WO2015176596A1 - 一种场发射器件及其制作方法 - Google Patents

一种场发射器件及其制作方法 Download PDF

Info

Publication number
WO2015176596A1
WO2015176596A1 PCT/CN2015/077778 CN2015077778W WO2015176596A1 WO 2015176596 A1 WO2015176596 A1 WO 2015176596A1 CN 2015077778 W CN2015077778 W CN 2015077778W WO 2015176596 A1 WO2015176596 A1 WO 2015176596A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
field emission
emitter
emitter layer
emission device
Prior art date
Application number
PCT/CN2015/077778
Other languages
English (en)
French (fr)
Inventor
赵德胜
张宝顺
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2015176596A1 publication Critical patent/WO2015176596A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Definitions

  • the present invention belongs to the field of semiconductor technology, and in particular to a field emission device and a method of fabricating the same.
  • vacuum electronic devices have replaced vacuum electronic devices in almost every application due to their small size, long life, easy integration, low power consumption, high reliability, low noise and low operating voltage.
  • vacuum electronic devices are transported in vacuum due to electron transport. Completed, it operates at a higher frequency than solid-state devices and can operate at both high frequency and high power. Therefore, vacuum microelectronic devices still have great application prospects in high-power high-frequency (such as radar, communication and electronic countermeasures), special display and high-fidelity audio equipment.
  • the core part of the vacuum electronic device is the emitter cathode.
  • the continuous development of the emitter cathode promotes the performance improvement of the vacuum electronic device.
  • the field emission cold cathode is proposed to realize the cathode emission without heating, which reduces the energy consumption of the device. Increased device efficiency and reliability.
  • the field emission cold cathode In order to achieve sufficient field strength for field emission cold cathode operation, the field emission cold cathode must be processed into a tip with a very small radius of curvature, while the distance between the cathode and the anode is small enough. In order to increase the operating current of the field emission device, it is necessary to fabricate a tip array.
  • one-dimensional semiconductor nanostructures such as nanotubes, nanobelts, nanorods, nanowires, etc., which are self-organized, are generally used as the emission cathode.
  • One-dimensional nanomaterial field emission devices begin with carbon nanotube arrays, but the carbon nanotube electronic structure limits the application of field emission.
  • an object of the present invention is to provide a field emission device including a substrate, a buffer layer disposed on the substrate, and an emitter layer and a collector layer respectively disposed at both ends of the buffer layer And a metal electrode layer respectively disposed on the emitter layer and the collector layer, wherein the emitter layer and the collector layer have a channel therebetween.
  • the emitter layer may preferably adopt a gallium nitride-based superlattice structure.
  • one end of the emitter layer has a tip end, and one end of the collector layer and the emitter layer The corresponding side end has a pointed recess corresponding to the tip end, wherein the tip end is provided in cooperation with the pointed recess.
  • the angle of the tip is preferably 60 degrees.
  • the collector layer is preferably an n-type gallium nitride layer.
  • the buffer layer is preferably a high resistance gallium nitride layer.
  • the material used for the substrate may preferably be, but not limited to, sapphire, gallium nitride or silicon carbide.
  • Another object of the present invention is to provide a method of fabricating the above field emission device, comprising the steps of:
  • Metal electrodes are formed on the remaining portion of the emitter layer and the collector layer, respectively.
  • the "completely covering the remaining portion of the emitter layer” means that the upper surface and each side surface of the remaining portion of the emitter layer are covered.
  • the specific implementation of "depositing a dielectric film layer to completely cover the remaining portion of the emitter layer” includes the steps of: depositing a dielectric film layer to completely complete the remaining portion of the emitter layer and the exposed buffer layer Covering; removing the dielectric film layer covered on the exposed buffer layer.
  • a gallium nitride (GaN) semiconductor material has a low electron affinity of 2.7 to 3.5 eV, a lower emission barrier can be formed in a heterostructure, and gallium nitride is formed. It has superior physical properties (high melting point, high mobility, high thermal conductivity, etc.) and stable chemical properties, can achieve low emissivity at low pressure and eliminate residual gas chemisorption, thus improving the field enhancement of the field emission device of the present invention. Factor and field emission characteristics.
  • the electron concentration of the n-type doped GaN in the field emission device of the present invention is easily improved, and it can operate in a high-temperature and high-radiation environment.
  • the field emission cathode of the field emission device of the present invention has a longer lifetime than a field emission cathode of a field emission device fabricated using a conventional semiconductor material such as silicon (Si).
  • FIG. 1 is a perspective view of a field emission device in accordance with an embodiment of the present invention.
  • FIGS. 2a through 2h are perspective views of a fabrication flow of a field emission device in accordance with an embodiment of the present invention.
  • FIG. 1 is a perspective view of a field emission device in accordance with an embodiment of the present invention.
  • a field emission device includes a substrate 110, a buffer layer 120 disposed over the substrate 110, and an emitter layer 130 and a collector layer respectively disposed over both ends of the buffer layer 120. 140.
  • the substrate 110 may be, for example, sapphire, gallium nitride or silicon carbide material or the like. In this embodiment, preferably, the substrate 110 is made of a gallium nitride material.
  • the buffer layer 120 may be a high resistance gallium nitride material.
  • the buffer layer 120 may be a high-resistance gallium nitride material doped with iron.
  • Gallium nitride materials have very good electron field emission properties, mainly characterized by large band gap, low electron affinity, high chemical and mechanical stability, and poor sputter corrosion. Therefore, they can be used as field emission devices.
  • the emitter is such that the emitter of the field emission device has a longer emission lifetime.
  • the gallium nitride (GaN)-based superlattice structure has strong spontaneous polarization and piezoelectric polarization.
  • the gallium nitride/aluminum gallium nitride (GaN/AlGaN) superlattice structure contains alloys with different valence bands, thereby improving the band characteristics, and the periodic oscillation of the valence band edge also increases the number of carriers. Therefore, in this embodiment, the emission The pole layer 130 is a gallium nitride based superlattice structure such as a gallium nitride/aluminum gallium nitride (GaN/AlGaN) superlattice structure.
  • the gallium nitride/aluminum gallium nitride (GaN/AlGaN) superlattice may be an n-GaN/i-AlGaN superlattice, but the present invention is not limited thereto.
  • one end of the emitter layer 130 has a tip end 131, and the collector layer 140
  • the side end of the one end of the emitter layer 130 has a pointed recess 141 corresponding to the tip end 131, wherein the tip end 131 is fitted with the pointed recess 141, and a channel 160 is formed between the tip end 131 and the pointed recess 141.
  • the angle of the tip 131 is 60 degrees.
  • the collector layer 140 is an n-type gallium nitride layer.
  • the collector layer 140 is an n-type gallium nitride material.
  • the first metal electrode layer 151 and the second metal electrode layer 152 each employ a metal material that forms good ohmic contact with the emitter layer 130 and the collector layer 140, such as a Ti/Al/Ni/Au material system or the like.
  • FIGS. 2a through 2h are perspective views of a fabrication flow of a field emission device in accordance with an embodiment of the present invention.
  • a buffer layer 120 is formed on the substrate 110.
  • the substrate 110 may be, for example, sapphire, gallium nitride or silicon carbide material or the like.
  • the buffer layer 120 may be made of a high-resistance gallium nitride material.
  • the buffer layer 120 may be a high-resistance gallium nitride material doped with iron.
  • an emitter layer 130 is formed on the buffer layer 120. Since gallium nitride materials have very good electron field emission properties, they are mainly used as field emission devices because of their large forbidden band width, low electron affinity, high chemical and mechanical stability, and low sputter corrosion. The emitter is such that the emitter of the field emission device has a longer emission lifetime. Compared with the common gallium arsenide (GaAs)-based superlattice structure, the gallium nitride (GaN)-based superlattice structure has strong spontaneous polarization and piezoelectric polarization.
  • GaAs gallium arsenide
  • GaN gallium nitride
  • the gallium nitride/aluminum gallium nitride (GaN/AlGaN) superlattice structure contains alloys with different valence bands, thereby improving the band characteristics, and the periodic oscillation of the valence band edge also increases the number of carriers.
  • the emitter layer 130 may employ a gallium nitride (GaN) based superlattice structure, such as a gallium nitride/aluminum gallium nitride (GaN/AlGaN) superlattice structure.
  • the gallium nitride/aluminum gallium nitride (GaN/AlGaN) superlattice may be an n-GaN/i-AlGaN superlattice, but the present invention is not limited thereto.
  • a portion of the emitter layer 130 is removed to expose the buffer layer 120 covered by the portion of the emitter layer 130 and the remaining portion of the emitter layer 130 to form a tip.
  • the lithography mask and etching techniques can be used to partially The emitter layer 130 is removed and the remaining portion of the emitter layer 130 forms a tip 131.
  • a dielectric film layer 170 is deposited to completely cover the remaining portion of the emitter layer 130 and the buffer layer 120 exposed in Figure 2c.
  • the dielectric film layer 170 may be made of a silicon dioxide (SiO 2 ) material.
  • the "completely covering the remaining portion of the emitter layer 130" means that the upper surface and each side surface of the remaining portion of the emitter layer 130 are covered by the dielectric film layer 170.
  • the dielectric film layer 170 on the exposed buffer layer 120 is etched away.
  • a collector layer 140 is formed on the exposed buffer layer 120.
  • a tip end portion 141 corresponding to the tip end 131 is formed at a side end of the collector layer 140 corresponding to one end of the emitter layer 130.
  • the collector layer 140 is an n-type gallium nitride layer. In other words, the collector layer 140 is an n-type gallium nitride material.
  • the dielectric film layer 170 completely covering the remaining portion of the emitter layer 130 is removed.
  • the channel 160 is formed between the both side faces forming the tip end 131 and the both side faces forming the pointed concave portion 141.
  • a first metal electrode 151 and a second metal electrode 152 are formed on the remaining portion of the emitter layer 130 and the collector layer 140, respectively.
  • the first metal electrode layer 151 and the second metal electrode layer 152 each employ a metal material that forms good ohmic contact with the emitter layer 130 and the collector layer 140, such as a Ti/Al/Ni/Au material system or the like.
  • gallium nitride (GaN) semiconductor materials have a low electron affinity of 2.7 to 3.5 eV, a lower emission barrier can be formed in a heterostructure, and gallium nitride has superior physical properties (high melting point). , high mobility, high thermal conductivity, etc.) and stable chemical properties, can achieve low emissivity at low pressure and eliminate residual gas chemisorption, thus improving the field enhancement factor and field effect of the field emission device of the embodiment of the present invention Emission characteristics.
  • the electron concentration of the n-type doped GaN is easily increased, and the field emission device of the embodiment of the invention can operate in a high temperature and high radiation environment.
  • the field emission cathode of the field emission device of the embodiment of the present invention has a longer lifetime than a field emission cathode of a field emission device fabricated using a conventional semiconductor material such as silicon (Si).

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

一种场发射器件,其包括衬底(110)、设置在衬底(110)上的缓冲层(120)、分别设置在缓冲层(120)两端的发射极层(130)和集电极层(140)、分别设置在发射极层(130)和集电极层(140)上的金属电极层(151)(152),其中,发射极层(130)与集电极层(140)之间具有沟道(160)。一种场发射器件的制作方法,该场发射器件及其制作方法可提高场增强因子,并可提高场致发射特性。

Description

一种场发射器件及其制作方法 技术领域
本发明属于半导体技术领域,具体地讲,涉及一种场发射器件及其制作方法。
背景技术
半导体器件由于体积小、寿命长、易集成、能耗低、可靠性高、噪音低和工作电压低等优点几乎在各个应用领域取代了真空电子器件,但是真空电子器件由于电子输运在真空中完成,其工作频率比固体器件更高,并且能够同时高频高功率工作。因此,真空微电子器件在大功率高频(例如应用于雷达、通信和电子对抗等)、特殊显示和高保真的音响设备等方面还是具有巨大的应用前景。
真空电子器件的核心部分是发射阴极,发射阴极的不断发展推动了真空电子器件的性能的提高,特别是场致发射冷阴极的提出可以实现不需加热的阴极发射,降低了器件的能耗,提高了器件效率和可靠性。为了实现场致发射冷阴极工作时具备足够的场强,场致发射冷阴极必需加工成曲率半径非常小的针尖,同时阴极和阳极之间的距离要足够小。为了增加场致发射器件的工作电流,需要制作针尖阵列。
在真空微电子发射场中,为减少加工难度,一般采用自组织生长的一维半导体纳米结构,如纳米管、纳米带,纳米柱(nanorods)、纳米线等作为发射阴极。一维纳米材料场发射器件开始于碳纳米管阵列,但碳纳米管电子结构限制了场发射的应用。
发明内容
为了解决上述现有技术存在的问题,本发明的目的在于提供一种场发射器件,其包括衬底、设置在衬底上的缓冲层、分别设置在缓冲层两端的发射极层和集电极层、分别设置在发射极层和集电极层上的金属电极层,其中,发射极层与集电极层之间具有沟道。
进一步地,所述发射极层可优选采用氮化镓基超晶格结构。
进一步地,所述发射极层的一侧端具有尖端,所述集电极层的与发射极层的一侧端 对应的侧端具有与所述尖端对应的尖凹部,其中,所述尖端与所述尖凹部配合设置。
进一步地,所述尖端的角度优选为60度。
进一步地,所述集电极层优选为n型氮化镓层。
进一步地,所述缓冲层优选为高阻氮化镓层。
进一步地,所述衬底采用的材料可优选自但不限于蓝宝石、氮化镓或碳化硅。
本发明的另一目的还在于提供一种制作上述场发射器件的方法,其包括如下步骤:
在衬底上形成缓冲层;在缓冲层上形成发射极层;
将部分发射极层去除,以使所述部分发射极层覆盖的缓冲层暴露,并使剩余部分发射极层形成尖端;
沉积介质膜层,以将所述剩余部分发射极层完全覆盖;
在暴露的缓冲层上形成集电极层;
将完全覆盖所述剩余部分发射极层的介质膜层去除,以使剩余部分发射极层与集电极层之间形成沟道;
在剩余部分发射极层和集电极层上分别形成金属电极。
进一步地,所述“将所述剩余部分发射极层完全覆盖”是指所述剩余部分发射极层的上表面和各个侧表面均被覆盖。
进一步地,所述“沉积介质膜层,以将所述剩余部分发射极层完全覆盖”的具体实现方式包括步骤:沉积介质膜层,以将所述剩余部分发射极层和暴露的缓冲层完全覆盖;将所述暴露的缓冲层上覆盖的介质膜层去除。
采用本发明的场发射器件及其制作方法,由于氮化镓(GaN)半导体材料具有2.7~3.5eV低的电子亲和势,可以在异质结构中形成较低发射势垒,并且氮化镓具有优越物理特性(高熔点、高迁移率、高热导率等)和稳定化学性能,可在低压下实现低的发射率和免除残余气体化学吸附,因此可提高本发明的场发射器件的场增强因子及场致发射特性。另外,本发明的场发射器件中的n型掺杂GaN的电子浓度容易提高,且其可以在高温高辐射环境下工作。此外,与使用硅(Si)等传统半导体材料制作的场发射器件的场发射阴极相比,本发明的场发射器件的场发射阴极寿命更长。
附图说明
通过结合附图进行的以下描述,本发明的实施例的其它方面、特点和优点将变得更加清楚,附图中:
图1根据本发明的实施例的场发射器件的立体图。
图2a至图2h是根据本发明的实施例的场发射器件的制作流程立体图。
具体实施方式
以下将参照附图来详细描述本发明的实施例。然而,可以许多不同的形式来实施本发明,并且本发明不应该被解释为限制于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
图1根据本发明的实施例的场发射器件的立体图。
参照图1,根据本发明的实施例的场发射器件包括衬底110、设置在衬底110之上的缓冲层120、分别设置在缓冲层120两端之上的发射极层130和集电极层140、设置在发射极层130之上的第一金属电极层151和设置在集电极层140之上的第二金属电极层152,其中,发射极层130与集电极层140之间具有沟道160,以实现大气压下的电子的弹道运输。
衬底110可例如采用蓝宝石、氮化镓或碳化硅材料等。本实施例中,优选的,衬底110采用氮化镓材料。
缓冲层120可采用高阻氮化镓材料。优选的,缓冲层120可采用掺铁的高阻氮化镓材料。
氮化镓材料具有非常好的电子场发射性能,主要表现为禁带宽度大、电子亲和势低、化学和力学稳定性高以及不易产生溅射腐蚀等优点,因此其可以作为场发射器件的发射极,以使场发射器件的发射极具有较长的发射寿命。并且与常见的砷化镓(GaAs)基超晶格结构相比,氮化镓(GaN)基超晶格结构具有极强的自发极化和压电极化现象。此外,氮化镓/铝镓氮(GaN/AlGaN)超晶格结构包含着具有不同价带的合金,从而改善了能带特性,价带边缘的周期性振荡也增加了载流子的数目,因此,在本实施例中,发射 极层130采用氮化镓基超晶格结构,例如氮化镓/铝镓氮(GaN/AlGaN)超晶格结构。在本实施例中,氮化镓/铝镓氮(GaN/AlGaN)超晶格可为n-GaN/i-AlGaN超晶格,但本发明并不局限于此。
此外,由于发射极层130与集电极层140的形状影响阈值电压的大小,所以在本实施例中,优选的,发射极层130的一侧端具有尖端131,所述集电极层140的与发射极层130的一侧端对应的侧端具有与尖端131对应的尖凹部141,其中,尖端131与尖凹部141配合设置,并且在尖端131与尖凹部141之间形成沟道160。此外,尖端131的角度为60度。
此外,集电极层140为n型氮化镓层。换句话说,集电极层140采用n型氮化镓材料。
第一金属电极层151和第二金属电极层152均采用与发射极层130和集电极层140形成良好欧姆接触的金属材料,例如Ti/Al/Ni/Au材料系等。
图2a至图2h是根据本发明的实施例的场发射器件的制作流程立体图。
在图2a中,在衬底110上形成缓冲层120。这里,衬底110可例如采用蓝宝石、氮化镓或碳化硅材料等。缓冲层120可采用高阻氮化镓材料,优选的,缓冲层120可采用掺铁的高阻氮化镓材料。
在图2b中,在缓冲层120上形成发射极层130。由于氮化镓材料具有非常好的电子场发射性能,主要表现为禁带宽度大、电子亲和势低、化学和力学稳定性高以及不易产生溅射腐蚀等优点,所以其可以作为场发射器件的发射极,以使场发射器件的发射极具有较长的发射寿命。并且与常见的砷化镓(GaAs)基超晶格结构相比,氮化镓(GaN)基超晶格结构具有极强的自发极化和压电极化现象。此外,氮化镓/铝镓氮(GaN/AlGaN)超晶格结构包含着具有不同价带的合金,从而改善了能带特性,价带边缘的周期性振荡也增加了载流子的数目,因此,在这里,发射极层130可采用氮化镓(GaN)基超晶格结构,例如氮化镓/铝镓氮(GaN/AlGaN)超晶格结构。在本实施例中,氮化镓/铝镓氮(GaN/AlGaN)超晶格可为n-GaN/i-AlGaN超晶格,但本发明并不局限于此。
在图2c中,将部分发射极层130去除,以使该部分发射极层130覆盖的缓冲层120暴露,并使剩余部分发射极层130形成尖端。这里,可利用光刻掩膜和刻蚀技术将部分 发射极层130去除,并使剩余部分发射极层130形成尖端131。
在图2d中,沉积介质膜层170,以将剩余部分发射极层130和图2c中暴露的缓冲层120完全覆盖。这里,介质膜层170可采用二氧化硅(SiO2)材料。此外,所述“将剩余部分发射极层130完全覆盖”是指所述剩余部分发射极层130的上表面和各个侧表面均被介质膜层170所覆盖。
在图2e中,将暴露的缓冲层120上的介质膜层170刻蚀去除掉。
在图2f中,在暴露的缓冲层120上形成集电极层140。这里,在集电极层140的与发射极层130的一侧端对应的侧端形成与尖端131对应的尖凹部141。此外,集电极层140为n型氮化镓层。换句话说,集电极层140采用n型氮化镓材料。
在图2g中,将完全覆盖剩余部分发射极层130的介质膜层170去除。这里,由于将形成尖端131的两个侧面上的介质膜层170去除掉,因此,形成尖端131的两个侧面与形成尖凹部141的两个侧面之间形成沟道160。
在图2h中,在剩余部分发射极层130和集电极层140上分别形成第一金属电极151和第二金属电极152。这里,第一金属电极层151和第二金属电极层152均采用与发射极层130和集电极层140形成良好欧姆接触的金属材料,例如Ti/Al/Ni/Au材料系等。
综上所述,由于氮化镓(GaN)半导体材料具有2.7~3.5eV低的电子亲和势,可以在异质结构中形成较低发射势垒,并且氮化镓具有优越物理特性(高熔点、高迁移率、高热导率等)和稳定化学性能,可在低压下实现低的发射率和免除残余气体化学吸附,因此可提高本发明的实施例的场发射器件的场增强因子及场致发射特性。另外,在本发明的实施例的场发射器件中,n型掺杂GaN的电子浓度容易提高,并且本发明的实施例的场发射器件可以在高温高辐射环境下工作。此外,与使用硅(Si)等传统半导体材料制作的场发射器件的场发射阴极相比,本发明的实施例的场发射器件的场发射阴极寿命更长。
虽然已经参照特定实施例示出并描述了本发明,但是本领域的技术人员将理解:在不脱离由权利要求及其等同物限定的本发明的精神和范围的情况下,可在此进行形式和细节上的各种变化。

Claims (10)

  1. 一种场发射器件,其特征在于包括衬底、设置在衬底上的缓冲层、分别设置在缓冲层两端的发射极层和集电极层、分别设置在发射极层和集电极层上的金属电极层,其中,发射极层与集电极层之间具有沟道。
  2. 根据权利要求1所述的场发射器件,其特征在于,所述发射极层包含氮化镓基超晶格结构。
  3. 根据权利要求1或2所述的场发射器件,其特征在于,所述发射极层的一侧端具有尖端,所述集电极层与发射极层一侧端对应的侧端具有与所述尖端对应的尖凹部,其中,所述尖端与所述尖凹部配合设置。
  4. 根据权利要求3所述的场发射器件,其特征在于,所述尖端的角度为60度。
  5. 根据权利要求1所述的场发射器件,其特征在于,所述集电极层为n型氮化镓层。
  6. 根据权利要求1所述的场发射器件,其特征在于,所述缓冲层为高阻氮化镓层。
  7. 根据权利要求1所述的场发射器件,其特征在于,所述衬底采用的材料为蓝宝石或氮化镓或碳化硅。
  8. 权利要求1-7中任一项所述的场发射器件的制作方法,其特征在于包括步骤:
    在衬底上形成缓冲层;
    在缓冲层上形成发射极层;
    将部分发射极层去除,以使所述部分发射极层覆盖的缓冲层暴露,并使剩余部分发射极层形成尖端;
    沉积介质膜层,以将所述剩余部分发射极层完全覆盖;
    在暴露的缓冲层上形成集电极层;
    将完全覆盖所述剩余部分发射极层的介质膜层去除,以使剩余部分发射极层与集电极层之间形成沟道;
    在剩余部分发射极层和集电极层上分别形成金属电极。
  9. 根据权利要求8所述的制作方法,其特征在于,所述“将所述剩余部分完全覆盖”是指所述剩余部分发射极层的上表面和各个侧表面均被覆盖。
  10. 根据权利要求8所述的制作方法,其特征在于,所述“沉积介质膜层,以将所述 剩余部分发射极层完全覆盖”具体实现方式包括步骤:
    沉积介质膜层,以将所述剩余部分发射极层和暴露的缓冲层完全覆盖;
    将所述暴露的缓冲层上覆盖的介质膜层去除。
PCT/CN2015/077778 2014-05-22 2015-04-29 一种场发射器件及其制作方法 WO2015176596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410216831.2A CN105097380B (zh) 2014-05-22 2014-05-22 一种场发射器件及其制作方法
CN201410216831.2 2014-05-22

Publications (1)

Publication Number Publication Date
WO2015176596A1 true WO2015176596A1 (zh) 2015-11-26

Family

ID=54553401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077778 WO2015176596A1 (zh) 2014-05-22 2015-04-29 一种场发射器件及其制作方法

Country Status (2)

Country Link
CN (1) CN105097380B (zh)
WO (1) WO2015176596A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108242466B (zh) * 2016-12-26 2020-09-01 中国科学院苏州纳米技术与纳米仿生研究所 场发射器件及其制作方法
CN107346720B (zh) * 2016-05-04 2020-09-01 中国科学院苏州纳米技术与纳米仿生研究所 场发射器件及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112436A (en) * 1990-12-24 1992-05-12 Xerox Corporation Method of forming planar vacuum microelectronic devices with self aligned anode
EP1329928A2 (en) * 2001-12-20 2003-07-23 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US20080315775A1 (en) * 2005-08-26 2008-12-25 Electronics And Telecommunications Research Institute Electron Emission Device Using Abrupt Metal-Insulator Transition and Display Including the Same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5112436A (en) * 1990-12-24 1992-05-12 Xerox Corporation Method of forming planar vacuum microelectronic devices with self aligned anode
EP1329928A2 (en) * 2001-12-20 2003-07-23 Ngk Insulators, Ltd. Electron-emitting element and field emission display using the same
US20080315775A1 (en) * 2005-08-26 2008-12-25 Electronics And Telecommunications Research Institute Electron Emission Device Using Abrupt Metal-Insulator Transition and Display Including the Same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, JING ET AL.: "High Breakdown Voltage Enhancement-mode AIGaN/GaN HFET Device Based on Energy Band Modulation Model", RESEARCH & PROGRESS OF SSE SOLID STATE ELECTRONICS, vol. 32, no. 6, 31 December 2012 (2012-12-31), pages 525, ISSN: 1000-3819 *

Also Published As

Publication number Publication date
CN105097380B (zh) 2017-10-24
CN105097380A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
TWI535005B (zh) Semiconductor device
JP2011124258A (ja) 窒化物系ダイオード
JP2011159795A (ja) 半導体装置およびその作製法
TWI798695B (zh) 紫外led及其製作方法
CN104465913A (zh) 具有双InGaN子量子阱的共振隧穿二极管及其制作方法
CN112420850A (zh) 一种半导体器件及其制备方法
WO2015176596A1 (zh) 一种场发射器件及其制作方法
CN107706232A (zh) 一种原位MIS栅结构常关型GaN基晶体管及制备方法
WO2017190511A1 (zh) 场发射器件及其制作方法
CN110518067B (zh) 基于沟道阵列的异质结场效应晶体管及其制作方法和应用
CN110635352A (zh) 具有n-型半导体限制孔结构的vcsel器件
JP2012064663A (ja) 窒化物半導体装置およびその製造方法
JP4869576B2 (ja) 窒化物半導体装置及びその製造方法
JP5629977B2 (ja) 半導体装置及びその製造方法
CN108242466B (zh) 场发射器件及其制作方法
US9735247B2 (en) High-frequency conductor having improved conductivity
JP5386810B2 (ja) Mis型fet及びその製造方法
CN107346720B (zh) 场发射器件及其制作方法
JP4869585B2 (ja) 窒化物半導体装置の製造方法
JP2007088186A (ja) 半導体装置及びその製造方法
CN110875384A (zh) 半导体器件及其制造方法
KR101678874B1 (ko) 반도체 소자 제조방법
JP2013045925A (ja) 半導体装置およびその製造方法
CN218827149U (zh) 氮化镓基高电子迁移率晶体管
WO2024027028A1 (zh) 场发射器件及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/04/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15795366

Country of ref document: EP

Kind code of ref document: A1