WO2015176571A1 - 一种混合动力车辆 - Google Patents

一种混合动力车辆 Download PDF

Info

Publication number
WO2015176571A1
WO2015176571A1 PCT/CN2015/073715 CN2015073715W WO2015176571A1 WO 2015176571 A1 WO2015176571 A1 WO 2015176571A1 CN 2015073715 W CN2015073715 W CN 2015073715W WO 2015176571 A1 WO2015176571 A1 WO 2015176571A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
power
mode
state
pressure
Prior art date
Application number
PCT/CN2015/073715
Other languages
English (en)
French (fr)
Inventor
李书福
Original Assignee
浙江吉利控股集团有限公司
浙江吉利汽车研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江吉利控股集团有限公司, 浙江吉利汽车研究院有限公司 filed Critical 浙江吉利控股集团有限公司
Priority to JP2016568044A priority Critical patent/JP6259534B2/ja
Priority to US15/312,114 priority patent/US10124697B2/en
Priority to EP15795564.2A priority patent/EP3147978B1/en
Publication of WO2015176571A1 publication Critical patent/WO2015176571A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/063Arrangement of tanks
    • B60K15/067Mounting of tanks
    • B60K15/07Mounting of tanks of gas tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/32Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/28Conjoint control of vehicle sub-units of different type or different function including control of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0098Details of control systems ensuring comfort, safety or stability not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/445Methods for charging or discharging in response to gas pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/18Control strategies specially adapted for achieving a particular effect for avoiding ageing of fuel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/28Fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • B60Y2400/306Pressure sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/908Fuel cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to the field of hybrid vehicles, and more particularly to a hybrid vehicle including at least an electric drive.
  • CO 2 in the exhaust of motor vehicles is one of the main sources of the global warming effect, while other components in the exhaust are also important urban atmospheric pollutants.
  • hybrid power has been used as a transitional vehicle between traditional vehicles and pure electric vehicles. Both of them have advantages such as ultra-low emissions, high efficiency and long cruising range, but the cost is more traditional.
  • the system's vehicle is slightly higher.
  • the power system of a hybrid vehicle includes various types such as series, parallel, and hybrid.
  • new fuels are typically stored in the corresponding fuel storage tanks by compression or cooling compression.
  • the fuel pressure inside the fuel storage tank is easily raised above its safe pressure.
  • the interface between the fuel storage tank and the outside is easy to absorb external heat and cause fuel.
  • the fuel pressure inside the tank rises. This in turn poses a security issue.
  • a pressure relief valve is usually provided on the fuel storage tank, which automatically opens and releases part of the fuel to the surrounding atmosphere when the fuel pressure in the fuel storage tank exceeds a limit. While this approach guarantees the safety of the fuel storage tank from a certain angle, the flammable gaseous fuel leaking into the surrounding atmosphere brings new potential safety problems, and this also wastes energy.
  • the present invention provides a hybrid vehicle comprising:
  • a power battery that is selectively capable of being in a state of charge and a state of discharge, wherein the power battery stores electrical energy when in the state of charge and provides electrical energy for driving the vehicle when in the state of discharge;
  • a fuel storage tank for storing fuel therein, and the fuel stored in the fuel storage tank forms a gas pressure in the fuel storage tank;
  • a power generating unit having an operating state and a shutdown state; wherein, when the power generating unit is in an operating state, it converts chemical energy of the fuel in the fuel storage tank into an electrical energy output;
  • a pressure detecting unit for detecting the gas pressure in the fuel storage tank
  • a working mode controller for controlling the vehicle to selectively operate in one of a plurality of working modes; the plurality of working modes including a pressure protection mode;
  • the working mode controller is configured to control the vehicle to enter when the power generating unit is in the shutdown state, and when the gas pressure detected by the pressure detecting unit is higher than a pressure threshold a pressure protection mode in which the power generating unit is activated from the shutdown state to enter the operating state to consume the fuel in the fuel storage tank, thereby reducing the fuel storage tank The gas pressure.
  • the power battery is in the state of charge to receive power from the power generating unit to charge it.
  • the plurality of working modes further includes a pure battery power supply mode performed when the vehicle is started; wherein, in the pure battery power supply mode, the power generating unit continues to be in the shutdown state, The power battery continues to be in the discharged state to consume the electrical energy stored in the power battery to drive the vehicle.
  • the plurality of working modes further includes a normal mode performed in a case where the vehicle is started, in which the power generating unit is selectively in the working state or the stopped state according to a predetermined working policy. And the power battery is selectively in the charging state or the discharging state according to the predetermined working strategy.
  • the hybrid vehicle further includes a mode input interface for receiving user input Representing a mode selection command for selecting the pure battery power supply mode; wherein the operation mode controller controls the vehicle to operate in the pure battery power supply mode according to the mode selection instruction.
  • the working mode controller is configured to prohibit the vehicle from entering the pure battery power supply mode or causing the vehicle to leave the pure battery power supply mode when the power of the power battery is lower than a power threshold .
  • the amount of charge of the power battery is limited to be lower than the maximum chargeable amount of the power battery.
  • the working mode controller is configured to enable the vehicle to enter the pressure protection mode in an activated state or a flameout state of the vehicle; or the working mode controller is configured to be only in the vehicle The flameout state causes the vehicle to enter the pressure protection mode.
  • hybrid vehicle further includes:
  • An electrical switch for opening or closing a power path to a traction motor of the vehicle; wherein the operational mode controller is configured to be disconnected when the vehicle enters the pressure protection mode from the flameout state Opening the electrical switch;
  • a clutch for opening or closing a mechanical power path to a wheel of the vehicle; wherein the operating mode controller is configured to open when the vehicle enters the pressure protection mode from the flameout state The clutch.
  • hybrid vehicle of the present invention is a series hybrid vehicle.
  • the hybrid vehicle of the present invention has a pressure protection mode capable of automatically starting the power generation unit when the gas pressure of the fuel in the fuel storage tank exceeds a pressure threshold, and converting the chemical energy of the expanded fuel in the fuel storage tank into electrical energy. This facilitates subsequent utilization or consumption of the converted electrical energy.
  • the fuel in the fuel storage tank is discharged into the atmosphere for pressure relief, and the present invention makes it safer to utilize or consume excess fuel in the fuel storage tank by means of electric energy.
  • the chemical energy of the excess fuel can be converted into electrical energy to charge the vehicle's power battery, which improves safety while avoiding fuel waste and improving fuel utilization.
  • FIG. 1 is a schematic structural view of a power system of a series hybrid vehicle according to an embodiment of the present invention.
  • the vehicle may include a power battery 50, a fuel storage tank 10, a power generation unit 40, a pressure detecting unit 20, and an operating mode controller 30.
  • the power battery 50 can be selectively in a charged state and a discharged state, which can store electrical energy when in a charged state, and can provide electrical energy for driving the vehicle when in a discharged state.
  • the fuel storage tank 10 can store fuel therein.
  • the fuel when the fuel is natural gas, compressed natural gas or dimethyl ether at a normal temperature, or volatile methanol or ethanol, the fuel stored in the fuel storage tank 10 may be in the fuel storage tank 10.
  • a significant gas pressure is formed and the gas pressure increases significantly as the ambient temperature increases.
  • the pressure detecting unit 20 can be used to detect the gas pressure in the fuel storage tank 10.
  • the power generating unit 40 may have an operating state and a shutdown state, which in the operating state may convert the chemical energy of the fuel in the fuel storage tank 10 into an electrical energy output.
  • the power generating unit 40 may be a generator set composed of an engine and a generator that consumes fuel in the fuel storage tank 10 and converts the chemical energy of the fuel into a mechanical energy output, and the generator can then convert the mechanical energy output by the engine into electrical energy. Output.
  • the traction motor 70 and the transmission system of the vehicle are also exemplarily shown in the embodiment shown in FIG.
  • the power generating unit 40 and/or the power battery 50 supplies electrical power to the traction motor 70 to drive the traction motor 70.
  • the traction motor 70 can convert electrical energy into mechanical transmission of mechanical energy to the vehicle's transmission system 50 during operation to drive vehicle operation.
  • the operating mode controller 30 can control the vehicle to selectively operate in one of a plurality of operating modes.
  • the plurality of modes of operation may include a normal mode, a pressure protection mode, and a pure battery powered mode. among them:
  • the normal mode may be the main mode of operation of the vehicle in the start or run state, and may employ the mode of operation typically found in existing hybrid vehicles.
  • the power generation unit 40 can be selectively in an active state or a shutdown state according to a predetermined operational strategy, and the power battery 50 can be selectively in a charged state or a discharged state according to the predetermined operational strategy.
  • the working state of the power generating unit 40 and the power battery 50 can be automatically adjusted by the normal mode according to the change of the actual situation of the vehicle. whole.
  • the power battery 50 when the power battery 50 is fully charged, it can be powered by the traction motor 70 of the vehicle independently, so that the traction motor generates a mechanical driving force to drive the vehicle to travel, and the power generating unit 40 can be in a stop state; or, in the power battery When the power is insufficient, the power generating unit 40 starts up and charges the power battery 50; or, when the vehicle requires a large driving force, the power generating unit 40 and the power battery 50 simultaneously supply power to the traction motor 70.
  • a vehicle operating in a conventional mode, the engine in the power generating unit 40, and the power battery 50 are all operated in an optimum state, which is an advantage of the hybrid vehicle.
  • the operating mode controller 30 controls the vehicle to enter the pressure protection mode in the event that the power generating unit 40 is in the shutdown state and when the gas pressure detected by the pressure detecting unit 20 is above a pressure threshold.
  • the gas pressure within the fuel storage tank 10 is above the pressure threshold, the fuel storage tank 10 is shown to be in an unsafe condition.
  • the power generation unit 40 is activated from the shutdown state to the operational state to consume fuel in the fuel storage tank 10, thereby reducing the gas pressure in the fuel storage tank 10 to return it to at least below the pressure threshold.
  • the present invention adds a pressure protection mode to the vehicle so that the gas pressure in the fuel storage tank 10 does not discharge to the atmosphere after exceeding the pressure threshold, but drives the power generation unit 40 of the vehicle to generate electricity to reduce or consume the expansion in the fuel storage tank 10.
  • the post fuel then returns the gas pressure within the fuel storage tank 10 to a safe range.
  • the electrical energy output by the power generating unit 40 can be consumed in different ways, such as the traction motor 70 for driving the vehicle, or charging the power battery 50, or other electrical equipment such as a vehicle air conditioner on the vehicle.
  • special power consuming devices such as electrically driven flywheels, etc., may be added to the vehicle to consume electrical energy generated by the power generating unit 40 when the vehicle enters the pressure protection mode.
  • the present invention in this way avoids the insecurity and energy waste caused by direct discharge of fuel to the atmosphere when the pressure in the fuel storage tank 10 rises.
  • the vehicle may enter the pressure protection mode in an activated state, or may cause the vehicle to enter a pressure protection mode in a flameout state.
  • the fuel in the fuel storage tank 10 may have an excessively high gas pressure under conditions of high temperature or the like.
  • the fuel in the fuel storage tank 10 may also occur under conditions of high temperature, vibration, and the like. The phenomenon of high gas pressure.
  • the pressure protection mode of the present invention can be self-starting when the gas pressure exceeds the standard in any of the above two cases.
  • the vehicle automatically controls the power utilization mode by its own control system (regular mode) in the startup state, and uses the fuel in the fuel storage tank 10 at a time interval to avoid the fuel.
  • the gas pressure is too high in the fuel-free storage tank 10. Therefore, the probability that the fuel pressure of the fuel in the fuel storage tank 10 exceeds the pressure threshold in the startup state is much less than the probability of the vehicle being in the flameout state.
  • the operational mode controller 30 can also be configured to activate the pressure protection mode only in the event of a vehicle stall.
  • the behavior of the vehicle entering the pressure protection mode in the activated or deactivated state may be automatically operated by the operating mode controller 30 based on the gas pressure in the fuel storage tank 10 detected by the pressure detecting unit 20 without driving. Intervention.
  • the pressure protection mode may have a higher execution priority than the conventional mode to bring the vehicle into the pressure protection mode in time when the fuel pressure within the fuel storage tank 10 is above the pressure threshold.
  • the operating mode controller 30 of the vehicle can cause the vehicle to return from the pressure protection mode to the normal mode.
  • the working mode controller 30 and the pressure detecting unit 20 of the vehicle may preferably be in a live working state at any time (especially in the case of a vehicle flameout).
  • the gas pressure change of the fuel storage tank 10 that may occur at any time is dealt with.
  • the pressure protection mode although various means can be employed to consume the electric energy generated by the power generating unit 40 as described above, in order to save energy and improve fuel utilization, it is preferable to charge the power battery 50 as a first choice. It can maximize the use of electrical energy.
  • the power battery 50 is not necessarily in a chargeable condition at this time. For example, after the vehicle is turned off, the power within the power battery 50 may still be in a full state or a sufficient state. In such a case, the power battery 50 may not be able to accommodate or adequately accommodate the output power of the power generating unit 40. To this end, a pure battery power supply mode can also be provided in the present invention.
  • the pure battery power supply mode is an operation mode for consuming power in the power battery 50 in a vehicle startup state.
  • the power generating unit 40 can continue to be in a stopped state, while the power battery 50 continues to be in a discharged state to consume power stored in the power battery 50 to drive the vehicle.
  • “continuous” means that the power generation unit 40 does not replenish the power battery 50 when the power battery 50 continuously outputs electric energy, so that the power state is adapted to be able to sufficiently accommodate the fuel storage tank 10 after the gas pressure exceeds the pressure threshold.
  • the power generated by the power generating unit 40 when returning to the safe range in the pressure protection mode. For example, with the pure battery power mode, the power of the power battery 50 can be finally reduced to 30% of its total storage capacity.
  • the power generating unit 40 may continue to be in a stopped state for a period of time, and the power battery 50 continues to be in a discharged state.
  • the pure battery power supply mode here is for the purpose of reducing the amount of power in the power battery 50, and is different from the conventional mode in that the power battery 50 operates in an optimum state.
  • the work mode controller 30 can control the vehicle to enter the pure battery power mode according to a mode selection command provided by a user, such as a driver.
  • the vehicle may further include a mode input interface 31 through which the user can input the mode selection command to the operational mode controller 30.
  • the pure battery powered mode can have a higher execution priority than the regular mode.
  • the operational mode controller 30 receives a mode selection command from the user indicating that the pure battery power mode is selected, the vehicle can be switched from the normal mode to the pure battery powered mode.
  • the mode input interface 31 can be a switch or button that is independently set for the pure battery power mode to only force control of the current vehicle operating in a pure battery powered mode.
  • the user can perform forced discharge of the power battery 50 that is still in a fully charged state depending on whether the vehicle is to enter a long-term flameout state. For example, when the driver expects that there will be a long idle vehicle, the driver can be forced to enter the pure battery power mode by actively inputting the mode input interface 31 when there is a certain distance from the parking destination during driving. The amount of electricity stored in the power battery 50 after the vehicle is turned off is in a relatively low state to ensure that there is sufficient space in the pressure protection mode that may be subsequently entered to accommodate the output power of the power generating unit 40.
  • the mode input interface 31 can also be configured to receive a user-input mode selection instruction indicative of a selected other mode of operation. For example, when the vehicle is in the pure battery powered mode, if the driver actively desires to switch back to the normal mode, it can also input a mode selection command indicating the selected normal mode through the mode input interface 31.
  • the operating mode controller 30 may be configured to prohibit the vehicle from entering the pure battery power supply mode or causing the vehicle to leave the pure state when the power of the power battery 50 is lower than a power threshold.
  • Battery powered mode One of the objects of the present invention is to avoid fuel waste and to fully utilize the electrical energy emitted by this portion of the energy source. When the power battery is in such a low power state, it has met the requirements of the present invention, so that it is no longer necessary to enter the pure battery power supply mode. Thus, when the vehicle is operating in the pure battery power mode, once the power in the power battery 50 drops below the preset power threshold, the work mode controller 30 automatically ends even if the driver's predetermined parking destination does not arrive. A pure battery powered mode protects the power battery 50.
  • the vehicle may have the aforementioned three modes of operation in the above embodiments, in other embodiments, the pure battery power mode may be omitted on the vehicle.
  • the power battery 50 in the pressure protection mode, the power battery 50 can be charged while the charging condition is met, and the charging condition is not met.
  • the other methods described above may be selected to consume the power output by the power generating unit 40; or, other methods may be used to consume the power output from the power generating unit 40.
  • the conventional mode is listed above, it is apparent that in the foregoing embodiments, the present invention may not relate to improvements to the conventional mode itself. In other embodiments, some modifications may be made to the conventional mode for the purposes of the present invention.
  • the amount of charge to the power battery 50 can be limited to be lower than the maximum chargeable amount of the power battery 50, for example, to 80% of the maximum chargeable amount.
  • the power supply space of the power generating unit 40 can be accommodated for the pressure protection mode that can be generated at any time.
  • the vehicle may also include an electrical switch 60 for opening or closing the electrical energy path to the traction motor 70 of the vehicle.
  • the operating mode controller 30 can be configured to open the electrical switch 60 when the vehicle enters the pressure protection mode from the flameout state.
  • the electrical switch 60 can be mounted on a line that is powered by the power battery 50 and the power generating unit 40 to the traction motor 70. In this way, when the vehicle enters the pressure protection mode in the flameout state, by turning off the electrical switch 60, the power outputted by the power generating unit 40 can be charged only to the power battery 50 of the vehicle or consumed by other power consuming devices, and cannot be Power is delivered to the traction motor 70 of the vehicle to avoid wasting power by the traction motor 70 of the vehicle.
  • the pressure protection mode is also used as a separate procedure for driving the power generating unit 40 as fuel in the fuel storage tank 10 to avoid possible use of the pressure protection mode without starting the vehicle's vulnerability through the vehicle key.
  • the state of the current electrical switch 90 can be detected by the operating mode controller 30 when the vehicle is started to ensure that the electrical switch 60 is in a closed state for normal communication of the traction motor 70 power supply line.
  • the pressure protection mode is activated, its electrical switch 90 is in a closed state under the control of the operating mode controller 30.
  • the vehicle may also include a clutch 80 for opening or closing a mechanical power path of a wheel of a typical vehicle.
  • the operating mode controller 30 can be configured to open the clutch 80 when the vehicle enters the pressure protection mode from the flameout state.
  • the clutch 80 may be an existing clutch in a vehicle transmission or a clutch added for this purpose. By operating the clutch 80, it is possible to achieve the effect that the vehicle cannot be driven even if the traction motor 70 is operated when the pressure protection mode is activated in the vehicle off state.
  • the operational mode controller 30 can be implemented by, or as part of, the power control system of the hybrid vehicle, or independently of the vehicle's original power control system.
  • the pressure detecting unit 20 may control the working mode when detecting that the gas pressure of the fuel in the fuel storage tank 10 exceeds a predetermined pressure threshold.
  • the controller 30 sends a signal, and the operating mode controller 30 activates the pressure protection mode upon receiving the signal.
  • the operating mode controller 30 continuously reads the pressure value detected by the pressure detecting unit 10 and compares it with a predetermined pressure threshold stored therein, and activates the pressure protection mode when the detected pressure value is higher than the pressure threshold.
  • the operational mode controller 30 When the pressure protection mode is activated, the operational mode controller 30 sends an activation signal to the power generation unit 40 to operate to consume fuel within the fuel storage tank 10 to reduce its gas pressure; at the same time, the operational mode controller 30 also to the power battery 50 Specifically (typically, the battery management system of the power battery 50) sends a charging signal to cause the power battery 50 to enter a state of charge such that the power generated by the power generating unit 40 can directly charge the power battery 50. In addition, if the vehicle is in a flameout state at this time, the operating mode controller 30 can also issue a control signal to the electrical switch 60 and/or the clutch 80 simultaneously or in advance to disconnect the power supply path and/or the traction motor 70 of the vehicle. A mechanical transmission path to the transmission system 80.
  • the driver issues a mode selection command to the operational mode controller 30 via the mode input interface 31 indicating that the pure battery power mode is selected.
  • the operating mode controller 30 first obtains its current state of charge through the battery management system of the power battery 50 and compares the current amount of power of the power battery 50 with a predetermined power threshold stored in the operating mode controller 30. If the current charge of the power battery 50 is below the power threshold, the operational mode controller 30 does not change the current operating state of the power generating unit 40 and the power battery 50, i.e., prohibits the vehicle from entering the pure battery powered mode.
  • the operational mode controller 30 sends a control signal to the power generating unit 40 to force it to remain or enter a shutdown state and send a control signal to the power battery 50 to force it to remain or enter the discharge.
  • the state is such that the vehicle only provides power to the traction motor 70 of the vehicle with the power battery 50 as an electrical energy output source to drive the vehicle forward.
  • the operating mode controller 30 continues to acquire its current state of charge, and when the power of the power battery 50 decreases below the power threshold, the vehicle is controlled to exit the pure battery power mode and in the normal mode. The operation of the power generating unit 40 and the power battery 50 is controlled.
  • the pressure threshold of the fuel storage tank 10 can be set in one of two ways:
  • the pressure threshold is a single pressure value that triggers the pressure protection mode once the gas pressure within the fuel storage tank 10 exceeds this pressure value.
  • the pressure threshold is a pressure range including a pressure upper limit value and a pressure lower limit value.
  • the pressure in the fuel storage tank 10 is higher than the pressure
  • the force threshold may mean an upper limit above the pressure range
  • the pressure in the fuel storage tank 10 "returns to a safe range” may refer to a lower limit value below the pressure range.
  • the pressure protection mode is frequently initiated and terminated as the pressure in the fuel storage tank 10 alternates up and down the pressure value.
  • the vehicle shown in Figure 1 is a series hybrid vehicle.
  • the power system of the tandem hybrid vehicle may be the one disclosed in the Chinese Patent Application No. 201310467918.2, which is hereby incorporated by reference.
  • a power system for a tandem hybrid vehicle is provided in the referenced patent application, which includes:
  • a fuel source (which may correspond to the fuel storage tank 10 of the present application);
  • Control system (may correspond to the operating mode controller 30 of the present application)
  • At least two auxiliary power units (which may correspond to the power generation unit 40 of the present application), each of which independently receives fuel from a fuel source under control of the control system, converts chemical energy in the fuel into electrical energy output to the public Current bus
  • a power battery (which may correspond to the power battery 50 of the present application) electrically connected to a common current bus to receive electrical energy from a common current bus for charging or discharging through a common current bus under control of the control system;
  • a traction motor (which may correspond to the traction motor 70 of the present application) electrically connected to a common current bus to receive electrical energy from a common current bus under control of the control system and convert it into a mechanical transmission of mechanical energy to the vehicle (may Corresponding to the transmission system 90) of the present application, thereby driving the vehicle to operate.
  • the power system is adapted to allow the use of a lower energy alternative fuel instead of conventional gasoline or diesel, and is adapted to allow the engine in the auxiliary power unit to operate in a service area where fuel consumption and emissions are both low, effectively reducing Emissions have improved fuel economy and compensated for the relatively low energy conversion efficiency of the series hybrid vehicle power system.
  • the power system can flexibly set an appropriate number of engines for combination use as needed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力车辆,包括动力电池(50),燃料储罐(10),发电单元(40),压力检测单元(20)和工作模式控制器(30),以及工作模式控制器(30)下的压力保护模式,其中,工作模式控制器(30)配置成在发电单元(40)处于停机状态的情况下,且当压力检测单元(20)检测的气体压力高于一压力阈值时,控制车辆进入压力保护模式;在压力保护模式中,发电单元(40)从停机状态启动进入工作状态,以消耗燃料储罐(10)中的燃料,从而降低燃料储罐(10)中的气体压力。由于采用了压力保护模式,因此能够根据燃料储罐(10)内燃料的气体压力大小来自动启动发电单元(40),使膨胀后的多余燃料对动力电池(50)进行充电。避免了现有技术将燃料储罐(10)内超过阈值的膨胀燃料排到大气中而造成安全性问题和浪费。

Description

一种混合动力车辆 技术领域
本发明涉及混合动力汽车领域,特别是涉及一种至少包括电力驱动的混合动力车辆。
背景技术
20世纪90年代以来,世界范围内的能源危机和环境污染问题日趋严重。石油在世界总能源消费中占比40%以上,按目前的探明储量和消耗速度估计,地球上的石油资源可能在未来几十年内消耗殆尽。
机动车辆是石油的主要消耗者和大气污染的主要制造者。机动车辆尾气中的CO2是地球温室效应的主要来源之一,而尾气中的其它成分也是重要的城市大气污染物。
多年来的实践证明,使用新型燃料和新型动力系统是解决车辆能源瓶颈与尾气污染的一个重要途径。在新型燃料方面,实践证明,使用较汽油、柴油更清洁的代用燃料是解决能源危机和排放污染问题的可行方案。在新型动力系统方面,尽管使用铅酸、镍氢或锂等动力蓄电池的纯电动车辆具有零排放、低噪音和高效率的优点,但由于电能存储技术的制约,导致纯电动车辆不但制造成本高,而且续航里程短和充电时间长,目前以及未来相当长的一段时间内尚不能真正满足人们的使用需求,没有足够的市场竞争力。因此目前已经有采用混合动力来做为传统车辆和纯电动车辆之间的过渡型车辆,兼有两者的一些优点,如超低排放、高效率和续航里程长等,只是成本较采用传统动力系统的车辆稍高。混合动力车辆的动力系统包括串联式、并联式和混联式等多种类型。
在采用新型燃料和电力相结合的混合动力车辆中,由于新型燃料一般采用压缩或冷却压缩的方式存储在相应的燃料储罐中。在外界环境温度升高时或者在长时间不使用车辆时,燃料储罐内部的燃料压力容易升高至其安全压力之上,例如,燃料储罐与外界的接口处易吸收外界热量而导致燃料储罐内部燃料压力升高。这相应地会带来安全性问题。此时,为避免燃料储罐出现问题,通常在燃料储罐上都设置有泄压阀,其在燃料储罐内燃料压力超过一限度时自动开启并释放部分燃料到周围大气中。这样的方式虽然从某种角度上保证了燃料储罐的安全性,但泄露到周围大气中的可燃性的气体燃料又会带来新的潜在安全性问题,而且这也浪费了能源。
发明内容
本发明的目的是要提高具有燃料储罐的混合动力车辆的安全性。本发明的另一目的是提高具有料储罐的混合动力车辆的燃料利用率。本发明的再一目的是以安全的方式控制或者说释放混合动力车辆的燃料储罐的燃料压力。
特别地,本发明提供了一种混合动力车辆,包括:
动力电池,其能够选择性地处于充电状态和放电状态,其中,所述动力电池在处于所述充电状态时储存电能并且在处于所述放电状态时提供用于驱动所述车辆的电能;
燃料储罐,用于在其内部储存燃料,并且,储存在所述燃料储罐内的所述燃料在所述燃料储罐内形成一气体压力;
发电单元,其具有工作状态和停机状态;其中,在所述发电单元处于工作状态时,其将所述燃料储罐中的所述燃料的化学能转化为电能输出;
压力检测单元,用于检测所述燃料储罐中的所述气体压力;和
工作模式控制器,用于控制所述车辆选择性地工作在多种工作模式之一;所述多种工作模式包括压力保护模式;
其中,所述工作模式控制器配置成在所述发电单元处于所述停机状态的情况下,且当所述压力检测单元检测的所述气体压力高于一压力阈值时,控制所述车辆进入所述压力保护模式;在所述压力保护模式中,所述发电单元从所述停机状态启动进入所述工作状态,以消耗所述燃料储罐中的所述燃料,从而降低所述燃料储罐中的所述气体压力。
进一步地,在所述压力保护模式中,所述动力电池处于所述充电状态,以接收来自所述发电单元的电能对其进行充电。
进一步地,所述多种工作模式还包括在所述车辆启动的情况下进行的纯电池供电模式;其中,在所述纯电池供电模式中,所述发电单元持续处于所述停机状态,所述动力电池持续处于所述放电状态,以消耗所述动力电池内储存的电能来驱动所述车辆。
进一步地,所述多种工作模式还包括在所述车辆启动的情况下进行的常规模式,在所述常规模式中,所述发电单元根据预定工作策略选择性地处于所述工作状态或停机状态,所述动力电池根据所述预定工作策略选择性地处于所述充电状态或所述放电状态。
进一步地,所述混合动力车辆还包括一模式输入接口,用于接收用户输入 的表示选定所述纯电池供电模式的模式选择指令;其中,所述工作模式控制器根据所述模式选择指令控制所述车辆工作在所述纯电池供电模式。
进一步地,所述工作模式控制器设置成:当所述动力电池的电量低于一电量阈值时,禁止所述车辆进入到所述纯电池供电模式或者使得所述车辆离开所述纯电池供电模式。
进一步地,在所述常规模式中,当所述动力电池处于所述充电状态时,对所述动力电池的充电量被限制成低于所述动力电池的最大可蓄电量。
进一步地,所述工作模式控制器配置成能够在所述车辆的启动状态或者熄火状态下使得所述车辆进入所述压力保护模式;或者,所述工作模式控制器配置成仅能够在所述车辆的熄火状态下使得所述车辆进入所述压力保护模式。
进一步地,所述混合动力车辆还包括:
电气开关,用于断开或闭合通向所述车辆的牵引电机的电能路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述电气开关;和/或
离合器,用于断开或闭合通向所述车辆的车轮的机械动力路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述离合器。
进一步地,本发明的混合动力车辆为串联式混合动力车辆。
本发明的混合动力车辆具有压力保护模式,能够在燃料储罐内燃料的气体压力超过一压力阈值时自动启动发电单元,将燃料储罐中膨胀后的多余燃料的化学能转化成电能。这就方便于在随后通过对所转化的电能进行利用或消耗。相比于现有技术将燃料储罐内的燃料排到大气中进行泄压的方式,本发明对燃料储罐内的多余燃料以电能的方式进行利用或消耗方式更为安全。特别是,在适当的情况下,可以将多余燃料的化学能转化成电能后给车辆的动力电池充电,这在提高安全性的同时还避免了燃料的浪费,提高了对燃料的利用率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的串联式混合动力车辆的动力系统的结构示意图。
具体实施方式
图1示出了根据本发明一个实施例的串联式混合动力车辆的动力系统。该车辆可以包括动力电池50、燃料储罐10、发电单元40、压力检测单元20和工作模式控制器30。
该动力电池50可以选择性地处于充电状态和放电状态,其在处于充电状态时可以储存电能,并且在处于放电状态时可以提供用于驱动车辆的电能。燃料储罐10可以在其内部储存燃料。特别是,当该燃料是常温下为气态的天然气、压缩天然气或二甲醚等,或者易挥发的甲醇或乙醇等时、储存在燃料储罐10内的该燃料会在燃料储罐10内可以形成一明显的气体压力,而且该气体压力会随着外界温度的升高而显著提高。压力检测单元20可以用于检测燃料储罐10中的气体压力。发电单元40可以具有工作状态和停机状态,其在工作状态时,可以将燃料储罐10中的燃料的化学能转化为电能输出。该发电单元40可以是由发动机和发电机构成的发电机组,发动机消耗燃料储罐10中的燃料,并将燃料的化学能转化成机械能输出,而发电机随后可以将发动机输出的机械能转化成电能输出。
除上文描述的各个组成部分之外,在图1所示的实施例中还示例性地示出了牵引电机70和车辆的传动系统。在图1所示的串联式混合动力车辆的动力系统在工作时,发电单元40和/或动力电池50向牵引电机70提供电能,以驱动该牵引电机70。该牵引电机70在工作时可以将电能转化成机械能传递给车辆的传动系统50,从而驱动车辆运行。
工作模式控制器30可以控制该车辆选择性地工作在多种工作模式之一。在一个实施例中,该多种工作模式可以包括常规模式、压力保护模式和纯电池供电模式。其中:
常规模式
常规模式可以是车辆在启动或者说运行状态下的主要工作模式,可以采用现有的混合动力车辆通常所具有的工作模式。在该常规模式中,发电单元40可以根据预定工作策略选择性地处于工作状态或停机状态,并且动力电池50可以根据该预定工作策略选择性地处于充电状态或放电状态。发电单元40和动力电池50的工作状态可以根据车辆实际情况的变化而受常规模式的自动调 整。例如,在动力电池50电量充足时则可由其独立为车辆的牵引电机70提供电能,以使得牵引电机产生机械驱动力而驱动车辆行进,此时发电单元40可以处于停机状态;或者,在动力电池50处于电能不足时,发电单元40会启动并为动力电池50充电;又或者,在车辆需要较大驱动力时,由发电单元40和动力电池50同时为牵引电机70提供电能。通常,按照常规模式运行的车辆,其发电单元40中的发动机以及动力电池50都会运行在最优的状态,这是混合动力车辆所具有的优势。
压力保护模式
在发电单元40处于停机状态的情况下且当压力检测单元20检测的气体压力高于一压力阈值时,该工作模式控制器30控制该车辆进入压力保护模式。当燃料储罐10内的气体压力高于该压力阈值时,表明燃料储罐10处于不安全的状态。在压力保护模式中,发电单元40从停机状态启动进入工作状态,以消耗燃料储罐10中的燃料,从而降低燃料储罐10中的气体压力,使其回复到至少低于该压力阈值。
本发明通过在车辆上增设压力保护模式,使燃料储罐10内的气体压力在超过压力阈值后不向大气排放,而是驱动车辆的发电单元40进行发电以减少或消耗燃料储罐10内膨胀后的燃料,使燃料储罐10内的气体压力回到安全范围内。发电单元40输出的电能可以通过不同的方式进行消耗,如用于驱动车辆的牵引电机70,或给动力电池50充电,或用于车辆上的车载空调等其它用电设备。在其它实施例中,甚至可以在车辆中增设专门的耗电设备,如电驱动的空转飞轮等,以便在车辆进入压力保护模式时消耗发电单元40所产生的电能。本发明通过这种方式避免了在燃料储罐10中的压力升高时将燃料直接排放到大气所带来的不安全性和能源浪费。
车辆可以在启动状态下进入该压力保护模式,或者可以在熄火状态下使得车辆进入压力保护模式。在车辆处于熄火状态时,特别是在车辆在较长时间闲置的情况下,燃料储罐10内的燃料在高温等条件下会发生气体压力超高的现象。即使在车辆处于启动状态时,如果长时间仅由动力电池50驱动而未通过发电单元40来消耗燃料储罐内的燃料时,燃料储罐10内的燃料在高温、震动等条件下同样会发生气体压力超高的现象。因此,本发明的压力保护模式针对上述两种情况的任一情况下发生气体压力超标时都能够自行启动。当然,可以理解,该车辆在启动状态下会由其自身的控制系统(常规模式)自动对电能利用方式进行优化控制,以间隔一定时间的方式使用燃料储罐10内的燃料,避 免燃料储罐10内出现气体压力过高的现象。所以,车辆在启动状态下燃料储罐10内燃料的气体压力超过该压力阈值的机率远远小于车辆熄火状态下的机率。因此,在另一个实施例中,该工作模式控制器30也可以设置成仅可在车辆熄火状态下启动该压力保护模式。在本发明中,车辆在启动或者熄火状态下进入压力保护模式的行为可以完全是由该工作模式控制器30根据压力检测单元20所检测的燃料储罐10内的气体压力自动运行,而无需驾驶员干预。
特别地,在车辆的启动状态下,压力保护模式可以比常规模式具有更高的执行优先级,以便在燃料储罐10内的燃料压力高于该压力阈值时及时使得车辆进入到压力保护模式。当压力检测单元20检测到燃料储罐10内的气体压力回复到安全范围时,车辆的工作模式控制器30可以使得车辆从压力保护模式返回到常规模式。
此外,为了使得车辆能够在熄火状态下进入压力保护模式,车辆的工作模式控制器30以及压力检测单元20最好可以在任何时候(特别是在车辆熄火状态下)都处于带电的工作状态,以应对随时可能发生的燃料储罐10的气体压力变化。
在压力保护模式中,尽管如前所述可以采用各种手段来消耗发电单元40所产生的电能,但是,为了节约能源,提高燃料的利用率,最好将对动力电池50的充电作为首选,可以最大限度的提高对电能的利用。
纯电池供电模式
如前所述,在压力保护模式中,优选是用发电单元40所产生的电能对动力电池50进行充电。但是可以理解,动力电池50此时并不一定处于可充电条件。例如,在车辆熄火后,动力电池50内的电能可能还处于满状态或较充足状态的情况。在这样的情况下,动力电池50可能无法容纳或不能充分容纳发电单元40的输出电能。为此,在本发明中还可以提供一种纯电池供电模式。
该纯电池供电模式是在车辆启动状态下以消耗动力电池50内的电能为目的的工作方式。在该纯电池供电模式中,发电单元40可以持续处于停机状态,而动力电池50持续处于放电状态,以消耗动力电池50内储存的电能来驱动车辆。在这里,“持续”的意思是在动力电池50连续输出电能时发电单元40不会向动力电池50补充电量,使其电量状态适合于能够充分容纳燃料储罐10在气体压力超过该压力阈值后并在压力保护模式中回复到安全范围时发电单元40所发出的电能。例如,通过纯电池供电模式,可以使动力电池50的电量最终能够降低到其总蓄电量的30%。
需要理解的是,在车辆的常规模式中,在一段时间内,发电单元40也可能持续处于停机状态,并且动力电池50持续处于放电状态。但是,这里的纯电池供电模式是以降低动力电池50内的电量为目的,不同于常规模式以动力电池50工作在最优状态为目的。
工作模式控制器30可以根据用户例如驾驶员提供的模式选择指令控制车辆进入纯电池供电模式。如图1所示,该车辆还可以包括一模式输入接口31,用户可以通过该模式输入接口31向工作模式控制器30输入该模式选择指令。纯电池供电模式可以比常规模式具有更高的执行优先级。这样,当工作模式控制器30接收到用户的表示选定纯电池供电模式的模式选择指令时,可以使得车辆从常规模式切换到纯电池供电模式。该模式输入接口31可以是针对纯电池供电模式而独立设置的一个仅强制控制当前车辆运行在纯电池供电模式的一个开关或按钮。通过设置该模式输入接口31,可以使得用户如驾驶员可以根据车辆是否要进入长期熄火状态,对还处于电量充足状态下的动力电池50进行强制放电。例如,当驾驶员预期会有较长时间闲置车辆时,则可以在行驶过程中在距离停车目的地还有一定距离时,主动通过此模式输入接口31强制车辆进入到纯电池供电模式工作,从而使得车辆熄火后的动力电池50内的蓄电量处于一个相对较低的状态,以确保在随后可能进入的压力保护模式下有足够空间来容纳发电单元40的输出电能。在其它实施例中,该模式输入接口31还可以用于接收用户输入的表示选定其它工作模式的模式选择指令。例如,在车辆处于纯电池供电模式时,如果驾驶员主动期望切换回到常规模式,则其也可以通过该模式输入接口31输入表示选定常规模式的模式选择指令。
在纯电池供电模式中,为避免动力电池50过度放电,该工作模式控制器30可以设置成当动力电池50的电量低于一电量阈值时,禁止车辆进入到纯电池供电模式或者使得车辆离开纯电池供电模式。本发明的目的之一是避免燃料浪费且可充分利用此部分能源所发出的电能,在动力电池处于这种低电量状态时已经符合本发明的要求,因此不需要再进入纯电池供电模式。这样,当车辆在纯电池供电模式下运行时,一旦动力电池50内的电量降到低于预设的电量阈值,即使驾驶员预定的停车目的地没有到达,工作模式控制器30也会自动结束纯电池供电模式以保护动力电池50。
尽管在上述实施例中车辆可以同时具有前述的三种工作模式,但是在其它实施例中,车辆上也可以省略纯电池供电模式。这样,在压力保护模式中,可以在动力电池50符合充电条件的情况下对其进行充电,而在不符合充电条件 或者充满时选择前文描述的其它方式来消耗发电单元40输出的电能;或者,也可以直接采用其它方式来消耗发电单元40输出的电能。另外,还需要理解,尽管在前文中列出了常规模式,但是很显然,在前述实施例中,本发明可以并不涉及对常规模式本身的改进。在其它实施例中,也可以针对本发明的目的对该常规模式进行一些改进。例如,在常规模式下,当动力电池50处于充电状态时,可以将对动力电池50的充电量限制成低于动力电池50的最大可蓄电量,例如限制成该最大可蓄电量的80%。通过这种随时留有充电余地的方式,可以为随时可能发生的由压力保护模式留出电量空间来容纳发电单元40的输出电能。
如图1所示,该车辆还可以包括用于断开或闭合通向车辆的牵引电机70的电能路径的电气开关60。工作模式控制器30可以配置成在车辆从熄火状态下进入压力保护模式时断开电气开关60。该电气开关60可以安装在由动力电池50和发电单元40向牵引电机70供电的线路上。这样,车辆在熄火状态下进入压力保护模式时,通过断开该电气开关60,可以使得发电单元40输出的电能仅能够对车辆的动力电池50充电或被其它耗电设备消耗,而不能将其电力输送到车辆的牵引电机70,以避免车辆的牵引电机70工作而浪费电能。同时也使压力保护模式仅作为消耗燃料储罐10内的燃料而驱动发电单元40的一个独立程序,以避免可能的利用压力保护模式而不通过车钥匙启动车辆的漏洞。在车辆启动时可以通过工作模式控制器30来检测当前电气开关90的状态,以保证电气开关60处于闭合状态而使得牵引电机70供电线路的正常连通。此外在车辆启动状态下,即使压力保护模式启动,其电气开关90也会在工作模式控制器30的控制下处于闭合状态。
如图1所示,该车辆还可以包括离合器80,其用于断开或闭合通常车辆的车轮的机械动力路径。该工作模式控制器30可以配置成在车辆从熄火状态下进入压力保护模式时,断开该离合器80。该离合器80可以是车辆变速器中原有的离合器,也可以是为此目的而增设的离合器。通过操控该离合器80,可以达到在车辆熄火状态下启动压力保护模式时,即使牵引电机70工作也无法驱动车辆的效果。
工作模式控制器30可以由混合动力车辆的动力控制系统来实现,或者作为该动力控制系统的一部分,或者独立于车辆原有的动力控制系统。在一个示例性工作过程中,在车辆熄火(或启动)状态下,压力检测单元20可以在检测到燃料储罐10内的燃料的气体压力超过预定的压力阈值时,向工作模式控 制器30发送信号,工作模式控制器30接到信号后会启动压力保护模式。或者是,工作模式控制器30持续读取压力检测单元10检测到的压力值并与存储在其内的预定的压力阈值进行比较,当所检测的压力值高于该压力阈值时启动压力保护模式。在启动压力保护模式时,工作模式控制器30向发电单元40发送启动信号,使其工作来消耗燃料储罐10内的燃料以降低其气体压力;同时,工作模式控制器30还向动力电池50(具体地,通常是动力电池50的电池管理系统)发送一充电信号,使得动力电池50进入充电状态,使得发电单元40工作后发出的电能可直接为动力电池50充电。此外,如车辆此时处于熄火状态下,则工作模式控制器30还可以同时或者提前向电气开关60和/或离合器80发出控制信号,以断开车辆的牵引电机70的供电路径和/或通向传动系统80的机械传动路径。
在另一个实施性工作过程中,在车辆启动状态下时,当车辆当前处于常规模式时,驾驶员通过模式输入接口31向工作模式控制器30发出表示选择纯电池供电模式的模式选择指令。工作模式控制器30首先通过动力电池50的电池管理系统获取其当前的荷电状态,并将动力电池50的当前电量与存储在工作模式控制器30内的一个预定的电量阈值进行比较。如果动力电池50的当前电量低于该电量阈值,则工作模式控制器30不改变发电单元40和动力电池50的当前工作状态,即,禁止车辆进入到纯电池供电模式。如果动力电池50的当前电量高于该电量阈值,则工作模式控制器30向发电单元40发送控制信号以强制其保持或进入停机状态,并向动力电池50发送控制信号以强制其保持或进入放电状态,使得车辆仅以动力电池50作为电能输出源为车辆的牵引电机70提供电能以驱动车辆前进。在动力电池50持续放电过程中,工作模式控制器30继续获取其当前的荷电状态,并在动力电池50的电量降低成低于该电量阈值时,控制车辆退出纯电池供电模式并以常规模式控制发电单元40和动力电池50的工作。
此外,在本发明中,燃料储罐10的压力阈值的设定方式可以采用以下两种方式之一:
(1)该压力阈值是单个压力值,一旦燃料储罐10内的气体压力超过此压力值,则触发压力保护模式。
(2)该压力阈值是一个压力范围,其包括一个压力上限值和一个压力下限值。
在压力阈值是一个压力范围的情况下,燃料储罐10中的压力“高于该压 力阈值”可以是指高于该压力范围的上限值,而燃料储罐10中的压力“回复到安全范围”可以是指低于该压力范围的下限值。这样,因燃料储罐10中的压力高于该上限值而启动压力保护模式后,压力保护模式会至少一直持续到燃料储罐10中的压力低于该下限值。这样,一次压力保护模式结束后,即使燃料储罐10中的压力继续从该下限值之下上升成高于该上限值而需再次启动压力保护模式,这也使得两次压力保护模式之间会有相应的时间间隔,从而避免了当压力阈值是单个压力值时,由于燃料储罐10中的压力在该压力值上下交错变化时而频繁地启动和终止压力保护模式。
如图1示出的车辆为一种串联式混合动力车辆。该串联式混合动力车辆的动力系统可以采用本申请人已经申请的中国专利申请No.201310467918.2所公开的方案,并在此将该申请全文进入作为参考。在该所参考的专利申请中提供了一种应用于串联式混合动力车辆的动力系统,其包括:
燃料源(可以对应于本申请的燃料储罐10);
控制系统(可以对应于本申请的工作模式控制器30)
至少两个辅助动力单元(可以对应于本申请的发电单元40),每个辅助动力单元在控制系统的控制下各自独立地从燃料源接收燃料,将燃料中的化学能转化为电能输出到公共电流总线;
动力电池(可以对应于本申请的动力电池50),其电连接到公共电流总线,以在控制系统的控制下从公共电流总线接收电能进行充电或通过公共电流总线进行放电;以及
牵引电机(可以对应于本申请的牵引电机70),其电连接到公共电流总线,以在控制系统的控制下从公共电流总线接收电能,并将其转换为机械能传递给车辆的传动系(可以对应于本申请的传动系统90),从而驱动所述车辆运行。
该动力系统适于允许使用能量密度较低的代用燃料而不使用传统的汽油或柴油,并且适于允许辅助动力单元中的发动机工作于处于油耗同排放都很低的工况区域,有效地减少了排放,提高了燃料经济性,弥补了串联式混合动力车辆动力系统能量转化效率相对较低的问题。而且,该动力系统能够根据需要灵活设置适当数目的发动机进行组合使用。
虽然前面是以串联式混合动力车辆作为示例说明,但本领域技术人员应该可以理解,对于其它形式的混合动力车辆,如并联或混联式,只要是其所使用的燃料有发生压力过高的可能,并且具有能够通过燃料的化学能进行发电的发电单元以及可选的具有充电和放电状态的动力电池,则都可以适用本发明的方 案。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种混合动力车辆,包括:
    动力电池,其能够选择性地处于充电状态和放电状态,其中,所述动力电池在处于所述充电状态时储存电能并且在处于所述放电状态时提供用于驱动所述车辆的电能;
    燃料储罐,用于在其内部储存燃料,并且,储存在所述燃料储罐内的所述燃料在所述燃料储罐内形成一气体压力;
    发电单元,其具有工作状态和停机状态;其中,在所述发电单元处于工作状态时,其将所述燃料储罐中的所述燃料的化学能转化为电能输出;
    压力检测单元,用于检测所述燃料储罐中的所述气体压力;和
    工作模式控制器,用于控制所述车辆选择性地工作在多种工作模式之一;所述多种工作模式包括压力保护模式;
    其中,所述工作模式控制器配置成在所述发电单元处于所述停机状态的情况下,且当所述压力检测单元检测的所述气体压力高于一压力阈值时,控制所述车辆进入所述压力保护模式;在所述压力保护模式中,所述发电单元从所述停机状态启动进入所述工作状态,以消耗所述燃料储罐中的所述燃料,从而降低所述燃料储罐中的所述气体压力。
  2. 根据权利要求1所述的混合动力车辆,其中,在所述压力保护模式中,所述动力电池处于所述充电状态,以接收来自所述发电单元的电能对其进行充电。
  3. 根据权利要求1-2任一项所述的混合动力车辆,其中,所述多种工作模式还包括在所述车辆启动的情况下进行的纯电池供电模式;其中,在所述纯电池供电模式中,所述发电单元持续处于所述停机状态,所述动力电池持续处于所述放电状态,以消耗所述动力电池内储存的电能来驱动所述车辆。
  4. 根据权利要求3所述的混合动力车辆,其中,所述多种工作模式还包括在所述车辆启动的情况下进行的常规模式,在所述常规模式中,所述发电单元根据预定工作策略选择性地处于所述工作状态或停机状态,所述动力电池根据所述预定工作策略选择性地处于所述充电状态或所述放电状态。
  5. 根据权利要求3-4中任一项所述的混合动力车辆,还包括一模式输入接口,用于接收用户输入的表示选定所述纯电池供电模式的模式选择指令;
    其中,所述工作模式控制器根据所述模式选择指令控制所述车辆工作在所 述纯电池供电模式。
  6. 根据权利要求3-5中任一项所述的混合动力车辆,其中,所述工作模式控制器设置成:当所述动力电池的电量低于一电量阈值时,禁止所述车辆进入到所述纯电池供电模式或者使得所述车辆离开所述纯电池供电模式。
  7. 根据权利要求1-6中任一项所述的混合动力车辆,其中,在所述常规模式中,当所述动力电池处于所述充电状态时,对所述动力电池的充电量被限制成低于所述动力电池的最大可蓄电量。
  8. 根据权利要求1-7中任一项所述的混合动力车辆,其中,所述工作模式控制器配置成能够在所述车辆的启动状态或者熄火状态下使得所述车辆进入所述压力保护模式;或者,
    所述工作模式控制器配置成仅能够在所述车辆的熄火状态下使得所述车辆进入所述压力保护模式。
  9. 根据权利要求8中任一项所述的混合动力车辆,还包括:
    电气开关,用于断开或闭合通向所述车辆的牵引电机的电能路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述电气开关;和/或
    离合器,用于断开或闭合通向所述车辆的车轮的机械动力路径;其中,所述工作模式控制器配置成在所述车辆从所述熄火状态下进入所述压力保护模式时,断开所述离合器。
  10. 根据权利要求1-9中任一项所述的混合动力车辆,其中,所述车辆为串联式混合动力车辆。
PCT/CN2015/073715 2014-05-20 2015-03-05 一种混合动力车辆 WO2015176571A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016568044A JP6259534B2 (ja) 2014-05-20 2015-03-05 ハイブリッド車
US15/312,114 US10124697B2 (en) 2014-05-20 2015-03-05 Hybrid vehicle with a fuel pressure protection mode
EP15795564.2A EP3147978B1 (en) 2014-05-20 2015-03-05 Hybrid power vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410213670.1A CN104002657B (zh) 2014-05-20 2014-05-20 一种混合动力车辆
CN201410213670.1 2014-05-20

Publications (1)

Publication Number Publication Date
WO2015176571A1 true WO2015176571A1 (zh) 2015-11-26

Family

ID=51363673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073715 WO2015176571A1 (zh) 2014-05-20 2015-03-05 一种混合动力车辆

Country Status (5)

Country Link
US (1) US10124697B2 (zh)
EP (1) EP3147978B1 (zh)
JP (1) JP6259534B2 (zh)
CN (1) CN104002657B (zh)
WO (1) WO2015176571A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104002657B (zh) * 2014-05-20 2017-02-15 浙江吉利控股集团有限公司 一种混合动力车辆
KR101836580B1 (ko) 2015-12-09 2018-03-09 현대자동차주식회사 하이브리드 차량의 연료 펌프 시스템
CN107128184B (zh) * 2016-02-26 2020-12-25 上海恒劲动力科技有限公司 燃料电池与储能电池混合动力车控制方法及车系统
WO2018053883A1 (zh) * 2016-09-24 2018-03-29 苏州征之魂专利技术服务有限公司 一种混合动力新能源汽车优化节能控制装置
WO2019180851A1 (ja) * 2018-03-20 2019-09-26 本田技研工業株式会社 作業機
CN112109594B (zh) * 2020-08-31 2021-12-28 上汽大众汽车有限公司 用于混合动力车的能量管理控制方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783650B2 (ja) * 2002-04-18 2006-06-07 日産自動車株式会社 ガス燃料供給装置
JP2007018851A (ja) * 2005-07-07 2007-01-25 Mazda Motor Corp 燃料電池自動車のボイルオフガス処理装置
WO2007013667A1 (ja) * 2005-07-27 2007-02-01 Toyota Jidosha Kabushiki Kaisha 燃料電池システムおよびガス漏れ検知装置
WO2009057616A1 (ja) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
JP4714244B2 (ja) * 2007-07-18 2011-06-29 本田技研工業株式会社 燃料電池を搭載した自動車
CN102598380A (zh) * 2009-07-09 2012-07-18 丰田自动车株式会社 燃料电池系统及其控制方法
CN104002657A (zh) * 2014-05-20 2014-08-27 浙江吉利控股集团有限公司 一种混合动力车辆

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4080697B2 (ja) * 2001-01-19 2008-04-23 本田技研工業株式会社 車両のエンジン自動停止・始動制御装置
DE10202172A1 (de) * 2002-01-22 2003-08-07 Bayerische Motoren Werke Ag Verfahren zum Entsorgen von boil-off-Gas aus einem kryotank sowie solchermaßen betriebenes Kraftfahrzeug
CN2661475Y (zh) * 2003-06-10 2004-12-08 河南中原绿能高科有限责任公司 柴油-液化天然气电控喷射双燃料汽车
US20050126837A1 (en) 2003-12-11 2005-06-16 Taxon Morse N. Pressurized fuel vehicle having fuel system with an air motor
WO2006121761A2 (en) * 2005-05-05 2006-11-16 Afs Trinity Power Corporation Plug-in hybrid vehicle with fast energy storage
US8124290B2 (en) * 2006-04-07 2012-02-28 Utc Power Corporation Operating fuel cell during down time on cryogenic hydrogen boil-off
JP2007327380A (ja) * 2006-06-07 2007-12-20 Mazda Motor Corp 高圧ガス燃料タンクを備えたハイブリッド車両の制御装置
DE102007031347A1 (de) 2007-07-05 2009-01-15 Bayerische Motoren Werke Aktiengesellschaft Betriebsverfahren für ein wahlweise von einer Brennkraftmaschine und/oder von einem weiteren Motor antreibbares Kraftfahrzeug
JP5185059B2 (ja) * 2008-10-17 2013-04-17 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR20110120667A (ko) * 2010-04-29 2011-11-04 주식회사 에너리드 증발가스 연소 발전 장치 및 방법
JP5760531B2 (ja) * 2011-03-11 2015-08-12 日産自動車株式会社 バッテリ温度制御装置
JP2012246880A (ja) 2011-05-30 2012-12-13 Nippon Soken Inc 燃料供給装置
JP2013184680A (ja) * 2012-03-12 2013-09-19 Aisin Seiki Co Ltd 電気自動車の充電装置および電気自動車の充電装置の制御方法
FR2991275B1 (fr) 2012-05-30 2015-07-17 Peugeot Citroen Automobiles Sa Dispositif de commande de passage en mode thermique de vehicule hybride
US9611981B2 (en) * 2012-08-01 2017-04-04 General Electric Corporation Methods and systems for a rail vehicle including a source of gaseous natural gas
US8903579B2 (en) * 2012-10-19 2014-12-02 Ford Global Technologies, Llc User override for electric-only operation of a hybrid vehicle
JP5974839B2 (ja) * 2012-11-06 2016-08-23 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9255664B2 (en) * 2012-12-24 2016-02-09 General Electric Company Cryogenic fuel system with auxiliary power provided by boil-off gas
CN103342098B (zh) * 2013-07-25 2016-08-17 祥天控股(集团)有限公司 气动车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783650B2 (ja) * 2002-04-18 2006-06-07 日産自動車株式会社 ガス燃料供給装置
JP2007018851A (ja) * 2005-07-07 2007-01-25 Mazda Motor Corp 燃料電池自動車のボイルオフガス処理装置
WO2007013667A1 (ja) * 2005-07-27 2007-02-01 Toyota Jidosha Kabushiki Kaisha 燃料電池システムおよびガス漏れ検知装置
JP4714244B2 (ja) * 2007-07-18 2011-06-29 本田技研工業株式会社 燃料電池を搭載した自動車
WO2009057616A1 (ja) * 2007-11-02 2009-05-07 Toyota Jidosha Kabushiki Kaisha 燃料電池システム
CN102598380A (zh) * 2009-07-09 2012-07-18 丰田自动车株式会社 燃料电池系统及其控制方法
CN104002657A (zh) * 2014-05-20 2014-08-27 浙江吉利控股集团有限公司 一种混合动力车辆

Also Published As

Publication number Publication date
US20170088011A1 (en) 2017-03-30
JP2017524584A (ja) 2017-08-31
JP6259534B2 (ja) 2018-01-10
CN104002657B (zh) 2017-02-15
EP3147978A1 (en) 2017-03-29
EP3147978A4 (en) 2017-05-10
EP3147978B1 (en) 2019-01-23
US10124697B2 (en) 2018-11-13
CN104002657A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
WO2015176571A1 (zh) 一种混合动力车辆
CN110040038B (zh) 一种氢-电混合燃料电池客车能量管理控制方法及系统
CN102555765B (zh) 一种燃料电池-锂离子电池混合动力系统
JP4020646B2 (ja) ハイブリッド電気自動車の制御方法
WO2009067887A1 (fr) Procédé de commande cc-cc pour véhicules électriques hybrides
WO2018166106A1 (zh) 一种增程式纯电动汽车的动力系统及控制方法
US20150149014A1 (en) Method of controlling a mild hybrid electric vehicle
US8855845B2 (en) Systems and methods for controlling operation of a vehicle
KR20120060265A (ko) 연료전지 하이브리드 시스템의 운전 제어 방법
KR101323916B1 (ko) 차량의 초기 기동 장치 및 방법
WO2013000177A1 (zh) 一种电动车
CN106515468A (zh) 一种储能电车控制系统及具有该系统的电车
CN104875628A (zh) 可避免氢气泄放损失的液氢燃料电池汽车动力系统
CN106910917A (zh) 管式sofc燃料电池控制系统
CN105790374A (zh) 一种车载储电箱
US20140125059A1 (en) Electric vehicle
CN103010044A (zh) 一种混合动力汽车的供电系统
JP2018156791A (ja) 燃料電池車両の運転制御方法及び運転制御システム
CN111497630A (zh) 轨道交通车辆混合供电系统及其控制方法、轨道交通车辆
CN111114342A (zh) 一种氢能物流车怠速控制方法
CN103247811A (zh) 氢燃料电池电动扫地车动力系统
CN113682159B (zh) 新能源车辆节能动力系统及其控制方法
KR102304658B1 (ko) 신재생에너지를 이용하여 배터리 뱅크 및 e-모빌리티에 충전이 가능한 복합 전기 충전 시스템
KR100746367B1 (ko) 연료전지와 2차전지를 이용한 하이브리드 동력 발생 장치와그 제어 방법
CN106340946A (zh) 一种移动式防汛太阳能应急逆变供电车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795564

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015795564

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795564

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016568044

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15312114

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE