WO2015176552A1 - 介质移相器 - Google Patents

介质移相器 Download PDF

Info

Publication number
WO2015176552A1
WO2015176552A1 PCT/CN2015/071659 CN2015071659W WO2015176552A1 WO 2015176552 A1 WO2015176552 A1 WO 2015176552A1 CN 2015071659 W CN2015071659 W CN 2015071659W WO 2015176552 A1 WO2015176552 A1 WO 2015176552A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
cavity
phase shifter
phase
guide rail
Prior art date
Application number
PCT/CN2015/071659
Other languages
English (en)
French (fr)
Inventor
刘培涛
苏国生
卜斌龙
薛峰章
孙善球
Original Assignee
京信通信技术(广州)有限公司
刘培涛
苏国生
卜斌龙
薛峰章
孙善球
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司, 刘培涛, 苏国生, 卜斌龙, 薛峰章, 孙善球 filed Critical 京信通信技术(广州)有限公司
Priority to EP15796042.8A priority Critical patent/EP3147993B1/en
Priority to US15/122,995 priority patent/US10062940B2/en
Priority to BR112016020466-2A priority patent/BR112016020466B1/pt
Priority to MX2016015311A priority patent/MX365736B/es
Publication of WO2015176552A1 publication Critical patent/WO2015176552A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/182Waveguide phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • the present invention relates to the field of communication devices, and in particular to a medium phase shifter.
  • the ETA base station antenna is one of the key devices covering the network
  • the phase shifter is the core component of the ETA base station antenna.
  • the performance of the phase shifter directly determines the performance of the ESC antenna. In turn, the quality of network coverage is affected, so the importance of phase shifters in the field of mobile base station antennas is self-evident.
  • phase shifters Two methods are mainly used to achieve the purpose of phase shifting. One is achieved by changing the electrical length of the signal passing path in the phase shifter; the other is to change the propagation rate of the signal in the phase shifter by moving the medium in the phase shifter, thereby allowing phase shifting
  • the signal output by the device forms a continuous linear phase difference for phase shifting purposes.
  • the dielectric component is in direct contact with the feed network. During long-term movement, the dielectric component and the feed network wear out each other, affecting circuit performance.
  • a medium phase shifter includes a cavity having a vertically long accommodating space and a phase shifting circuit built into the accommodating space, and a dielectric component slidably mounted in the accommodating space and disposed in parallel with the phase shifting circuit
  • the inner wall of the cavity is provided with a guide rail that keeps the moving medium element in non-contact with the phase shifting circuit.
  • the guide rail is disposed on an inner wall of the cavity opposite to the medium component, and the inner wall of the cavity is provided with a single strip of the guide rail, and a slot is disposed at a position corresponding to the guide rail of the medium component, and the rail is matched with the chute.
  • the guide rail is disposed on a pair of opposite inner walls of the cavity on both sides of the dielectric element, each of the inner walls is provided with a guide rail, and the dielectric element and the phase shifting circuit are separated from two sides of the guide rail.
  • the phase shifting circuit includes a phase shifting conductor and a medium support for securing the phase shifting conductor to the cavity.
  • the media support is a circuit board on which the phase shifting conductor is printed.
  • the phase shifting conductor is a metal plate.
  • the accommodating space of the cavity is disposed through the cavity.
  • a plurality of dielectric elements in the cavity may be provided.
  • each of the media elements is supported by a rail on an inner wall of the cavity opposite the media element.
  • each of the dielectric elements is supported by a rail on a pair of opposing inner walls of the cavity.
  • the medium phase shifter comprises two of the dielectric elements and two pairs of substantially parallel arranged rails, and a pair of guide slots are formed between the two pairs of guide rails for mounting the phase shifting circuit. Supporting a pair of rails on the opposite inner wall.
  • the medium phase shifter includes two of the dielectric elements, two rails respectively disposed on the inner wall directly above and below the phase shifting circuit, and the dielectric element is disposed at a position corresponding to the rail There are chutes, each of which is mounted by a sliding groove thereof with one of the guide rails.
  • the present invention has the following advantages:
  • the medium phase shifter of the invention is provided with a plurality of guide rails, which can avoid contact between the medium and the feed network, so that the feed network does not have additional force, and the reliability is good, and the feed network can be avoided when the phase shifter works. Or wear of the media.
  • the dielectric phase shifter of the invention has the characteristics of excellent circuit index, high phase shifting precision, high linearity and low passive intermodulation products.
  • FIG. 1 is a schematic structural diagram of a phase shifter according to Embodiment 1 of the present invention.
  • Figure 2 is a cross-sectional view taken along the line A-A of the phase shifter shown in Figure 1;
  • FIG. 3 is a cross-sectional view showing another embodiment of the phase shifter shown in Figure 1;
  • Figure 4 is a cross-sectional view showing still another embodiment of the phase shifter shown in Figure 1;
  • FIG. 5 is a schematic structural diagram of a phase shifter according to Embodiment 2 of the present invention.
  • Figure 6 is a cross-sectional view taken along line A-A of the phase shifter shown in Figure 5;
  • FIG. 7 is a cross-sectional view of a cavity of another phase shifter of Embodiment 2.
  • the dielectric phase shifter 1 of the present invention includes a cavity 11, a phase shifting circuit 12, a dielectric element 13, and a guide rail 14.
  • the cavity 11 is integrally formed by pultrusion or die casting of a metal material, and has five package walls 110 including four package walls 110 disposed in the longitudinal direction of the cavity 11, and the five packages.
  • the wall 110 defines an accommodation space 111.
  • One end of the cavity 11 is not provided with a package wall 110 to reserve an open end, and the accommodating space 111 is disposed through the cavity 11 to facilitate the installation of the phase shifting circuit 12, the dielectric component 13, and other components. It is convenient for the dielectric member 13 to be forced to move linearly along the longitudinal direction of the cavity 11.
  • the cavity 11 may also have no package walls at both ends in the longitudinal direction to reserve the open end.
  • the cavity 11 may also be composed of a groove body (not shown) having at least one end without a package wall to reserve an open end, and a cover plate (not shown) for covering the groove body. .
  • the phase shifting circuit 12 includes a phase shifting conductor and a medium support 120 for fixing the phase shifting conductor 121 to the cavity 11.
  • the medium support member 120 may be a circuit board 120, and the phase shift conductor 121 is printed on the circuit board 120.
  • the circuit board 120 may be a single-layer PCB board, that is, the phase-shifting conductor 121 is printed on one side of the PCB board 120; it may also be a double-layer board, that is, the phase-shifting conductor 121 is printed on the PCB board 120. On both sides (see Fig. 4), the phase shifting conductors 121 on both sides of the double layer PCB board 120 may be connected by a plurality of via holes (not shown).
  • the circuit board 120 is provided with a metal soldering member 16 on its side close to the package wall 110. The metal soldering member 16 is soldered to the package wall 110 to fix the circuit board 120 (ie, the phase shifting circuit 12). In the cavity 11.
  • phase shifter 1 when the phase-shifting conductors 121 are completely non-interfering on both sides of the PCB board 120, the phase shifter 1 is equivalent to being partitioned by the PCB board 120, and the accommodating space 11, the dielectric element 13 and the shifting The phase circuits 12 are each divided into two relatively independent portions, forming two phase shifter cells that are each capable of independently phase shifting the signal flowing therethrough.
  • the phase shifting conductor may also be a metal conductor such as a metal strip or a metal plate.
  • the metal conductors are combined into the phase-shifting conductor according to the principle of the phase-shifting circuit, and are fixed in the accommodating space of the cavity by the medium support member, see Embodiment 2.
  • the cavity 11 of the phase shifter 1 of the present invention is provided with a dielectric element 13 which is forced to move linearly along the longitudinal direction of the cavity 11.
  • the equivalent dielectric constant within the cavity 11 can be varied, thereby changing the rate of propagation of the signal in the phase shifter 1, thereby allowing the signal flowing through the phase shifter 1 to form a continuous linearity.
  • the phase difference is the purpose of phase shifting.
  • the dielectric member 13 of the present invention is preferably elongated, the material selected may be one or more, and the dielectric constant of the dielectric member 13 >1.0.
  • the material of the dielectric member 13 preferably has a low loss tangent characteristic in addition to a high dielectric constant. Furthermore, in order for the phase shifter 1 to have a higher equivalent dielectric constant, the accommodating space should be filled as much as possible by the dielectric element 13.
  • the dielectric element 13 is in direct contact with the phase shifting circuit 12, for example, when the dielectric element 13 is placed directly on the phase shifting circuit 12, in addition to stressing the phase shifting circuit 12, the dielectric element is also manipulated. 13 The phase shifting circuit 12 and/or the dielectric element 13 are subject to wear during the movement.
  • the dielectric phase shifter 1 of the present invention is provided with at least one gap in the cavity 11 for forming a gap between the dielectric element 13 and the phase shifting circuit 12.
  • the guide rail 14 prevents direct contact of the dielectric member 13 and the phase shifting circuit 12.
  • the guide rail 14 has an elongated shape and is disposed on the inner wall of the package wall 110 along the longitudinal direction of the cavity 11 and extends along the longitudinal direction of the cavity 11.
  • the guide rail 14 may be integrally formed with the package wall 110 of the cavity 11 or may be formed on the inner wall of the package wall 110 of the cavity 11 after the cavity 11 is formed.
  • the strip rail 14 is disposed on the inner wall of the package wall 110 opposite to the dielectric element 13.
  • the package wall 110 refers to the package wall 110 to which the wider end face of the dielectric element 13 faces, that is, the package wall 110 directly above or below the dielectric element 13.
  • the media member 13 is provided with a sliding slot 139 at a position corresponding to the guide rail 14, and the dielectric member 13 is mounted with the guide rail 14 in such a manner that the sliding slot 139 is embedded in the guide rail 14 for supply.
  • the dielectric element 13 is linearly moved along the guide rail 14 and prevents the dielectric element 13 from touching the phase shifting circuit 12 during movement, thereby enhancing the reliability of the phase shifter 1.
  • the cross-sectional shape of the guide rail 14 may be circular, triangular, rectangular, trapezoidal or other polygonal shape, which can be set by a person skilled in the art as needed, the same below.
  • the two guide rails 14 when the guide rails 14 are provided with two, the two guide rails 14 may be a pair of guide rails having the same shape, and the pair of guide rails 14 are respectively disposed on the package wall 110 of the cavity 11 on both sides of the dielectric element 13. On the inner wall, and two of the pair of guide rails 14 are provided at substantially equal heights of the two package walls 110. It is said that the two guide rails 14 are provided at substantially equal heights of the two package walls 110 because the cavity 11 may not be a rectangular parallelepiped in the strict sense, or the two guide rails 14 are in the cavity 11 due to machining errors. The heights on the package walls 110 are not strictly equal.
  • the pair of guide rails 14 cannot be placed in a strictly equal height, the function of the guide rail 14 of the present invention can be achieved.
  • the package wall 110 on both sides of the dielectric element 13 herein means that the pair of package walls are substantially parallel to the thickness direction of the dielectric member 13, and the aforementioned "package wall opposite to the dielectric member 13". "For the relative concept.
  • the phase shifting circuit 12 is preferably mounted between the pair of guide rails 14. In this way, the dielectric element 13 (the upper dielectric element 130 and the lower dielectric element 131) can be disposed above and below the phase shifting circuit 12, so that the phase shifter 1 of the present invention obtains the equivalent dielectric as much as possible. constant.
  • each of the guide rails 14 should be greater than the thickness of the phase shifting circuit 12 to avoid the dielectric elements 13 supported on the rails 14 and The phase shifting circuits 12 are in contact.
  • the two guide rails 14 can also be respectively disposed on the inner wall of the package wall 110 directly above the phase shifting circuit 12 and directly below the phase shifting circuit 12. At this time, the guide rail 14 can be disposed with reference to the arrangement of the above-mentioned one rail, that is, the medium element 13 and the guide rail 14 are fitted to the sliding groove 139 of the medium element 13 through the guide rail 14.
  • the guide rails 14 When the guide rails 14 are provided in the cavity 11 and the two guide rails 14 are respectively disposed directly above and below the phase shifting circuit 12, they may be set to be different. As for how to set the shape of the two guide rails 14 and the two guide rails 14 in the cavity 11, reference may be made to the arrangement when only one guide rail 14 is provided in the cavity, and details are not described herein.
  • more guide rails 14 may be disposed in the cavity 11, for example, the guide rails 14 are provided with two pairs in the cavity 11.
  • the two pairs of guide rails 14 are disposed substantially in parallel on a pair of opposite side wall package walls 110 on both sides of the dielectric member 13, and a pair of two pairs of guide rails 14 are formed between the pair of guide rails 14 for extending in the longitudinal direction of the cavity 11.
  • a card slot 111 of the phase shifting circuit 12 is provided.
  • the phase shifting circuit 12 is carried on a substrate such as a PCB board, and the card slot 111 is used to sandwich the substrate of the phase shifting circuit 12 (ie, the medium support member 120 described above). In this manner, a pair of guide rails (such as the upper rail 141 and the lower rail 142) are formed above and below the phase shifting circuit 12.
  • the dielectric element 13 comprises an upper dielectric element 130 disposed on the upper rail 141 and a lower dielectric element 131 disposed below the lower rail 142. Due to the arrangement of the two pairs of guide rails 14, the movable space of the dielectric member 13 is restricted, thereby avoiding the phase shifting circuit 12 being touched during the movement of the dielectric member 13, achieving improved intermodulation and improved reliability. purpose.
  • the dielectric element 13 in order to synchronize the upper dielectric element 130 and the lower dielectric element 131, the dielectric element 13 further includes a dielectric connecting element 132.
  • the phase shifter 1 of the present invention may be further provided with the dielectric element 13 and disposed at the open end of the cavity 11. The external force actuates the element 15.
  • phase shifting circuit the dielectric element and the related structure of the guide rail in this embodiment to other embodiments to be described later. Therefore, if the individual structures in this embodiment are not specifically described below, it cannot be said that the phase shifters in other embodiments of the present invention cannot have the structure, and should be provided by those skilled in the art as needed to enable the present invention. The purpose is subject to.
  • the dielectric phase shifter is a combined phase shifter 2, and is composed of a plurality of, for example, two phase shifter units 201, 202 sharing a cavity 21.
  • Two accommodating spaces are arranged in the cavity 21, which are arranged side by side, and the accommodating space is used for mounting the phase shifting circuit 22, the dielectric element 23 and other components, and the longitudinal direction of the dielectric element 23 along the cavity 21 Do a linear motion.
  • the synthesized phase shifting device 2 operates in the same frequency band and is suitable for a single-frequency dual-polarized antenna; different phase-shifting circuits are installed in the two accommodating spaces.
  • the synthesized phase shifter 2 can operate in different frequency bands and is suitable for multi-frequency antennas.
  • the cavity of each of the phase shifter units 201 or 202 is formed by a plurality of package walls 210 and an accommodating space defined by the plurality of package walls 210.
  • a phase shifting circuit 22 is disposed in the space, and a dielectric element 23 is disposed between the phase shifting circuit 22 and the package wall 210.
  • the phase shifting circuit 22 includes a phase shifting conductor 220 composed of a metal conductor 220 according to the principle of a phase shifting circuit, and a medium support member 221 for fixing the metal conductor 220 in the cavity 21.
  • the metal conductor 220 is bent into a substantially U-shaped shape, and includes two straight arms 2201 and a base portion 2202 connecting the two straight arms. The ends of the two straight arms 2201 away from the base portion 2202 are used for connection.
  • Transmission cable (not labeled), as shown in Figure 5.
  • a guide rail for maintaining the phase shifting circuit 22 and the dielectric element 23 non-contact is provided between the phase shifting circuit 22 and the dielectric element 23. twenty four.
  • a pair of guide rails 24 are respectively disposed in the accommodating spaces of each of the phase shifter units 201 or 202, and the guide rails 24 are disposed on the inner wall of the package wall 210 at a substantially equal height.
  • the height of the guide rail 24 is greater than the thickness of the phase shifting circuit 22, the phase shifting circuit 22 is disposed between the pair of rails, and the dielectric element 23 is disposed directly above and below the phase shifting circuit 22, such as an upper layer. Dielectric element 230 and lower dielectric element 231.
  • the phase shifter 2 further comprises an external force actuating element 25 connected to the dielectric element 23.
  • the dielectric element 23 is also provided with a medium connection element 232.
  • FIG. 7 is a cross-sectional view of a cavity of another phase shifter of Embodiment 2.
  • the medium phase shifter 2 is composed of four phase shifter units 201, 202, 203, 204 by a combination of up and down, left and right side by side relationship.
  • the guide rail 24 is provided with a pair in each of the phase shifter units (such as 204), and the pair of guide rails 24 are disposed at substantially the same height of the inner walls of the pair of opposite package walls 210.
  • each phase shifting unit for example, the number, shape, structure and location of the dielectric element and the guide rail can be referred to the first embodiment. I will not go into details here.
  • the present invention provides a phase adjustment of the signal in the phase shifter by arranging a plurality of guide rails in the cavity of the phase shifter, and the medium element moves along the guide rails relative to the cavity and the phase shifting circuit, thereby avoiding
  • the direct contact of the dielectric element with the phase shifting circuit allows the electrical and physical characteristics of the phase shifter to be greatly optimized.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)
  • Slide Switches (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种介质移相器,包括具有纵长状容置空间的腔体和内置入该容置空间的移相电路以及可滑动地安装于该容置空间且与该移相电路平行设置的介质元件,所述腔体的内壁上,设有使所述移动介质元件与移相电路保持非接触的导轨。通过在移相电路与介质元件之间设有若干导轨,从而避免介质与馈电网络直接接触,使馈电网络不会额外受力,可靠性好,同时可以避免移相器工作时馈电网络和/或介质的磨损。

Description

介质移相器 技术领域
本发明涉及通信器件领域,特别涉及一种介质移相器。
背景技术
在移动通信网络覆盖中,电调基站天线是覆盖网络的关键设备之一,而移相器又是电调基站天线的最核心部件,移相器性能的优劣直接决定了电调天线性能,进而影响到网络覆盖质量,故移相器在移动基站天线领域的重要性是不言而喻的。
现有的移相器中,主要采用两种手段来实现移相的目的。其一是通过改变移相器内信号通过路径的电长度来实现;另一种是通过移动移相器内的介质,改变信号在移相器中的传播速率,由此可使流经移相器输出的信号形成连续的线性相位差,从而实现移相的目的。
然而,现有的通过加载介质来实现移相目的的移相器中,存在如下问题:
1、介质元件与馈电网络直接接触,在长期的移动过程中,介质元件与馈电网络相互磨损,影响电路性能。
2、介质元件与馈电网络接触时,特别是介质元件直接置于馈电网络上时,会使馈电网络受力,不仅使移相器的结构可靠性变差,还会引入无源互调产物。
技术问题
本发明的目的在于提供一种介质移相器,以克服现有技术的不足,从电气性能、物理特征对现有技术进行优化。
技术解决方案
本发明的目的在于提供一种介质移相器,以克服现有技术的不足,从电气性能、物理特征对现有技术进行优化。
为实现该目的,本发明采用如下技术方案:
一种介质移相器,包括具有纵长状容置空间的腔体和内置入该容置空间的移相电路以及可滑动地安装于该容置空间且与该移相电路平行设置的介质元件,所述腔体的内壁上,设有使所述移动介质元件与移相电路保持非接触的导轨。
所述导轨设置在腔体与介质元件相对的内壁上,腔体的该内壁设置单条的所述导轨,介质元件与导轨相应的位置处设有滑槽,以导轨与滑槽相配合安装。
所述导轨设置在腔体位于介质元件两侧的一对相对内壁上,每个所述的内壁各设一条导轨,介质元件与移相电路分居于所述导轨的两侧。
所述移相电路包括移相导体和用于使移相导体与所述腔体相固定的介质支撑件。
所述介质支撑件为电路板,所述移相导体印制在该电路板上。
所述移相导体为金属板。
所述腔体的容置空间贯通该腔体设置。
进一步地,所述腔体中的介质元件可以设有多个。
当所述介质移相器包括两个所述的介质元件时,每个介质元件由腔体与所述介质元件相对的一个内壁上的导轨支撑。
当所述介质移相器包括两个所述的介质元件时,每个所述的介质元件由腔体的一对相对内壁上的一个导轨支撑。
更进一步地,所述介质移相器包括两个所述的介质元件和两对大致平行设置的导轨,两对导轨之间形成供所述移相电路安装的卡槽,每个介质元件由一对相对内壁上的一对导轨支撑。
或者,所述介质移相器包括两个所述的介质元件、两个分别设于所述移相电路正上方和正下方的内壁上的导轨,所述介质元件与所述导轨对应的位置处设有滑槽,每个所述介质元件通过其滑槽分别与一个所述导轨相配合安装。
有益效果
与现有技术相比,本发明具备如下优点:
1、本发明的介质移相器设有若干导轨,可以避免介质与馈电网络接触,使馈电网络不会额外受力,可靠性好,同时可以避免移相器工作时馈电网络和/或介质的磨损。
2、本发明的介质移相器具有电路指标优秀、移相精度高、线性度高和无源互调产物低的特点。
附图说明
图1为本发明实施例一的移相器的结构示意图;
图2为图1所示的移相器的A-A向剖视图;
图3为图1所示的移相器的另一种实施方式的剖视图;
图4为图1所述的移相器的又另一种实施方式的剖视图;
图5为本发明实施例二的移相器的结构示意图;
图6为图5所示的移相器的A-A向剖视图;
图7为实施例二的另一种移相器的腔体的横截面图。
本发明的最佳实施方式
本发明的实施方式
下面结合附图和示例性实施例对本发明作进一步地描述,其中附图中相同的标号全部指的是相同的部件。此外,如果已知技术的详细描述对于示出本发明的特征是不必要的,则将其省略。
实施例一
如图1至图3所示,本发明的介质移相器1,包括腔体11、移相电路12、介质元件13及导轨14。
参见图1,所述腔体11由金属材料拉挤或压铸一体成型,具有包括环绕腔体11纵长方向设置的四个封装壁110在内的五个封装壁110和由所述五个封装壁110限定的容置空间111。所述腔体11的一端不设封装壁110以预留开口端,并且所述容置空间111贯通该腔体11设置,以方便移相电路12、介质元件13、及其他组件的安装,同时便于介质元件13受力沿腔体11纵长方向做直线运动。当然,所述腔体11也可以沿纵长方向两端不设封装壁以预留开口端。在其他实施方式中,所述腔体11也可以由一个至少一端不设封装壁以预留开口端的槽体(未图示)和用于盖合该槽体的盖板(未图示)组成。
所述移相电路12包括移相导体和用于使移相导体121与所述腔体11相固定的介质支撑件120。
其中,所述介质支撑件120可以为电路板120,所述移相导体121印制在所述电路板120上。所述电路板120可以是单层PCB板,即所述移相导体121印制在PCB板120的一面;其也可以是双层板,即所述移相导体121印制在PCB板120的两面(参见图4),该双层PCB板120两面的移相导体121可以通过若干过孔(未图示)相连接。所述电路板120在其靠近封装壁110的一面设有金属焊接件16,所述金属焊接件16被焊接在所述封装壁110上,从而将电路板120(也即移相电路12)固定于所述腔体11内。
理论上,当PCB板120两面设有完全不相干扰的移相导体121时,该移相器1相当于,以所述PCB板120为分界,所述容置空间11、介质元件13和移相电路12均被分成相对独立的两部分,形成两个能各自独立对流经其中的信号移相的移相器单体。
在其他实施方式中,所述移相导体也可以是金属导体,例如金属条或金属板。所述金属导体根据移相电路的原理组合成所述移相导体,并由介质支撑件固定于所述腔体的容置空间中,参见实施例二。
众所周知,任何传输介质对在其中传导的波动都会引入相移。本发明的移相器1的腔体11内设有可受力沿腔体11纵长方向做直线运动的介质元件13。通过移动该介质元件13,可以改变腔体11内的等效介电常数,从而,改变信号在移相器1中的传播速率,进而,可使流经移相器1的信号形成连续的线性相位差,实现移相的目的。
本发明的介质元件13优选为长条状,其所选用的材料可以是一种或多种,并且该介质元件13的介电常数 >1.0。所述介质元件13的材料,除了要求有高介电常数,优选还具有低损耗正切角特性。此外,为了使该移相器1具有较高的等效介电常数,所述容置空间内应尽可能多地由所述介质元件13填充。
如果所述介质元件13与所述移相电路12直接接触,例如所述介质元件13直接置于所述移相电路12上时,除了会使移相电路12受力,还会在操纵介质元件13移动过程中对移相电路12和/或介质元件13造成磨损。
参见图2和图3,为了避免如上问题的出现,本发明的介质移相器1在腔体11内设有至少一个用于在所述介质元件13与所述移相电路12之间形成间隙的导轨14,以避免所述介质元件13和所述移相电路12的直接接触。
所述导轨14呈长条状,设于沿所述腔体11纵长方向的封装壁110内壁上,并沿腔体11的纵长方向延伸。所述导轨14既可以与所述腔体11的封装壁110一体成型,也可在所述腔体11成型后,加工生成于所述腔体11的封装壁110内壁上。
所述介质元件13设有单条时,该条导轨14设于与介质元件13相对的封装壁110内壁上。此处所称与介质元件13相对的封装壁110,是指介质元件13较宽端面所对的封装壁110,也即介质元件13正上方或正下方的封装壁110。所述介质元件13在与所述导轨14相应的位置处设有滑槽139,所述介质元件13以其滑槽139中嵌入所述导轨14的方式与所述导轨14相安装,以供所述介质元件13沿该导轨14做直线运动,并避免所述介质元件13在移动的过程中触碰到所述移相电路12,从而增强该移相器1的可靠性。所述导轨14的截面形状可以为圆形、三角形、矩形、梯形或其他多边形,可由本领域技术人员根据需要设置,下同。
参见图2,所述导轨14设有两个时,所述两个导轨14可以是形状完全相同的一对导轨,该对导轨14分别设于腔体11位于介质元件13两侧的封装壁110的内壁上,并且该对导轨14中的两个导轨被设于两个封装壁110的大致等同的高度处。之所以说两个导轨14被设于两个封装壁110的大致等同的高度处,是由于所述腔体11可能不是严格意义上的长方体,或者由于加工误差导致两个导轨14在腔体11的封装壁110上的高度不能严格相等。然而,应当注意的是,尽管该对导轨14不能做到严格等高设置,还是可以实现本发明的导轨14具有的功能。另外,应当注意的是,此处所称介质元件13两侧的封装壁110,是指该对封装壁与所述介质元件13的厚度方向大体平行,与前述的“与介质元件13相对的封装壁”为相对概念。
为了使容置空间内尽量多地填充介质元件13,所述移相电路12优选安装于该对导轨14之间。如此,则可以在所述移相电路12的上方和下方均设置介质元件13(如上层介质元件130和下层介质元件131),以使本发明的移相器1获得尽量大的等效介电常数。
为了适于所述移相电路12的安装,该对导轨14的每个导轨的厚度应大于所述移相电路12的厚度,以避免被支撑于所述导轨14上的所述介质元件13与所述移相电路12相接触。
所述两个导轨14还可以分别设在移相电路12正上方和移相电路12正下方的封装壁110内壁上。此时,所述导轨14可以参照上述一个导轨的设置方式设置,即,使介质元件13与导轨14通过导轨14嵌于介质元件13的滑槽139相安装。
当所述导轨14在腔体11内设有两个,并且所述两个导轨14分别设于移相电路12正上方和正下方时,它们也可以设为不同的两个。至于在所述腔体11内如何设置所述两个导轨14及所述两个导轨14的形状,具体可参照腔体内只设一个导轨14时的设置,恕不赘述。
参见图3,所述腔体11内可以设置更多导轨14,例如所述导轨14在所述腔体11内设有两对。所述两对导轨14在介质元件13两侧的一对相对的侧壁封装壁110上大致平行设置,并且两对导轨14之间形成一对沿腔体11纵长方向延伸的、用于装设所述移相电路12的卡槽111。所述移相电路12被承载于PCB板之类的基板,所述卡槽111用于夹设移相电路12的基板(即上述介质支撑件120)。如此,则在移相电路12上方和下方各形成一对导轨(如上导轨141和下导轨142)。
与此相应地,所述介质元件13包括设于上导轨141上的上层介质元件130和设于下导轨142下方的下层介质元件131。由于所述两对导轨14的设置,所述介质元件13的活动空间受到了限制,从而避免在介质元件13移动的过程中碰触到所述移相电路12,达到改善交调和提高可靠性的目的。
请结合图1,为了使上层介质元件130和下层介质元件131同步移动,所述介质元件13还包括介质连接元件132。此外,为了使所述介质元件13能受电机(未图示)等外部设备驱动,本发明的移相器1还可以设有与所述介质元件13连接并设于所述腔体11开口端的外力致动元件15。
本领域的技术人员可以推导并将本实施例中的移相电路、介质元件及导轨的相关结构的设置手段应用于后文的其他实施例中。因此,如果下文对本实施例中的个别结构不做具体描述,也并不能说本发明的其他实施方式中的移相器不能具有该结构,应该由本领域技术人员根据需要设置,以能够实现本发明的目的为准。
实施例二
参见图5至图7,本实施例中,所述介质移相器为合成的移相器2,由多个例如两个移相器单体201,202共用一个腔体21组成。
所述腔体21内形成上下并排的两个容置空间,所述容置空间用于安装移相电路22、介质元件23和其他组件,及供所述介质元件23沿腔体21纵长方向做直线运动。两个容置空间中安装相同的移相电路22时,该合成的移相器2工作于同一个频段,适用于单频双极化天线;两个容置空间中装设不同的移相电路22时,该合成的移相器2可工作于不同频段,适用于多频天线。
类似于实施例一,本实施例中,每个所述移相器单体201或202的腔体由多个封装壁210和所述多个封装壁210限定的容置空间构成,所述容置空间内设有移相电路22,所述移相电路22与所述封装壁210之间设有介质元件23。
所述移相电路22包括金属导体220根据移相电路原理组成的移相导体220,和用于将所述金属导体220固定于所述腔体21内的介质支撑件221。所述金属导体220折弯出大致呈U型的形状,包括两个直臂2201和连接两个所述的直臂的基部2202,所述两个直臂2201远离基部2202的端部用于连接传输线缆(未标号),如图5所示。
参见图6,为了防止移相电路22和所述介质元件23直接接触,所述移相电路22与所述介质元件23之间设有用于使移相电路22与介质元件23保持非接触的导轨24。
每个移相器单体201或202的容置空间内均相应设有一对导轨24,所述导轨24以一个大致相等的高度设在所述封装壁210内壁上。所述导轨24的高度大于所述移相电路22的厚度,所述移相电路22设于该对导轨之间,并且所述移相电路22正上方和正下方均设有介质元件23,例如上层介质元件230和下层介质元件231。
为了便于操纵所述介质元件23沿腔体纵长方向做直线运动,所述移相器2还包括与所述介质元件23连接的外力致动元件25。另外,为了保持上层介质元件230和下层介质元件231同步移动,所述介质元件23还设有介质连接元件232。
参见图7,图7为实施例二的另一种移相器的腔体的横截面图。所述介质移相器2由四个移相器单体201、202、203、204通过上下、左右的并排关系组合而成。
所述导轨24在每个移相器单体(如204)内均设有一对,并且该对导轨24设于一对相对的封装壁210内壁大致相同的高度的位置上。
此外,所述的介质元件23和所述的导轨24在每个移相单体中的设置方式,例如所述介质元件和所述导轨的数量、形状、结构和所在位置,可以参照实施例一,此处恕不赘述。
综上所述,本发明通过在移相器的腔体内设置若干导轨,介质元件沿所述导轨相对于腔体和移相电路移动,从而实现对移相器内的信号的调相,由于避免了介质元件与移相电路的直接接触,从而使移相器的电气特性和物理特性均得以大大优化。
虽然上面已经示出了本发明的一些示例性实施例,但是本领域的技术人员将理解,在不脱离本发明的原理或精神的情况下,可以对这些示例性实施例做出改变,本发明的范围由权利要求及其等同物限定。
工业实用性
序列表自由内容

Claims (12)

  1. 一种介质移相器,包括具有纵长状容置空间的腔体和内置入该容置空间的移相电路以及可滑动地安装于该容置空间且与该移相电路平行设置的介质元件,其特征在于,所述腔体的内壁上,设有使所述移动介质元件与移相电路保持非接触的导轨。
  2. 根据权利要求1所述的介质移相器,其特征在于,所述导轨设置在腔体与介质元件相对的内壁上,腔体的该内壁设置单条的所述导轨,介质元件与导轨相应的位置处设有滑槽,以导轨与滑槽相配合安装。
  3. 根据权利要求1所述的介质移相器,其特征在于,所述导轨设置在腔体位于介质元件两侧的一对相对内壁上,每个所述的内壁各设一条导轨,介质元件与移相电路分居于所述导轨的两侧。
  4. 根据权利要求1至3中任意一项所述的介质移相器,其特征在于,所述移相电路包括移相导体和用于使移相导体与所述腔体相固定的介质支撑件。
  5. 根据权利要求4所述的介质移相器,其特征在于,所述介质支撑件为电路板,所述移相导体印制在该电路板上。
  6. 根据权利要求4所述的介质移相器,其特征在于,所述移相导体为金属板。
  7. 根据权利要求1至3中任意一项所述的介质移相器,其特征在于,所述腔体的容置空间贯通该腔体设置。
  8. 根据权利要求1至3中任意一项所述的介质移相器,其特征在于,所述腔体与导轨一体成型。
  9. 根据权利要求1或2所述的介质移相器,其特征在于,包括两个所述的介质元件,每个介质元件由腔体与所述介质元件相对的一个内壁上的导轨支撑。
  10. 根据权利要求1或3所述的介质移相器,其特征在于,包括两个所述的介质元件,每个所述的介质元件由腔体位于介质元件两侧的一对内壁上的一个导轨支撑。
  11. 根据权利要求1所述的介质移相器,其特征在于,包括两个所述的介质元件及两个分别设于所述移相电路正上方和正下方的内壁上的导轨,所述介质元件与所述导轨对应的位置处设有滑槽,每个所述的介质元件通过其滑槽分别与一个所述导轨相配合安装。
  12. 根据权利要求1或3所述的介质移相器,其特征在于,包括两个所述的介质元件和两对大致平行设置的导轨,两对导轨之间形成供移相电路安装的卡槽,每个介质元件由腔体位于介质元件两侧的一对内壁上的一对导轨支撑。
PCT/CN2015/071659 2014-05-23 2015-01-27 介质移相器 WO2015176552A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15796042.8A EP3147993B1 (en) 2014-05-23 2015-01-27 Dielectric phase shifter
US15/122,995 US10062940B2 (en) 2014-05-23 2015-01-27 Dielectric phase shifter comprised of a cavity having an elongated receiving space where a phase shifting circuit and a slideable dielectric element are disposed
BR112016020466-2A BR112016020466B1 (pt) 2014-05-23 2015-01-27 Comutador de fase dielétrico
MX2016015311A MX365736B (es) 2014-05-23 2015-01-27 Desfasador dielectrico.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410223020.5 2014-05-23
CN201410223020.5A CN104051821B (zh) 2014-05-23 2014-05-23 介质移相器

Publications (1)

Publication Number Publication Date
WO2015176552A1 true WO2015176552A1 (zh) 2015-11-26

Family

ID=51504379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/071659 WO2015176552A1 (zh) 2014-05-23 2015-01-27 介质移相器

Country Status (8)

Country Link
US (1) US10062940B2 (zh)
EP (1) EP3147993B1 (zh)
CN (1) CN104051821B (zh)
BR (1) BR112016020466B1 (zh)
HK (1) HK1200598A1 (zh)
MX (1) MX365736B (zh)
TW (1) TWI565133B (zh)
WO (1) WO2015176552A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129626A (zh) * 2016-08-15 2016-11-16 深圳慧联达科技有限公司 超宽频小型化集成电调移相器
CN116349088A (zh) * 2020-12-31 2023-06-27 华为技术有限公司 移相器及电调天线

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104037474B (zh) * 2014-01-28 2017-05-10 京信通信技术(广州)有限公司 一种腔体式移相器
CN104051821B (zh) 2014-05-23 2019-03-01 京信通信技术(广州)有限公司 介质移相器
CN104466405A (zh) * 2014-11-11 2015-03-25 李梓萌 一种阵列天线可调移相装置
CN104466426A (zh) * 2014-11-11 2015-03-25 李梓萌 一种用于基站天线的反射板以及基站天线阵列结构
CN104681896A (zh) * 2015-03-23 2015-06-03 武汉虹信通信技术有限责任公司 一种多路一体化介质移相器
EP3291362B1 (en) * 2015-06-01 2020-01-15 Huawei Technologies Co., Ltd. Combined phase shifter and multi-frequency antenna network system
WO2016205995A1 (zh) * 2015-06-23 2016-12-29 华为技术有限公司 移相器和天线
CN105070979B (zh) * 2015-08-25 2018-01-23 武汉虹信通信技术有限责任公司 一种具有内置传动杆的移相器
CN106129544A (zh) * 2016-08-01 2016-11-16 江苏亨鑫无线技术有限公司 一种低损耗宽频带介质移相器
CN206301918U (zh) * 2016-12-23 2017-07-04 深圳国人通信股份有限公司 一种介质移相器
CN109755693B (zh) * 2018-12-29 2023-09-26 京信通信技术(广州)有限公司 移相结构、馈电网络及双极化天线
CN112436243A (zh) * 2019-08-26 2021-03-02 广东博纬通信科技有限公司 一种腔体式移相器
CN110994083A (zh) * 2019-12-11 2020-04-10 京信通信技术(广州)有限公司 移相器及天线
CN215299473U (zh) * 2021-01-15 2021-12-24 瑞典爱立信有限公司 一种移相器、包含该移相器的天线单元以及基站
CN116632472A (zh) * 2022-02-10 2023-08-22 康普技术有限责任公司 移相器组件、具有移相器组件的腔体移相器和基站天线
WO2024088526A1 (en) 2022-10-25 2024-05-02 Telefonaktiebolaget Lm Ericsson (Publ) Antenna

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158502A (ja) * 2000-11-20 2002-05-31 Tamagawa Electronics Co Ltd 可変移相器
CN2872609Y (zh) * 2006-01-23 2007-02-21 京信通信技术(广州)有限公司 差分相位连续可变的波束形成网络
US20120287006A1 (en) * 2010-02-05 2012-11-15 Thales Flat Scanning Antenna for a Terestrial Mobile Application, Vehicle Having Such an Antenna, and Satellite Telecommunication System Comprising Such a Vehicle
CN103050747A (zh) * 2012-11-30 2013-04-17 摩比天线技术(深圳)有限公司 移相器及天线装置
CN104051821A (zh) * 2014-05-23 2014-09-17 京信通信技术(广州)有限公司 介质移相器
CN203950891U (zh) * 2014-05-23 2014-11-19 京信通信技术(广州)有限公司 介质移相器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440573A (en) * 1964-08-19 1969-04-22 Jesse L Butler Electrical transmission line components
AU755676B2 (en) * 1998-03-18 2002-12-19 Alcatel Phase-shifter arrangement
US5905462A (en) * 1998-03-18 1999-05-18 Lucent Technologies, Inc. Steerable phased-array antenna with series feed network
US6333683B1 (en) * 1998-09-04 2001-12-25 Agere System Optoelectronics Guardian Corp. Reflection mode phase shifter
AUPR196300A0 (en) * 2000-12-08 2001-01-04 Alcatel Phase shifter
US20100073105A1 (en) * 2008-09-23 2010-03-25 Dau-Chyrh Chang Phase shifter
CN201369377Y (zh) * 2009-02-13 2009-12-23 广东通宇通讯设备有限公司 一种基于介质加载的移相器模块
CN201918476U (zh) * 2010-04-02 2011-08-03 西安海天天线科技股份有限公司 用于基站电调天线的移相器
CN201699109U (zh) * 2010-04-21 2011-01-05 摩比天线技术(深圳)有限公司 基站电调天线的移相器
CN202042575U (zh) * 2011-03-28 2011-11-16 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置
CN102176524B (zh) * 2011-03-28 2014-03-26 京信通信系统(中国)有限公司 同轴介质移相系统、移相器及移相驱动装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158502A (ja) * 2000-11-20 2002-05-31 Tamagawa Electronics Co Ltd 可変移相器
CN2872609Y (zh) * 2006-01-23 2007-02-21 京信通信技术(广州)有限公司 差分相位连续可变的波束形成网络
US20120287006A1 (en) * 2010-02-05 2012-11-15 Thales Flat Scanning Antenna for a Terestrial Mobile Application, Vehicle Having Such an Antenna, and Satellite Telecommunication System Comprising Such a Vehicle
CN103050747A (zh) * 2012-11-30 2013-04-17 摩比天线技术(深圳)有限公司 移相器及天线装置
CN104051821A (zh) * 2014-05-23 2014-09-17 京信通信技术(广州)有限公司 介质移相器
CN203950891U (zh) * 2014-05-23 2014-11-19 京信通信技术(广州)有限公司 介质移相器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147993A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129626A (zh) * 2016-08-15 2016-11-16 深圳慧联达科技有限公司 超宽频小型化集成电调移相器
CN116349088A (zh) * 2020-12-31 2023-06-27 华为技术有限公司 移相器及电调天线

Also Published As

Publication number Publication date
TW201545404A (zh) 2015-12-01
BR112016020466B1 (pt) 2022-08-23
HK1200598A1 (zh) 2015-08-07
MX365736B (es) 2019-06-12
MX2016015311A (es) 2017-03-23
CN104051821A (zh) 2014-09-17
CN104051821B (zh) 2019-03-01
US20170069941A1 (en) 2017-03-09
EP3147993B1 (en) 2020-12-02
TWI565133B (zh) 2017-01-01
US10062940B2 (en) 2018-08-28
BR112016020466A2 (zh) 2017-08-15
EP3147993A4 (en) 2018-01-24
EP3147993A1 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
WO2015176552A1 (zh) 介质移相器
WO2015113489A1 (zh) 一种腔体式移相器
WO2018182379A1 (ko) 안테나 어셈블리 및 안테나 어셈블리를 포함하는 장치
WO2014075628A1 (zh) 一种可调谐耦合装置及射频通信装置
US20100165562A1 (en) Memory module
CN104681896A (zh) 一种多路一体化介质移相器
WO2010071304A2 (ko) 커플링을 이용한 전력 분배기
WO2017201834A1 (zh) 连接器
CN103094689A (zh) 介质移相模块及其移相单元、馈电网络和天线
WO2014183363A1 (zh) 一种双框架阻尼型间隔棒
WO2018082285A1 (zh) 一种超宽频移相器
CN109509939B (zh) Fa/d移相器
CN108377611A (zh) 一种pcb电路板
CN218988104U (zh) 一种线路板固定支架
TWI745091B (zh) 電力傳輸匯流排
CN215945205U (zh) 一种环保易运输保温包装箱
CN219874232U (zh) 一种用于高温环境的接线装置
CN212786105U (zh) 一种固定式多层线路板
TWM610656U (zh) 電力傳輸匯流排
CN214313788U (zh) 电力传输汇流排
CN208638800U (zh) 一种用于电路板镀铜的电路板固定装置
US6259018B1 (en) Conductor structure
US20210234352A1 (en) Conductor stopper apparatus for busbar
WO2021054517A1 (ko) 인쇄회로기판에 구현된 고효율 안테나 구조체
WO2017113222A1 (zh) Tm模介质滤波器及通信射频器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15796042

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015796042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015796042

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15122995

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016020466

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/015311

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016020466

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160905