WO2015176601A1 - 图像传感器结构及其封装方法 - Google Patents

图像传感器结构及其封装方法 Download PDF

Info

Publication number
WO2015176601A1
WO2015176601A1 PCT/CN2015/078185 CN2015078185W WO2015176601A1 WO 2015176601 A1 WO2015176601 A1 WO 2015176601A1 CN 2015078185 W CN2015078185 W CN 2015078185W WO 2015176601 A1 WO2015176601 A1 WO 2015176601A1
Authority
WO
WIPO (PCT)
Prior art keywords
image sensor
package
frame
sensor chip
packaging
Prior art date
Application number
PCT/CN2015/078185
Other languages
English (en)
French (fr)
Inventor
邓辉
赵立新
Original Assignee
格科微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 格科微电子(上海)有限公司 filed Critical 格科微电子(上海)有限公司
Priority to US15/312,628 priority Critical patent/US10032824B2/en
Publication of WO2015176601A1 publication Critical patent/WO2015176601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45139Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73215Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92162Sequential connecting processes the first connecting process involving a wire connector
    • H01L2224/92165Sequential connecting processes the first connecting process involving a wire connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/162Disposition
    • H01L2924/16235Connecting to a semiconductor or solid-state bodies, i.e. cap-to-chip

Definitions

  • the present invention relates to the field of semiconductor manufacturing, and in particular, to a CMOS image sensor packaging method.
  • the mainstream image sensor (CIS: CMOS Image Sensor) packaging methods include: Chip Scale Package (CSP), Chip On Board (COB) and flip chip package (Flip Chip, FC) ).
  • CSP Chip Scale Package
  • COB Chip On Board
  • FC flip chip package
  • CIS CSP is a Wafer level package technology currently used in low-end, low-pixel (2M pixels or less) image sensors.
  • the package technology uses wafer-level glass and wafer bonding and is separated by a weir between the image sensor chips of the wafer, and then passes through the pad surface or the pad surface inner hole in the pad area of the polished wafer.
  • Side-ring metal-bonded through-silicon via technology TSV: Through Silicon Via
  • T-type metal contact chip-size package technology on the side of the pad after dicing
  • BGA Ball Grid Array
  • CSP package has the following obvious problems: 1 affecting product performance: absorption, refraction, reflection and scattering of light by thick supporting glass have a great influence on the performance of image sensors, especially small pixel size products; 2 reliability problems : The difference in thermal expansion coefficient between components in the package structure and the reliability of the sealing gas in the cavity in the subsequent SMT process or product use environment; 3 large investment scale, large environmental pollution control requirements, long production cycle The unit chip cost is high especially for high-pixel large-size image sensor products.
  • the CIS COB package is a Die Level package technology currently used in high-end, high-pixel (5M pixels or above) image sensors.
  • the packaging technology combines the back surface of the chip after grinding and cutting on the pads of the PCB board using a bonding metal wire, and mounting a bracket and a lens with an IR glass sheet to form an assembled module structure.
  • COB The following obvious problems are encapsulated: 1. Dust control is very difficult, requires high clean room grade, and high manufacturing maintenance cost; 2. Customized product design, long cycle, and insufficient flexibility; 3 is not easy to scale production;
  • CIS FC encapsulates the recently emerging Die Level (chip level) packaging technology for high-end, high-pixel (5M pixel or above) image sensors.
  • the packaging technology connects the chip pads of the gold bumps on the pads directly to the pads of the PCB through the thermosonic effect, and all the contact bumps and the pads are connected at one time to form a package structure.
  • the back end is formed into a module assembly structure by a method of SMT using a pad or a solder ball outside the PCB.
  • the FC package has the following obvious problems: 1
  • the package has high requirements on the PCB substrate, has a thermal expansion coefficient similar to that of Si, and has high cost; 2 manufacturing reliability is very difficult, and all the bumps of the thermosonic are connected to the pads.
  • the requirements are very high, the bumps are hardly connected to the pads, and the ductility is not good; 3 the dust control is difficult, the process environment is high, and the cost is high;
  • a method for packaging an image sensor comprising the steps of: providing an image sensor chip and a transparent package substrate, the image sensor chip having an image sensing area on the front side and surrounding the image sensing a pad area of the region; a first end of the bonding metal wire is on the pad, the metal wire is suspended from the image sensor chip; and the package substrate is matched and bonded, and the image sensor chip is a package. The second end of the metal wire is suspended and is not covered by the bond.
  • the step further includes: the suspended metal wire can be electrically connected to the printed circuit board, the flexible circuit board or the ceramic circuit board by SMT or pressure welding.
  • the bonding covers the pad region, the peripheral region of the first end of the metal wire.
  • a package frame is provided, the package frame being mated to the package substrate, the image sensor chip.
  • the package frame is marked with an identifier.
  • the package frame includes: an inner frame and an outer frame, and a through gap region is disposed between the inner frame and the outer frame.
  • the void region is filled with a viscous material from the void region between the inner frame structure and the outer frame structure.
  • the package frame is located intermediate the package substrate and the image sensor chip, and the package frame isolates the image sensing area from the pad area.
  • the package frame has a second end adjacent to the package substrate, and the second end protrudes from the package substrate by 10 micrometers or more in a vertical direction.
  • the package frame has a second end adjacent to the package substrate, and an inner surface of the second end is provided with a venting groove or a glue expansion groove.
  • the step further includes: the package frame adjacent to the image sensor chip has a third end, and the third end protrudes vertically from the image sensor chip pad surface by more than 10 microns .
  • the package frame has a third end adjacent to the image sensor chip, and the third end has a slope inclined to an inner surface of the outer frame structure, the position of the slope corresponding to the gap region The slope prevents the viscous material from overflowing.
  • the metal wire is shaped using a sizing fixture.
  • the distance between the package substrate and the image sensor chip is greater than or equal to 40 microns.
  • the package frame has a protection area corresponding to the package substrate and the four corner regions of the image sensor chip, and the protection area is between the package frame and the package substrate.
  • a space is reserved between the package frame and the image sensor chip.
  • the viscous material is filled in by one or more of a dispensing method, a glue application method, a glue filling method, and a silk screen printing method.
  • the package substrate is made of glass material, plastic material or sapphire material.
  • one side of the package substrate is respectively plated with an infrared filter film, an optical anti-reflection film or both sides are respectively coated with an infrared filter film and an optical anti-reflection film.
  • a heat-adhesive-adhesive bonding material is formed on the reverse surface of the image sensor chip for fixing the package to the printed circuit board, the flexible circuit board or the ceramic Circuit board.
  • the metal wire is a gold wire, a copper wire, an aluminum wire or a silver wire.
  • the invention also provides an image sensor package, comprising: an image sensor chip, the front side of the image sensor chip has: an image sensing area and a pad surrounding the image sensing area; a metal wire suspended from the image a sensor chip, the first end of which is electrically connected to the pad, the second end is suspended from the package; the transparent package substrate is mounted on the image sensor; wherein the package further comprises: The adhesive material between the image sensor chip and the package substrate covers the pad region and the peripheral region of the first end of the metal wire.
  • the second end of the suspended metal wire can be electrically connected to the printed circuit board, the flexible circuit board or the ceramic circuit board by SMT or pressure welding.
  • the package further includes: a package frame disposed between the image sensor chip and the package substrate.
  • the package frame is provided with an identifier.
  • the package frame further includes: an inner frame, an outer frame, and a through gap region is disposed between the inner frame and the outer frame.
  • the viscous material is located in the void region.
  • the package frame is located between the package substrate and the image sensor chip, and the package frame isolates the image sensing area from the pad area.
  • the package frame has a second end adjacent to the package substrate, and the second end protrudes from the package substrate by 10 micrometers or more in a vertical direction.
  • the package frame has a second end adjacent to the package substrate, and an inner surface of the second end is provided with a venting groove or a glue expansion groove.
  • the package frame adjacent to the image sensor chip has a third end, and the third end protrudes from the image sensor chip pad surface by 10 micrometers or more in a vertical direction.
  • the package frame adjacent to the image sensor chip has a third end, and the third end has a slope inclined to an inner surface of the outer frame structure, the position of the slope corresponding to the gap region.
  • a vertical distance between the package frame and the image sensor chip is greater than or equal to 40 microns.
  • the package frame respectively has a protection area corresponding to the package substrate and the four corner regions of the image sensor chip, and the protection area is between the package frame and the package substrate a space is reserved between the package frame and the image sensor chip.
  • the package substrate is made of glass material, plastic material or sapphire material.
  • one side of the package substrate is covered with an infrared filter film, an optical anti-reflection film or both sides are covered with an infrared filter film and an optical anti-reflection film.
  • the reverse side of the image sensor chip is provided with a heat-adhesive bonding material for fixing the package to the printed circuit board, the flexible circuit board or the ceramic circuit. board.
  • the metal wire is a gold wire, a copper wire, an aluminum wire or a silver wire.
  • the package frame has a protection area corresponding to the package substrate and the four corner regions of the image sensor chip, and the protection area is between the package frame and the package substrate. Reserve space between the package frame and the image sensor chip
  • the invention encapsulates the chip of the image sensor by bonding the metal wire and directly performing the flip-chip bonding UV curing integrated device and the package substrate for packaging, Achieve high reliability and mass production.
  • the invention has simple process, adopts the chip to be directly mounted on the glass substrate after the wire is wired, and the UV curing molding is integrated immediately, thereby eliminating the traditional cleaning, baking, inspection and other processes requiring high clean environment conditions.
  • the IR/AR film can be plated on and/or on the glass substrate of the invention, and can control the distance between the photosensitive faces of the die, which can reflect the optical performance of the lens more than the minimum distance limit of the conventional COB. A wide range of options.
  • the latter process of the invention adopts the SMT process for assembly, and the SMT connection of the PCB pad, the key alloy wire and the solder is more advantageous than the traditional CSP pad, BGA and solder SMT connection.
  • the back of the silicon chip of the invention is directly coated with silicon of thermal conductive adhesive, and has superior thermal conductivity.
  • the glass substrate and the chip of the invention are used as mosaic structural members, have no load bearing, the thickness can be controlled, and the entire package structure can be ultra-thin.
  • the invention uses the gold wire to directly connect the chip and the PCB substrate pad, the gold wire has good ductility performance, strong environmental adaptability and good reliability.
  • the invention can control the pressure of the cavity of the package structure by heating and/or sealing level by the adhesion of the controllable viscous material (glue), thereby improving the reliability.
  • the frame structure of the invention provides structural strength support, inlaid bracket, anti-overflow glue, alignment and marking function. The process flow of the invention is simplified, the requirements of the clean environment control are greatly reduced, and the high-cost wire-bonding PCB substrate is saved, and the packaging cost is low.
  • FIG. 1 is a flow chart of a method of packaging an image sensor according to an embodiment of the invention
  • FIG. 2a is a schematic view of a package substrate according to an embodiment of the invention.
  • 2b is a schematic diagram of an image sensor chip and a bonded metal wire according to an embodiment of the invention
  • 2c is a top plan view of a package frame in accordance with an embodiment of the present invention.
  • Figure 2d is a bottom plan view of the package frame in accordance with an embodiment of the present invention.
  • 2e is a side cross-sectional view of a package including an image sensor chip, a package substrate, and a package frame in accordance with an embodiment of the present invention
  • 2f is a perspective view of a package frame in accordance with an embodiment of the present invention.
  • FIG. 2g to 2i are schematic cross-sectional views of an embodiment of the present invention in accordance with the packaging method of Fig. 1.
  • glass is used as the substrate.
  • the substrate may also be constructed of other transparent materials.
  • FIG. 1 is a flow chart of a method of packaging an image sensor in accordance with an embodiment of the present invention.
  • the encapsulation method includes the following steps:
  • step S11 is performed: providing the image sensor chip 207 and the transparent package substrate 201.
  • the image sensor chip 207 has an image sensing area 206 on the front side thereof and a pad area 205 surrounding the image sensing area 206.
  • the package substrate has a one-to-one correspondence with the image sensor chip, which means that the package substrate is cut by a large substrate.
  • a single image sensor chip 207 is formed by mechanically cutting or laser cutting a wafer on which a plurality of image sensor chips 207 are disposed, and the wafer level package substrate is cut to form a size match and A single package substrate 201 of a single image sensor chip 207.
  • step S12 is performed to bond the metal wires to the pads of the image sensor chip.
  • the first end 204a of the metal wire 204 is bonded to the pad such that the metal wire 204 can be suspended except for other portions of the first end 204a.
  • the metal wire that is not in contact with the surface of the image sensor chip 207 is formed and the second end 204b is extended to hang out the image sensor chip 207.
  • the metal wire is a gold wire, a copper wire, an aluminum wire, or a silver wire. Or a good conductor wire such as an alloy wire.
  • the metal wire can be shaped with a shaped metal wire 204.
  • step S13 is performed to match the adhesive package substrate and the image sensor chip.
  • the matching adhesive package substrate and the image sensor chip are a package, and the second end 204b of the metal wire is suspended and located outside the bonded portion, that is, the gold wire is not covered by the glue (glue).
  • the control package substrate 201 is maintained at a distance corresponding to the image sensor chip 207, the metal wire 204 is not in contact with the package substrate 201, and the glue is applied, glued, and glued between the package substrate 201 and the image sensor chip 207.
  • FIG. 2c is a top view of a package frame according to an embodiment of the invention
  • FIG. 2d is a bottom view of the package frame according to an embodiment of the invention
  • FIG. 2e is a package including an image sensor chip, a package substrate, and a package frame according to an embodiment of the invention
  • Figure 2f is a perspective view of a package frame in accordance with an embodiment of the present invention
  • Figures 2g through 2i are cross-sectional views of an embodiment of the present invention in accordance with the package method of Figure 1.
  • a package substrate 201 of a transparent material is provided, and an infrared filter film (IR) 202 is formed on the top of the package substrate 201, an optical anti-reflection film (AR) 203 is formed on the bottom, or an IR film is formed on the top, at the bottom. Fabricating an AR film; thereby increasing the package substrate 201 Optical permeability (main function of AR film) and anti-infrared interference (main function of IR film).
  • IR infrared filter film
  • AR optical anti-reflection film
  • the IR film 202 can be formed only on the package substrate 201 according to the needs of the application, without the need to fabricate the AR film 203, or only the AR film, without the need to fabricate an IR film, or to fabricate IR and AR films on the same side. .
  • the above two films may be formed on the substrate by vacuum evaporation, chemical vapor deposition, sol or the like. Then, the package substrate 201 is cut, and each of the cut package substrates 201 corresponds to a subsequent image sensor chip to be packaged.
  • the package substrate 201 can be a transparent material such as glass material, plastic material or sapphire.
  • an infrared filter film, an optical anti-reflection film, or both sides of the package substrate 201 may be respectively coated with an infrared filter film and an optical anti-reflection film.
  • the image sensor chip 207 is cut away, so that the independent image sensor chip 207 in the figure can be obtained, wherein the image sensing area 206 is between the two pads 205.
  • the image sensor chip 207 may be cut by mechanical cutting or laser cutting.
  • the first end of the metal line 204 is bonded over the pad 205 to form a "bow" shaped bond.
  • the metal wire 204 can be a material with good electrical conductivity, such as gold, copper, aluminum, silver, alloy, etc., and is relatively strong.
  • the metal wires of the image sensor chip 207 are bonded within the pads 208.
  • the metal wires may also be formed into a ring shape, that is, the leading end and the end thereof are bonded to the pads of the image sensor chip 207, and the intermediate portion of the metal wires is suspended and extended out of the image sensor chip 207 and bonded.
  • an external printed circuit board flexible circuit board or ceramic circuit board.
  • the package frame includes an inner frame 208 and an outer frame 209.
  • the inner frame 208 is used to block foreign matter from entering the inner frame
  • the outer frame 209 is used to carry objects, such as transparent.
  • the inner side of the outer frame 209 is provided with a venting groove or a glue expansion groove 210.
  • the venting groove or the glue expansion groove 210 is realized by the grooving and the through hole in the four corner regions of the inner frame 208 structure, so that the entire package is formed. When it is used, it has the function of adjusting the internal component pressure and flowing glue.
  • an identification can be placed on the package frame, such as the inner frame 208 and the outer frame 209, so that the image sensor can be provided with an identifiable identification without affecting the semiconductor chip or the transparent substrate.
  • the image sensor chip inner frame 208 is located between the image sensing area 206 and the pad 205, thereby functioning to isolate the adhesive material.
  • the outer frame 209 is located on both sides of the image sensor chip 207.
  • the image sensor chip 207, the package substrate 201, and the package frame are joined.
  • the original "bow" shaped metal wire 205 will be further bent by the force exerted by the outer frame 209.
  • 2e and 2h are imaged completed image sensors in accordance with an embodiment of the present invention.
  • the distance h1 between the package substrate 201 and the image sensor chip 207 is 40 ⁇ m or more.
  • the package frame has a second end adjacent to the package substrate, and the second end protrudes from the package substrate 201 in the vertical direction by a distance h2 of 10 ⁇ m or more.
  • the package frame adjacent to the image sensor chip 207 has a third end, and the third end protrudes from the image sensor chip pad surface in a vertical direction by a distance h3 of 10 ⁇ m or more, that is, the bottommost region of the third end is vertically higher.
  • the distance h3 on the surface of the image sensor chip is greater than or equal to 10 micrometers, and the inclined surface facilitates the injection of the viscous material.
  • FIGS. 2c-2f is an image sensor after injection molding according to an embodiment of the present invention, and please refer to FIGS. 2c-2f at the same time.
  • a viscous substance is injected into the inner surface of the outer frame 209, the package substrate 201, and the space 212 surrounded by the inner frame 208.
  • the inner frame 208 is able to isolate the glue from the image sensing area.
  • the bonding portion covers the pad region and the peripheral region of the first end of the metal wire.
  • a gap region 212 is formed between the inner frame 208 and the outer frame 209, and the viscous material is filled through the gap region.
  • the third end of the package frame adjacent to the image sensor chip has a slope 211 inclined to the inner surface of the outer frame 209, and the position of the slope 211 corresponds to the gap region, because the entire package is in the process of injecting the adhesive material.
  • Figure 2e shows the reverse placement, that is, the image sensor chip 207 is at the upper portion, the package substrate 201 is at the lower portion, and the slope 211 is at It is easy to inject the adhesive material into the package when the glue is injected.
  • the package frame corresponds to the four corner regions of the package substrate 201 and the image sensor chip 207, and has a protection area 215.
  • the protection area 215 reserves space between the package frame and the package substrate 201, and between the package frame and the image sensor chip 207.
  • the package substrate 201 and the image sensor chip 207 can be allowed to generate a certain degree of offset or sway without causing damage to the device.
  • a slope 214 is formed between the image sensor chip 207 and the inner frame 208 on one side of the inner frame 208, and a slope 213 is formed between the other side of the inner frame 208 and the package substrate 201. The matching of the package substrate 201 and the inner frame 208 is facilitated.
  • the viscous material in the glue injection process, can be filled in one or more of a dispensing method, a glue application method, a glue filling method, and a silk screen printing method.
  • a viscous variable bonding material may be formed on the reverse side of the image sensor chip 207 for fixing and adjusting the package on the printed circuit board, the flexible circuit board or the ceramic circuit board, and the hot melt adhesive may be adopted. Change the temperature to change the viscosity of the bonding material.
  • the melting point of the hot melt adhesive is lower than the melting point of SMT, and the position of the printed circuit board, flexible circuit board or ceramic circuit board can be adjusted again after the initial bonding.
  • the invention also proposes an image sensor package comprising:
  • the image sensor chip 207 has a front surface including an image sensing area 206 and a pad 205 surrounding the image sensing area 206;
  • a metal wire 204 suspended from the image sensor chip 206, the first end of the metal wire 204 is electrically connected to the pad 205, and the second end is suspended;
  • the adhesive material is located between the image sensor chip 207 and the package substrate 201 and covers the area of the pad 205 and the peripheral region of the first end of the metal wire 204.
  • the package substrate 201 is made of a transparent material such as glass material, plastic material or sapphire material.
  • One side of the package substrate 201 is covered with an infrared filter film, an optical anti-reflection film or both sides are covered with an infrared filter film and an optical anti-reflection film.
  • the package further includes an image sensor chip 207 disposed on the package base
  • the package frame between the boards.
  • the package frame includes an inner frame 208 and an outer frame 209, and a through gap region is disposed between the inner frame 208 and the outer frame 209.
  • a viscous material is located within the void region.
  • the package frame is located between the package substrate 201 and the image sensor chip 207, and the package frame isolates the image sensing area 206 from the area of the pad 205.
  • the package frame has a second end adjacent to the package substrate 201, and the second end protrudes from the package substrate by 10 micrometers or more in a vertical direction.
  • the package frame has a second end adjacent to the package substrate 201, and the inner surface of the second end is provided with a venting groove or a glue expansion groove.
  • the package frame adjacent to the image sensor chip 207 has a third end that protrudes 10 ⁇ m or more in the vertical direction from the pad surface of the image sensor chip 207.
  • the package frame adjacent to the image sensor chip 207 has a third end having a slope inclined to the inner surface of the outer frame 209, the position of the slope corresponding to the gap region.
  • the vertical distance between the package frame and the image sensor chip 207 is greater than or equal to 40 microns.
  • the package frames respectively have a protection area corresponding to the four corner regions of the package substrate 201 and the image sensor chip 207.
  • the protection area reserves space between the package frame and the package substrate 201 and between the package frame and the image sensor chip 207. Provide protection.
  • the reverse side of the image sensor chip 207 is provided with a heat-adhesive bonding material for fixing the package to a printed circuit board, a flexible circuit board or a ceramic circuit board.
  • the suspended metal wire 204 can be electrically connected to the printed circuit board, the flexible circuit board or the ceramic circuit board by SMT or pressure welding without solder balls, saving process steps and reducing manufacturing. cost.
  • the transmission performance can be further improved.
  • High reliability and mass mass production can be achieved by cutting the chip of the image sensor and then bonding the metal wire through the bonding and directly performing the flip-chip bonding UV curing integrated device and the package substrate. The process is simple, and the chip is directly connected to the glass substrate, and the UV curing molding is integrated immediately, thereby eliminating the traditional cleaning, baking, inspection and other processes requiring high clean environment conditions.
  • the IR/AR film can control the distance between the photosensitive surface of the chip and the optical distance of the lens. It has a wide range of options for the lens.
  • the latter process is assembled by SMT process. Due to the use of PCB pad, key alloy wire and solder SMT connection, it has more technological advantages than traditional CSP pad, BGA and solder SMT connection.
  • the back of the silicon chip is directly coated with thermal conductive silicon, and the thermal conductivity is superior.
  • the glass substrate and the chip are used as the inlaid structural members, and have no load bearing, the thickness can be controlled, and the entire package structure can be ultra-thin.
  • the gold wire is directly connected to the chip and the PCB substrate pad, and the gold wire has good ductility, environmental adaptability and reliability.
  • the pressure of the cavity of the package structure can be controlled by heating and/or sealing level to improve reliability.
  • the frame structure is preferably provided to provide structural strength support, inlaid bracket, anti-overflow, alignment and marking functions. The process flow is simplified, the clean environment control requirements are greatly reduced, and the high-cost wire-bonding PCB substrate is saved, and the packaging cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明公开了一种CMOS图像传感器结构及其封装方法,该方法包括如下步骤:提供经过研磨及切割后的图像传感器芯片和透明的封装基板,所述图像传感器芯片的正面有图像感应区和环绕所述图像感应区的焊盘区域;键合金属导线的第一端于图像传感器芯片的焊盘上,另一端悬空于图像传感器芯片焊盘的侧边外部;使用粘结方法使透明的封装基板与具有键合金属导线的图像传感器芯片形成一个可以通过外露悬空键合金属导线进行SMT或压焊组装的图像传感器封装件的方法。本发明可选择的采用辅助基板并将光学玻璃与图像传感器芯片直接固定,并通过金属导线直接与电路板连接。使用这种封装方法的图像传感器产品具有更优越的性能、可靠性及超低的封装成本。

Description

图像传感器结构及其封装方法 技术领域
本发明涉及半导体制造领域,尤其涉及一种CMOS图像传感器封装方法。
背景技术
目前,主流的图像传感器(CIS:CMOS Image Sensor)的封装方法包括:芯片级封装(Chip Scale Package,CSP)、板上集成封装(Chip On Board,COB)及倒装芯片封装(Flip Chip,FC)。
CIS CSP是一种目前普遍应用在中低端、低像素(2M像素或以下)图像传感器的Wafer level(晶圆级)封装技术。该封装技术使用晶圆级玻璃与晶圆邦定并在晶圆的图像传感器芯片之间使用围堰隔开,然后在研磨后的晶圆的焊盘区域通过制作焊盘表面或焊盘面内孔侧面环金属连接的硅穿孔技术(TSV:Through Silicon Via)或切割后焊盘侧面的T型金属接触芯片尺寸封装技术,并在晶圆背面延伸线路后制作焊球栅阵列(BGA:Ball Grid Array),然后切割后形成单个密封空腔的图像传感器单元。后端通过SMT的方法形成模块组装结构。但是,CSP封装具有如下明显的问题:1影响产品性能:厚的支撑玻璃对光的吸收、折射、反射及散射对图像传感器尤其是小像素尺寸产品的性能具有很大的影响;2可靠性问题:封装结构中的构件之间的热膨胀系数差异及空腔内密封气体在后面的SMT工艺或产品使用环境的变化中出现可靠性问题;3投资规模大、环境污染控制要求大,生产周期较长,单位芯片成本较高尤其对于高像素大尺寸图像传感器产品。
CIS COB封装是一种目前普遍应用在高端、高像素产品(5M像素或以上)图像传感器的Die Level(芯片级)封装技术。该封装技术把经研磨切割后的芯片背面邦定在PCB板的焊盘上使用键合金属导线,装上具有IR玻璃片的支架和镜头,形成组装模块结构。但是,COB 封装如下明显的问题:1、微尘控制非常困难,需要超高的洁净室等级,制造维持成本高;2、产品设计定制化、周期长、灵活度不够;3不容易规模化生产;
CIS FC封装最近兴起的高端、高像素(5M像素或以上)图像传感器的Die Level(芯片级)封装技术。该封装技术把在焊盘做好金素凸块经研磨切割的芯片焊盘直接与PCB的焊盘通过热超声的作用一次性所有接触凸块与焊盘进行连接,形成封装结构。后端通过PCB外侧的焊盘或锡球采用SMT的方法形成模块组装结构。但是,FC封装如下明显的问题:1该封装对PCB基板要求很高,与Si具有相近的热膨胀系数,成本很高;2制造可靠性难度很大,热超声所有凸块与焊盘连接的一致性要求非常高,凸块与焊盘硬连接,延展性不好;3微尘控制难度大、工艺环境要求高,成本很高;
综上所述,亟需一种实现高像素、大芯片尺寸图像传感器的低成本、高性能、高可靠性、超薄的封装结构技术。
发明内容
基于以上考虑,如果提出一种能够低成本地封装超薄高像素的图像传感器的方法以及相应的传感器结构将是非常有利的。
根据本发明的一方面,提出了一种图像传感器的封装方法,包含如下所述步骤:提供图像传感器芯片和透明的封装基板,所述图像传感器芯片的正面有图像感应区和环绕所述图像感应区的焊盘区域;键合金属导线的第一端于所述焊盘,所述金属导线悬空于所述图像传感器芯片;匹配粘合所述封装基板、所述图像传感器芯片为一封装件,所述金属导线的第二端悬空,不被粘合覆盖。
根据本发明的一个实施例,所述步骤中,还包括:所述悬空的金属导线能够通过SMT或压焊方式电性连接印刷电路板、柔性电路板或陶瓷电路板。
根据本发明的一个实施例,粘合覆盖所述焊盘区域、金属导线第一端的周边区域。
根据本发明的一个实施例,提供封装框架,所述封装框架匹配粘合于所述封装基板、图像传感器芯片。
根据本发明的一个实施例,于所述封装框架上打上标识。
根据本发明的一个实施例,所述封装框架包括:内框架与外框架,所述内框架与外框架之间设置有贯穿的空隙区域。
根据本发明的一个实施例,由所述内框架结构与外框架结构之间的所述空隙区域填入粘性材质。
根据本发明的一个实施例,所述封装框架位于所述封装基板与所述图像传感器芯片的中间,所述封装框架将所述图像感应区与焊盘区域隔离。
根据本发明的一个实施例,所述封装框架邻近封装基板具有第二端,所述第二端沿竖直方向突出于封装基板10微米以上。
根据本发明的一个实施例,所述封装框架邻近封装基板有第二端,所述第二端的内表面设置有通气槽或胶水扩展槽。
根据本发明的一个实施例,所述步骤中还包括:所述封装框架邻近图像传感器芯片有第三端,所述第三端沿竖直方向突出于所述图像传感器芯片焊盘面的10微米以上。
根据本发明的一个实施例,所述封装框架邻近图像传感器芯片有第三端,所述第三端具有倾斜于所述外框架结构内表面的斜面,所述斜面的位置对应于所述空隙区域,所述斜面防止所述粘性材质溢出。
根据本发明的一个实施例,采用定型治具定型所述金属导线。
根据本发明的一个实施例,所述封装基板与所述图像传感器芯片之间的距离大于等于40微米。
根据本发明的一个实施例,所述封装框架对应于所述封装基板、所述图像传感器芯片的四个角区域具有保护区域,所述保护区域于所述封装框架与所述封装基板之间、所述封装框架与所述图像传感器芯片之间预留空间。
根据本发明的一个实施例,通过点胶方式、画胶方式、灌胶方式、丝印方式中的一种或多种填入所述粘性材质。
根据本发明的一个实施例,所述封装基板为玻璃材质、塑料材质或蓝宝石材质。
根据本发明的一个实施例,所述封装基板的单面分别镀上红外滤光膜、光学增透膜或双面分别镀上红外滤光膜和光学增透膜。
根据本发明的一个实施例,于所述图像传感器芯片的反面形成有受热粘性可变的粘接材质,用于固定所述封装件于所述印刷电路板、所述柔性电路板或所述陶瓷电路板。
根据本发明的一个实施例,所述金属导线为金线、铜线、铝线或银线。
本发明还提出了一种图像传感器封装件,包括:图像传感器芯片,所述图像传感器芯片的正面有:图像感应区和环绕所述图像感应区的焊盘;金属导线,其悬空于所述图像传感器芯片,其第一端电性连接于所述焊盘,第二端悬空于所述封装件;透明的封装基板,架设于所述图像传感器上;其中,所述封装件还包括:位于所述图像传感器芯片、封装基板之间,覆盖所述焊盘区域、所述金属导线第一端的周边区域的粘性材质。
根据本发明的一个实施例,所述悬空的金属导线的第二端能够通过SMT或压焊方式电性连接印刷电路板、柔性电路板或陶瓷电路板。
根据本发明的一个实施例,所述封装件还包括:封装框架,其置于所述图像传感器芯片与所述封装基板之间。
根据本发明的一个实施例,所述封装框架上设置有标识。
根据本发明的一个实施例,所述封装框架还包括:内框架、外框架,所述内框架与外框架之间设置有贯穿的空隙区域。
根据本发明的一个实施例,所述粘性材质位于所述空隙区域内。
根据本发明的一个实施例,所述封装框架位于所述封装基板与所述图像传感器芯片之间,所述封装框架将所述图像感应区与焊盘区域隔离。
根据本发明的一个实施例,所述封装框架邻近封装基板具有第二端,所述第二端沿竖直方向突出于所述封装基板10微米以上。
根据本发明的一个实施例,所述封装框架邻近封装基板具有第二端,所述第二端的内表面设置有通气槽或胶水扩展槽。
根据本发明的一个实施例,所述封装框架邻近图像传感器芯片具有第三端,所述第三端沿竖直方向突出于所述图像传感器芯片焊盘面10微米以上。
根据本发明的一个实施例,所述封装框架邻近图像传感器芯片具有第三端,所述第三端具有倾斜于所述外框架结构内表面的一斜面,所述斜面的位置对应于所述空隙区域。
根据本发明的一个实施例,所述封装框架与所述图像传感器芯片之间的垂直距离大于等于40微米。
根据本发明的一个实施例,所述封装框架分别对应于所述封装基板、所述图像传感器芯片的四个角区域具有保护区域,所述保护区域于所述封装框架与所述封装基板之间、所述封装框架与所述图像传感器芯片之间预留空间。
根据本发明的一个实施例,所述封装基板为玻璃材质、塑料材质或蓝宝石材质。
根据本发明的一个实施例,所述封装基板的一面上覆盖有红外滤光膜、光学增透膜或两面分别覆盖有红外滤光膜和光学增透膜。
根据本发明的一个实施例,所述图像传感器芯片的反面置有受热粘性可变的粘接材质,用于固定所述封装件于所述印刷电路板、所述柔性电路板或所述陶瓷电路板。
根据本发明的一个实施例,所述金属导线为金线、铜线、铝线或银线。
根据本发明的一个实施例,所述封装框架对应于所述封装基板、所述图像传感器芯片的四个角区域具有保护区域,所述保护区域于所述封装框架与所述封装基板之间、所述封装框架与所述图像传感器芯片之间预留空间
本发明通过将图像传感器的芯片切割后通过键合金属导线连接及直接进行倒装邦定点胶UV固化一体化设备与封装基板进行封装, 能够实现高可靠性和规模量产性。
本发明工艺简单,采用芯片打线后直接到装在玻璃基板上,立即UV固化成型的一体化,免去了传统的清洗、烘烤、检验等需要高洁净环境条件的工艺。
本发明玻璃基板上和/或表面上可镀有IR/AR膜,并可控离芯片die的感光面之间的距离,比传统的COB有最小距离限制更能体现镜头的光学性能,对镜头的选择范围广。
本发明后道工艺采用SMT工艺进行组装,由于采用了PCB焊盘、键合金素导线及焊锡三者SMT连接,比传统CSP的焊盘、BGA及焊锡三者SMT连接更具有工艺优势。
本发明硅芯片背部直接为涂导热胶的硅,导热性优越。本发明玻璃基板及芯片做为镶嵌结构件,无承载负荷,厚度可以控制,整个封装结构可以实现超薄。本发明使用金线直接连接芯片与PCB基板焊盘,金线延展性能好,环境适应性强,可靠性佳。本发明通过可控的粘性材质(胶)的粘合,可以加热和/或密封等级控制封装结构空腔的压强,提高可靠性。本发明框架结构,提供结构强度支持、镶嵌支架、防溢胶、对位及标识功能。本发明工艺流程简化、洁净环境控制要求大为减低及节省了高成本的打线PCB基板,封装成本低。
本发明的各个方面将通过下文中的具体实施例的说明而更加清晰。
附图说明
通过参照附图阅读以下所作的对非限制性实施例的详细描述,本发明的其它特征、目的和优点将会变得更明显。
图1为依据本发明实施例的图像传感器的封装方法的流程图;
图2a为依据本发明实施例的封装基板的示意图;
图2b为依据本发明实施例的图像传感器芯片及键合金属导线的示意图;
图2c为依据本发明实施例中的封装框架的俯视图;
图2d为依据本发明实施例中的封装框架的仰视图;
图2e为依据本发明实施例中的包括图像传感器芯片、封装基板、封装框架的封装件的侧面剖视图;
图2f为依据本发明实施例中的封装框架的立体图;
图2g至图2i是依据图1中的封装方法的本发明实施例的剖面示意图。
在图中,贯穿不同的示图,相同或类似的附图标记表示相同或相似的装置(模块)或步骤。
具体实施方式
在以下优选的实施例的具体描述中,将参考构成本发明一部分的所附的附图。所附的附图通过示例的方式示出了能够实现本发明的特定的实施例。示例的实施例并不旨在穷尽根据本发明的所有实施例。可以理解,在不偏离本发明的范围的前提下,可以利用其他实施例,也可以进行结构性或者逻辑性的修改。因此,以下的具体描述并非限制性的,且本发明的范围由所附的权利要求所限定。
为了更清晰地阐述本发明的封装方法,在下面的实施例中,采用玻璃作为基板。本领域技术人员能够理解的是,基板也可以由其它透明的材质构成。
图1为依据本发明实施例的图像传感器的封装方法的流程图。
如图1所示,该封装方法包括以下步骤:
首先,执行步骤S11:提供图像传感器芯片207、透明的封装基板201。
在该步骤中,图像传感器芯片207的正面有图像感应区206,以及环绕图像感应区206的焊盘区域205。
优选的,封装基板与图像传感器芯片一一对应,也就意味着该封装基板是由一个大的基板切割而成。在实施例中通过对置有若干图像传感器芯片207的晶圆进行机械切割或激光切割形成单个的图像传感器芯片207,通过对晶圆级封装基板进行切割形成大小匹配与 单个图像传感器芯片207的单个封装基板201。
其次,执行步骤S12,键合金属导线于图像传感器芯片的焊盘。
在该步骤中,将金属导线204的第一端204a键合于焊盘,从而使得金属导线204除了第一端204a的其它部分均可以悬空。在本实施例中形成未接触于出图像传感器芯片207表面的金属导线并第二端204b延伸悬空出图像传感器芯片207,可以理解的是,金属导线为金线、铜线、铝线、银线或合金线等良导体导线。可选择的,金属导线可以采用定型治具定型金属导线204。
然后,执行步骤S13,匹配粘合封装基板与图像传感器芯片。
在该步骤中,匹配粘合封装基板、图像传感器芯片为一封装件,所述金属导线的第二端204b悬空且位于粘合的部分之外,也就是金线不被粘合(胶水)覆盖。在一实施例中,控制封装基板201对应于图像传感器芯片207保持一距离,金属导线204未接触于封装基板201,于封装基板201与图像传感器芯片207之间通过点胶、灌胶、画胶、丝网印刷或者上述方式的组合填入粘性材质,粘合覆盖焊盘区域205,金属导线的第一端204a,并不粘合图像感应区206及金属导线的第二端204b,金属导线的第二端204b,再键合至外部的印刷电路板、柔性电路板或陶瓷电路板上。
请参见图2c~2i:
图2c为依据本发明实施例的封装框架的俯视图;图2d为依据本发明实施例的封装框架的仰视图;图2e为依据本发明实施例的包括图像传感器芯片、封装基板、封装框架的封装件的侧面剖视图;图2f为依据本发明实施例中的封装框架的立体图;图2g至图2i是依据图1中的封装方法的本发明实施例的剖面示意图。接下来,结合图2c至图2i,并结合图2a、2b,对该图像传感器封装方法进行进一步的说明。
图2a中,提供透明材质的封装基板201,并在封装基板201的顶部制作红外滤光膜(IR)202,在底部制作光学增透膜(AR)203,或者于顶部制作IR膜,于底部制作AR膜;从而增大封装基板201 光学的透性(AR膜主要功能)和防红外线干扰(IR膜主要功能)。在一些例子中,可以根据应用的需要,仅在封装基板201上制作IR膜202,而无需制作AR膜203,或仅制作AR膜,无需制作IR膜,或者于同一面上制作IR和AR膜。可选地,可以采用真空蒸镀、化学气相沉积、溶胶等方式,在基板上形成上述两种薄膜。然后,切割封装基板201,每个切割后的封装基板201对应着一个后续即将封装的图像传感器芯片。
可以理解的是,封装基板201可以为玻璃材质、塑料材质或蓝宝石等透明的材质。另外,可以在封装基板201的单面分别镀上红外滤光膜、光学增透膜或双面分别镀上红外滤光膜和光学增透膜
接着,如图2b所示,将图像传感器芯片于背部磨薄后,将其切割开,从而可以得到图中的独立图像传感器芯片207,其中,图像感应区206处于两个焊盘205之间。可选的是,可以采用机械切割或者激光切割的方式切割图像传感器芯片207。另外,金属线204的第一端键合于焊盘205之上,从而形成“弓”形键合。可以理解的是,金属导线204可以是金、铜、铝、银、合金等导电性能良好,且较为结实的材料。优选的,图像传感器芯片207的金属导线邦定(bonding)于焊盘208内。
在一些实施例中,还可以使得金属导线形成环状,即其首端和末端均键合于图像传感器芯片207的焊盘上,金属导线的中间区域悬空并延伸出图像传感器芯片207并键合于外部的印刷电路板、柔性电路板或陶瓷电路板上。
请参见图2c至2i,在实施例中采用封装框架进行封装的过程。
封装框架包括内框架208和外框架209,当该封装框架与图像传感器芯片207进行平面接合时,内框架208将用来阻挡外界物质进入内框,而外框架209则用于承载物体,譬如透明基板201。外框架209的内侧设有通气槽或胶水扩展槽210,在本实施例中于内框架208结构的四个角部区域通过开槽及通孔实现通气槽或胶水扩展槽210,致使形成整个封装件时,具有调节内部组件压强及流胶的作用。
可选的,可以在封装框架上打上标识,譬如在内框架208和外框架209上,从而可以在不影响半导体芯片或透明基板的情况下,为图像传感器提供可识别的标识。
图像传感器芯片内框架208位于图像感应区206与焊盘205之间,从而起到隔离粘性材质的作用。外框架209位于图像传感器芯片207的两侧。
然后,将图像传感器芯片207、封装基板201以及封装框架进行接合。在接合的过程中,原来呈“弓”字型的金属导线205将因外框架209施加的力的作用,进一步弯曲。
图2e和2h为依据本发明实施例的接合完成的图像传感器。
接合后,封装基板201与图像传感器芯片207的距离h1大于等于40微米。优选的,封装框架邻近封装基板具有第二端,该第二端沿竖直方向突出于封装基板201的距离h2大于等于10微米。优选的,封装框架邻近图像传感器芯片207具有第三端,该第三端沿竖直方向突出于图像传感器芯片焊盘面的距离h3大于等于10微米,即第三端的最底部区域于竖直方向高于图像传感器芯片表面的距离h3大于等于10微米,并配合斜面便于粘性材质的注入。
图2i为依据本发明实施例的注胶后的图像传感器,并请同时参见图2c~2f。
在外框架209的内表面、封装基板201以及内框架208围成的空间212注入粘性物质。当注胶完成后,内框架208能够将胶水与图像感应区相隔离。粘合部分覆盖焊盘区域、金属导线第一端的周边区域。
优选的,内框架208与外框架209之间设置有贯穿的空隙区域212,通过该空隙区域填入粘性材质。
优选的,封装框架邻近图像传感器芯片的第三端具有倾斜于外框架209内表面的斜面211,斜面211的位置对应于上述的空隙区域,由于在注入粘性材质的过程中,整个封装件是于图2e所示反向放置,即图像传感器芯片207在上部,封装基板201在下部;斜面211在 注胶时便于粘性材质注入封装件。
请继续参见图2c、2d和2f。
封装框架对应于封装基板201、图像传感器芯片207的四个角区域具有保护区域215,该保护区域215于封装框架与封装基板201之间、封装框架与图像传感器芯片207之间预留空间,从而可以允许封装基板201、图像传感器芯片207能够产生一定程度的偏移或晃动,而不导致器件的损坏。优选的,在内框架208的一面上与图像传感器芯片207之间具有一斜坡214,便于图像传感器芯片207与内框架208的匹配;于内框架208另一面与封装基板201之间具有一斜坡213,便于封装基板201与内框架208的匹配。
可以理解的是,在注胶过程中,可以通过点胶方式、画胶方式、灌胶方式、丝印方式中的一种或多种填入粘性材质。
优选的,还可以在图像传感器芯片207的反面形成有粘性可变的粘接材质,用于固定并调整封装件于印刷电路板、柔性电路板或陶瓷电路板上,可采用热熔胶,通过改变温度来改变粘接材质的粘度,采用热熔胶的熔点低于SMT的熔点,可以再初次粘合后,再次调整与印刷电路板、柔性电路板或陶瓷电路板的位置。
本发明还提出了一种图像传感器封装件,其包括:
图像传感器芯片207,其正面包括图像感应区206和环绕图像感应区206的焊盘205;
金属导线204,其悬空于图像传感器芯片206,金属导线204的第一端电性连接于焊盘205,第二端悬空;
透明的封装基板201,其架设于图像传感器207上;
粘性材质,其位于图像传感器芯片207、封装基板201之间,并覆盖焊盘205区域、金属导线204第一端的周边区域。
优选的,封装基板201为玻璃材质、塑料材质或蓝宝石材质等透明材质。封装基板201的一面上覆盖有红外滤光膜、光学增透膜或两面分别覆盖有红外滤光膜和光学增透膜。
优选的,封装件还包括置于图像传感器芯片207与所述封装基 板之间的封装框架。该封装框架包括内框架208、外框架209,并且内框架208与外框架209之间设置有贯穿的空隙区域。粘性材质位于所述空隙区域内。
优选的,封装框架位于封装基板201与图像传感器芯片207之间,封装框架将图像感应区206与焊盘205区域隔离。封装框架邻近封装基板201具有第二端,该第二端沿竖直方向突出于封装基板10微米以上。封装框架邻近封装基板201具有第二端,该第二端的内表面设置有通气槽或胶水扩展槽。
优选的,封装框架邻近图像传感器芯片207具有第三端,所述第三端沿竖直方向突出于图像传感器芯片207焊盘面10微米以上。
优选的,封装框架邻近图像传感器芯片207具有第三端,该第三端具有倾斜于外框架209内表面的斜面,该斜面的位置对应于上述空隙区域。
优选的,封装框架与图像传感器芯片207之间的垂直距离大于等于40微米。封装框架分别对应于封装基板201、图像传感器芯片207的四个角区域具有保护区域,该保护区域在封装框架与封装基板201之间、在封装框架与图像传感器芯片207之间预留空间,以提供保护作用。
优选的,图像传感器芯片207的反面置有受热粘性可变的粘接材质,用于固定封装件于印刷电路板、柔性电路板或陶瓷电路板。
通过采用本发明形成的图像传感器,可以将悬空的金属导线204通过SMT或压焊方式电性连接印刷电路板、柔性电路板或陶瓷电路板,而无需焊球,节省了工艺步骤,降低了制造成本。另外,由于无需焊球,而是金属线与电路板相连,因此可以传输性能更加优良。通过将图像传感器的芯片切割后通过键合金属导线连接及直接进行倒装邦定点胶UV固化一体化设备与封装基板进行封装,能够实现高可靠性和规模量产性。工艺简单,采用芯片打线后直接到装在玻璃基板上,立即UV固化成型的一体化,免去了传统的清洗、烘烤、检验等需要高洁净环境条件的工艺。玻璃基板上和/或表面上可镀有 IR/AR膜,并可控与芯片的感光面之间的距离,比传统的COB有最小距离限制更能体现镜头的光学性能,对镜头的选择范围广。后道工艺采用SMT工艺进行组装,由于采用了PCB焊盘、键合金素导线及焊锡三者SMT连接,比传统CSP的焊盘、BGA及焊锡三者SMT连接更具有工艺优势。硅芯片背部直接为涂导热胶的硅,导热性优越。玻璃基板及芯片作为镶嵌结构件,无承载负荷,厚度可以控制,整个封装结构可以实现超薄。使用金线直接连接芯片与PCB基板焊盘,金线延展性能好,环境适应性强,可靠性佳。通过可控的粘性材质(胶)的粘合,可以加热和/或密封等级控制封装结构空腔的压强,提高可靠性。优选的提供框架结构,提供结构强度支持、镶嵌支架、防溢胶、对位及标识功能。工艺流程简化、洁净环境控制要求大为减低及节省了高成本的打线PCB基板,封装成本低。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论如何来看,均应将实施例看作是示范性的,而且是非限制性的。此外,明显的,“包括”一词不排除其他元素和步骤,并且措辞“一个”不排除复数。装置权利要求中陈述的多个元件也可以由一个元件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (39)

  1. 一种图像传感器的封装方法,其特征在于,包括:
    提供图像传感器芯片和透明的封装基板,所述图像传感器芯片的正面有图像感应区和环绕所述图像感应区的焊盘区域;
    键合金属导线的第一端于所述焊盘,所述金属导线悬空于所述图像传感器芯片;
    匹配粘合所述封装基板、所述图像传感器芯片为一封装件,所述金属导线的第二端悬空,不被粘合覆盖。
  2. 根据权利要求1所述的图像传感器的封装方法,其特征在于,还包括:所述悬空的金属导线能够通过SMT或压焊方式电性连接印刷电路板、柔性电路板或陶瓷电路板。
  3. 根据权利要求1所述的图像传感器的封装方法,其特征在于,还包括:粘合覆盖所述焊盘区域、金属导线第一端的周边区域。
  4. 根据权利要求1所述的图像传感器的封装方法,其特征在于,还包括:提供封装框架,所述封装框架匹配粘合于所述封装基板、图像传感器芯片。
  5. 根据权利要求4所述的图像传感器的封装方法,其特征在于,还包括:于所述封装框架上打上标识。
  6. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装框架包括:内框架与外框架,所述内框架与外框架之间设置有贯穿的空隙区域。
  7. 根据权利要求6所述的图像传感器的封装方法,其特征在于,还包括:由所述内框架与外框架之间的所述空隙区域填入粘性材质。
  8. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装框架位于所述封装基板与所述图像传感器芯片的中间,所述封装框架将所述图像感应区与焊盘区域隔离。
  9. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装框架邻近封装基板具有第二端,所述第二端沿竖直方向突 出于封装基板10微米以上。
  10. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装框架邻近封装基板有第二端,所述第二端的内表面设置有通气槽或胶水扩展槽。
  11. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装框架邻近图像传感器芯片有第三端,所述第三端沿竖直方向突出于所述图像传感器芯片焊盘面的10微米以上。
  12. 根据权利要求6所述的图像传感器的封装方法,其特征在于,所述封装框架邻近图像传感器芯片有第三端,所述第三端具有倾斜于所述外框架结构内表面的斜面,所述斜面的位置对应于所述空隙区域,所述斜面防止所述粘性材质溢出。
  13. 根据权利要求1所述的图像传感器的封装方法,其特征在于,还包括:采用定型治具定型所述金属导线。
  14. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装基板与所述图像传感器芯片之间的距离大于等于40微米。
  15. 根据权利要求4所述的图像传感器的封装方法,其特征在于,所述封装框架对应于所述封装基板、所述图像传感器芯片的四个角区域具有保护区域,所述保护区域于所述封装框架与所述封装基板之间、所述封装框架与所述图像传感器芯片之间预留空间。
  16. 根据权利要求1所述的图像传感器的封装方法,其特征在于,通过点胶方式、画胶方式、灌胶方式、丝印方式中的一种或多种填入所述粘性材质。
  17. 根据权利要求1所述的图像传感器的封装方法,其特征在于,所述封装基板为玻璃材质、塑料材质或蓝宝石材质。
  18. 根据权利要求1所述的图像传感器的封装方法,其特征在于,还包括:所述封装基板的单面分别镀上红外滤光膜、光学增透膜或双面分别镀上红外滤光膜和光学增透膜。
  19. 根据权利要求2所述的图像传感器的封装方法,其特征在 于,还包括:于所述图像传感器芯片的反面形成有粘性可变的粘接材质,用于固定所述封装件于所述印刷电路板、所述柔性电路板或所述陶瓷电路板。
  20. 根据权利要求19所述的图像传感器的封装方法,其特征在于,所述粘性可变的粘接材质为热熔胶。
  21. 根据权利要求1所述的图像传感器的封装方法,其特征在于,所述金属导线为金线、铜线、铝线、银线或合金线。
  22. 一种图像传感器封装件,其特征在于,包括:
    图像传感器芯片,所述图像传感器芯片的正面有:图像感应区和环绕所述图像感应区的焊盘;
    金属导线,其悬空于所述图像传感器芯片,其第一端电性连接于所述焊盘,第二端悬空于所述封装件;
    透明的封装基板,架设于所述图像传感器上;
    其中,所述封装件还包括:位于所述图像传感器芯片、封装基板之间,覆盖所述焊盘区域、所述金属导线第一端的周边区域的粘性材质。
  23. 根据权利要求22所述的图像传感器封装件,其特征在于,所述悬空的金属导线的第二端能够通过SMT或压焊方式电性连接印刷电路板、柔性电路板或陶瓷电路板。
  24. 根据权利要求22所述的图像传感器封装件,其特征在于,所述封装件还包括:封装框架,其置于所述图像传感器芯片与所述封装基板之间。
  25. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架上设置有标识。
  26. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架还包括:内框架、外框架,所述内框架与外框架之间设置有贯穿的空隙区域。
  27. 根据权利要求26所述的图像传感器封装件,其特征在于,所述粘性材质位于所述空隙区域内。
  28. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架位于所述封装基板与所述图像传感器芯片之间,所述封装框架将所述图像感应区与焊盘区域隔离。
  29. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架邻近封装基板具有第二端,所述第二端沿竖直方向突出于所述封装基板10微米以上。
  30. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架邻近封装基板具有第二端,所述第二端的内表面设置有通气槽或胶水扩展槽。
  31. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架邻近图像传感器芯片具有第三端,所述第三端沿竖直方向突出于所述图像传感器芯片焊盘面10微米以上。
  32. 根据权利要求26所述的图像传感器封装件,其特征在于,所述封装框架邻近图像传感器芯片具有第三端,所述第三端具有倾斜于所述外框架结构内表面的一斜面,所述斜面的位置对应于所述空隙区域。
  33. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架与所述图像传感器芯片之间的垂直距离大于等于40微米。
  34. 根据权利要求22所述的图像传感器封装件,其特征在于,所述封装基板为玻璃材质、塑料材质或蓝宝石材质。
  35. 根据权利要求22所述的图像传感器封装件,其特征在于,所述封装基板的一面上覆盖有红外滤光膜、光学增透膜或两面分别覆盖有红外滤光膜和光学增透膜。
  36. 根据权利要求22所述的图像传感器封装件,其特征在于,所述图像传感器芯片的反面置有粘性可变的粘接材质,用于固定所述封装件于所述印刷电路板、所述柔性电路板或所述陶瓷电路板。
  37. 根据权利要求36所述的图像传感器封装件,其特征在于,所述粘性可变的粘接材质为热熔胶。
  38. 根据权利要求22所述的图像传感器封装件,其特征在于,所述金属导线为金线、铜线、铝线、银线或合金线。
  39. 根据权利要求24所述的图像传感器封装件,其特征在于,所述封装框架对应于所述封装基板、所述图像传感器芯片的四个角区域具有保护区域,所述保护区域于所述封装框架与所述封装基板之间、所述封装框架与所述图像传感器芯片之间预留空间。
PCT/CN2015/078185 2014-05-20 2015-05-04 图像传感器结构及其封装方法 WO2015176601A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/312,628 US10032824B2 (en) 2014-05-20 2015-05-04 Image sensor structure and packaging method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410217743.4A CN103996684B (zh) 2014-05-20 2014-05-20 图像传感器结构及其封装方法
CN201410217743.4 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015176601A1 true WO2015176601A1 (zh) 2015-11-26

Family

ID=51310791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078185 WO2015176601A1 (zh) 2014-05-20 2015-05-04 图像传感器结构及其封装方法

Country Status (3)

Country Link
US (1) US10032824B2 (zh)
CN (1) CN103996684B (zh)
WO (1) WO2015176601A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108428690A (zh) * 2018-03-27 2018-08-21 苏州晶方半导体科技股份有限公司 一种芯片的封装结构以及封装方法
US11297210B2 (en) * 2018-01-30 2022-04-05 Vivo Mobile Communication Co., Ltd. Camera module, method for assembling camera module, and mobile terminal

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996684B (zh) * 2014-05-20 2017-06-20 格科微电子(上海)有限公司 图像传感器结构及其封装方法
CN104580859B (zh) * 2014-12-22 2019-03-22 格科微电子(上海)有限公司 摄像头模组的装配方法和摄像头模组
CN105990379B (zh) * 2015-02-25 2019-07-26 联想(北京)有限公司 一种感光模组及制作方法
US10009523B2 (en) 2015-05-11 2018-06-26 Samsung Electro-Mechanics Co., Ltd. Electronic module and method of manufacturing the same
CN106303169B (zh) * 2015-05-28 2021-08-10 宁波舜宇光电信息有限公司 超薄摄像头模组及其制造方法
CN106331535A (zh) * 2015-07-06 2017-01-11 上海瑞艾立光电技术有限公司 图像采集系统
CN105098399A (zh) * 2015-07-16 2015-11-25 格科微电子(上海)有限公司 摄像头模组的电气连接方法
CN105206640B (zh) * 2015-10-08 2020-04-21 格科微电子(上海)有限公司 摄像头模组及其装配方法
CN105390517B (zh) * 2015-11-17 2023-10-27 格科微电子(上海)有限公司 摄像头模组的测试方法及测试装置
CN105633108B (zh) * 2015-12-10 2024-04-12 格科微电子(上海)有限公司 多摄像头模组及其装配方法
JP2017175047A (ja) * 2016-03-25 2017-09-28 ソニー株式会社 半導体装置、固体撮像素子、撮像装置、および電子機器
CN109243985A (zh) * 2017-07-11 2019-01-18 格科微电子(上海)有限公司 用于图像传感器芯片的金属导线断线方法及装置
CN107509306A (zh) * 2017-09-11 2017-12-22 珠海格力节能环保制冷技术研究中心有限公司 限胶装置、电路板总成及无刷直流电机
KR102052804B1 (ko) * 2017-12-15 2019-12-05 삼성전기주식회사 팬-아웃 센서 패키지
CN111259693B (zh) * 2018-11-30 2024-02-09 北京小米移动软件有限公司 传感器模组及移动终端
KR102650997B1 (ko) 2019-05-20 2024-03-25 삼성전자주식회사 이미지 센서 패키지
CN111124181B (zh) * 2019-12-25 2022-11-11 业成科技(成都)有限公司 显示装置及触控显示装置
JP7467155B2 (ja) * 2020-02-18 2024-04-15 キヤノン株式会社 撮像ユニットおよび撮像装置
CN112630922B (zh) * 2020-11-30 2022-11-11 江西联创电子有限公司 镜头模组及其装配方法
CN113114916B (zh) * 2021-04-29 2023-04-07 维沃移动通信有限公司 摄像模组和电子设备
CN113612461B (zh) * 2021-07-20 2024-02-09 北京航天微电科技有限公司 一种saw滤波器的芯片级气密性封装工艺
CN114209297A (zh) * 2021-11-24 2022-03-22 广东紫文星电子科技有限公司 一种带心率检测和指纹识别功能的模组及认证方法
CN114709270A (zh) * 2022-02-25 2022-07-05 盛泰光电科技股份有限公司 一种摄像头封装工艺
CN115472640B (zh) * 2022-10-14 2023-05-05 苏州科阳半导体有限公司 一种图像传感器的封装结构和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661805A (zh) * 2004-02-23 2005-08-31 鸿富锦精密工业(深圳)有限公司 图像传感器的封装结构和方法
US20050237415A1 (en) * 2004-04-26 2005-10-27 Yung-Cheol Kong Image sensor module having auto-aligned lens, and method of fabricating the same, and method of automatically controlling focus of lens
CN102738188A (zh) * 2011-03-31 2012-10-17 索尼公司 固态成像单元,制造固态成像单元的方法,和电子设备
CN102738189A (zh) * 2011-04-07 2012-10-17 索尼公司 固体摄像装置及其制造方法和电子系统
CN103996684A (zh) * 2014-05-20 2014-08-20 格科微电子(上海)有限公司 图像传感器结构及其封装方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3773855B2 (ja) * 2001-11-12 2006-05-10 三洋電機株式会社 リードフレーム
US6781231B2 (en) * 2002-09-10 2004-08-24 Knowles Electronics Llc Microelectromechanical system package with environmental and interference shield
KR100713347B1 (ko) * 2004-11-05 2007-05-04 삼성전자주식회사 이미지 센서 조립체 및 그 제작 방법
US7423334B2 (en) 2005-11-17 2008-09-09 Kingpak Technology Inc. Image sensor module with a protection layer and a method for manufacturing the same
CN101055883A (zh) * 2006-04-14 2007-10-17 胜开科技股份有限公司 影像传感器及其制造方法
CN101325205A (zh) * 2007-06-14 2008-12-17 鸿富锦精密工业(深圳)有限公司 影像感测晶片封装结构
JP5378707B2 (ja) * 2008-05-29 2013-12-25 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
JP5541088B2 (ja) 2010-10-28 2014-07-09 ソニー株式会社 撮像素子パッケージ、撮像素子パッケージの製造方法、及び、電子機器
KR20130087249A (ko) * 2012-01-27 2013-08-06 삼성전자주식회사 반도체 장치 및 이를 이용한 이미지 센서 패키지
KR20130094965A (ko) * 2012-02-17 2013-08-27 에스이티아이(주) 이미지 센서 패키지 및 그 제조 방법
KR20130114352A (ko) 2012-04-09 2013-10-18 삼성전자주식회사 반도체 패키지 및 그 제조 방법
KR102076339B1 (ko) * 2013-03-13 2020-02-11 삼성전자주식회사 반도체 패키지 및 그 제조방법
CN103560138B (zh) * 2013-11-19 2016-01-20 苏州晶方半导体科技股份有限公司 影像传感器封装结构及其封装方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1661805A (zh) * 2004-02-23 2005-08-31 鸿富锦精密工业(深圳)有限公司 图像传感器的封装结构和方法
US20050237415A1 (en) * 2004-04-26 2005-10-27 Yung-Cheol Kong Image sensor module having auto-aligned lens, and method of fabricating the same, and method of automatically controlling focus of lens
CN102738188A (zh) * 2011-03-31 2012-10-17 索尼公司 固态成像单元,制造固态成像单元的方法,和电子设备
CN102738189A (zh) * 2011-04-07 2012-10-17 索尼公司 固体摄像装置及其制造方法和电子系统
CN103996684A (zh) * 2014-05-20 2014-08-20 格科微电子(上海)有限公司 图像传感器结构及其封装方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11297210B2 (en) * 2018-01-30 2022-04-05 Vivo Mobile Communication Co., Ltd. Camera module, method for assembling camera module, and mobile terminal
CN108428690A (zh) * 2018-03-27 2018-08-21 苏州晶方半导体科技股份有限公司 一种芯片的封装结构以及封装方法

Also Published As

Publication number Publication date
CN103996684B (zh) 2017-06-20
CN103996684A (zh) 2014-08-20
US20170092689A1 (en) 2017-03-30
US10032824B2 (en) 2018-07-24

Similar Documents

Publication Publication Date Title
WO2015176601A1 (zh) 图像传感器结构及其封装方法
CN102751301B (zh) 半导体器件
CN102891152B (zh) 半导体封装体
JP3725012B2 (ja) レンズ一体型固体撮像装置の製造方法
CN105206640B (zh) 摄像头模组及其装配方法
US8164676B2 (en) Camera module providing reliable long term adherence
CN107301988B (zh) 摄像头模组及其装配方法
KR100730726B1 (ko) 카메라 모듈
US10243014B2 (en) System-in-package image sensor
CN103367382B (zh) 一种图像传感器芯片的晶圆级封装方法
WO2018113356A1 (zh) 芯片封装结构及其制造方法
US20040256687A1 (en) Optical module, method of manufacturing the same, and electronic instrument
CN104078479A (zh) 图像传感器的晶圆级封装方法和图像传感器封装结构
CN105633108B (zh) 多摄像头模组及其装配方法
JP2008300574A (ja) 固体撮像装置
JPH03155671A (ja) 固体撮像装置
CN203941902U (zh) 图像传感器封装结构
CN206558504U (zh) 图像传感器模组
TWI555398B (zh) 攝像模組及其製造方法
KR100956381B1 (ko) 웨이퍼 레벨 카메라 모듈의 제조 방법
CN114242796A (zh) 一种光传感器结构及其制造方法
KR100840153B1 (ko) 카메라 모듈
CN107994039B (zh) Cmos图像传感器的晶圆级封装方法
CN109860211B (zh) 图像传感器的封装方法
TWI476876B (zh) 窗口式影像模組結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796290

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15312628

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15796290

Country of ref document: EP

Kind code of ref document: A1