invention, by performing a specific adsorption step, organic carbon that is a causative substance of membrane fouling, particularly a physically irreversible membrane fouling, is caused from water supplied to the filtration membrane. Substances can be reduced. As a result, it is possible to suppress the occurrence of membrane fouling (particularly physically irreversible membrane fouling) in the filtration membrane, and it is possible to suppress the reduction of water permeability of the filtration membrane due to clogging of the filtration membrane. .
Furthermore, since the amount of the causative substance in the supply water can be reduced, membrane fouling can be suppressed, the frequency of cleaning, the amount of cleaning chemical used can be reduced, and the life of the membrane can be extended.
 本発明の水処理方法では、発明の効果を損なわない範囲で、必要に応じて、既存の水処理方法と組み合わせてもよい。既存の水処理方法としては、例えば、砂ろ過処理、粗ろ過処理、凝集沈殿処理、オゾン処理、既存の吸着材や活性炭などを用いた吸着処理、生物処理などが挙げられる。これらの処理は、単独でまたは二種以上組み合わせて行ってもよい。また、これらの水処理は、適宜、吸着処理前および/または吸着処理後に行われてもよい。 The water treatment method of the present invention may be combined with an existing water treatment method as necessary within a range not impairing the effects of the invention. Examples of the existing water treatment method include sand filtration treatment, coarse filtration treatment, coagulation sedimentation treatment, ozone treatment, adsorption treatment using an existing adsorbent or activated carbon, biological treatment, and the like. These treatments may be performed singly or in combination of two or more. Further, these water treatments may be appropriately performed before and / or after the adsorption treatment.
 また、吸着前処理により、例えば、粒子径が5μm以上の粒子、好ましくは1μm以上の粒子、より好ましくは0.45μmより大きい粒子が排除された水を、吸着工程において被処理水として用いるのが好ましい。 Further, for example, water from which particles having a particle diameter of 5 μm or more, preferably particles of 1 μm or more, more preferably particles larger than 0.45 μm are excluded by pretreatment for adsorption is used as water to be treated in the adsorption step. preferable.
 吸着工程により、有機体炭素の少なくとも一部の成分を吸着した吸着材は、必要に応じて、公知のろ別手段により分離され、再生工程へと供される。一方で、吸着材がろ別されることにより固液分離した吸着処理水は、必要に応じて、膜ろ過工程へ用いられ、ろ過工程において膜ろ過されてもよい。 The adsorbent that has adsorbed at least a part of the organic carbon in the adsorption step is separated by a known filtering means as necessary and is supplied to the regeneration step. On the other hand, the adsorption-treated water that has been subjected to solid-liquid separation by filtering the adsorbent may be used in a membrane filtration step as needed, and membrane filtered in the filtration step.
(再生工程)
 再生工程では、有機体炭素の少なくとも一部の成分を吸着した吸着材を水性媒体と接触させることにより、前記吸着材を再生してもよい。
(Regeneration process)
In the regeneration step, the adsorbent may be regenerated by bringing an adsorbent that has adsorbed at least a part of the organic carbon into contact with an aqueous medium.
 水性媒体は、水を主成分(例えば、50質量%以上)とする液体からなる媒体であり、例えば、水、または金属イオン含有水溶液であってもよい。また、再生工程での水性媒体との接触は、一段であっても多段であってもよく、多段である場合、複数の種類の水性媒体を別々に用いてもよい。 The aqueous medium is a medium composed of a liquid containing water as a main component (for example, 50% by mass or more), and may be, for example, water or an aqueous solution containing metal ions. Further, the contact with the aqueous medium in the regeneration step may be one stage or multiple stages, and in the case of multiple stages, a plurality of types of aqueous media may be used separately.
 金属イオン含有水溶液に用いられる金属イオンとしては、原因物質の脱離をすることが可能である限り特に限定されないが、典型的にはアルカリ金属イオンが挙げられ、具体的には、塩化ナトリウム水溶液、塩化カリウム水溶液、塩化リチウム水溶液、炭酸ナトリウム、炭酸カリウム、炭酸リチウムなどが挙げられる。水性媒体は、被処理水に存在する塩類と同種の金属イオンを含む金属イオン含有水溶液であってもよい。金属イオン含有水溶液の濃度は、水に対する溶質の割合として、例えば0.1~50質量%程度の広い範囲から選択することができ、低濃度(例えば、0.1~10質量%程度、好ましくは0.3~8質量%程度、より好ましくは0.5~8質量%程度)であってもよく、高濃度(例えば、10~50質量%程度、好ましくは15~45質量%、より好ましくは20~40質量%)であってもよい。 The metal ion used in the metal ion-containing aqueous solution is not particularly limited as long as the causative substance can be eliminated, but typically includes an alkali metal ion, specifically, an aqueous sodium chloride solution, Examples include potassium chloride aqueous solution, lithium chloride aqueous solution, sodium carbonate, potassium carbonate, lithium carbonate and the like. The aqueous medium may be a metal ion-containing aqueous solution containing the same type of metal ions as the salts present in the water to be treated. The concentration of the metal ion-containing aqueous solution can be selected from a wide range of, for example, about 0.1 to 50% by mass as a solute ratio with respect to water, and a low concentration (for example, about 0.1 to 10% by mass, preferably 0.3 to 8% by mass, more preferably about 0.5 to 8% by mass), and high concentration (for example, about 10 to 50% by mass, preferably 15 to 45% by mass, more preferably 20 to 40% by mass).
 再生工程で用いられる水性媒体の温度は、吸着工程での被処理液の温度以上であってもよく、好ましくは、吸着工程での被処理液の温度よりも高温であるように設定されてもよい。吸着材が接触する液体の温度条件を、吸着工程と再生工程との間で変化させることにより、吸着工程で吸着材に対して吸着した原因物質であっても、再生工程においてより効率よく吸着材から脱離することが可能である。 The temperature of the aqueous medium used in the regeneration step may be equal to or higher than the temperature of the liquid to be treated in the adsorption step, and preferably set to be higher than the temperature of the liquid to be treated in the adsorption step. Good. By changing the temperature condition of the liquid in contact with the adsorbent between the adsorption process and the regeneration process, even if it is a causative substance adsorbed to the adsorbent in the adsorption process, the adsorbent can be more efficiently used in the regeneration process. It is possible to detach from.
 再生工程では、水性媒体と、親水性高分子再生材とを接触させることができる限り特に限定されず、例えば、バッチ式として、水性媒体へ吸着材を添加し、必要に応じて公知の方法で撹拌することにより、再生処理を行ってもよいし;連続式として、高分子吸着材を充てんしたカラムに対し、水性媒体を通液させることにより再生処理を行ってもよい。また、再生工程は、一段であってもよいし、多段であってもよい。 The regeneration step is not particularly limited as long as the aqueous medium and the hydrophilic polymer regeneration material can be brought into contact with each other. For example, as a batch type, an adsorbent is added to the aqueous medium, and if necessary, a known method is used. The regeneration treatment may be carried out by stirring; or as a continuous type, the regeneration treatment may be carried out by passing an aqueous medium through a column filled with a polymer adsorbent. Further, the regeneration step may be a single step or multiple steps.
 再生工程での水性媒体の温度は、原因物質を脱離することが出来る限り、適当な温度を選択することができるが、水性媒体の温度は、脱離性の観点から、例えば40~110℃であってもよく、好ましくは45~100℃、より好ましくは50~90℃であってもよい。 As the temperature of the aqueous medium in the regeneration step, an appropriate temperature can be selected as long as the causative substance can be eliminated, but the temperature of the aqueous medium is, for example, 40 to 110 ° C. from the viewpoint of elimination. The temperature may be 45 to 100 ° C, more preferably 50 to 90 ° C.
 吸着材に対して用いられる水性媒体の量は、水性媒体の種類、吸着材の形態、再生工程の形式(バッチ式または連続式)などに応じて適宜選択することができる。また、吸着材を水性媒体に浸漬し撹拌を行う場合、機械的撹拌、気泡撹拌などなどにより、吸着材を撹拌してもよい。また、機械的撹拌を行う場合、周速として0.1~20m/s程度であってもよく、0.3~18m/s程度であってもよい。  The amount of the aqueous medium used for the adsorbent can be appropriately selected according to the type of the aqueous medium, the form of the adsorbent, the type of regeneration process (batch type or continuous type), and the like. When the adsorbent is immersed in an aqueous medium and stirred, the adsorbent may be stirred by mechanical stirring, bubble stirring, or the like. When mechanical stirring is performed, the peripheral speed may be about 0.1 to 20 m / s, or about 0.3 to 18 m / s. *
 再生工程により再生された吸着材は、必要に応じて、公知のろ別手段により分離され、再度、吸着工程へと供されてもよい。 The adsorbent regenerated by the regeneration step may be separated by a known filtering means as necessary and may be provided again to the adsorption step.
 再生工程では、水性媒体との接触により吸着材を効率よく再生することができる。例えば、再生工程では、再生処理前後での吸着材の吸着率を、再生効率として評価することができ、例えば、再生効率は、30%以上であってもよく、好ましくは50%以上、より好ましくは80%以上、特に好ましくは90%以上であってもよい。なお、再生効率は、後述する実施例に記載された方法により測定された値を示す。 In the regeneration process, the adsorbent can be efficiently regenerated by contact with the aqueous medium. For example, in the regeneration step, the adsorption rate of the adsorbent before and after the regeneration treatment can be evaluated as regeneration efficiency. For example, the regeneration efficiency may be 30% or more, preferably 50% or more, more preferably May be 80% or more, particularly preferably 90% or more. Note that the regeneration efficiency is a value measured by a method described in Examples described later.
 なお、本発明では、別の実施形態として、有機体炭素を含有する原水と、高分子吸着材とを接触させ、高分子吸着材により有機体炭素の少なくとも一部の成分を吸着させる吸着工程と、
 前記成分を吸着した吸着材を水性媒体と接触させ、前記吸着材を再生する再生工程と、を少なくとも備える水処理方法であって、
 高分子吸着材が、親水性高分子を主骨格とし、特定の官能基を有する親水性高分子吸着材である、水処理方法を含んでいてもよい。
In the present invention, as another embodiment, an adsorption step in which raw water containing organic carbon is brought into contact with a polymer adsorbent, and at least a part of the organic carbon is adsorbed by the polymer adsorbent; ,
A water treatment method comprising at least a regeneration step of bringing the adsorbent adsorbing the components into contact with an aqueous medium and regenerating the adsorbent,
The polymer adsorbent may include a water treatment method that is a hydrophilic polymer adsorbent having a hydrophilic polymer as a main skeleton and having a specific functional group.
 この場合、(i)親水性高分子を主骨格とすることで水に対する濡れ性が高まり、有機体炭素の少なくとも一部の成分、特に物理的に不可逆的な膜ファウリングを生じる原因物質が吸着材内部まで浸透し、(ii)浸透した成分は、例えば、この成分との結合形成が可能な基(結合形成基)を有する吸着材と水素結合、配位結合、イオン結合、キレート結合などの相互作用により捕捉され、吸着材は、有機体炭素の少なくとも一部の成分、特に物理的に不可逆的な膜ファウリングを生じる原因物質(特に、親水性が高く膜汚染の懸念物質と考えられ始めているバイオポリマー)を効率的に吸着することができ、(iii)さらに、吸着処理後の吸着材は、水性媒体と接触させることにより、結合が切断されるためか、効率よく再生できる、と推測される。 In this case, (i) wettability to water is increased by using a hydrophilic polymer as a main skeleton, and at least a part of organic carbon, particularly a causative substance that causes physically irreversible membrane fouling is adsorbed. (Ii) The infiltrated component is, for example, an adsorbent having a group capable of forming a bond with this component (bond-forming group) such as a hydrogen bond, a coordinate bond, an ionic bond, or a chelate bond. Captured by interaction, adsorbents are beginning to be considered at least some components of organic carbon, especially causative agents that cause physically irreversible membrane fouling (especially highly hydrophilic and a concern for membrane contamination) (Iii) Furthermore, the adsorbent after the adsorption treatment can be efficiently regenerated because the bond is broken by contacting with an aqueous medium. It is estimated.
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、実施例、比較例中の「%」および「部」は特に断りのない限り、それぞれ「質量%」および「質量部」を表す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In the examples and comparative examples, “%” and “parts” represent “% by mass” and “parts by mass”, respectively, unless otherwise specified.
(膨潤度の評価)
 吸着材1gを25℃の水に12時間浸漬させた後、吸着材を遠心脱水して秤量(A)した後、105℃で4時間乾燥して秤量(B)する。以下の式より、膨潤度を求めた。
    膨潤度=[(A-B)/(B)]×100 (%)
(Evaluation of swelling degree)
After 1 g of the adsorbent is immersed in 25 ° C. water for 12 hours, the adsorbent is subjected to centrifugal dehydration and weighed (A), then dried at 105 ° C. for 4 hours and weighed (B). The degree of swelling was determined from the following formula.
Swelling degree = [(AB) / (B)] × 100 (%)
(平均粒子径)
 実施例および比較例で用いられた吸着材の平均粒子径は、25℃の水に12時間浸漬後、レーザー回折/散乱式粒子径分布測定装置((株)堀場製作所製)にて測定した。
(Average particle size)
The average particle size of the adsorbents used in Examples and Comparative Examples was measured with a laser diffraction / scattering particle size distribution analyzer (manufactured by Horiba, Ltd.) after being immersed in water at 25 ° C. for 12 hours.
(平均繊維径)
 実施例に記載の平均繊維径は、得られた繊維の10箇所をマイクロメーターにより繊維径を測定し、その平均値を平均繊維径とした。
(Average fiber diameter)
As for the average fiber diameter described in the examples, the fiber diameter was measured at 10 points of the obtained fiber with a micrometer, and the average value was defined as the average fiber diameter.
(有機成分の測定方法)
 有機成分の濃度は、高速液体クロマトグラフィー(HPLC)に湿式全有機炭素計測器(OCD計)を接続したLC-OCD(DOC-Labor製)により測定する。測定は、Stefan A. Huber et al. “Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography -organic carbon detection -organic nitrogen detection (LC-OCD-OND)” Water Research 45 (2011) pp879-885に記載された方法に準じ、以下の条件下で行った。
流速:1.1mL/min
サンプル注入量:1mL
カラム:250mm×20mm、TSK HW50S
UV波長:254nm
OCD計:酸注入量 0.2mL/min
溶離液:pH6.85 リン酸バッファ
酸性化溶液:1L超純水に対し、4mLO-リン酸(85%)およびペルオキソ二硫酸カリウム0.5gを添加
(Measurement method of organic components)
The concentration of the organic component is measured by LC-OCD (manufactured by DOC-Labor) in which a wet total organic carbon meter (OCD meter) is connected to high performance liquid chromatography (HPLC). Stefan A. Huber et al. “Characterisation of aquatic humic and non-humic matter with size-exclusion chromatography -organic carbon detection -organic nitrogen detection (LC-OCD-OND)” Water Research 45 (2011) pp879-885 Was carried out under the following conditions.
Flow rate: 1.1 mL / min
Sample injection volume: 1 mL
Column: 250 mm x 20 mm, TSK HW50S
UV wavelength: 254 nm
OCD meter: Acid injection rate 0.2mL / min
Eluent: pH 6.85 Phosphate buffer acidified solution: Add 4 mL O-phosphoric acid (85%) and 0.5 g potassium peroxodisulfate to 1 L ultrapure water
(有機成分の除去率)
 吸着材5g(ただし、乾燥重量として)を、有機体炭素を有する被処理液1Lに添加し、25℃で4h浸透して吸着処理を行った後、吸着材をろ別し吸着処理液を得た。吸着処理液の有機体炭素除去率(%)を以下のようにして算出した。
 吸着処理前後の上澄み液を、LC-OCD(DOC-Labor社製)を用いて分析し、バイオポリマー(保留時間25~38分)およびフミン質(保留時間38分~50分)の除去率(%)を以下の式にて算出した。
(i)バイオポリマーの除去率=(吸着工程前のバイオポリマー濃度―吸着工程後のバイオポリマー濃度)/(吸着工程前のバイオポリマー濃度)×100(%)
(ii)フミン質の除去率=(吸着工程前のフミン質濃度―吸着工程後のフミン質濃度)/(吸着工程前のフミン質濃度)×100(%)
(Removal rate of organic components)
Add 5 g of adsorbent (but as dry weight) to 1 L of the liquid to be treated with organic carbon, infiltrate it at 25 ° C. for 4 h, perform the adsorption treatment, filter the adsorbent, and obtain an adsorption treatment liquid. It was. The organic carbon removal rate (%) of the adsorption treatment liquid was calculated as follows.
The supernatant before and after the adsorption treatment was analyzed using LC-OCD (manufactured by DOC-Labor), and the removal rate of biopolymer (retention time 25 to 38 minutes) and humic substances (retention time 38 to 50 minutes) ( %) Was calculated by the following formula.
(I) Biopolymer removal rate = (Biopolymer concentration before adsorption step−Biopolymer concentration after adsorption step) / (Biopolymer concentration before adsorption step) × 100 (%)
(Ii) Removal rate of humic substance = (humic substance concentration before adsorption process−humic substance concentration after adsorption process) / (humic substance concentration before adsorption process) × 100 (%)
(ろ過膜の透水性評価)
 処理対象の水をFlux2.0(m/m/日)でろ過膜に対して通液するとともに、30分に1回Flux3.0m/m/日)の純水で逆洗浄を実施し、膜を通液する際の圧力変化を評価し、60kPaに到達するまでの時間(分)を求め、以下の基準にて、長期の透水性を評価した。
 A:1200分以上
 B:900分以上1200分未満
 C:600分以上900分未満
 D:600分未満
(Water permeability evaluation of filtration membrane)
While passing liquid to the filtration membrane of water processed with Flux2.0 (m 3 / m 2 / day), the backwashing once Flux3.0m 3 / m 2 / day) of pure water in 30 minutes The pressure change at the time of carrying through the membrane was evaluated, the time (min) until reaching 60 kPa was determined, and long-term water permeability was evaluated according to the following criteria.
A: 1200 minutes or more B: 900 minutes or more and less than 1200 minutes C: 600 minutes or more and less than 900 minutes D: Less than 600 minutes
[実施例1-1]
 ポリビニルアルコール((株)クラレ製「PVA―117」)88質量部、ポリアリルアミン(ニットーボーメディカル(株)製「PAA-15C」)12質量部となるような樹脂組成とし、それら樹脂を水に溶解させた。当該溶液を直径0.08mm、孔数1000のノズルから40℃の飽和硫酸ナトリウム浴に湿式紡糸し、15m/分の速度で引き取った。形成した糸はさらに2倍に湿延伸した後、130℃で乾燥させ、230℃で5倍の乾熱延伸を施した。この繊維をさらにグルタルアルデヒド1%、マレイン酸2%の40℃の溶液に浸漬し架橋処理を行い、目的の吸着材(繊維径10μm、繊維長3cm)を得た。得られた吸着材の25℃での膨潤度は65%であった。
 被処理水として、印旛沼(千葉県)から採取した表流水(有機体炭素濃度=3.6mg-C/L、pH=8.7)を用い、被処理水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに、得られた親水性高分子吸着材を5g投入し、25℃にて4時間振とうした。振とう後、親水性高分子吸着材をろ別し、得られた処理水を用いて、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はBであった。結果は表1に示す。
[Example 1-1]
Polyvinyl alcohol (“PVA-117” manufactured by Kuraray Co., Ltd.) 88 parts by mass and polyallylamine (“PAA-15C” manufactured by Nitto Bo Medical Co., Ltd.) 12 parts by mass are used, and these resins are dissolved in water. I let you. The solution was wet-spun into a saturated sodium sulfate bath at 40 ° C. from a nozzle having a diameter of 0.08 mm and a pore number of 1000, and taken up at a speed of 15 m / min. The formed yarn was further wet-drawn 2 times, dried at 130 ° C., and subjected to dry heat drawing 5 times at 230 ° C. This fiber was further immersed in a 40 ° C. solution of 1% glutaraldehyde and 2% maleic acid to perform a crosslinking treatment to obtain a target adsorbent (fiber diameter 10 μm, fiber length 3 cm). The degree of swelling of the obtained adsorbent at 25 ° C. was 65%.
Surface water (organic carbon concentration = 3.6 mg-C / L, pH = 8.7) collected from Inba Marsh (Chiba Prefecture) was used as the water to be treated. The insoluble matter was removed by filtering with a mesh cartridge filter (TMP-2, manufactured by Advantech), and 5 g of the obtained hydrophilic polymer adsorbent was added to 1 L of the filtered water at 25 ° C. for 4 hours. Shake. After shaking, the hydrophilic polymer adsorbent was separated by filtration, and the resulting treated water was used to evaluate the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm). The sex was B. The results are shown in Table 1.
[実施例1-2]
 エチレン-ビニルアルコール共重合体((株)クラレ製、「F-101B」)60質量部、及びポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)40質量部をラボプラストミルにて210℃で溶融混練した後、粉砕処理を施し、粒子径0.6~1.2mmの複合体を得た。さらに、この複合体をエポキシ化合物(ナガセケムテックス(株)製デナコールEX-810(商品名))2%の25℃の溶液で架橋処理を行い、目的の吸着材(粒子径0.6~1.2mm)を得た。得られた吸着材の25℃水中の膨潤度は125%であった。
 被処理水として、印旛沼(千葉県)から採取した表流水(有機体炭素濃度=3.6mg-C/L、pH=8.7)を用い、被処理水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに、得られた親水性高分子吸着材を5g投入し、25℃にて4時間振とうした。振とう後、親水性高分子吸着材をろ別し、得られた処理水を用いて、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。結果を表1に示す。
[Example 1-2]
Laboplast mill contains 60 parts by mass of an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “F-101B”) and 40 parts by mass of polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP-200”). After being melt-kneaded at 210 ° C., pulverization was performed to obtain a composite having a particle size of 0.6 to 1.2 mm. Further, this composite was subjected to a crosslinking treatment with a 2% solution of an epoxy compound (Denacol EX-810 (trade name) manufactured by Nagase ChemteX Corp.) at 25 ° C. to obtain a target adsorbent (particle diameter of 0.6 to 1). 0.2 mm). The degree of swelling of the obtained adsorbent in 25 ° C. water was 125%.
As the water to be treated, surface water (organic carbon concentration = 3.6 mg-C / L, pH = 8.7) collected from Inba Marsh (Chiba Prefecture) was used. The insoluble matter was removed by filtering with a stainless mesh cartridge filter (TMP-2, manufactured by Advantech), and 5 g of the obtained hydrophilic polymer adsorbent was added to 1 L of the filtered water at 4 ° C. Shaking time. After shaking, the hydrophilic polymer adsorbent was separated by filtration, and the resulting treated water was used to evaluate the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm). The sex was A. The results are shown in Table 1.
[実施例1-3]
 エチレン-ビニルアルコール共重合体((株)クラレ製、「E-105B」)75部、及びポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)25部をラボプラストミルにて210℃で溶融混練した後、粉砕処理を施し粒子径0.1~0.2mmの複合体を得た。この複合体をエポキシ化合物(ナガセケムテックス(株)製デナコールEX-810(商品名))2%の25℃の溶液で架橋処理を行い、目的の吸着材(粒子径0.1~0.2mm)を得た。得られた吸着材の25℃水中の膨潤度は82%であった。
 該吸着材を用いて実施例1-2と同様にして、被処理水の吸着処理およびろ過処理を行った。ろ過処理に用いたPVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。結果を表1に示す。
 なお、LC-OCDによりこの実施例1-3において使用された被処理水中に含まれる有機物の分子量分布を測定した際に、図1に示すようなスペクトルが得られた。
[Example 1-3]
75 parts of ethylene-vinyl alcohol copolymer (“E-105B” manufactured by Kuraray Co., Ltd.) and 25 parts of polyethyleneimine (“Epomin SP-200” manufactured by Nippon Shokubai Co., Ltd.) were tested at 210 After melt-kneading at 0 ° C., a pulverization treatment was performed to obtain a composite having a particle size of 0.1 to 0.2 mm. This composite was subjected to a crosslinking treatment with a 25% solution of an epoxy compound (Denacol EX-810 (trade name) manufactured by Nagase ChemteX Corp.) at 2% to obtain a target adsorbent (particle diameter of 0.1 to 0.2 mm). ) The degree of swelling of the obtained adsorbent in 25 ° C. water was 82%.
Using the adsorbent, the water to be treated was adsorbed and filtered in the same manner as in Example 1-2. As a result of evaluating the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm) used for the filtration treatment, the long-term water permeability was A. The results are shown in Table 1.
When the molecular weight distribution of the organic substance contained in the water to be used used in Example 1-3 was measured by LC-OCD, a spectrum as shown in FIG. 1 was obtained.
[実施例1-4]
 特開昭59-187005号公報に記載の方法で、末端にメルカプト基を有するビニルアルコール系重合体を合成した。1H-NMR測定により求めたビニルアルコール単位の含有量(けん化度)は98.5モル%、JIS K6726に準拠して測定した粘度平均重合度は1500であった。
 次に、水563g、上記の末端メルカプト基含有ポリビニルアルコール110gを仕込み、窒素雰囲気下で攪拌しつつ、95℃まで加熱して該ポリビニルアルコールを溶解した後、室温まで冷却した。該水溶液に、ビニルベンジルトリメチルアンモニウムクロライド57.1gを攪拌しつつ添加した後、70℃まで加温し、過硫酸カリウムの2.5%水溶液88.8mLを1.5時間かけて添加、さらに、75℃で1時間維持して重合を進行させ、固形分濃度20%のポリビニルアルコール-ポリビニルベンジルトリメチルアンモニウムクロライドの共重合体である水溶性重合体の水溶液を得た。
 得られた水溶液の一部を乾燥させた後、重水に溶解し、1H-NMR測定を行ったところ、該共重合体中の重合性不飽和単量体含有量、すなわち、該重合体中の単量体単位の総数に対するビニルベンジルトリメチルアンモニウムクロライド単量体単位の数の割合は10モル%であった。
 該重合体の水溶液を50g入れ、イオン交換水を加えて固形分濃度15%に調製した。この水溶液をポリエチレンテレフタレート膜上にアプリケーターを用いてキャスト製膜し、80℃で30分間乾燥した。こうして得られた膜を、170℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、該膜を350gの硫酸ナトリウムが溶解した1Lの水溶液に浸漬させ、該水溶液にそのpHが1になるように濃硫酸を加え、さらにグルタルアルデヒドの3%水溶液として該膜を浸漬し、50℃で3時間架橋処理を行なった。架橋処理の後、該膜をイオン交換水で洗浄、乾燥させたところ、厚み70μmの膜を得た。この膜を2mm角にカットし吸着材とした。得られた吸着材の25℃水中の膨潤度は30%であった。
 該吸着材を用いて実施例1-2と同様にして、被処理水の吸着処理およびろ過処理を行った。ろ過処理に用いたPVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はBであった。結果を表1に示す。
[Example 1-4]
A vinyl alcohol polymer having a mercapto group at the end was synthesized by the method described in JP-A-59-187005. The content (degree of saponification) of the vinyl alcohol unit determined by 1H-NMR measurement was 98.5 mol%, and the viscosity average degree of polymerization measured according to JIS K6726 was 1500.
Next, 563 g of water and 110 g of the above-mentioned terminal mercapto group-containing polyvinyl alcohol were charged, and the mixture was heated to 95 ° C. with stirring in a nitrogen atmosphere to dissolve the polyvinyl alcohol, and then cooled to room temperature. After adding 57.1 g of vinylbenzyltrimethylammonium chloride to the aqueous solution with stirring, the solution was heated to 70 ° C., and 88.8 mL of a 2.5% aqueous solution of potassium persulfate was added over 1.5 hours. The polymerization was continued for 1 hour at 75 ° C. to obtain an aqueous solution of a water-soluble polymer which is a copolymer of polyvinyl alcohol-polyvinylbenzyltrimethylammonium chloride having a solid content concentration of 20%.
A part of the obtained aqueous solution was dried and then dissolved in heavy water and subjected to 1H-NMR measurement. As a result, the content of the polymerizable unsaturated monomer in the copolymer, that is, in the polymer was measured. The ratio of the number of vinylbenzyltrimethylammonium chloride monomer units to the total number of monomer units was 10 mol%.
50 g of an aqueous solution of the polymer was added, and ion exchange water was added to prepare a solid concentration of 15%. This aqueous solution was cast on a polyethylene terephthalate film using an applicator and dried at 80 ° C. for 30 minutes. The film thus obtained was heat treated at 170 ° C. for 30 minutes to cause physical crosslinking. Next, the membrane was immersed in 1 L of an aqueous solution in which 350 g of sodium sulfate was dissolved, concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and the membrane was further immersed as a 3% aqueous solution of glutaraldehyde. Crosslinking treatment was carried out at 3 ° C. for 3 hours. After the crosslinking treatment, the membrane was washed with ion exchange water and dried to obtain a membrane having a thickness of 70 μm. This film was cut into 2 mm squares to form adsorbents. The degree of swelling of the obtained adsorbent in water at 25 ° C. was 30%.
Using the adsorbent, the water to be treated was adsorbed and filtered in the same manner as in Example 1-2. As a result of evaluating the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm) used for the filtration treatment, the long-term water permeability was B. The results are shown in Table 1.
[比較例1-1]
 有機体炭素の吸着処理を行わない以外、実施例1-2と同様に水処理をして、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はDであった。結果を表1に示す。
[Comparative Example 1-1]
As a result of evaluating the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size: 0.1 μm) by performing water treatment in the same manner as in Example 1-2 except that no organic carbon adsorption treatment was performed. The water permeability was D. The results are shown in Table 1.
[比較例1-2]
 吸着材として、25℃水中の膨潤度が58%である市販の粒状活性炭(Charcoal activated、和光純薬社製)を用いる以外は、実施例1-2と同様にして水処理を行って、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はCであった。結果を表1に示す。
[Comparative Example 1-2]
As an adsorbent, water treatment was performed in the same manner as in Example 1-2 except that a commercially available granular activated carbon (Charcoal activated, manufactured by Wako Pure Chemical Industries, Ltd.) having a swelling degree in water at 25 ° C. of 58% was used. As a result of evaluating the water permeability of the manufactured MF membrane (Asahi Kasei Co., Ltd., pore size: 0.1 μm), the long-term water permeability was C. The results are shown in Table 1.
[比較例1-3]
 25℃水中の膨潤度が98%である市販の陰イオン吸着材(AmberliteIR A400、Sigma-Aldrich社製)を用いる以外は、実施例1-2と同様にして水処理を行って、PVDF製MF膜(旭化成社製、孔径0.1μm)の透水性を評価した結果、長期透水性はCであった。結果を表1に示す。
[Comparative Example 1-3]
PVDF MF was prepared by performing water treatment in the same manner as in Example 1-2 except that a commercially available anion adsorbent (Amberlite IR A400, manufactured by Sigma-Aldrich) having a degree of swelling of 98% in water at 25 ° C. was used. As a result of evaluating the water permeability of the membrane (manufactured by Asahi Kasei Co., Ltd., pore size: 0.1 μm), the long-term water permeability was C. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
[実施例1-5]
 実施例1-3で用いた吸着材で吸着処理した処理水を用いて、ポリアクリロニトリル(PAN)製UF膜(旭化成(株)製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表2に示す。
[Example 1-5]
As a result of evaluating the water permeability of a polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut off 100 kDa) using treated water adsorbed with the adsorbent used in Example 1-3, long-term water permeability The sex was A. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
[比較例1-4]
 アコジェルC(MTアクアポリマー(株)製)の鉱物油エマルジョンをヘキサンにて洗浄後、乾燥させ4級アンモニウム基を有する粒子を得た。該粒子をそのまま有機体炭素の吸着工程に用いようとしたところ、乾燥状態の粒子は粒子径が極めて小さいため、被処理水に対する撹拌性が悪いだけでなく、被処理水により膨潤した後は、粒子が1000%以上に膨潤し、粒子同士を良好に撹拌することが困難であったため、試験を中止した。
[Comparative Example 1-4]
A mineral oil emulsion of Akogel C (manufactured by MT Aqua Polymer Co., Ltd.) was washed with hexane and dried to obtain particles having a quaternary ammonium group. When trying to use the particles as they are in the organic carbon adsorption process, the dry particles have a very small particle size, so that not only the stirring ability to the water to be treated is bad, but also after swelling with the water to be treated, Since the particles swelled to 1000% or more and it was difficult to stir the particles well, the test was stopped.
 実験例1-1~1-5に見られるように、25℃水中における膨潤度が20~500%である親水性を有する高分子吸着材を用いて水中の有機体炭素を除去する工程を設けた場合、効率的に親水性が高い有機体炭素であるバイオポリマーが除去でき、ろ過膜の透水性が長期に安定であることが分かる。 As seen in Experimental Examples 1-1 to 1-5, a process for removing organic carbon in water using a hydrophilic polymer adsorbent having a degree of swelling in water at 25 ° C. of 20 to 500% is provided. In this case, it can be seen that the biopolymer which is organic carbon having high hydrophilicity can be efficiently removed, and the water permeability of the filtration membrane is stable for a long time.
 一方、比較例1-1にみられるように、有機体炭素を除去する工程を設けない場合、長期の透水性は得られない。また、比較例1-2および1-3にみられるように、市販の活性炭やイオン交換樹脂など疎水性の構造が主成分である吸着材を用いた場合、一部有機体炭素は除去可能であるが、バイオポリマーの除去能が低いため、充分な長期透水性が得られない。比較例1-4のような4級アンモニウムを有するポリマーの架橋体では膨潤度が高すぎる問題があった。 On the other hand, as seen in Comparative Example 1-1, long-term water permeability cannot be obtained unless a process for removing organic carbon is provided. Further, as seen in Comparative Examples 1-2 and 1-3, when an adsorbent mainly composed of a hydrophobic structure such as commercially available activated carbon or ion exchange resin is used, part of organic carbon can be removed. However, since the removal ability of biopolymer is low, sufficient long-term water permeability cannot be obtained. The crosslinked polymer having quaternary ammonium as in Comparative Example 1-4 has a problem that the degree of swelling is too high.
 実施例2-1~2-10、比較例2-1~2-5、実施例3-1~3-5および比較例3-1~3-3において、吸着材の吸着特性、再生特性を評価した。なお、膨潤度の評価、吸着材の平均粒子径、平均繊維径については、実施例1-1~1-5に対して行われた方法により評価した。 In Examples 2-1 to 2-10, Comparative Examples 2-1 to 2-5, Examples 3-1 to 3-5, and Comparative Examples 3-1 to 3-3, the adsorption characteristics and regeneration characteristics of the adsorbents are shown. evaluated. The evaluation of the degree of swelling, the average particle diameter of the adsorbent, and the average fiber diameter were evaluated by the methods performed for Examples 1-1 to 1-5.
(バイオポリマーの吸着率)
 バイオポリマーのモデル物質としてアルギン酸ナトリウム(和光純薬工業(株)製、型番:199-09961)の吸着評価を実施した。各実施例と比較例で得られた吸着材5.0g(12時間真空乾燥機にて乾燥させた状態での質量であり、以下の記載において同じ)を1Lのモデル河川水1(アルギン酸ナトリウム濃度:4.3mg―C/L)もしくはモデル海水1(アルギン酸ナトリウム濃度:4.3mg―C/L、NaCl:3.5%)もしくはモデル汽水1(アルギン酸ナトリウム濃度:4.3mg―C/L、NaCl:2.0%)に添加し、25℃で4時間振とうした。振とうの前後の上澄み液をLC-OCDにより分析し、該吸着材によるバイオポリマーとしてのアルギン酸ナトリウムの吸着率を以下のように評価した。
 バイオポリマーの吸着率=(吸着評価前のアルギン酸ナトリウム濃度―吸着評価後のアルギン酸ナトリウム濃度)/吸着評価前のアルギン酸ナトリウム濃度×100(%)
(Adsorption rate of biopolymer)
Adsorption evaluation of sodium alginate (manufactured by Wako Pure Chemical Industries, Ltd., model number: 199-09961) was carried out as a biopolymer model substance. 1 L of model river water 1 (concentration of sodium alginate) was obtained from 5.0 g of the adsorbent obtained in each Example and Comparative Example (the mass in the state dried in a vacuum dryer for 12 hours, the same in the following description). : 4.3 mg-C / L) or model seawater 1 (sodium alginate concentration: 4.3 mg-C / L, NaCl: 3.5%) or model brackish water 1 (sodium alginate concentration: 4.3 mg-C / L), NaCl: 2.0%) and shaken at 25 ° C. for 4 hours. The supernatant before and after shaking was analyzed by LC-OCD, and the adsorption rate of sodium alginate as a biopolymer by the adsorbent was evaluated as follows.
Biopolymer adsorption rate = (sodium alginate concentration before adsorption evaluation−sodium alginate concentration after adsorption evaluation) / sodium alginate concentration before adsorption evaluation × 100 (%)
(フミン質の吸着率)
 フミン質のモデル物質としてフミン酸ナトリウム(Aldrich社製、型番:H16752-100G)の吸着評価を実施した。各実施例と比較例で得られた吸着材5.0gを1Lのモデル河川水2(フミン酸ナトリウム濃度:4.3mg―C/L)もしくはモデル海水2(フミン酸ナトリウム濃度:4.3mg―C/L、NaCl:3.5%)もしくはモデル汽水2(フミン酸ナトリウム濃度:4.3mg―C/L、NaCl:2.0%)に添加し、25℃で4時間振とうした。振とうの前後の上澄み液をLC-OCDにより分析し、該吸着材によるフミン質としてのフミン酸ナトリウムの吸着率を以下のように評価した。
 フミン質の吸着率=(吸着評価前のフミン酸ナトリウム濃度―吸着評価後のフミン酸ナトリウム濃度)/吸着評価前のフミン酸ナトリウム濃度×100(%)
(Humine adsorption rate)
Adsorption evaluation of sodium humate (manufactured by Aldrich, model number: H16752-100G) was performed as a model substance of humic substances. In each Example and Comparative Example, 5.0 g of the adsorbent obtained from 1 L of model river water 2 (sodium humate concentration: 4.3 mg-C / L) or model seawater 2 (sodium humate concentration: 4.3 mg-) C / L, NaCl: 3.5%) or model brackish water 2 (sodium humate concentration: 4.3 mg-C / L, NaCl: 2.0%) and shaken at 25 ° C. for 4 hours. The supernatant before and after shaking was analyzed by LC-OCD, and the adsorption rate of sodium humate as humic substance by the adsorbent was evaluated as follows.
Humic acid adsorption rate = (sodium humate concentration before adsorption evaluation−sodium humate concentration after adsorption evaluation) / sodium humate concentration before adsorption evaluation × 100 (%)
(バイオポリマーとフミン質の吸着率の比)
 上記のバイオポリマーの吸着率とフミン質の吸着率の比から、以下の算式によりバイオポリマーとフミン質の吸着率の比を算出した。
 バイオポリマーとフミン質の吸着率の比=バイオポリマーの吸着率/フミン質の吸着率
(Ratio of adsorption rate of biopolymer and humic substance)
From the ratio of the adsorption rate of the biopolymer and the adsorption rate of the humic substance, the ratio of the adsorption rate of the biopolymer and the humic substance was calculated by the following formula.
Ratio of adsorption rate of biopolymer and humic substance = adsorption rate of biopolymer / adsorption rate of humic substance
(吸着材の再生)
 アルギン酸ナトリウムを吸着後、ろ別し、所定の温度に設定した純水もしくは0.25%NaClもしくは2.5%NaCOの水溶液に浸漬、所定時間攪拌することでアルギン酸ナトリウムを脱離させ再生処理した。下記式により、再生効率を評価した。
 吸着材の吸着率=再生処理後の吸着率/再生処理前の吸着率×100(%)
(Regeneration of adsorbent)
After adsorbing sodium alginate, it is filtered and immersed in pure water set to a predetermined temperature or an aqueous solution of 0.25% NaCl or 2.5% Na 2 CO 3 and stirred for a predetermined time to desorb sodium alginate. Recycled. The regeneration efficiency was evaluated by the following formula.
Adsorption rate of adsorbent = adsorption rate after regeneration treatment / adsorption rate before regeneration treatment × 100 (%)
(ろ過膜の透水性評価)
 処理対象の水をFlux2.0(m/m/日)でろ過膜に対して通液するとともに、30分に1回Flux3.0m/m/日)の純水で逆洗浄を実施し、膜を通液する際の圧力変化を評価し、60kPaに到達するまでの時間(分)を求め、以下の基準にて、長期の透水性を評価した。
 A:1000分以上
 B:1000分未満
(Water permeability evaluation of filtration membrane)
While passing liquid to the filtration membrane of water processed with Flux2.0 (m 3 / m 2 / day), the backwashing once Flux3.0m 3 / m 2 / day) of pure water in 30 minutes The pressure change at the time of carrying through the membrane was evaluated, the time (min) until reaching 60 kPa was determined, and long-term water permeability was evaluated according to the following criteria.
A: 1000 minutes or more B: Less than 1000 minutes
[実施例2-1]
 主骨格である親水性高分子としてエチレン-ビニルアルコール共重合体((株)クラレ製、「F-101」、δ=28)70質量部とポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)30質量部をラボプラストミルにて、210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施し、篩を用いて分級することで粒子径0.4~0.7mmの粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄することで、表3に示すとおり目的の吸着材2-1を得た。得られた吸着材の25℃水中の膨潤度は105%、平均粒子径は0.7mmであった。
[Example 2-1]
70 parts by mass of ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “F-101”, δ = 28) and polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP”) are hydrophilic polymers that are the main skeleton. -200 ") 30 parts by mass in a Laboplast mill at 210 ° C. for 3 minutes, the obtained kneaded product was cooled, pulverized, and classified using a sieve to obtain a particle size of 0.4 Particles of ~ 0.7 mm were obtained. Further, this particle was subjected to a crosslinking treatment with a 25% solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) for 1 hour, filtered and stirred with a large amount of hot water at 80 ° C. By washing, the target adsorbent 2-1 was obtained as shown in Table 3. The obtained adsorbent had a degree of swelling in 25 ° C. water of 105% and an average particle size of 0.7 mm.
 得られた吸着材2-1を、モデル河川水1およびモデル河川水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル河川水1のアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、60℃に調整した0.25%NaCl水溶液に浸漬し、24時間振とうさせ、吸着材の再生処理を行った。その後、再生処理された吸着材をろ別回収した。
 ろ別回収した再生吸着材を、モデル河川水1に浸漬、浸透させ、再度アルギン酸ナトリウムの吸着試験を行った。
 得られた吸着材のアルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率、ならびに再生吸着材のアルギン酸ナトリウムの吸着率を表4に示す。
The obtained adsorbent 2-1 was immersed and shaken in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
After the adsorption process of model river water 1 for sodium alginate, the adsorbent was filtered off, immersed in a 0.25% NaCl aqueous solution adjusted to 60 ° C., and shaken for 24 hours to regenerate the adsorbent. Thereafter, the regenerated adsorbent was collected by filtration.
The regenerated adsorbent collected by filtration was immersed and infiltrated in the model river water 1, and the sodium alginate adsorption test was performed again.
Table 4 shows the adsorption rate of sodium alginate and sodium humate of the obtained adsorbent and the adsorption rate of sodium alginate of the regenerated adsorbent.
[実施例2-2]
 主骨格である親水性高分子としてエチレン-ビニルアルコール共重合体((株)クラレ製、「E-105」、δ=26)75質量部とポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)25質量部をラボプラストミルにて、210℃において溶融混練し、得られた混練物を冷却後、粉砕処理を施した。得られた粉砕物に対し、篩を用いて分級することで粒子径0.4~0.7mmの粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水で攪拌洗浄することで、表3に示すとおり目的の吸着材2-2を得た。得られた吸着材の25℃水中の膨潤度は88%、平均粒子径は0.6mmであった。
[Example 2-2]
75 parts by mass of ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “E-105”, δ = 26) and polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP”) are hydrophilic polymers as the main skeleton. -200 ") 25 parts by mass were melt-kneaded at 210 ° C in a lab plast mill, and the obtained kneaded product was cooled and then pulverized. The obtained pulverized product was classified using a sieve to obtain particles having a particle size of 0.4 to 0.7 mm. Further, this particle was subjected to a crosslinking treatment with a 25% solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) for 1 hour, filtered and stirred with a large amount of hot water at 80 ° C. By washing, the target adsorbent 2-2 was obtained as shown in Table 3. The obtained adsorbent had a degree of swelling in 25 ° C. water of 88% and an average particle size of 0.6 mm.
 得られた吸着材2-2を、モデル河川水1およびモデル河川水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル河川水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整した水に浸漬し、1時間振とうさせ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、モデル河川水1に浸漬、振とうさせ、再度アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の吸着、再生の評価結果を表4に示す。
The obtained adsorbent 2-2 was immersed and shaken in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
After the adsorption process of sodium alginate from the model river water 1, the adsorbent was filtered, immersed in water adjusted to 80 ° C., shaken for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was immersed in the model river water 1 and shaken, and an adsorption test for sodium alginate was performed again. Table 4 shows evaluation results of adsorption and regeneration of the obtained adsorbent.
[実施例2-3]
 表4に示すように、再生条件を25℃に調整した0.25%NaCl水溶液に浸漬し、24時間振とうさせたこと以外は実施例2-2と同様にして吸着、再生の評価を行った。評価結果を表4に示す。
[Example 2-3]
As shown in Table 4, the adsorption and regeneration were evaluated in the same manner as in Example 2-2, except that the sample was immersed in a 0.25% NaCl aqueous solution adjusted to 25 ° C. and shaken for 24 hours. It was. The evaluation results are shown in Table 4.
[実施例2-4]
 再生条件を70℃に調整した水に浸漬し、1時間振とうさせたこと以外は実施例2-2と同様にして吸着、再生の評価を行った。評価結果を表4に示す。
[Example 2-4]
Adsorption and regeneration were evaluated in the same manner as in Example 2-2, except that the sample was immersed in water adjusted to 70 ° C. and shaken for 1 hour. The evaluation results are shown in Table 4.
[実施例2-5]
 主骨格である親水性高分子としてエチレン-ビニルアルコール共重合体((株)クラレ製、「G-156」、δ=25)90質量部とポリアリルアミン(ニットーボーメディカル(株)製、「PAA-15C」)10質量部をラボプラストミルにて、210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施した。得られた粉砕物に対し、篩を用いて分級することで粒子径0.1~0.5mmの粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃熱水に浸漬、攪拌洗浄することで、表3に示すとおり目的の吸着材2-3を得た。得られた吸着材の25℃水中の膨潤度は46%、平均粒子径は0.5mmであった。
[Example 2-5]
90 parts by mass of an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “G-156”, δ = 25) and polyallylamine (manufactured by Nitto Bo Medical Co., Ltd., “PAA— 15C ") 10 parts by mass was melt-kneaded for 3 minutes at 210 ° C in a lab plast mill, and the resulting kneaded product was cooled and then pulverized. The obtained pulverized product was classified using a sieve to obtain particles having a particle size of 0.1 to 0.5 mm. Furthermore, this particle was subjected to a crosslinking treatment with a 25% solution of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, filtered, and then immersed in a large amount of hot water at 80 ° C. By stirring and washing, the target adsorbent 2-3 was obtained as shown in Table 3. The resulting adsorbent had a degree of swelling in 25 ° C. water of 46% and an average particle size of 0.5 mm.
 得られた吸着材2-3を、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。
 モデル河川水1のアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、60℃に調整した2.5%NaCO水溶液に浸漬し、24時間振とうさせ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、モデル河川水1に浸漬、振とうさせ、再度アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の吸着、再生の評価結果を表4に示す。
The obtained adsorbent 2-3 was immersed and stirred in each of model river water 1 and model river water 2, and an adsorption test for sodium alginate and sodium humate was performed.
After adsorbing sodium alginate in model river water 1, the adsorbent is filtered off, immersed in a 2.5% Na 2 CO 3 aqueous solution adjusted to 60 ° C. and shaken for 24 hours to regenerate the adsorbent. went. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was immersed in the model river water 1 and shaken, and an adsorption test for sodium alginate was performed again. Table 4 shows evaluation results of adsorption and regeneration of the obtained adsorbent.
[実施例2-6]
 実施例2-1において、架橋処理後の吸着材を多量の3.5%NaClの80℃熱水にて洗浄したこと、並びにモデル海水1およびモデル海水2を用いたこと以外は、実施例2-1と同様にして吸着試験を行った。
 モデル海水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、90℃に調整した水に浸漬し、1時間振とうさせ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 再生吸着材を、モデル海水1に浸漬、振とうさせ、再度アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の吸着、再生の評価結果を表4に示す。
[Example 2-6]
In Example 2-1, Example 2 was performed except that the adsorbent after the crosslinking treatment was washed with a large amount of 3.5% NaCl 80 ° C. hot water and Model Seawater 1 and Model Seawater 2 were used. The adsorption test was conducted in the same manner as -1.
After the adsorption process of sodium alginate from the model seawater 1, the adsorbent was filtered off, immersed in water adjusted to 90 ° C., shaken for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent was immersed in the model seawater 1 and shaken, and an adsorption test for sodium alginate was performed again. Table 4 shows evaluation results of adsorption and regeneration of the obtained adsorbent.
[比較例2-1]
 25℃水中の膨潤度が82%であるスチレン系ポリアミン型である市販イオン交換樹脂(三菱化学(株)製、「ダイヤイオンWA-20」、平均粒子径0.5mm、主骨格の高分子はポリスチレンでありδ=20)を多量の80℃熱水にて浸漬、攪拌洗浄することで吸着材2-4を得た。吸着材2-4を用いて、モデル河川水1およびモデル河川水2のそれぞれに浸漬、攪拌させ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。結果を表4に示すが、アルギン酸ナトリウムの吸着性能はほとんど有していなかった。
 モデル河川水1からのアルギン酸ナトリウムの吸着工程の後、吸着材をろ別し、80℃に調整した水に浸漬し、1時間振とうさせ、吸着材の再生処理を行った。その後、再生処理された再生吸着材をろ別回収した。
 ろ別回収した再生吸着材を、モデル河川水1に浸漬、振とうさせ、再度アルギン酸ナトリウムの吸着試験を行った。得られた吸着材の再生後の吸着評価結果を表4に示すが、アルギン酸ナトリウムはほとんど吸着していなかった。
[Comparative Example 2-1]
Commercially available ion exchange resin (Made by Mitsubishi Chemical Co., Ltd., “Diaion WA-20”, average particle size 0.5 mm, main skeleton polymer) Adsorbent 2-4 was obtained by immersing polystyrene and δ = 20) in a large amount of hot water at 80 ° C. and washing with stirring. Using the adsorbent 2-4, the model river water 1 and the model river water 2 were immersed and stirred, respectively, and an adsorption test for sodium alginate and sodium humate was performed. The results are shown in Table 4 and had almost no adsorption performance for sodium alginate.
After the adsorption process of sodium alginate from the model river water 1, the adsorbent was filtered, immersed in water adjusted to 80 ° C., shaken for 1 hour, and the adsorbent was regenerated. Thereafter, the regenerated adsorbent that had been regenerated was collected by filtration.
The regenerated adsorbent collected by filtration was immersed in the model river water 1 and shaken, and an adsorption test for sodium alginate was performed again. The results of adsorption evaluation after regeneration of the obtained adsorbent are shown in Table 4, and almost no sodium alginate was adsorbed.
[比較例2-2]
 25℃水中の膨潤度が50%である市販の粒状活性炭(クラレケミカル(株)製、「クラレコールGW20/40」、平均粒子径0.5mm)を多量の80℃熱水にて浸漬、攪拌洗浄後、吸着材2-5を得た。吸着材2-5を用いて、モデル河川水1およびモデル河川水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。結果を表4に示すが、アルギン酸ナトリウムの吸着性能はほとんど有していなかった。
[Comparative Example 2-2]
Commercial granular activated carbon (Kuraray Chemical Co., Ltd., “Kuraray Coal GW20 / 40”, average particle size 0.5 mm) having a swelling degree in water at 25 ° C. of 50% is immersed and stirred in a large amount of hot water at 80 ° C. After washing, adsorbent 2-5 was obtained. Using the adsorbent 2-5, the model river water 1 and the model river water 2 were immersed and shaken, and the adsorption test of sodium alginate and sodium humate was performed. The results are shown in Table 4 and had almost no adsorption performance for sodium alginate.
[比較例2-3]
 25℃水中の膨潤度が150%である市販の陰イオン吸着材(ダウケミカル日本(株)製、「MARATHON MSA」、平均粒子径:0.6mm、主骨格の高分子はポリスチレンでありδ=20)を多量の80℃熱水にて浸漬、攪拌洗浄後、吸着材6を得た。吸着材6を用いて、モデル河川水1およびモデル河川水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着試験を行った。結果を表4に示すが、アルギン酸ナトリウムの吸着性能に比べフミン質の吸着性能が高いことがわかった。
[Comparative Example 2-3]
Commercially available anion adsorbent having a swelling degree in water at 25 ° C. of 150% (manufactured by Dow Chemical Japan Co., Ltd., “MARATHON MSA”, average particle size: 0.6 mm, main skeleton polymer is polystyrene, and δ = 20) was immersed in a large amount of 80 ° C. hot water, washed with stirring, and adsorbent 6 was obtained. Using the adsorbent 6, the model river water 1 and the model river water 2 were immersed and shaken, and an adsorption test of sodium alginate and sodium humate was performed. The results are shown in Table 4, and it was found that the adsorption performance of humic substances was higher than that of sodium alginate.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例2-1~2-5では、モデル河川水からのアルギン酸ナトリウムおよびフミン酸ナトリウムを双方とも吸着することが可能であり、特にアルギン酸ナトリウムの吸着性に優れている。これらの実施例では、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比(A)/(B)が1.5倍以上を示している。そのため、本発明の吸着材は、例えば、フミン質がバイオポリマーよりも多く存在しているような場合であっても、効率的にバイオポリマーを吸着できることを示唆している。
 また、実施例2-6では、モデル海水1からであっても、アルギン酸ナトリウムを高い吸着率で吸着することが可能である。
 さらに、実施例2-1~2-6で、アルギン酸ナトリウムが吸着された吸着材に対して、再生処理を行った場合、再生処理後の吸着材は、アルギン酸ナトリウムを再び高い吸着率で吸着することが可能であり、その再生効率は、実施例2-1~2-2および2-4~2-6では70%以上であり、特に実施例2-1~2-2および2-5~2-6では95%以上である。また、再生処理において用いられる水性媒体の温度が50℃以上であると再生効率が高い傾向にある。
As shown in Table 4, Examples 2-1 to 2-5 can adsorb both sodium alginate and sodium humate from the model river water, and are particularly excellent in sodium alginate adsorbability. . In these examples, the ratio (A) / (B) of the adsorption rate (A) of sodium alginate and the adsorption rate (B) of sodium humate is 1.5 times or more. Therefore, the adsorbent of the present invention suggests that the biopolymer can be adsorbed efficiently even when, for example, more humic substances are present than the biopolymer.
In Example 2-6, sodium alginate can be adsorbed at a high adsorption rate even from model seawater 1.
Furthermore, in Examples 2-1 to 2-6, when the regeneration treatment is performed on the adsorbent on which sodium alginate is adsorbed, the adsorbent after the regeneration treatment again adsorbs sodium alginate with a high adsorption rate. The regeneration efficiency is 70% or more in Examples 2-1 to 2-2 and 2-4 to 2-6, and in particular, Examples 2-1 to 2-2 and 2-5 to In 2-6, it is 95% or more. Moreover, when the temperature of the aqueous medium used in the regeneration treatment is 50 ° C. or higher, the regeneration efficiency tends to be high.
[実施例2-7]
 原水として、印旛沼(千葉県)から採取した表流水(有機体炭素濃度=3.6mg-C/L、pH=8.7、バイオポリマーのSUVA値:0.21(L/mg-C・m)、フミン質のSUVA値:3.3(L/mg-C・m)を用い、原水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに対して、吸着材2-2を5g投入し、25℃にて4時間振とうした。振とう後、親水性高分子吸着材をろ別し、得られた処理水を用いて、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。結果を表5に示す。
[Example 2-7]
As raw water, surface water collected from Inba Marsh (Chiba Prefecture) (organic carbon concentration = 3.6 mg-C / L, pH = 8.7, biopolymer SUVA value: 0.21 (L / mg-C · m), using a humic SUVA value: 3.3 (L / mg-C · m), and first filtering raw water through a stainless mesh cartridge filter (TMP-2, manufactured by Avantech) with an exclusion diameter of 2 μm. Insoluble matter was removed by 1 and 5 g of adsorbent 2-2 was added to 1 L of the filtered water and shaken for 4 hours at 25 ° C. After shaking, the hydrophilic polymer adsorbent was filtered off. As a result of evaluating the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm) using the treated water obtained, the long-term water permeability was A. The results are shown in Table 5.
[実施例2-8]
 実施例2-7で原水と接触させた後の吸着材2-2をろ別回収し、60℃のNaCl.5%水溶液を用いて24時間再生を行った後、再度実施例2-7と同様に原水と接触させ、処理水を得た。得られた処理水を用いて、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。
[Example 2-8]
The adsorbent 2-2 after contact with the raw water in Example 2-7 was recovered by filtration, and the NaCl 2 . After regenerating for 24 hours using a 5% aqueous solution, it was again contacted with raw water in the same manner as in Example 2-7 to obtain treated water. As a result of evaluating the water permeability of the PVDF MF membrane (Asahi Kasei Co., Ltd., pore size 0.1 μm) using the treated water obtained, the long-term water permeability was A. The results are shown in Table 6.
[実施例2-9]
 原水として、印旛沼(千葉県)から採取した表流水(有機体炭素濃度=3.6mg-C/L、pH=8.7)を用い、原水を、まず、排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過することにより不溶物を取り除き、そのろ過後の水1Lに対して、吸着材2-2を5g投入し、25℃にて4時間攪拌した。撹拌後、親水性高分子吸着材をろ別し、得られた処理水を用いて、ポリアクリロニトリル(PAN)製UF膜(旭化成(株)製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表5に示す。
[Example 2-9]
As raw water, surface water (organic carbon concentration = 3.6 mg-C / L, pH = 8.7) collected from Inba Marsh (Chiba Prefecture) is used. The raw water is first a stainless mesh cartridge filter with an exclusion diameter of 2 μm. (TMP-2, manufactured by Advantech) was used to remove insoluble matter, and 5 g of adsorbent 2-2 was added to 1 L of the filtered water and stirred at 25 ° C. for 4 hours. After stirring, the hydrophilic polymer adsorbent was filtered off, and the water permeability of the polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut off 100 kDa) was evaluated using the resulting treated water. The long-term water permeability was A. The results are shown in Table 5.
[実施例2-10]
 実施例2-9で原水と接触させた後の吸着材2-2をろ別回収し、80℃の水を用いて1時間再生を行った後、再度実施例2-7と同様に原水と接触させ、処理水を得た。ポリアクリロニトリル(PAN)製UF膜(旭化成(株)製、分画分子量100kDa)の透水性を評価した結果、長期透水性はAであった。結果を表6に示す。
[Example 2-10]
The adsorbent 2-2 that had been brought into contact with the raw water in Example 2-9 was collected by filtration, regenerated for 1 hour using water at 80 ° C., and then again with the raw water as in Example 2-7. It was made to contact and the treated water was obtained. As a result of evaluating the water permeability of a polyacrylonitrile (PAN) UF membrane (Asahi Kasei Co., Ltd., molecular weight cut-off 100 kDa), the long-term water permeability was A. The results are shown in Table 6.
[比較例2-4]
 吸着材を用いずに表流水を排除径2μmのステンレスメッシュカートリッジフィルター(TMP-2、Advantech社製)でろ過した後、PVDF製MF膜(旭化成(株)製、孔径0.1μm)の透水性を評価したこと以外は実施例2-7と同様に評価を行った。吸着材で物理的に不可逆的な膜ファウリングを生じる原因物質を除去しなかったため、長期透水性はBであった。結果を表5に示す。
[Comparative Example 2-4]
Surface water is removed without using an adsorbent, filtered through a stainless steel mesh cartridge filter (TMP-2, manufactured by Advantech) with a diameter of 2 μm, and then permeable to PVDF MF membrane (Asahi Kasei Co., Ltd., pore size: 0.1 μm). Evaluation was conducted in the same manner as in Example 2-7, except that The long-term water permeability was B because the causative substance that causes physically irreversible membrane fouling with the adsorbent was not removed. The results are shown in Table 5.
[比較例2-5]
 吸着材として、市販の粒状活性炭(クラレケミカル(株)製、「クラレコールGW20/40」)を用いたこと以外は実施例2-7と同様に評価を行った。長期透水性はBであった。結果を表5に示す。
[Comparative Example 2-5]
Evaluation was performed in the same manner as in Example 2-7, except that a commercially available granular activated carbon (manufactured by Kuraray Chemical Co., Ltd., “Kuraray Coal GW20 / 40”) was used as the adsorbent. The long-term water permeability was B. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、実施例2-7および2-9で得られた吸着材により原水を処理した処理水を用いてろ過工程を行った場合、MF膜であっても、UF膜であっても双方においてろ膜の透水性を長期化することが可能である。一方で、吸着材を用いない場合(比較例2-4)および吸着材として市販の粒状活性炭を用いた場合(比較例2-5)では、ろ膜の透水性を長期化することができない。 As shown in Table 5, when the filtration process was performed using the treated water obtained by treating the raw water with the adsorbents obtained in Examples 2-7 and 2-9, the MF membrane was not the UF membrane. Even in both cases, it is possible to prolong the water permeability of the membrane. On the other hand, when the adsorbent is not used (Comparative Example 2-4) and when the commercially available granular activated carbon is used as the adsorbent (Comparative Example 2-5), the water permeability of the filter membrane cannot be prolonged.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、実施例2-8および2-10では、吸着後、再生処理が行われた吸着材であっても、吸着性を維持することが可能であることを示している。すなわち、再生された吸着材により原水を処理した処理水を用いてろ過工程を行った場合、MF膜であっても、UF膜であっても双方においてろ膜の透水性を長期化することが可能である。 As shown in Table 6, in Examples 2-8 and 2-10, it is shown that the adsorptivity can be maintained even if the adsorbent is subjected to the regeneration treatment after the adsorption. That is, when the filtration process is performed using the treated water obtained by treating the raw water with the regenerated adsorbent, it is possible to prolong the permeability of the filtration membrane in both the MF membrane and the UF membrane. Is possible.
[実施例3-1]
 主骨格である親水性高分子としてエチレン-ビニルアルコール共重合体((株)クラレ製、「F-104」、δ=28)80重量部とポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)20質量部をラボプラストミルにて、210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施した。得られた粉砕物に対し、篩を用いて分級することで粒子径0.4~0.7mmの粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃のNaCl3.5%の水溶液に浸漬、攪拌洗浄することで、表7に示すとおり目的の吸着材3-1を得た。得られた吸着材の25℃水中の膨潤度は97%、平均粒子径0.7mmであった。
[Example 3-1]
80 parts by weight of ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “F-104”, δ = 28) and polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd. -200 ") 20 parts by mass was melt-kneaded for 3 minutes at 210 ° C in a lab plast mill, and the resulting kneaded product was cooled and then pulverized. The obtained pulverized product was classified using a sieve to obtain particles having a particle size of 0.4 to 0.7 mm. Further, the particles were subjected to a crosslinking treatment with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, and after filtration, a large amount of NaCl 3.5 ° C. at 80 ° C. As shown in Table 7, the intended adsorbent 3-1 was obtained by immersing in a 100% aqueous solution and washing with stirring. The degree of swelling of the obtained adsorbent in 25 ° C. water was 97% and the average particle size was 0.7 mm.
 得られた吸着材3-1をモデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示す。 The obtained adsorbent 3-1 was immersed and shaken in each of model seawater 1 and model 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8.
[実施例3-2]
 主骨格である親水性高分子としてエチレン-ビニルアルコール共重合体((株)クラレ製、「E-105」、δ=26)75重量部とポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)25質量部をラボプラストミルにて210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施した。得られた粉砕物に対し、篩を用いて分級することで粒子径0.4~0.7mmの粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃のNaCl3.5%の水溶液に浸漬、攪拌洗浄することで、表7に示すとおり目的の吸着材3-2を得た。得られた吸着材の25℃水中の膨潤度は88%、平均粒子径0.6mmであった。
[Example 3-2]
As a hydrophilic polymer which is the main skeleton, ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “E-105”, δ = 26) 75 parts by weight and polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP”) -200 ") 25 parts by mass was melt-kneaded for 3 minutes at 210 ° C in a lab plast mill, and the resulting kneaded product was cooled and then pulverized. The obtained pulverized product was classified using a sieve to obtain particles having a particle size of 0.4 to 0.7 mm. Further, the particles were subjected to a crosslinking treatment with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, and after filtration, a large amount of NaCl 3.5 ° C. at 80 ° C. As shown in Table 7, the intended adsorbent 3-2 was obtained by immersing in a 100% aqueous solution and washing with stirring. The obtained adsorbent had a degree of swelling in 25 ° C. water of 88% and an average particle size of 0.6 mm.
 得られた吸着材3-2をモデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示す。 The obtained adsorbent 3-2 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8.
[実施例3-3]
 主骨格である親水性高分子としてエチレン-ビニルアルコール共重合体((株)クラレ製、「G-156」、δ=25)65重量部とポリエチレンイミン((株)日本触媒製、「エポミンSP-200」)35質量部をラボプラストミルにて210℃において3分間溶融混練し、得られた混練物を冷却後、粉砕処理を施した。得られた粉砕物に対し、篩を用いて分級することで粒子径0.4~0.7mmの粒子を得た。さらに、この粒子をエポキシ化合物(ナガセケムテックス(株)製、「デナコールEX-810」)2%の25℃の溶液で1時間架橋処理を行い、ろ別後、多量の80℃のNaCl3.5%の水溶液に浸漬、攪拌洗浄することで、表7に示すとおり目的の吸着材3-3を得た。得られた吸着材の25℃水中の膨潤度は110%、平均粒子径0.8mmであった。
[Example 3-3]
65 parts by weight of an ethylene-vinyl alcohol copolymer (manufactured by Kuraray Co., Ltd., “G-156”, δ = 25) and polyethyleneimine (manufactured by Nippon Shokubai Co., Ltd., “Epomin SP”) are hydrophilic polymers as the main skeleton. −200 ”) 35 parts by mass was melt-kneaded at 210 ° C. for 3 minutes in a lab plast mill, and the obtained kneaded product was cooled and then pulverized. The obtained pulverized product was classified using a sieve to obtain particles having a particle size of 0.4 to 0.7 mm. Further, the particles were subjected to a crosslinking treatment with a solution of 2% of an epoxy compound (manufactured by Nagase ChemteX Corp., “Denacol EX-810”) at 25 ° C. for 1 hour, and after filtration, a large amount of NaCl 3.5 ° C. at 80 ° C. As shown in Table 7, the intended adsorbent 3-3 was obtained by immersion in an aqueous solution of 100% and washing with stirring. The obtained adsorbent had a degree of swelling in 25 ° C. water of 110% and an average particle diameter of 0.8 mm.
 得られた吸着材3-3をモデル汽水1およびモデル汽水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示す。 The obtained adsorbent 3-3 was immersed and shaken in each of model brackish water 1 and model brackish water 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8.
[実施例3-4]
 主骨格である親水性高分子としてポリビニルアルコール((株)クラレ製「PVA―117」、δ=33)88質量部、ポリアリルアミン(ニットーボーメディカル(株)製「PAA-15C」)12質量部となるような樹脂組成とし、それら樹脂を水に溶解させた。当該溶液を直径0.08mm、孔数1000のノズルから40℃の飽和硫酸ナトリウム浴に湿式紡糸し、15m/分の速度で引き取った。形成した糸はさらに2倍に湿延伸した後、130℃で乾燥させ、230℃で5倍の乾熱延伸を施した。この繊維をさらにグルタルアルデヒド1%、マレイン酸2%の40℃の溶液に浸漬し架橋処理を行い、その後、水にて洗浄後、NaOH水溶液にて洗浄、さらにNaCl3.5%の水溶液に浸漬、攪拌洗浄することで目的の吸着材3-4(平均繊維径10μm、繊維長3cm)を得た。得られた吸着材の25℃水中の膨潤度は65%であった。
[Example 3-4]
88 parts by mass of polyvinyl alcohol (“PVA-117” manufactured by Kuraray Co., Ltd., δ = 33), 12 parts by mass of polyallylamine (“PAA-15C” manufactured by Nitto Bo Medical Co., Ltd.) The resin composition was such that these resins were dissolved in water. The solution was wet-spun into a saturated sodium sulfate bath at 40 ° C. from a nozzle having a diameter of 0.08 mm and a pore number of 1000, and taken up at a speed of 15 m / min. The formed yarn was further wet-drawn 2 times, dried at 130 ° C., and subjected to dry heat drawing 5 times at 230 ° C. This fiber was further immersed in a 40 ° C. solution of 1% glutaraldehyde and 2% maleic acid for crosslinking treatment, then washed with water, then washed with an aqueous NaOH solution, and further immersed in an aqueous 3.5% NaCl solution. The target adsorbent 3-4 (average fiber diameter 10 μm, fiber length 3 cm) was obtained by washing with stirring. The degree of swelling of the obtained adsorbent in 25 ° C. water was 65%.
 得られた吸着材3-4をモデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示す。 The obtained adsorbent 3-4 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8.
[実施例3-5]
 特開昭59-187005号公報に記載の方法で、末端にメルカプト基を有するビニルアルコール系重合体を合成した。H-NMR測定により求めたビニルアルコール単位の含有量(けん化度)は98.5モル%、JIS K6726に準拠して測定した粘度平均重合度は1500であった。
 次に、水563g、上記の末端メルカプト基含有ポリビニルアルコール110gを仕込み、窒素雰囲気下で攪拌しつつ、95℃まで加熱して該ポリビニルアルコールを溶解した後、室温まで冷却した。該水溶液に、ビニルベンジルトリメチルアンモニウムクロライド57.1gを攪拌しつつ添加した後、70℃まで加温し、過硫酸カリウムの2.5%水溶液88.8mLを1.5時間かけて添加、さらに、75℃で1時間維持して重合を進行させ、固形分濃度20%のポリビニルアルコール-ポリビニルベンジルトリメチルアンモニウムクロライドの共重合体である水溶性重合体の水溶液を得た。
 得られた水溶液の一部を乾燥させた後、重水に溶解し、H-NMR測定を行ったところ、該共重合体中の重合性不飽和単量体含有量、すなわち、該重合体中の単量体単位の総数に対するビニルベンジルトリメチルアンモニウムクロライド単量体単位の数の割合は10モル%であった。
 該重合体の水溶液を50g入れ、イオン交換水を加えて固形分濃度15%に調製した。この水溶液をポリエチレンテレフタレート膜上にアプリケーターを用いてキャスト製膜し、80℃で30分間乾燥した。こうして得られた膜を、170℃で30分間熱処理し、物理的な架橋を生じさせた。ついで、該膜を350gの硫酸ナトリウムが溶解した1Lの水溶液に浸漬させ、該水溶液にそのpHが1になるように濃硫酸を加え、さらにグルタルアルデヒドの3%水溶液として該膜を浸漬し、50℃で3時間架橋処理を行なった。架橋処理の後、該膜をイオン交換水、NaClの3.5%水溶液で洗浄、乾燥させたところ、厚み70μmの膜を得た。この膜を2mm角にカットし、表7に示すとおり目的の吸着材3-5を得た。得られた吸着材の25℃水中の膨潤度は30%であった。
[Example 3-5]
A vinyl alcohol polymer having a mercapto group at the end was synthesized by the method described in JP-A-59-187005. The vinyl alcohol unit content (degree of saponification) determined by 1 H-NMR measurement was 98.5 mol%, and the viscosity average degree of polymerization measured according to JIS K6726 was 1500.
Next, 563 g of water and 110 g of the above-mentioned terminal mercapto group-containing polyvinyl alcohol were charged, and the mixture was heated to 95 ° C. with stirring in a nitrogen atmosphere to dissolve the polyvinyl alcohol, and then cooled to room temperature. After adding 57.1 g of vinylbenzyltrimethylammonium chloride to the aqueous solution with stirring, the solution was heated to 70 ° C., and 88.8 mL of a 2.5% aqueous solution of potassium persulfate was added over 1.5 hours. The polymerization was continued for 1 hour at 75 ° C. to obtain an aqueous solution of a water-soluble polymer which is a copolymer of polyvinyl alcohol-polyvinylbenzyltrimethylammonium chloride having a solid content concentration of 20%.
A portion of the obtained aqueous solution was dried and then dissolved in heavy water and subjected to 1 H-NMR measurement. As a result, the content of the polymerizable unsaturated monomer in the copolymer, that is, in the polymer The ratio of the number of vinylbenzyltrimethylammonium chloride monomer units to the total number of monomer units was 10 mol%.
50 g of an aqueous solution of the polymer was added, and ion exchange water was added to prepare a solid concentration of 15%. This aqueous solution was cast on a polyethylene terephthalate film using an applicator and dried at 80 ° C. for 30 minutes. The film thus obtained was heat treated at 170 ° C. for 30 minutes to cause physical crosslinking. Next, the membrane was immersed in 1 L of an aqueous solution in which 350 g of sodium sulfate was dissolved, concentrated sulfuric acid was added to the aqueous solution so that the pH was 1, and the membrane was further immersed as a 3% aqueous solution of glutaraldehyde. Crosslinking treatment was carried out at 3 ° C. for 3 hours. After the crosslinking treatment, the membrane was washed with ion-exchanged water and a 3.5% aqueous solution of NaCl and dried to obtain a membrane having a thickness of 70 μm. This membrane was cut into 2 mm squares to obtain the intended adsorbent 3-5 as shown in Table 7. The degree of swelling of the obtained adsorbent in water at 25 ° C. was 30%.
 得られた吸着材3-5をモデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示す。 The obtained adsorbent 3-5 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8.
[比較例3-1]
 25℃水中の膨潤度が82%であるスチレン系ポリアミン型である市販イオン交換樹脂(三菱化学(株)製、「ダイヤイオンWA-20」、平均粒子径:0.5mm)、主体高分子はポリスチレンでありδ=20)を多量の80℃NaCl3.5%の水溶液にて浸漬、攪拌洗浄することで吸着材3-6を得た。得られた吸着材3-6をモデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示すが、吸着材3-6は、アルギン酸ナトリウムの吸着性能はほとんど有していなかった。
[Comparative Example 3-1]
A commercially available ion exchange resin (Made by Mitsubishi Chemical Co., Ltd., “Diaion WA-20”, average particle diameter: 0.5 mm) having a swelling degree in water at 25 ° C. of 82%, the main polymer is Adsorbent 3-6 was obtained by immersing polystyrene and δ = 20) in a large amount of an aqueous solution of 3.5% 80 ° C NaCl, stirring and washing. The obtained adsorbent 3-6 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rates of sodium alginate and sodium humate were determined. The evaluation results are shown in Table 8. Adsorbent 3-6 had almost no adsorption performance for sodium alginate.
[比較例3-2]
 25℃水中の膨潤度が27%である市販の合成ゼオライト(東ソー(株)製、「合成ゼオライトF-9」、平均粒子径:0.9mm)を多量の80℃NaCl3.5%の水溶液にて浸漬、攪拌洗浄後、吸着材3-7を得た。
 得られた吸着材3-7をモデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。評価結果を表8に示すが、吸着材3-7は、アルギン酸ナトリウムの吸着性能はほとんど有していなかった。
[Comparative Example 3-2]
Commercially available synthetic zeolite with a degree of swelling in water at 25 ° C. of 27% (manufactured by Tosoh Corporation, “synthetic zeolite F-9”, average particle size: 0.9 mm) in a large amount of 80 ° C. NaCl 3.5% aqueous solution. After soaking, stirring and washing, an adsorbent 3-7 was obtained.
The obtained adsorbent 3-7 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined. The evaluation results are shown in Table 8, and the adsorbent 3-7 had little adsorption performance for sodium alginate.
[比較例3-3]
 25℃水中の膨潤度が150%である市販の陰イオン吸着材(ダウケミカル日本(株)製、「MARATHON MSA」、平均粒子径:0.6mm)、主体高分子はポリスチレンでありδ=20)を多量の80℃NaCl3.5%の水溶液にて浸漬、攪拌洗浄後、吸着材3-8を得た。吸着材3-8を用いて、モデル海水1およびモデル海水2のそれぞれに浸漬、振とうさせ、アルギン酸ナトリウムおよびフミン酸ナトリウムの吸着率を求めた。結果を表8に示すが、この場合、アルギン酸ナトリウムの吸着率が実施例と比べて低いだけでなく、アルギン酸ナトリウムの吸着性能に比べフミン質の吸着性能が高いことがわかった。
[Comparative Example 3-3]
Commercially available anion adsorbent having a swelling degree in water at 25 ° C. of 150% (manufactured by Dow Chemical Japan Co., Ltd., “MARATHON MSA”, average particle size: 0.6 mm), the main polymer is polystyrene, and δ = 20 ) Was immersed in a large amount of 80 ° C. NaCl 3.5% aqueous solution, washed with stirring, and adsorbent 3-8 was obtained. The adsorbent 3-8 was immersed and shaken in each of model seawater 1 and model seawater 2, and the adsorption rate of sodium alginate and sodium humate was determined. The results are shown in Table 8. In this case, it was found that not only the adsorption rate of sodium alginate was lower than that in Examples, but also the adsorption performance of humic substances was higher than that of sodium alginate.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、実施例3-1~3-5では、塩化ナトリウムを含むモデル水から、アルギン酸ナトリウムおよびフミン酸ナトリウムの双方とも吸着することが可能であり、特にアルギン酸ナトリウムの吸着性に優れている。これらの実施例では、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比(A)/(B)が1.5倍以上を示している。そのため、本発明の吸着材は、例えば、フミン質がバイオポリマーよりも多く存在しているような場合であっても、効率的にバイオポリマーを吸着できることを示唆している。
 特に、実施例3-1~3-3では、親水性高分子として、エチレン-ビニルアルコール共重合体を主骨格として用いているためか、アルギン酸ナトリウムを高い吸着率で吸着することが可能である。また、実施例3-4に示すように、繊維状であっても、アルギン酸ナトリウムを高い吸着率で吸着することが可能である。
As shown in Table 8, in Examples 3-1 to 3-5, both sodium alginate and sodium humate can be adsorbed from the model water containing sodium chloride. Are better. In these examples, the ratio (A) / (B) of the adsorption rate (A) of sodium alginate and the adsorption rate (B) of sodium humate is 1.5 times or more. Therefore, the adsorbent of the present invention suggests that the biopolymer can be adsorbed efficiently even when, for example, more humic substances are present than the biopolymer.
In particular, in Examples 3-1 to 3-3, it is possible to adsorb sodium alginate with a high adsorption rate because an ethylene-vinyl alcohol copolymer is used as the main skeleton as the hydrophilic polymer. . Further, as shown in Example 3-4, sodium alginate can be adsorbed at a high adsorption rate even in a fibrous form.
[実施例3-6]
 実施例3-1に従い、モデル水1を用いて吸着材3-1にアルギン酸ナトリウムを吸着させた後、吸着材をろ別した。次いで、ろ別した吸着材を80℃に調整した純水に浸漬し、1時間振とうさせることで再生処理を行った。その後、再生処理された吸着材をろ別回収した後、再度、実施例3-1と同様にしてモデル水1を用いてアルギン酸ナトリウムの吸着率を求めた。評価結果を表9に示す。
[Example 3-6]
According to Example 3-1, after adsorbing sodium alginate on the adsorbent 3-1, using model water 1, the adsorbent was filtered off. Next, the adsorbent separated by filtration was immersed in pure water adjusted to 80 ° C. and shaken for 1 hour to perform a regeneration treatment. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was obtained again using model water 1 in the same manner as in Example 3-1. Table 9 shows the evaluation results.
[実施例3-7]
 実施例3-2に従い、モデル水1を用いて吸着材3-2にアルギン酸ナトリウムを吸着させた後、吸着材をろ別した。次いで、ろ別した吸着材を90℃に調整した純水に浸漬し、1時間振とうさせることで再生処理を行った。その後、再生処理された吸着材をろ別回収した後、再度、実施例3-1と同様にしてモデル水1を用いてアルギン酸ナトリウムの吸着率を求めた。評価結果を表9に示す。
[Example 3-7]
In accordance with Example 3-2, model water 1 was used to adsorb sodium alginate on the adsorbent 3-2, and then the adsorbent was filtered off. Next, the adsorbent separated by filtration was immersed in pure water adjusted to 90 ° C. and shaken for 1 hour to perform a regeneration treatment. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was obtained again using model water 1 in the same manner as in Example 3-1. Table 9 shows the evaluation results.
[実施例3-8]
 実施例3-3に従い、モデル汽水1を用いて吸着材3-3にアルギン酸ナトリウムを吸着させた後、吸着材をろ別した。次いで、ろ別した吸着材を60℃に調整した0.25%NaCl水溶液に浸漬し、24時間振とうさせることで再生処理を行った。その後、再生処理された吸着材をろ別回収した後、再度、実施例3-1と同様にしてモデル汽水1を用いてアルギン酸ナトリウムの吸着率を求めた。評価結果を表9に示す。
[Example 3-8]
According to Example 3-3, model a brackish water 1 was used to adsorb sodium alginate on the adsorbent 3-3, and then the adsorbent was filtered off. Subsequently, the adsorbent separated by filtration was immersed in a 0.25% NaCl aqueous solution adjusted to 60 ° C. and shaken for 24 hours to perform a regeneration treatment. Thereafter, the regenerated adsorbent was collected by filtration, and the adsorption rate of sodium alginate was determined again using model brackish water 1 in the same manner as in Example 3-1. Table 9 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表9に示すように、アルギン酸ナトリウムを吸着した吸着材に対して、再生処理を行った実施例3-6~3-8において、再生処理後の吸着材は、アルギン酸ナトリウムを再び高い吸着率で吸着することが可能である。その再生効率は、実施例3-6~3-8のいずれも95%以上である。 As shown in Table 9, in Examples 3-6 to 3-8 in which regeneration treatment was performed on the adsorbent that adsorbed sodium alginate, the adsorbent after regeneration treatment again had a high adsorption rate of sodium alginate. It is possible to adsorb. The regeneration efficiency is 95% or more in each of Examples 3-6 to 3-8.
 本発明によれば、有機体炭素を吸着可能であり、特に、従来吸着が困難であったバイオポリマーを効率よく吸着することができる親水性高分子吸着材を提供することができる。このような組成物は、有機体炭素吸着材(特にバイオポリマー吸着材)として、各種原水を水処理する際に、有効に利用することができる。 According to the present invention, it is possible to provide a hydrophilic polymer adsorbent capable of adsorbing organic carbon, and in particular, capable of efficiently adsorbing biopolymers that have been difficult to adsorb conventionally. Such a composition can be effectively used as an organic carbon adsorbent (particularly, a biopolymer adsorbent) when various raw waters are treated with water.
 以上のとおり、図面を参照しながら本発明の好適な実施例を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments of the present invention have been described with reference to the drawings. However, those skilled in the art can easily assume various changes and modifications within the obvious range by looking at the present specification. I will. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.

Claims (14)

  1.  25℃水中における膨潤度が20~500%であり、親水性高分子を主骨格として有しているとともに、被処理水中の有機体炭素のうち、少なくとも一部の成分との結合形成が可能な官能基(以下、結合形成基と称する)を有する親水性高分子吸着材。 Swelling degree in water at 25 ° C. is 20 to 500%, has a hydrophilic polymer as the main skeleton, and can form bonds with at least some of the organic carbon in the water to be treated. A hydrophilic polymer adsorbent having a functional group (hereinafter referred to as a bond-forming group).
  2.  請求項1の親水性高分子吸着材において、結合形成基が、吸着される成分に対して、水素結合、イオン結合、およびキレート結合からなる群から選択された少なくとも一種の結合の形成能を有する、親水性高分子吸着材。 The hydrophilic polymer adsorbent according to claim 1, wherein the bond-forming group has an ability to form at least one kind of bond selected from the group consisting of a hydrogen bond, an ionic bond, and a chelate bond with respect to the adsorbed component. , Hydrophilic polymer adsorbent.
  3.  請求項1または2の親水性高分子吸着材において、結合形成基が、N、S、PおよびOからなる群から選択された元素を少なくとも一つ含む結合形成基である親水性高分子吸着材。 3. The hydrophilic polymer adsorbent according to claim 1, wherein the bond-forming group is a bond-forming group containing at least one element selected from the group consisting of N, S, P and O. .
  4.  請求項1~3のいずれか一項の親水性高分子吸着材において、吸着される成分がバイオポリマーを含み、そのバイオポリマーの除去率が15%以上である親水性高分子吸着材。 The hydrophilic polymer adsorbent according to any one of claims 1 to 3, wherein the adsorbed component contains a biopolymer, and the removal rate of the biopolymer is 15% or more.
  5.  請求項1~4のいずれか一項の親水性高分子吸着材において、25℃のバイオポリマーモデル水(アルギン酸ナトリウム濃度:4.3mg―C/Lのアルギン酸ナトリウム水溶液)およびフミン質モデル水(フミン酸ナトリウム濃度:4.3mg―C/Lのフミン酸ナトリウム水溶液)のそれぞれに対して、アルギン酸ナトリウムの吸着率(A)と、フミン酸ナトリウムの吸着率(B)との比が、(A)/(B)=1.0~10である、親水性高分子吸着材。 5. The hydrophilic polymer adsorbent according to claim 1, wherein biopolymer model water (sodium alginate concentration: 4.3 mg-C / L sodium alginate aqueous solution) and humic model water (humin) at 25 ° C. The ratio of the sodium alginate adsorption rate (A) to the sodium humate adsorption rate (B) for each of the sodium acid concentration: 4.3 mg-C / L sodium humate aqueous solution) is (A) /(B)=1.0-10, hydrophilic polymer adsorbent.
  6.  請求項1~5のいずれか一項の親水性高分子吸着材において、親水性高分子が、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルアセタール、ポリビニルアルキルアルコール、ポリアルキレングリコール、ポリビニルアルキルエーテル、ポリアルキレンオキシド、ポリ(メタ)アクリルアミド、カチオン性ポリマー、アニオン性ポリマー、フェノール樹脂、ポリアミド、ポリビニルピロリドン、セルロース誘導体、デキストリン、キチン、およびキトサンのいずれかから選択される少なくとも1種である親水性高分子吸着材。 The hydrophilic polymer adsorbent according to any one of claims 1 to 5, wherein the hydrophilic polymer is polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl acetal, polyvinyl alkyl alcohol, polyalkylene glycol, polyvinyl alkyl ether. , A polyalkylene oxide, poly (meth) acrylamide, cationic polymer, anionic polymer, phenol resin, polyamide, polyvinyl pyrrolidone, cellulose derivative, dextrin, chitin, and hydrophilic which is at least one selected from chitosan Polymer adsorbent.
  7.  請求項1~6のいずれか一項の親水性高分子吸着材において、親水性高分子吸着材が、結合形成基を有する高分子(A)と親水性高分子(B)とで少なくとも構成されたアロイ材である親水性高分子吸着材。 The hydrophilic polymer adsorbent according to any one of claims 1 to 6, wherein the hydrophilic polymer adsorbent comprises at least a polymer (A) having a bond-forming group and a hydrophilic polymer (B). Hydrophilic polymer adsorbent, which is an alloy material.
  8.  請求項7の親水性高分子吸着材において、親水性高分子(B)がエチレン-ビニルアルコール系共重合体である親水性高分子吸着材。 8. The hydrophilic polymer adsorbent according to claim 7, wherein the hydrophilic polymer (B) is an ethylene-vinyl alcohol copolymer.
  9.  有機体炭素を含有する被処理水と、請求項1~8のいずれか一項に記載の親水性高分子吸着材とを接触させ、有機体炭素の少なくとも一部の成分を吸着させる吸着工程、を少なくとも備える水処理方法。 An adsorption step in which water to be treated containing organic carbon is brought into contact with the hydrophilic polymer adsorbent according to any one of claims 1 to 8 to adsorb at least a part of the organic carbon; A water treatment method comprising at least a water treatment method.
  10.  請求項9の水処理方法において、さらに、吸着工程により得られた吸着処理水を、膜ろ過処理により膜ろ過する、膜ろ過工程を備える、水処理方法。 The water treatment method according to claim 9, further comprising a membrane filtration step of membrane-filtering the adsorption-treated water obtained by the adsorption step by membrane filtration.
  11.  請求項9または10の水処理方法において、被処理水が、淡水または塩類を含む水である、水処理方法。 The water treatment method according to claim 9 or 10, wherein the water to be treated is fresh water or water containing salts.
  12.  請求項9~11のいずれか一項の水処理方法において、さらに、吸着工程後の吸着材を水性媒体と接触させ、前記吸着材を再生する再生工程を備える、水処理方法。 The water treatment method according to any one of claims 9 to 11, further comprising a regeneration step of regenerating the adsorbent by bringing the adsorbent after the adsorption step into contact with an aqueous medium.
  13.  請求項12の水処理方法において、再生工程で用いられる水性媒体が、水、または金属イオン含有水溶液である、水処理方法。 The water treatment method according to claim 12, wherein the aqueous medium used in the regeneration step is water or a metal ion-containing aqueous solution.
  14.  請求項12または13の水処理方法において、再生工程で用いられる水性媒体の温度が40℃~110℃である、水処理方法。 The water treatment method according to claim 12 or 13, wherein the temperature of the aqueous medium used in the regeneration step is 40 ° C to 110 ° C.
PCT/JP2014/080911 2013-11-25 2014-11-21 Hydrophilic polymeric adsorbent and water treatment method employing same WO2015076371A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013-243150 2013-11-25
JP2013243150A JP2017018842A (en) 2013-11-25 2013-11-25 Hydrophilic polymer adsorbent material and water treatment method using the same
JP2014053175A JP2017018843A (en) 2014-03-17 2014-03-17 Water treatment method, water treatment polymer adsorbent, and regeneration method therefor
JP2014-053176 2014-03-17
JP2014053176A JP2017018844A (en) 2014-03-17 2014-03-17 Water treatment method
JP2014-053175 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015076371A1 true WO2015076371A1 (en) 2015-05-28

Family

ID=53179630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080911 WO2015076371A1 (en) 2013-11-25 2014-11-21 Hydrophilic polymeric adsorbent and water treatment method employing same

Country Status (1)

Country Link
WO (1) WO2015076371A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727898A (en) * 2016-04-07 2016-07-06 昆明理工大学 Method for preparing regenerated-cellulose and sodium-humate blended large-pore adsorption gel
CN108822813A (en) * 2018-08-08 2018-11-16 天津渤海中联石油科技有限公司 A kind of organic lignite method of purification
JP2019515785A (en) * 2016-04-22 2019-06-13 ポール・コーポレーションPall Corporation Water treatment equipment
CN110115988A (en) * 2019-06-03 2019-08-13 湖南泰谷生态工程有限公司 A kind of processing method of heavy metal ion type industrial wastewater
CN111282556A (en) * 2020-03-27 2020-06-16 神华神东煤炭集团有限责任公司 Defluorination composite fiber membrane, preparation method and application thereof
CN112209567A (en) * 2020-09-29 2021-01-12 江苏盐城环保科技城土壤污染修复研发中心 Adsorption purification method of livestock and poultry wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130121A (en) * 1990-09-20 1992-05-01 Agency Of Ind Science & Technol Jelly having separating function
WO2001066607A1 (en) * 2000-03-09 2001-09-13 Hisamitsu Pharmaceutical Co., Inc. Crosslinked anion-exchange resin or salt thereof and phosphorus adsorbent comprising the same
JP2007175646A (en) * 2005-12-28 2007-07-12 Lion Corp Cleaning agent and cleaning method
JP2012067268A (en) * 2010-09-27 2012-04-05 Kuraray Co Ltd Composition, metal ion adsorbent, and metal recovery method
JP2013056286A (en) * 2011-09-07 2013-03-28 Hitachi Ltd Seawater desalination system
JP2013202512A (en) * 2012-03-28 2013-10-07 Cci Corp Method of treating oil-and-fat- or fatty acid-containing waste water
JP2013223847A (en) * 2012-04-23 2013-10-31 Swing Corp Water treatment method and water treatment apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04130121A (en) * 1990-09-20 1992-05-01 Agency Of Ind Science & Technol Jelly having separating function
WO2001066607A1 (en) * 2000-03-09 2001-09-13 Hisamitsu Pharmaceutical Co., Inc. Crosslinked anion-exchange resin or salt thereof and phosphorus adsorbent comprising the same
JP2007175646A (en) * 2005-12-28 2007-07-12 Lion Corp Cleaning agent and cleaning method
JP2012067268A (en) * 2010-09-27 2012-04-05 Kuraray Co Ltd Composition, metal ion adsorbent, and metal recovery method
JP2013056286A (en) * 2011-09-07 2013-03-28 Hitachi Ltd Seawater desalination system
JP2013202512A (en) * 2012-03-28 2013-10-07 Cci Corp Method of treating oil-and-fat- or fatty acid-containing waste water
JP2013223847A (en) * 2012-04-23 2013-10-31 Swing Corp Water treatment method and water treatment apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105727898A (en) * 2016-04-07 2016-07-06 昆明理工大学 Method for preparing regenerated-cellulose and sodium-humate blended large-pore adsorption gel
JP2019515785A (en) * 2016-04-22 2019-06-13 ポール・コーポレーションPall Corporation Water treatment equipment
JP7052178B2 (en) 2016-04-22 2022-04-12 ポール・コーポレーション Water treatment equipment
CN108822813A (en) * 2018-08-08 2018-11-16 天津渤海中联石油科技有限公司 A kind of organic lignite method of purification
CN110115988A (en) * 2019-06-03 2019-08-13 湖南泰谷生态工程有限公司 A kind of processing method of heavy metal ion type industrial wastewater
CN110115988B (en) * 2019-06-03 2022-01-21 湖南泰谷生态工程有限公司 Treatment method of heavy metal ion type industrial wastewater
CN111282556A (en) * 2020-03-27 2020-06-16 神华神东煤炭集团有限责任公司 Defluorination composite fiber membrane, preparation method and application thereof
CN111282556B (en) * 2020-03-27 2023-03-28 神华神东煤炭集团有限责任公司 Defluorination composite fiber membrane, preparation method and application thereof
CN112209567A (en) * 2020-09-29 2021-01-12 江苏盐城环保科技城土壤污染修复研发中心 Adsorption purification method of livestock and poultry wastewater

Similar Documents

Publication Publication Date Title
WO2015076371A1 (en) Hydrophilic polymeric adsorbent and water treatment method employing same
Köse et al. Applications and impact of nanocellulose based adsorbents
WO2015178458A1 (en) Adsorption material for adsorbing membrane-fouling-causing substance, water treatment method using same, and method for regenerating adsorption material
JP2017018843A (en) Water treatment method, water treatment polymer adsorbent, and regeneration method therefor
Gao et al. Ultrasonic control of UF membrane fouling by natural waters: Effects of calcium, pH, and fractionated natural organic matter
CN109414901B (en) Antimicrobial composite filter material and preparation method thereof
Kotp Removal of organic pollutants using polysulfone ultrafiltration membrane containing polystyrene silicomolybdate nanoparticles: Case study: Borg El Arab area
JP2017094259A (en) Membrane fouling inhibitor
JP2016215147A (en) Membrane fouling factor agent absorbent
CN106582326A (en) Antibacterial composite nano-filtration membrane and preparation method and application thereof
US8070951B2 (en) Method for removing contaminants from liquids using membrane filtration in combination with particle adsorption to reduce fouling
Samoila et al. Chitin and chitosan for water purification
Dutta et al. Interpenetrating polymer networks for desalination and water remediation: A comprehensive review of research trends and prospects
CN114917776A (en) High-flux antibacterial reverse osmosis membrane and preparation method and application thereof
JP2016215156A (en) Safety filter for water treatment
WO2015076370A1 (en) Biopolymer-adsorbing composition and water treatment method using same
JP2017018842A (en) Hydrophilic polymer adsorbent material and water treatment method using the same
JP2011156519A (en) Polymer water treatment film, water treatment method, and method for maintaining polymer water treatment film
JP2016040030A (en) Water treatment system
Yamamura et al. Influence of calcium on the evolution of irreversible fouling in microfiltration/ultrafiltration membranes
JP2016040031A (en) Circulation water treatment system of cooling tower
JP2020185501A (en) Adsorbent for water purification, manufacturing method of adsorbent for water purification, radioactive substance concentration detector, and land-based aquaculture system
JP2017018844A (en) Water treatment method
Nazir et al. Polymeric membranes nanocomposites as effective strategy for dye removal
RU2465951C1 (en) Composite material for purification of liquid by filtration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14864756

Country of ref document: EP

Kind code of ref document: A1