WO2015176311A1 - 偏振控制器件和偏振控制的方法 - Google Patents

偏振控制器件和偏振控制的方法 Download PDF

Info

Publication number
WO2015176311A1
WO2015176311A1 PCT/CN2014/078298 CN2014078298W WO2015176311A1 WO 2015176311 A1 WO2015176311 A1 WO 2015176311A1 CN 2014078298 W CN2014078298 W CN 2014078298W WO 2015176311 A1 WO2015176311 A1 WO 2015176311A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mode
input
combiner
phase shifter
Prior art date
Application number
PCT/CN2014/078298
Other languages
English (en)
French (fr)
Inventor
马骁
郝沁汾
邓湘元
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2014/078298 priority Critical patent/WO2015176311A1/zh
Priority to JP2016526212A priority patent/JP2016535302A/ja
Priority to CN201480003264.0A priority patent/CN105308495A/zh
Priority to EP14892818.7A priority patent/EP3035113A4/en
Publication of WO2015176311A1 publication Critical patent/WO2015176311A1/zh
Priority to US15/203,323 priority patent/US20160313505A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2726Optical coupling means with polarisation selective and adjusting means in or on light guides, e.g. polarisation means assembled in a light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2766Manipulating the plane of polarisation from one input polarisation to another output polarisation, e.g. polarisation rotators, linear to circular polarisation converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/2773Polarisation splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29344Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by modal interference or beating, i.e. of transverse modes, e.g. zero-gap directional coupler, MMI
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/34Optical coupling means utilising prism or grating
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/011Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  in optical waveguides, not otherwise provided for in this subclass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0136Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • G02F1/025Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/217Multimode interference type

Definitions

  • the present invention relates to the field of information technology and, more particularly, to a polarization control device and a method of polarization control. Background technique
  • Silicon-based Optical Waveguide uses Shigui (n « 3.5@ 1550nm ) as the waveguide core material, and silica (n « 1.5@ 1550nm ) and other low refractive index materials as the waveguide cladding material.
  • Shigui n « 3.5@ 1550nm
  • silica n « 1.5@ 1550nm
  • other low refractive index materials as the waveguide cladding material.
  • a high refractive index difference is formed between the core (Waveguide Core) layer and the cladding. This high refractive index difference results in an exponential reduction in the size of the silicon-based optical device compared to conventional silicon-based optical devices.
  • a silicon dioxide waveguide typically requires a bend radius of 1000 microns to achieve very low Leakage Loss, while for a silicon waveguide, a 10 micron bend radius can meet the same performance requirements.
  • silicon materials are also the basic materials for integrated circuit fabrication.
  • the processing technology of silicon-based optical waveguides is compatible with Complementary Metal Oxide Semiconductor (CMOS) processes, which means that silicon-based optical waveguide devices can be obtained at low levels. Cost production, large-scale production, easy-to-implement photovoltaic integration and high-impact marketing. Due to this small size and compatibility with CMOS processes, silicon light technology is widely regarded as the key technology for next-generation optical communication, optical computing, and optical interconnection.
  • CMOS Complementary Metal Oxide Semiconductor
  • This aspect causes polarization mode dispersion, thereby degrading the transmission quality of the high-speed signal; on the other hand, it also forms a double resonance peak in the optical interference device, thereby affecting the normal operation of the interference device and even paralyzing the entire communication system.
  • the existing manufacturing process is difficult to achieve line accuracy at the nm level. Therefore, it is very important to practically control the silicon optical waveguide device and control the polarization of the transmitted light therein to achieve single polarization operation.
  • the side-emitting semiconductor laser itself radiates a single polarization state.
  • Light, through a properly designed on-chip waveguide does not cause polarization disorder when the laser is incorporated into a silicon optical device, so polarization-sensitive problems do not exist.
  • polarization-sensitive problems do not exist.
  • those lasers with random polarization such as Vertical Cavity Surface Emitting Laser (VCSEL), or for off-chip sources that need to be incorporated into silicon optical waveguides (such as stacked optical interconnect computers)
  • polarization control must be performed to achieve single polarization transmission of light in the silicon waveguide.
  • the existing polarization control technology uses a polarization-maintaining optical fiber or a polarization controller on a single-mode fiber path to achieve single-polarized light transmission.
  • polarization-maintaining fibers and polarization controllers are costly, and the polarization of light that is subsequently input into the silicon waveguide may be unstable, resulting in lower efficiency of polarization control. Summary of the invention
  • Embodiments of the present invention provide a polarization control device and a polarization control method, which can improve the efficiency of polarization control.
  • a polarization control device comprising:
  • Polarization beam splitting device 110 first phase shifter 120, combiner 130, waveguide 140, waveguide
  • the waveguide 140 is configured to connect the first output port of the polarization splitting device 110 and the first input port of the combiner 130;
  • the waveguide 150 is configured to connect the second output port of the polarization splitting device 110 and the input port of the first phase shifter 120;
  • the waveguide 160 is configured to connect the output port of the first phase shifter 120 and the second input port of the combiner 130;
  • the polarization splitting device 110 is configured to split the input light into two transverse electric TE modes or two transverse magnetic modes, and two TE modes or two M modes are respectively output from the first output of the polarization beam splitting device 110. Port and second output port output;
  • the first phase shifter 120 is for adjusting the phase of the light input to the first phase shifter 120;
  • the combiner 130 is configured to adjust the split ratio of the combiner 130, and combine two TE modes or two TM modes input from the first input port and the second input port of the combiner 130 into one TE mode light. Or all the way TM light.
  • the polarization splitting device 110 includes: a polarization beam splitter 111, a polarization rotator 112 and a waveguide 113;
  • the waveguide 113 is for connecting the first output port of the polarization beam splitter 111 and the input port of the polarization rotator 112;
  • the second output port of the polarization beam splitter 111 is the second output port of the polarization beam splitting device 110; the output port of the polarization rotator 112 is the first output port of the polarization beam splitting device 110; the polarization beam splitter 111 is used for inputting
  • the light is divided into two paths, one is TE mode light, is output from the first output port of the polarization beam splitter 111, and the other is TM mode light, and is output from the second output port of the polarization beam splitter 111;
  • the polarization rotator 112 is adapted to convert the TE mode light input from the input port of the polarization rotator 112 into a TM mode light; or
  • the polarization beam splitter 111 is used to split the input light into two paths, one is TM mode light, is output from the first output port of the polarization beam splitter 111, and the other is TE mode light, and the second from the polarization beam splitter 111 Two output port output;
  • Polarization rotator 112 is used to convert TM mode light input from the input port of polarization rotator 112 to TE mode light.
  • the polarization beam splitting device 110 is a grating coupler 114 for splitting the input light into two TE mode lights.
  • the first phase shifter 120 is configured to adjust the input to the first phase shifter 120
  • the phase of the light is such that the phase difference of the input light of the first input port and the second input port of the combiner 130 is ⁇ .
  • the combiner 130 includes: a first multimode interference coupling , a second multimode interference coupler 132, a second phase shifter 133, a waveguide 134, a waveguide 135 and a waveguide 136;
  • the first input port of the first multimode interference coupler 131 is the first input port of the combiner 130, and the second input port of the first multimode interference coupler 131 is the second input port of the combiner 130;
  • the output port of the multimode interference coupler 132 is an output port of the combiner 130;
  • the waveguide 134 is configured to connect the first output port of the first multimode interference coupler 131 and the first input port of the second multimode interference coupler 132;
  • the waveguide 135 is for connecting the second output port and the second phase of the first multimode interference coupler 131 An offset 133 input port;
  • the waveguide 136 is configured to connect the output port of the second phase shifter 133 and the second input port of the second multimode interference coupler 132;
  • the first multimode interference coupler 131 is configured to perform interference coupling on two TE mode lights or two TM mode lights input from the first input port and the second input port of the combiner 130, and mold each TE mode or The optical power of each of the TM mode lights is evenly distributed to the first output port and the second output port of the first multimode interference coupler 131 to obtain two outputs;
  • the second phase shifter 133 is for adjusting the phase of the light input to the second phase shifter 133 to adjust the split ratio of the combiner 130;
  • the second multimode interference coupler 132 is for interference coupling the two inputs of the second multimode interference coupler 132 to obtain an output.
  • the second phase shifter 133 is configured to adjust a phase of the light input into the second phase shifter 133 such that The split ratio of the wave filter 130 is equal to the light intensity ratio of the input light of the first input port and the second input port of the combiner 130.
  • the polarization control device further includes:
  • the photodetector 170 is configured to perform optical power detection on the light drawn from the output port of the combiner 130;
  • the first phase shifter 120 is configured to adjust a phase of the light input to the first phase shifter 120 such that the optical power detected by the photodetector 170 reaches a first maximum value
  • the second phase shifter 133 is for adjusting the phase of the light input to the second phase shifter 133 such that the optical power detected by the photodetector 170 reaches a second maximum.
  • a method of polarization control comprising:
  • the two TE mode lights or the two channels of the in-port mode are combined into one TE mode light or one way TM mode light.
  • the input light is divided into two transverse electric TE mode lights or two horizontal magnetic modes, including:
  • the input light is split into a second TE mode light and a third channel mode light by a polarization beam splitter, and the third channel mode light is converted into a first mode TE mode light by a polarization rotator.
  • the input light is divided into two transverse electric TE mode lights or two horizontal magnetic modes, including:
  • the input light is split into a first TE mode light and a second TE mode light by a grating clutch.
  • the second TE mode light or the second path TM mode light is adjusted by the first phase shifter Phase, including:
  • the combiner comprises: a first multimode interference coupler a second phase shifter and a second multimode interference coupler;
  • Adjusting the splitting ratio of the combiner by the combiner, combining the two-way mode light or the two-way mode light input to the first input port and the second input port of the combiner into one mode or one mode Light including:
  • the two multimode interference couplers are used to interferely couple the two modulo lights or the two modulo lights input to the first input port and the second input port of the multiplexer, and each modulo light or each ⁇
  • the optical power of the mode light is evenly distributed to the first output port and the second output port of the first multimode interference coupler to obtain two outputs;
  • Interference coupling is performed by the second multimode interference coupler to the other of the two outputs and one of the outputs of the phase adjustment by the second phase shifter to obtain a ⁇ mode light or a ⁇ Mode light.
  • phase adjustment of one of the two outputs is performed by the second phase shifter to adjust the split ratio of the combiner , including:
  • Phase adjustment of one of the two outputs by the second phase shifter such that the split ratio of the combiner and the two TE modes of the first input port and the second input port of the combiner or two The light intensity ratio of the road TM mode light is equal.
  • the method further includes:
  • the optical power is detected by the photodetector for the trace light extracted from the output port of the combiner; the phase of the second TE mode light or the second TM mode light is adjusted by the first phase shifter, including:
  • Phase adjustment of one of the two outputs by the second phase shifter includes: phase adjusting one of the two outputs by the second phase shifter, so that the optical power detected by the photodetector reaches The second maximum.
  • the embodiment of the present invention divides the input light into two TE mode lights or TM mode light, and uses a phase shifter to adjust the phase difference of the two paths of light, and the combiner adjusts the splitting ratio and combines the two channels of light.
  • a phase shifter to adjust the phase difference of the two paths of light
  • the combiner adjusts the splitting ratio and combines the two channels of light.
  • FIG. 1 is a schematic structural view of a polarization control device according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of a polarization control device according to another embodiment of the present invention.
  • FIG. 3 is a schematic structural view of a polarization control device according to still another embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a multiplexer according to an embodiment of the present invention.
  • Figure 5a is a graph of intensity as a function of phase difference, in accordance with an embodiment of the present invention.
  • Figure 5b is a graph of phase versus phase difference as a function of an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a polarization control device according to still another embodiment of the present invention.
  • FIG. 7 is a schematic flow chart of a method of polarization control in accordance with an embodiment of the present invention. detailed description
  • Fig. 1 shows a schematic structural view of a polarization control device 100 according to an embodiment of the present invention.
  • the polarization control device 100 includes a polarization splitting device 110, a first phase shifter 120, a combiner 130, a waveguide 140, a waveguide 150, and a waveguide 160.
  • the waveguide 140 is used to connect the first output port of the polarization splitting device 110 and the first input port of the combiner 130.
  • the waveguide 150 is for connecting the second output port of the polarization splitting device 110 and the input port of the first phase shifter 120.
  • the waveguide 160 is for connecting the output port of the first phase shifter 120 and the second input port of the combiner 130.
  • the polarization splitting device 110 is configured to split the input light into two TE mode lights or two TM mode lights, two TE mode lights or two way M mode lights from the first output port and the second output of the polarization beam splitting device 110. Port output.
  • a TE mode light or TM mode light output from the first output port of the polarization splitting device 110 is transmitted via the waveguide 140 to the first input port of the combiner 130; a path outputted from the second output port of the polarization splitting device 110
  • the TE mode light or the TM mode light is transmitted via the waveguide 150 to the input port of the first phase shifter 120.
  • the first phase shifter 120 is for adjusting the phase of the light input to the first phase shifter 120.
  • a TE mode light or TM mode light transmitted to the input port of the first phase shifter 120 via the waveguide 150 is adjusted by the first phase shifter 120, and then transmitted to the second input port of the combiner 130 via the waveguide 160. . Therefore, the first phase shifter 120 can adjust the phase difference of the two paths of light transmitted to the first input port and the second input port of the combiner 130.
  • the combiner 130 is configured to adjust the split ratio of the combiner 130 from the first input of the combiner 130
  • the two TE mode lights or the two TM mode light beams input by the port and the second input port are one TE mode light or one way M mode light.
  • the combiner 130 can adjust the split ratio, thereby adjusting the light energy output, so that a larger light energy output can be obtained.
  • the polarization splitting device is used to split the input light into two TE mode lights or TM mode light, the phase shifter adjusts the phase difference of the two paths of light, and the combiner adjusts the split ratio and
  • the two-way optical multiplexed wave is one-way light, and the stable and high-efficiency single-polarized light can be obtained from the input light of any polarization state, and the cost is low, thereby improving the efficiency of polarization control.
  • the polarization beam splitting device 110 includes a polarization beam splitter 111, a polarization rotator 112, and a waveguide 113.
  • the waveguide 113 is used to connect the first output port of the polarization beam splitter 111 and the input port of the polarization rotator 112.
  • the second output port of the polarization beam splitter 111 is the second output port of the polarization beam splitting device 110.
  • the output port of polarization rotator 112 is the first output port of polarization beam splitting device 110.
  • the polarization splitting device 110 is realized by the polarization beam splitter 111 in combination with the polarization rotator 112.
  • the polarization beam splitter 111 is configured to split the input light into two paths, one is TE mode light, is output from the first output port of the polarization beam splitter 111, and the other is a TM mode.
  • Light is output from the second output port of the polarization beam splitter 111.
  • the TE mode light output from the first output port of the polarization beam splitter 111 is transmitted to the input port of the polarization rotator 112 via the waveguide 113; the TM mode light outputted from the second output port of the polarization beam splitter 111 is transmitted through the waveguide 150 to The input port of the first phase shifter 120.
  • Polarization rotator 112 is used to convert TE mode light input from the input port of polarization rotator 112 to TM mode light.
  • the TE mode light transmitted through the waveguide 113 to the input port of the polarization rotator 112 is converted by the polarization rotator 112 into a TM mode light, which is then transmitted via the waveguide 150 to the first input port of the combiner 130.
  • the TM mode light transmitted to the input port of the first phase shifter 120 via the waveguide 150 is phase-adjusted by the first phase shifter 120 and transmitted to the second input port of the combiner 130 via the waveguide 160.
  • the polarization beam splitter 111 and the polarization rotator 112 can be used to obtain two TM modes of light from input light of any polarization state.
  • the two TM modes are then adjusted by the first phase shifter 120 to phase difference, and finally combined by the combiner 130 to be a TM mode light.
  • the polarization beam splitter 111 splits the input light into two paths, one The path is TM mode light, output from the first output port of the polarization beam splitter 111, and the other path is TE mode light, which is output from the second output port of the polarization beam splitter 111.
  • the TM mode light output from the first output port of the polarization beam splitter 111 is transmitted to the input port of the polarization rotator 112 via the waveguide 113; the TE mode light outputted from the second output port of the polarization beam splitter 111 is transmitted through the waveguide 150 to The input port of the first phase shifter 120.
  • Polarization rotator 112 is used to convert TM mode light input from the input port of polarization rotator 112 to TE mode light.
  • the TM mode light transmitted through the waveguide 113 to the input port of the polarization rotator 112 is converted into TE mode light by the polarization rotator 112 and transmitted to the first input port of the combiner 130 via the waveguide 150.
  • the TE mode light transmitted to the input port of the first phase shifter 120 via the waveguide 150 is phase-adjusted by the first phase shifter 120 and transmitted to the second input port of the combiner 130 via the waveguide 160.
  • the polarization beam splitter 111 and the polarization rotator 112 can be used to obtain two TE mode lights from input light of any polarization state.
  • the two TE modes are then adjusted by the first phase shifter 120 to phase difference, and finally the combiner 130 is combined into a TE mode light.
  • the polarization beam splitter 112 may employ a polarization coupler based on a directional coupler.
  • This polarization beam splitter allows the coupling length of the TM mode to be much smaller than the coupling length of the TE mode by designing the waveguide width of the directional coupler and the waveguide spacing. Then the length of the directional coupler is set to the coupling length of the TM mode, so that when the TM mode is completely connected to the other waveguide, most of the energy of the TE mode is still transmitted in the original waveguide, thereby realizing polarization splitting.
  • This beam splitter has a polarization extinction ratio of 20 dB. It should be understood that the polarization beam splitter 112 can also use other types of polarization beam splitters as long as the polarization beam splitting function can be realized, which is not limited by the present invention.
  • the polarization beam splitting device 110 is a grating clutch 114. That is, in the present embodiment, the polarization splitting device 110 is realized by the grating coupler 114.
  • the first output port of the grating clutch 114 is the first output port of the polarization beam splitting device 110
  • the second output port of the grating clutch 114 is the second output port of the polarization beam splitting device 110.
  • a grating clutch 114 is used to split the input light into two TE mode lights.
  • the input light is vertically coupled into the grating coupler 114, which splits the input light into two TE mode lights.
  • the TE mode light output from the first output port of the grating clutch 114 is transmitted to the first input port of the combiner 130 via the waveguide 140; the TE mode light output from the second output port of the grating coupler 114 is passed through the waveguide 150.
  • the waveguide 160 is then transmitted to the second input port of the combiner 130. That is, the two TE mode lights can be adjusted by the first phase shifter 120.
  • the two TE modes are combined by the combiner 130 into a single TE mode light.
  • the combiner 130 includes: a first multimode interference coupler 131, a second multimode interference coupler 132, a second phase shifter 133, and a waveguide. 134, waveguide 135 and waveguide 136.
  • the waveguide 134 is for connecting the first output port of the first multimode interference coupler 131 and the first input port of the second multimode interference coupler 132.
  • the waveguide 135 is for connecting the second output port of the first multimode interference coupler 131 and the second phase shifter 133 input port.
  • the waveguide 136 is for connecting the output port of the second phase shifter 133 and the second input port of the second multimode interference coupler 132.
  • the first input port of the first multimode interference coupler 131 is the first input port of the combiner 130, and the second input port of the first multimode interference coupler 131 is the second input port of the combiner 130.
  • the output port of the second multimode interference coupler 132 is the output port of the combiner 130.
  • the combiner 130 is formed by cascading the first multimode interference coupler 131 and the second multimode interference coupler 132, and a second phase shifter 133 is used to change the two paths. The phase difference of the light.
  • the first multimode interference coupler 131 is configured to perform interference coupling on two TE mode lights or two TM mode lights input from the first input port and the second input port of the combiner 130, and mold each TE mode or The optical power of each of the TM mode lights is evenly distributed to the first output port and the second output port of the first multimode interference coupler 131 to obtain two outputs.
  • the second phase shifter 133 is for adjusting the phase of the light input to the second phase shifter 133 to adjust the split ratio of the combiner 130. That is, the second phase shifter 133 performs phase adjustment on one of the two outputs of the first multimode interference coupler 131 to adjust the split ratio of the combiner.
  • the second multimode interference coupler 132 is for interference coupling the two inputs of the second multimode interference coupler 132 to obtain an output. That is, the second multimode interference coupler 132 performs interference coupling on the other of the two outputs of the first multimode interference coupler 131 and the output of the phase adjusted by the second phase shifter 133.
  • One way TE mode light or one way TM mode light is provided.
  • first multimode interference coupler 131 and the second multimode interference coupler 132 may have The same size.
  • the length of the first multimode interference coupler 131 and the second multimode interference coupler 132 / 2. According to the mode propagation analysis method, you can get
  • W e is the effective mode field width of the slab waveguide fundamental mode, which is the wavelength of the light wave transmitted in the slab waveguide in vacuum.
  • the mode propagation analysis method can be used to determine that the through-transfer function T bar and the cross-transfer function T cmss of the multi-mode interference coupler determined by the above parameters are:
  • the phase difference between the waveguide 136 and the light in the waveguide 134 is ⁇ the electric field strength at the output port of the combiner 130 (ie, the output port of the second multimode interference coupler 132), ⁇ and ⁇ are respectively the combiner 130
  • the electric field strength at the first input port and the second input port ie, the first input port and the second input port of the first multimode interference coupler 131
  • the output function of the combiner 130 is as shown in equation (4) Show,
  • a curve of intensity and phase as a function of phase difference can be obtained. See Figure 5a and Figure 5b, respectively.
  • the dotted line and the solid line are the output powers at the first input port and the second input port, respectively, and their ratio is the split ratio of the combiner.
  • the splitting ratio changes from 0 to infinity.
  • the output phase difference between the first input port and the second input port is constant at 1. Therefore, when the phase difference is changed from 0 to ⁇ , a combiner of an arbitrary split ratio can be obtained, and the output phase difference of the first input port and the second input port is constant at ⁇ .
  • the first phase shifter 120 can be adjusted to make the combiner 130
  • the phase difference of the input light of the first input port and the second input port is ⁇
  • the second phase shifter 133 in the combiner 130 is adjusted to make the split ratio of the combiner 130 and the combiner 130
  • the light intensity ratios of the input light of the first input port and the second input port are equal, so that the light intensity at the output port of the combiner 130 is constant at 1 (ie, equal to the input light intensity), that is, the theoretical lossless combination is achieved. wave.
  • the polarization control device of the embodiment of the present invention adjusts the phase of the light input to the first phase shifter 120 by the first phase shifter 120 such that the first input port and the second input port of the combiner 130
  • the phase difference of the input light is ⁇
  • the phase of the light input to the second phase shifter 133 is adjusted by the second phase shifter 133 such that the split ratio of the combiner 130 and the first input of the combiner 130
  • the light intensity ratio of the input light of the port and the second input port is equal, and stable and highly efficient single-polarized light can be obtained from the input light of any polarization state, and the efficiency of polarization control can be improved.
  • the output of the combiner 130 can be maximized by adjusting the first phase shifter 120 and the second phase shifter 133.
  • the output of the combiner 130 can be detected by a photodetector as a basis for adjustment.
  • the polarization control device 100 further includes: a photodetector 170 for performing optical power detection on the trace light extracted from the output port of the combiner 130.
  • the photodetector 170 extracts a small amount of light from the output port of the combiner 130 for optical power detection, and the detection result is the most advantageous judgment of the adjustment of the first phase shifter 120 and the second phase shifter 133. in accordance with.
  • the energy of the traced light should be as small as possible to reduce the insertion loss to ensure that as much energy as possible is transferred to the next-level device. At the same time, the energy of the traced light is higher than the detection limit of the photodetector. Effective detection.
  • the first phase shifter 120 adjusts a phase of the light input to the first phase shifter 120 such that the optical power detected by the photodetector 170 reaches a first maximum value
  • the second phase shifter 133 adjusts the phase of the light input to the second phase shifter 133 such that the optical power detected by the photodetector 170 reaches a second maximum.
  • the first phase shifter 120 is first adjusted such that the optical power detected by the photodetector 170 is The maximum value (expressed as the first maximum value) is reached, at which time the phase difference of the input light of the first input port and the second input port of the combiner 130 is ⁇ ; and the second phase offset in the combiner 130 is adjusted.
  • the 133, the optical power detected by the photodetector 170 reaches a maximum value (expressed as a second maximum value), and the split ratio of the combiner 130 and the first input port and the second input port of the combiner 130 The light intensity ratio of the input light is equal.
  • the above adjustment process may be specifically implemented by a control algorithm, for example, the flow of the control algorithm may be To adjust the first phase shifter 120 to maximize the optical power detected by the photodetector 170; adjust the second phase shifter 133 in the combiner 130 to cause the optical power detected by the photodetector 170. Reaches the maximum value.
  • the complexity of the control algorithm is 2*0(N). For example, generally N can take a value of 100. Therefore, the complexity of the control algorithm is relatively low.
  • the first phase shifter 120 and the second phase shifter 133 may be phase shifters made based on a thermal tuning principle.
  • Their structure includes electrodes and metal thermocouples.
  • the thermal tuning principle utilizes the thermo-optic effect of silicon (SN/SZ ⁇ HxiO" 4 ) to change the effective refractive index by heating the silicon waveguide, thereby changing the optical path and phase.
  • the frequency of thermal tuning is usually up to 50 kHz, taking into account the foregoing.
  • the first phase shifter 120 and the second phase shifter 133 may also be phase shifters made based on an electrical tuning principle.
  • the electrically tuned phase shifter has a ⁇ -based carrier injection model, a strained silicon-based linear electro-optic effect model, and the like.
  • the polarization control device of the embodiment of the invention does not need to use expensive components such as polarization-maintaining fiber or polarization controller, and can be realized by using a single-mode fiber, and adopts a multiplexing technique, and only has one output light, and does not need a dual optical device. In the subsequent operation, the component cost is saved.
  • the polarization control device of the embodiment of the invention does not need optical fiber and waveguide to perform optical axis alignment, which reduces the difficulty of packaging and saves packaging cost. Therefore, the polarization control device of the embodiment of the present invention can achieve a lower manufacturing cost.
  • the polarization control device of the embodiment of the present invention uses a phase tuning and split ratio tuning multiplexer technique, regardless of the intensity and phase information of the two paths of light passing through the polarization beam splitter or the grating coupler, the combined output It is possible to obtain a stable and maximized output, which helps to stabilize the signal-to-noise ratio of the high-speed signal.
  • the polarization control device of the embodiment of the invention is located on the terminal chip, and the polarization output directly enters into the silicon optical waveguide functional device, wherein none Additional polarization interference factors result in a stable polarization output. Therefore, the polarization control device of the embodiment of the present invention can obtain a stable and highly efficient single-polarized light output.
  • the polarization control device of the embodiment of the invention can perform polarization control on input light of any polarization state, thereby expanding the range of use.
  • the two adjustment processes of the polarization control device of the embodiment of the present invention are independent, and the control algorithm complexity is only 2*0 ( ⁇ ).
  • the control algorithm complexity is only 2*0 ( ⁇ ).
  • a 4ms start-up time can be obtained; if you use electrical tuning, the start-up time can be shorter. Therefore, the polarization control device of the embodiment of the present invention can obtain a faster startup time.
  • the polarization control device of the embodiment of the present invention has been described in detail above, and the following describes an embodiment of the present invention.
  • the method of polarization control has been described in detail above, and the following describes an embodiment of the present invention. The method of polarization control.
  • FIG. 7 shows a schematic flow chart of a method 700 of polarization control in accordance with an embodiment of the present invention. As shown in Figure 7, the method includes:
  • the polarization control method of the embodiment of the present invention combines the input light into two TE mode lights or a TM mode light, and adjusts the phase difference of the two paths of light and the split ratio of the combiner to combine the two paths of light into one light.
  • Stable and efficient single-polarized light can be obtained from input light of any polarization state, and the cost is low, so that the efficiency of polarization control can be improved.
  • the input light is split into two TE mode lights or two pieces of TM mode light, including:
  • the input light is split into a second TE mode light and a third channel mode light by a polarization beam splitter, and the third channel mode light is converted into a first mode TE mode light by a polarization rotator.
  • the input light is split into two TE mode lights or two pieces of TM mode light, including:
  • the input light is split into a first TE mode light and a second TE mode light by a grating clutch.
  • adjusting the phase of the second TE mode light or the second path TM mode light by using the first phase shifter includes:
  • the phase difference between the two TE mode lights or the two TM mode lights input to the first input port and the second input port of the combiner is ⁇ .
  • the combiner comprises: a first multimode interference coupler, a second phase shifter and a second multimode interference coupler.
  • the splitter ratio of the combiner is adjusted by the combiner, and the two-way mode light or the two-way mode light input to the first input port and the second input port of the combiner are combined into one path.
  • Mode light or all-way die light including:
  • the two multimode interference couplers are used to interferely couple the two modulo lights or the two modulo lights input to the first input port and the second input port of the multiplexer, and each modulo light or each ⁇
  • the optical power of the mode light is evenly distributed to the first output port and the second output port of the first multimode interference coupler to obtain two outputs;
  • the second multimode interference coupler is used to perform interference coupling on the other of the two outputs and one output after the phase adjustment by the second phase shifter to obtain one mode or one mode.
  • the phase adjustment of one of the two outputs is performed by the second phase shifter to adjust the split ratio of the combiner, including:
  • Phase adjustment of one of the two outputs by the second phase shifter such that the split ratio of the combiner and the two-way mode light or two input to the first input port and the second input port of the combiner
  • the light intensity ratio of the roller mode light is equal.
  • the method 700 further includes:
  • the optical power is detected by the photodetector for the trace light extracted from the output port of the combiner; the phase of the second mode light or the second mode light is adjusted by the first phase shifter, including:
  • Phase adjustment of one of the two outputs by the second phase shifter includes: phase adjusting one of the two outputs by the second phase shifter, so that the optical power detected by the photodetector reaches The second maximum.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct connection or communication connection shown or discussed may be an indirect connection or communication connection through some interface, device or unit, or may be an electrical, mechanical or other form. connection.
  • the components displayed for the unit may or may not be physical units, ie may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like. The medium of the code.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种偏振控制器件和偏振控制的方法。该偏振控制器件包括:偏振分束装置(110),第一相位偏移器(120),合波器(130),波导(140),波导(150)和波导(160);偏振分束装置(110)用于将输入光分为两路TE模光或者两路TM模光;第一相位偏移器(120)用于调节输入到第一相位偏移器(120)中的光的相位;合波器(130)用于调节合波器(130)的分光比,将从合波器(130)的第一输入端口和第二输入端口输入的两路TE模光或者两路TM模光合波为一路TE模光或者一路TM模光。采用上述偏振控制器件和偏振控制的方法,能够提高偏振控制的效率。

Description

偏振控制器件和偏振控制的方法 技术领域
本发明涉及信息技术领域, 并且更具体地, 涉及偏振控制器件和偏振控 制的方法。 背景技术
石圭基光波导( Silicon-based Optical Waveguide ) 以石圭 ( n « 3.5@ 1550nm ) 为波导芯层材料, 以二氧化硅(n « 1.5@ 1550nm )等低折射率材料为波导包 层材料, 在波导芯 (Waveguide Core )层和包层之间形成了高折射率差。 这 一高折射率差使得硅基光器件的尺寸与传统二氧化硅基光器件相比,获得了 指数级的减小。 以波导弯曲半径为例, 二氧化硅波导通常需要 1000微米的 弯曲半径才能实现极低的泄露损耗(Leakage Loss ), 而对于硅波导来说, 10 微米的弯曲半径即可满足同样的性能需求。 不仅如此, 硅材料还是集成电路 制作的基本材料, 硅基光波导的加工工艺与互补金属氧化物半导体 ( Complementary Metal Oxide Semiconductor, CMOS )工艺 目兼容, 这尤意 味着硅基光波导器件可以获得低成本的制作, 大规模的产量, 易实现的光电 集成以及高影响力的市场推广。 正由于这小尺寸以及与 CMOS工艺相兼容, 因此硅光技术被普遍看作下一代光通信、 光计算、 光互连的关键技术。
然而, 任何一项技术要取得突破并获得大规模应用都不是一件容易的 事。 对硅基光波导来说, 它的高折射率差在带来小尺寸的同时, 也使得其中 所传输的横电 ( Transverse Electric, TE )模光和横磁 ( Transverse Magnetic, TM )模光的有效折射率差对波导尺寸具有很高的灵敏度。 在不考虑应力 (Stress)影响的情况下, 如果横向和纵向尺寸略有差异(nm级), 即会在硅波 导中引入双折射效应 ( Birefrigent Effect )。 这一方面会导致偏振模色散, 从 而劣化高速信号的传输质量; 另一方面还会在光干涉器件中形成双谐振峰, 从而影响干涉器件的正常工作, 甚至使整个通信系统瘫痪。 现有制作工艺很 难达到 nm级别的线条精度, 因此, 要将硅光波导器件实用化, 控制好其中 传输光的偏振, 实现单偏振运行非常重要。
对基于边发射半导体激光器( Edge Emission Semiconductor Lasers )的单 片集成的硅光电子器件来说, 由于边发射半导体激光器本身辐射单偏振态激 光,通过恰当设计的片上波导将激光辆合进入硅光器件时并不会引起偏振态 的混乱, 因此偏振敏感问题不会存在。但是,对于那些偏振态随机的激光器, 如垂直腔面发射激光器(Vertical Cavity Surface Emitting Laser, VCSEL ), 或 者是片外光源需要辆合进入硅光波导中的应用 (如堆叠式光互连计算机), 则必须经过偏振控制才能实现硅波导中光的单偏振传输。
现有的偏振控制技术釆用保偏光纤 (Polarization Maintaining Optical Fiber )或者在单模光纤通路上添加偏振控制器实现单偏振光传输。 然而, 保 偏光纤和偏振控制器成本较高, 而且后续输入到硅波导中的光的偏振态可能 发生不稳定的变化, 导致偏振控制的效率较低。 发明内容
本发明实施例提供了一种偏振控制器件和偏振控制的方法, 能够提高偏 振控制的效率。
第一方面, 提供了一种偏振控制器件, 包括:
偏振分束装置 110, 第一相位偏移器 120, 合波器 130, 波导 140, 波导
150和波导 160;
波导 140用于连接偏振分束装置 110的第一输出端口和合波器 130的第 一输入端口;
波导 150用于连接偏振分束装置 110的第二输出端口和第一相位偏移器 120的输入端口;
波导 160用于连接第一相位偏移器 120的输出端口和合波器 130的第二 输入端口;
偏振分束装置 110 用于将输入光分为两路横电 TE模光或者两路横磁 TM模光, 两路 TE模光或者两路 TM模光分别从偏振分束装置 110的第一 输出端口和第二输出端口输出;
第一相位偏移器 120用于调节输入到第一相位偏移器 120 中的光的相 位;
合波器 130用于调节合波器 130的分光比,将从合波器 130的第一输入 端口和第二输入端口输入的两路 TE模光或者两路 TM模光合波为一路 TE 模光或者一路 TM模光。
结合第一方面, 在第一种可能的实现方式中, 偏振分束装置 110包括: 偏振分束器 111, 偏振旋转器 112和波导 113;
波导 113用于连接偏振分束器 111的第一输出端口和偏振旋转器 112的 输入端口;
偏振分束器 111的第二输出端口为偏振分束装置 110的第二输出端口; 偏振旋转器 112的输出端口为偏振分束装置 110的第一输出端口; 偏振分束器 111用于将输入光分为两路光, 一路为 TE模光, 从偏振分 束器 111的第一输出端口输出, 另一路为 TM模光, 从偏振分束器 111的第 二输出端口输出;
偏振旋转器 112用于将从偏振旋转器 112的输入端口输入的 TE模光转 换为 TM模光; 或者,
偏振分束器 111用于将输入光分为两路光, 一路为 TM模光, 从偏振分 束器 111的第一输出端口输出, 另一路为 TE模光, 从偏振分束器 111的第 二输出端口输出;
偏振旋转器 112用于将从偏振旋转器 112的输入端口输入的 TM模光转 换为 TE模光。
结合第一方面, 在第二种可能的实现方式中, 偏振分束装置 110为光栅 耦合器 114, 光栅辆合器 114用于将输入光分为两路 TE模光。
结合第一方面或第一方面的第一或二种可能的实现方式,在第三种可能 的实现方式中, 第一相位偏移器 120用于调节输入到第一相位偏移器 120中 的光的相位,使得合波器 130的第一输入端口和第二输入端口的输入光的相 位差为 π。
结合第一方面或第一方面的第一至三种可能的实现方式中的任一种可 能的实现方式, 在第四种可能的实现方式中, 合波器 130包括: 第一多模干 涉耦合器 131, 第二多模干涉耦合器 132, 第二相位偏移器 133, 波导 134, 波导 135和波导 136;
第一多模干涉耦合器 131 的第一输入端口为合波器 130 的第一输入端 口,第一多模干涉耦合器 131的第二输入端口为合波器 130的第二输入端口; 第二多模干涉耦合器 132的输出端口为合波器 130的输出端口; 波导 134用于连接第一多模干涉耦合器 131的第一输出端口和第二多模 干涉耦合器 132第一输入端口;
波导 135用于连接第一多模干涉耦合器 131的第二输出端口和第二相位 偏移器 133输入端口;
波导 136用于连接第二相位偏移器 133的输出端口和第二多模干涉耦合 器 132第二输入端口;
第一多模干涉耦合器 131用于对从合波器 130的第一输入端口和第二输 入端口输入的两路 TE模光或者两路 TM模光进行干涉耦合, 将每路 TE模 光或者每路 TM模光的光功率平均分配到第一多模干涉耦合器 131的第一输 出端口和第二输出端口, 得到两路输出;
第二相位偏移器 133 用于调节输入到第二相位偏移器 133 中的光的相 位, 以调节合波器 130的分光比;
第二多模干涉耦合器 132用于对第二多模干涉耦合器 132的两路输入进 行干涉耦合, 得到一路输出。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 第二相位偏移器 133用于调节输入到第二相位偏移器 133中的光的相位,使 得合波器 130的分光比与合波器 130的第一输入端口和第二输入端口的输入 光的光强比相等。
结合第一方面的第四或五种可能的实现方式中,在第六种可能的实现方 式中, 该偏振控制器件还包括:
光电探测器 170, 用于对从合波器 130的输出端口引出的光进行光功率 检测;
第一相位偏移器 120用于调节输入到第一相位偏移器 120 中的光的相 位, 使得光电探测器 170检测到的光功率达到第一最大值;
第二相位偏移器 133 用于调节输入到第二相位偏移器 133 中的光的相 位, 使得光电探测器 170检测到的光功率达到第二最大值。
第二方面, 提供了一种偏振控制的方法, 包括:
将输入光分为两路横电 TE模光或者两路横磁 TM模光;
将两路 TE模光中的第一路 TE模光或者两路 TM模光中的第一路 TM 模光输入到合波器的第一输入端口, 将两路 TE模光中的第二路 TE模光或 者两路 TM模光中的第二路 TM模光经由第一相位偏移器输入到合波器的第 二输入端口;
通过第一相位偏移器调节第二路 TE模光或者第二路 TM模光的相位, 通过合波器调节合波器的分光比,将输入到合波器的第一输入端口和第二输 入端口的两路 TE模光或者两路 TM模光合波为一路 TE模光或者一路 TM 模光。
结合第二方面, 在第一种可能的实现方式中, 将输入光分为两路横电 TE模光或者两路横磁 TM模光, 包括:
通过偏振分束器将输入光分为第二路 TM模光和第三路 TE模光, 将第 三路 TE模光通过偏振旋转器转换为第一路 TM模光; 或者,
通过偏振分束器将输入光分为第二路 TE模光和第三路 TM模光, 将第 三路 TM模光通过偏振旋转器转换为第一路 TE模光。
结合第二方面, 在第二种可能的实现方式中, 将输入光分为两路横电 TE模光或者两路横磁 TM模光, 包括:
通过光栅辆合器将输入光分为第一路 TE模光和第二路 TE模光。
结合第二方面或第二方面的第一或二种可能的实现方式,在第三种可能 的实现方式中, 通过第一相位偏移器调节第二路 TE模光或者第二路 TM模 光的相位, 包括:
通过第一相位偏移器调节第二路 TE模光或者第二路 TM模光的相位, 使得输入到合波器的第一输入端口和第二输入端口的两路 TE模光或者两路 TM模光的相位差为 π。
结合第二方面或第二方面的第一至三种可能的实现方式中的任一种可 能的实现方式, 在第四种可能的实现方式中, 合波器包括: 第一多模干涉耦 合器, 第二相位偏移器和第二多模干涉耦合器;
通过合波器调节合波器的分光比,将输入到合波器的第一输入端口和第 二输入端口的两路 ΤΕ模光或者两路 ΤΜ模光合波为一路 ΤΕ模光或者一路 ΤΜ模光, 包括:
通过第一多模干涉耦合器对输入到合波器的第一输入端口和第二输入 端口的两路 ΤΕ模光或者两路 ΤΜ模光进行干涉耦合, 将每路 ΤΕ模光或者 每路 ΤΜ模光的光功率平均分配到第一多模干涉耦合器的第一输出端口和第 二输出端口, 得到两路输出;
通过第二相位偏移器对两路输出中的一路输出进行相位调节, 以调节合 波器的分光比;
通过第二多模干涉耦合器对两路输出中的另一路输出和由第二相位偏 移器调节相位后的一路输出进行干涉耦合, 得到一路 ΤΕ模光或者一路 ΤΜ 模光。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 通过第二相位偏移器对两路输出中的一路输出进行相位调节, 以调节合波器 的分光比, 包括:
通过第二相位偏移器对两路输出中的一路输出进行相位调节,使得合波 器的分光比与输入到合波器的第一输入端口和第二输入端口的两路 TE模光 或者两路 TM模光的光强比相等。
结合第二方面的第四或五种可能的实现方式中,在第六种可能的实现方 式中, 该方法还包括:
通过光电探测器对从合波器的输出端口引出的微量光进行光功率检测; 通过第一相位偏移器调节第二路 TE模光或者第二路 TM模光的相位, 包括:
通过第一相位偏移器调节第二路 TE模光或者第二路 TM模光的相位, 使得光电探测器检测到的光功率达到第一最大值;
通过第二相位偏移器对两路输出中的一路输出进行相位调节, 包括: 通过第二相位偏移器对两路输出中的一路输出进行相位调节,使得光电 探测器检测到的光功率达到第二最大值。
基于上述技术方案, 本发明实施例将输入光分为两路 TE模光或者 TM 模光, 釆用相位偏移器调节两路光的相位差, 合波器调节分光比并将两路光 合波为一路光, 可以由任意偏振态的输入光得到稳定高效的单偏振光, 而且 成本较低, 从而能够提高偏振控制的效率。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对本发明实施例中 所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本 发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的 前提下, 还可以根据这些附图获得其他的附图。
图 1是根据本发明一个实施例的偏振控制器件的结构示意图。
图 2是根据本发明另一实施例的偏振控制器件的结构示意图。
图 3是根据本发明又一实施例的偏振控制器件的结构示意图。
图 4是根据本发明实施例的合波器的结构示意图。 图 5a是根据本发明实施例的强度随相位差变化的曲线图。
图 5b是根据本发明实施例的相位随相位差变化的曲线图。
图 6是根据本发明又一实施例的偏振控制器件的结构示意图。
图 7是根据本发明实施例的偏振控制的方法的示意性流程图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例是本发明的一部分实施例, 而不 是全部实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创 造性劳动的前提下所获得的所有其他实施例, 都应属于本发明保护的范围。
图 1示出了根据本发明实施例的偏振控制器件 100的结构示意图。如图 1所示, 偏振控制器件 100包括: 偏振分束装置 110、 第一相位偏移器 120、 合波器 130、 波导 140、 波导 150和波导 160。
波导 140用于连接偏振分束装置 110的第一输出端口和合波器 130的第 一输入端口。
波导 150用于连接偏振分束装置 110的第二输出端口和第一相位偏移器 120的输入端口。
波导 160用于连接第一相位偏移器 120的输出端口和合波器 130的第二 输入端口。
偏振分束装置 110用于将输入光分为两路 TE模光或者两路 TM模光, 两路 TE模光或者两路 TM模光从偏振分束装置 110的第一输出端口和第二 输出端口输出。 从偏振分束装置 110的第一输出端口输出的一路 TE模光或 者 TM模光经波导 140传输到合波器 130的第一输入端口; 从偏振分束装置 110的第二输出端口输出的一路 TE模光或者 TM模光经波导 150传输到第 一相位偏移器 120的输入端口。
第一相位偏移器 120用于调节输入到第一相位偏移器 120 中的光的相 位。 经波导 150传输到第一相位偏移器 120的输入端口的一路 TE模光或者 TM模光经过第一相位偏移器 120调节相位后,经波导 160传输到合波器 130 的第二输入端口。 因此, 第一相位偏移器 120可以调节传输到合波器 130的 第一输入端口和第二输入端口的两路光的相位差。
合波器 130用于调节合波器 130的分光比,将从合波器 130的第一输入 端口和第二输入端口输入的两路 TE模光或者两路 TM模光合波为一路 TE 模光或者一路 TM模光。合波器 130可以调节分光比,进而调节光能量输出, 从而可以得到较大的光能量输出。
本发明实施例的偏振控制器件, 釆用偏振分束装置将输入光分为两路 TE模光或者 TM模光, 相位偏移器调节两路光的相位差, 合波器调节分光 比并将两路光合波为一路光, 可以由任意偏振态的输入光得到稳定高效的单 偏振光, 而且成本较低, 从而能够提高偏振控制的效率。
在本发明的一个实施例中, 可选地, 如图 2所示, 偏振分束装置 110包 括: 偏振分束器 111、 偏振旋转器 112和波导 113。
波导 113用于连接偏振分束器 111的第一输出端口和偏振旋转器 112的 输入端口。
偏振分束器 111的第二输出端口为偏振分束装置 110的第二输出端口。 偏振旋转器 112的输出端口为偏振分束装置 110的第一输出端口。
在本实施例中,偏振分束装置 110由偏振分束器 111结合偏振旋转器 112 实现。
可选地, 在一个实施例中, 偏振分束器 111用于将输入光分为两路光, 一路为 TE模光, 从偏振分束器 111的第一输出端口输出, 另一路为 TM模 光, 从偏振分束器 111的第二输出端口输出。 从偏振分束器 111的第一输出 端口输出的 TE模光经波导 113传输到偏振旋转器 112的输入端口; 从偏振 分束器 111的第二输出端口输出的 TM模光经波导 150传输到第一相位偏移 器 120的输入端口。
偏振旋转器 112用于将从偏振旋转器 112的输入端口输入的 TE模光转 换为 TM模光。 经波导 113传输到偏振旋转器 112的输入端口的 TE模光由 偏振旋转器 112转换为 TM模光, 再经波导 150传输到合波器 130的第一输 入端口。
经波导 150传输到第一相位偏移器 120的输入端口的 TM模光经过第一 相位偏移器 120调节相位后,经波导 160传输到合波器 130的第二输入端口。
这样, 利用偏振分束器 111和偏振旋转器 112可以由任意偏振态的输入 光得到两路 TM模光。这两路 TM模光再由第一相位偏移器 120调节相位差, 最后由合波器 130合波为一路 TM模光。
可选地, 在另一个实施例中, 偏振分束器 111将输入光分为两路光, 一 路为 TM模光, 从偏振分束器 111的第一输出端口输出, 另一路为 TE模光, 从偏振分束器 111的第二输出端口输出。 从偏振分束器 111的第一输出端口 输出的 TM模光经波导 113传输到偏振旋转器 112的输入端口; 从偏振分束 器 111的第二输出端口输出的 TE模光经波导 150传输到第一相位偏移器 120 的输入端口。
偏振旋转器 112用于将从偏振旋转器 112的输入端口输入的 TM模光转 换为 TE模光。 经波导 113传输到偏振旋转器 112的输入端口的 TM模光由 偏振旋转器 112转换为 TE模光, 再经波导 150传输到合波器 130的第一输 入端口。
经波导 150传输到第一相位偏移器 120的输入端口的 TE模光经过第一 相位偏移器 120调节相位后,经波导 160传输到合波器 130的第二输入端口。
这样, 利用偏振分束器 111和偏振旋转器 112可以由任意偏振态的输入 光得到两路 TE模光。 这两路 TE模光再由第一相位偏移器 120调节相位差, 最后由合波器 130合波为一路 TE模光。
可选地, 偏振分束器 112可以釆用基于方向耦合器的偏振分束器。 这种 偏振分束器通过设计方向耦合器的波导宽度以及波导间隔,使得 TM模的耦 合长度远小于 TE模的耦合长度。 再将方向耦合器的长度设置为 TM模的耦 合长度, 则可以使得在 TM模完全辆合到另一根波导的情况下, TE模绝大 部分能量依旧在原波导中传输, 从而实现偏振分束功能。 这种分束器的偏振 消光比可以达到 20dB。 应理解, 偏振分束器 112也可以釆用其他种类的偏 振分束器, 只要能实现偏振分束功能即可, 本发明对此并不限定。
在本发明的另一个实施例中, 可选地, 如图 3所示, 偏振分束装置 110 为光栅辆合器 114。 也就是说, 在本实施例中, 偏振分束装置 110由光栅辆 合器 114实现。 光栅辆合器 114的第一输出端口为偏振分束装置 110的第一 输出端口, 光栅辆合器 114的第二输出端口为偏振分束装置 110的第二输出 端口。
光栅辆合器 114用于将输入光分为两路 TE模光。 输入光垂直耦合进入 光栅辆合器 114, 光栅辆合器 114将输入光分为两路 TE模光。 从光栅辆合 器 114的第一输出端口输出的 TE模光经波导 140传输到合波器 130的第一 输入端口; 从光栅辆合器 114的第二输出端口输出的 TE模光经波导 150传 输到第一相位偏移器 120的输入端口,经过第一相位偏移器 120调节相位后, 再经波导 160传输到合波器 130的第二输入端口。 也就是说, 这两路 TE模 光可由第一相位偏移器 120调节相位差。最后,这两路 TE模光由合波器 130 合波为一路 TE模光。
在本发明实施例中, 可选地, 如图 4所示, 合波器 130包括: 第一多模 干涉耦合器 131、第二多模干涉耦合器 132、第二相位偏移器 133、波导 134、 波导 135和波导 136。
波导 134用于连接第一多模干涉耦合器 131的第一输出端口和第二多模 干涉耦合器 132第一输入端口。
波导 135用于连接第一多模干涉耦合器 131的第二输出端口和第二相位 偏移器 133输入端口。
波导 136用于连接第二相位偏移器 133的输出端口和第二多模干涉耦合 器 132第二输入端口。
第一多模干涉耦合器 131 的第一输入端口为合波器 130 的第一输入端 口,第一多模干涉耦合器 131的第二输入端口为合波器 130的第二输入端口。
第二多模干涉耦合器 132的输出端口为合波器 130的输出端口。
在本实施例中,合波器 130由第一多模干涉耦合器 131和第二多模干涉 耦合器 132级联而成,在中间还有一个第二相位偏移器 133用于改变两路光 的相位差。
第一多模干涉耦合器 131用于对从合波器 130的第一输入端口和第二输 入端口输入的两路 TE模光或者两路 TM模光进行干涉耦合, 将每路 TE模 光或者每路 TM模光的光功率平均分配到第一多模干涉耦合器 131的第一输 出端口和第二输出端口, 得到两路输出。
第二相位偏移器 133 用于调节输入到第二相位偏移器 133 中的光的相 位, 以调节合波器 130的分光比。 也就是说, 第二相位偏移器 133对第一多 模干涉耦合器 131的两路输出中的一路输出进行相位调节, 以调节合波器的 分光比。
第二多模干涉耦合器 132用于对第二多模干涉耦合器 132的两路输入进 行干涉耦合, 得到一路输出。 也就是说, 第二多模干涉耦合器 132对第一多 模干涉耦合器 131的两路输出中的另一路输出和由第二相位偏移器 133调节 相位后的一路输出进行干涉耦合, 得到一路 TE模光或者一路 TM模光。
可选地, 第一多模干涉耦合器 131和第二多模干涉耦合器 132可以具有 相同的尺寸。
第一多模干涉耦合器 131和第二多模干涉耦合器 132的长度 = / 2。 根据模式传播分析方法, 可以得到,
Figure imgf000013_0001
其中, 为平板波导基模的有效折射率, We为平板波导基模的有效模场 宽度, 为平板波导中所传光波在真空中的波长。
由模式传播分析方法可以得出上述参数所决定的多模干涉耦合器的直 通传递函数 Tbar和交叉传递函数 Tcmss分别为:
^ = ^exp(- j ^L- j^) (2) ^ = ^exp(- j ^L+ j^) (3) 其中, 是平板波导基模的传播常数。
若波导 136与波导 134中的光的相位差为^ 为合波器 130的输出端 口(即第二多模干涉耦合器 132的输出端口)处的电场强度, ^和^分别为 合波器 130的第一输入端口和第二输入端口(即第一多模干涉耦合器 131的 第一输入端口和第二输入端口)处的电场强度, 则合波器 130的输出函数如 式(4 )所示,
Figure imgf000013_0002
Figure imgf000013_0003
假设光从第二多模干涉耦合器 132的输出端口入射,从第一多模干涉耦 合器 131的第一输入端口和第二输入端口输出, 可以得到其强度和相位随相 位差 变化的曲线, 分别如图 5a和图 5b所示。 在图 5a中, 虚线和实线两分 别为第一输入端口和第二输入端口处的输出功率, 它们的比值即合波器的分 光比。 从图 5a可以看出, 当 从 0变化到 π时, 分光比从 0变化到无穷大。 从图 5b可以看出, 当 从 0变化到 π时,第一输入端口和第二输入端口的输 出相位差恒定为 1。 因此, 当相位差 从 0变化到 π时, 可以获得任意分光 比的合波器, 且第一输入端口和第二输入端口的输出相位差恒定为 π。
由光路可逆性原理可知,对于从合波器 130的第一输入端口和第二输入 端口处输入的任意光强比的光, 可以通过调节第一相位偏移器 120, 使合波 器 130的第一输入端口和第二输入端口的输入光的相位差为 π, 以及调节合 波器 130中的第二相位偏移器 133, 使合波器 130的分光比与合波器 130的 第一输入端口和第二输入端口的输入光的光强比相等, 来实现合波器 130的 输出端口处的光强恒定为 1(即与输入光强相等),即实现理论上的无损合波。
因此, 本发明实施例的偏振控制器件, 利用第一相位偏移器 120调节输 入到第一相位偏移器 120中的光的相位,使得合波器 130的第一输入端口和 第二输入端口的输入光的相位差为 π, 利用第二相位偏移器 133调节输入到 第二相位偏移器 133中的光的相位, 使得合波器 130的分光比与合波器 130 的第一输入端口和第二输入端口的输入光的光强比相等, 可以由任意偏振态 的输入光得到稳定高效的单偏振光, 能够提高偏振控制的效率。
由前述分析可知, 通过调节第一相位偏移器 120和第二相位偏移器 133 可以使合波器 130的输出达到最大。 可选地, 可以釆用光电探测器对合波器 130的输出进行检测, 作为调节依据。
在本发明实施例中, 可选地, 如图 6所示, 偏振控制器件 100还包括: 光电探测器 170, 用于对从合波器 130的输出端口引出的微量光进行光 功率检测。
在本实施例中, 光电探测器 170从合波器 130的输出端口引出微量光进 行光功率检测,检测结果作为第一相位偏移器 120和第二相位偏移器 133调 节的最优点的判断依据。 引出的微量光的能量要尽可能小, 减少插入损耗, 以保证有尽可能多的能量传递到下一级器件中; 同时, 引出的微量光的能量 要高于光电探测元件的探测极限, 保证有效探测。
可选地, 第一相位偏移器 120调节输入到第一相位偏移器 120中的光的 相位, 使得光电探测器 170检测到的光功率达到第一最大值;
第二相位偏移器 133调节输入到第二相位偏移器 133中的光的相位,使 得光电探测器 170检测到的光功率达到第二最大值。
具体而言,对于从合波器 130的第一输入端口和第二输入端口处输入的 任意光强比的光, 先调节第一相位偏移器 120, 使得光电探测器 170检测到 的光功率达到最大值(表示为第一最大值), 此时合波器 130的第一输入端 口和第二输入端口的输入光的相位差为 π ; 再调节合波器 130中的第二相位 偏移器 133, 使得光电探测器 170检测到的光功率达到最大值(表示为第二 最大值), 此时合波器 130的分光比与合波器 130的第一输入端口和第二输 入端口的输入光的光强比相等。
上述调节过程具体可以由控制算法实现, 例如, 该控制算法的流程可以 为, 调节第一相位偏移器 120, 使光电探测器 170检测到的光功率达到最大 值; 调节合波器 130中的第二相位偏移器 133, 使光电探测器 170检测到的 光功率达到最大值。 该控制算法的复杂度为 2*0(N), 例如, 通常 N可取值 100, 因此, 该控制算法的复杂度比较低。
在本发明实施例中,可选地,第一相位偏移器 120和第二相位偏移器 133 可以是基于热调谐原理制成的相位偏移器。 它们结构中包括有电极与金属热 电偶。 热调谐原理利用硅的热光效应 ( SN/ SZ^ HxiO"4 ), 通过加热硅波导来 改变其有效折射率, 从而改变光程以及相位。 通常热调谐的频率 /可达 50kHz, 考虑到前述控制算法复杂度为 2*0(100), 可以得到本发明实施例的 偏振控制器件的启动时间 t仅为 t=l//*200=4ms,也就是说,启动时间比较短。
在本发明实施例中,可选地,第一相位偏移器 120和第二相位偏移器 133 也可以是基于电调谐原理制成的相位偏移器。 电调谐相位偏移器有基于 ΡΙΝ 结的载流子注入模型, 基于应变硅的线性电光效应模型等实施办法。
本发明实施例的偏振控制器件, 不需要釆用保偏光纤或者偏振控制器等 昂贵元件, 釆用单模光纤即可实现, 且釆用合波技术, 只有一路输出光, 无 需双重光器件进行后续操作, 节约了元器件成本; 此外, 本发明实施例的偏 振控制器件无需光纤与波导进行光轴对准, 降低了封装的难度, 节约了封装 成本。 因此, 本发明实施例的偏振控制器件, 能够获得较低的制作成本。
本发明实施例的偏振控制器件, 釆用了相位调谐和分光比调谐的合波技 术, 不论经过偏振分束器或光栅辆合器的两路光具有何种强度和相位信息, 合波输出均能够获得稳定最大化的输出, 这有助于稳定高速信号的信噪比; 此外, 本发明实施例的偏振控制器件位于终端芯片上, 偏振输出直接辆合进 入硅光波导功能器件中,其中无额外偏振干扰因素,可获得稳定的偏振输出。 因此, 本发明实施例的偏振控制器件, 可以获得稳定高效的单偏振光输出。
本发明实施例的偏振控制器件, 可以对任意偏振态的输入光进行偏振控 制, 扩大了使用范围。
本发明实施例的偏振控制器件的两个调节过程独立,控制算法复杂度仅 为 2*0(Ν)。 对于热调谐来说, 可以获得 4ms的启动时间; 如果釆用电调谐, 则启动时间可以更短。 因此, 本发明实施例的偏振控制器件, 可以获得较快 的启动时间。
以上详细描述了本发明实施例的偏振控制器件, 下面描述本发明实施例 的偏振控制的方法。
图 7示出了本发明实施例的偏振控制的方法 700的示意性流程图。如图 7所示, 该方法包括:
S710, 将输入光分为两路 TE模光或者两路 TM模光;
S720, 将两路 TE模光中的第一路 TE模光或者两路 TM模光中的第一 路 TM模光输入到合波器的第一输入端口, 将两路 TE模光中的第二路 TE 模光或者两路 TM模光中的第二路 TM模光经由第一相位偏移器输入到合波 器的第二输入端口;
S730, 通过第一相位偏移器调节第二路 TE模光或者第二路 TM模光的 相位, 通过合波器调节合波器的分光比, 将输入到合波器的第一输入端口和 第二输入端口的两路 TE模光或者两路 TM模光合波为一路 TE模光或者一 路 TM模光。
应理解, 本发明实施例的偏振控制的方法 700的各个流程可以由前述本 发明实施例的偏振控制器件 100中的各个模块执行,相应的具体描述可以参 考前述实施例, 在次不再赘述。
本发明实施例的偏振控制的方法, 通过将输入光分为两路 TE模光或者 TM模光, 并调节两路光的相位差和合波器的分光比, 将两路光合波为一路 光, 可以由任意偏振态的输入光得到稳定高效的单偏振光, 而且成本较低, 从而能够提高偏振控制的效率。
在本发明的一个实施例中, 可选地, 将输入光分为两路 TE模光或者两 路 TM模光, 包括:
通过偏振分束器将输入光分为第二路 TM模光和第三路 TE模光, 将第 三路 TE模光通过偏振旋转器转换为第一路 TM模光; 或者,
通过偏振分束器将输入光分为第二路 TE模光和第三路 TM模光, 将第 三路 TM模光通过偏振旋转器转换为第一路 TE模光。
在本发明的另一个实施例中, 可选地, 将输入光分为两路 TE模光或者 两路 TM模光, 包括:
通过光栅辆合器将输入光分为第一路 TE模光和第二路 TE模光。
在本发明实施例中, 可选地, 通过第一相位偏移器调节第二路 TE模光 或者第二路 TM模光的相位, 包括:
通过第一相位偏移器调节第二路 TE模光或者第二路 TM模光的相位, 使得输入到合波器的第一输入端口和第二输入端口的两路 TE模光或者两路 TM模光的相位差为 π。
在本发明实施例中, 可选地, 合波器包括: 第一多模干涉耦合器, 第二 相位偏移器和第二多模干涉耦合器。
在这种情况下, 通过合波器调节合波器的分光比, 将输入到合波器的第 一输入端口和第二输入端口的两路 ΤΕ模光或者两路 ΤΜ模光合波为一路 ΤΕ 模光或者一路 ΤΜ模光, 包括:
通过第一多模干涉耦合器对输入到合波器的第一输入端口和第二输入 端口的两路 ΤΕ模光或者两路 ΤΜ模光进行干涉耦合, 将每路 ΤΕ模光或者 每路 ΤΜ模光的光功率平均分配到第一多模干涉耦合器的第一输出端口和第 二输出端口, 得到两路输出;
通过第二相位偏移器对两路输出中的一路输出进行相位调节, 以调节合 波器的分光比;
通过第二多模干涉耦合器对两路输出中的另一路输出和由第二相位偏 移器调节相位后的一路输出进行干涉耦合, 得到一路 ΤΕ模光或者一路 ΤΜ 模光。
在本发明实施例中, 可选地, 通过第二相位偏移器对两路输出中的一路 输出进行相位调节, 以调节合波器的分光比, 包括:
通过第二相位偏移器对两路输出中的一路输出进行相位调节,使得合波 器的分光比与输入到合波器的第一输入端口和第二输入端口的两路 ΤΕ模光 或者两路 ΤΜ模光的光强比相等。
在本发明实施例中, 可选地, 该方法 700还包括:
通过光电探测器对从合波器的输出端口引出的微量光进行光功率检测; 通过第一相位偏移器调节第二路 ΤΕ模光或者第二路 ΤΜ模光的相位, 包括:
通过第一相位偏移器调节第二路 ΤΕ模光或者第二路 ΤΜ模光的相位, 使得光电探测器检测到的光功率达到第一最大值;
通过第二相位偏移器对两路输出中的一路输出进行相位调节, 包括: 通过第二相位偏移器对两路输出中的一路输出进行相位调节,使得光电 探测器检测到的光功率达到第二最大值。
本领域普通技术人员可以意识到, 结合本文中所公开的实施例描述的各 示例的单元及算法步骤, 能够以电子硬件、 计算机软件或者二者的结合来实 现, 为了清楚地说明硬件和软件的可互换性, 在上述说明中已经按照功能一 般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执 行, 取决于技术方案的特定应用和设计约束条件。 专业技术人员可以对每个 特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本发明的范围。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统、 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述单元的划分, 仅仅为一种逻辑功能划分, 实际实现时可 以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到另一个 系统, 或一些特征可以忽略, 或不执行。 另夕卜, 所显示或讨论的相互之间的 耦合或直接辆合或通信连接可以是通过一些接口、装置或单元的间接辆合或 通信连接, 也可以是电的, 机械的或其它的形式连接。 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本发明实施例方案的目的。
另外, 在本发明各个实施例中的各功能单元可以集成在一个处理单元 中, 也可以是各个单元单独物理存在, 也可以是两个或两个以上单元集成在 一个单元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件 功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销 售或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方 案的全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在 一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算 机, 服务器, 或者网络设备等)执行本发明各个实施例所述方法的全部或部 分步骤。 而前述的存储介质包括: U盘、 移动硬盘、 只读存储器 (ROM, Read-Only Memory )、 随机存取存 4诸器 ( RAM, Random Access Memory )、 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围并不局限 于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易 想到各种等效的修改或替换, 这些修改或替换都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应以权利要求的保护范围为准。

Claims

权 利 要 求
1. 一种偏振控制器件, 其特征在于, 包括:
偏振分束装置( 110),第一相位偏移器( 120),合波器( 130),波导( 140), 波导( 150)和波导( 160);
所述波导( 140)用于连接所述偏振分束装置( 110)的第一输出端口和 所述合波器(130) 的第一输入端口;
所述波导(150)用于连接所述偏振分束装置(110)的第二输出端口和 所述第一相位偏移器(120) 的输入端口;
所述波导(160)用于连接所述第一相位偏移器(120)的输出端口和所 述合波器 ( 130 ) 的第二输入端口;
所述偏振分束装置( 110 )用于将输入光分为两路横电 TE模光或者两路 横磁 TM模光, 所述两路 TE模光或者所述两路 TM模光分别从所述偏振分 束装置 (110) 的第一输出端口和第二输出端口输出;
所述第一相位偏移器( 120 )用于调节输入到所述第一相位偏移器 ( 120 ) 中的光的相位;
所述合波器(130)用于调节所述合波器(130)的分光比, 将从所述合 波器 (130) 的第一输入端口和第二输入端口输入的两路 TE模光或者两路 TM模光合波为一路 TE模光或者一路 TM模光。
2. 根据权利要求 1 所述的偏振控制器件, 其特征在于, 所述偏振分束 装置 (110) 包括: 偏振分束器 (111), 偏振旋转器(112)和波导(113); 所述波导(113)用于连接所述偏振分束器(111) 的第一输出端口和所 述偏振旋转器( 112 ) 的输入端口;
所述偏振分束器(111 ) 的第二输出端口为所述偏振分束装置(110) 的 第二输出端口;
所述偏振旋转器 ( 112) 的输出端口为所述偏振分束装置 ( 110)的第一 输出端口;
所述偏振分束器( 111 )用于将所述输入光分为两路光,一路为 TE模光, 从所述偏振分束器(111) 的第一输出端口输出, 另一路为 TM模光, 从所 述偏振分束器(111) 的第二输出端口输出;
所述偏振旋转器( 112 )用于将从所述偏振旋转器( 112 ) 的输入端口输 入的 TE模光转换为 TM模光; 或者, 所述偏振分束器(111)用于将所述输入光分为两路光, 一路为 TM模 光, 从所述偏振分束器(111)的第一输出端口输出, 另一路为 TE模光, 从 所述偏振分束器 (111) 的第二输出端口输出;
所述偏振旋转器(112)用于将从所述偏振旋转器(112) 的输入端口输 入的 TM模光转换为 TE模光。
3. 根据权利要求 1 所述的偏振控制器件, 其特征在于, 所述偏振分束 装置 (110)为光栅辆合器(114), 所述光栅辆合器(114)用于将所述输入 光分为两路 TE模光。
4. 根据权利要求 1至 3中任一项所述的偏振控制器件, 其特征在于, 所述第一相位偏移器( 120 )用于调节输入到所述第一相位偏移器( 120 ) 中 的光的相位, 使得所述合波器 (130) 的第一输入端口和第二输入端口的输 入光的相位差为 π。
5. 根据权利要求 1至 4中任一项所述的偏振控制器件, 其特征在于, 所述合波器 (130) 包括: 第一多模干涉耦合器 (131), 第二多模干涉耦合 器( 132 ), 第二相位偏移器( 133 ), 波导( 134 ), 波导( 135 )和波导( 136 ); 所述第一多模干涉耦合器(131) 的第一输入端口为所述合波器(130) 的第一输入端口, 所述第一多模干涉耦合器 (131 ) 的第二输入端口为所述 合波器(130) 的第二输入端口;
所述第二多模干涉耦合器(132)的输出端口为所述合波器(130)的输 出端口;
所述波导(134)用于连接所述第一多模干涉耦合器(131)的第一输出 端口和所述第二多模干涉耦合器 (132)第一输入端口;
所述波导(135)用于连接所述第一多模干涉耦合器(131)的第二输出 端口和所述第二相位偏移器(133)输入端口;
所述波导( 136 )用于连接所述第二相位偏移器 ( 133 )的输出端口和所 述第二多模干涉耦合器 (132) 第二输入端口;
所述第一多模干涉耦合器(131)用于对从所述合波器(130)的第一输 入端口和第二输入端口输入的两路 ΤΕ模光或者两路 ΤΜ模光进行干涉耦合, 将每路 ΤΕ模光或者每路 ΤΜ模光的光功率平均分配到所述第一多模干涉耦 合器(131) 的第一输出端口和第二输出端口, 得到两路输出;
所述第二相位偏移器( 133 )用于调节输入到所述第二相位偏移器( 133 ) 中的光的相位, 以调节所述合波器(130 ) 的分光比;
所述第二多模干涉耦合器( 132 )用于对所述第二多模干涉耦合器( 132 ) 的两路输入进行干涉耦合, 得到一路输出。
6. 根据权利要求 5所述的偏振控制器件, 其特征在于, 所述第二相位 偏移器 ( 133 )用于调节输入到所述第二相位偏移器 ( 133 ) 中的光的相位, 使得所述合波器(130 )的分光比与所述合波器(130 )的第一输入端口和第 二输入端口的输入光的光强比相等。
7. 根据权利要求 5或 6所述的偏振控制器件, 其特征在于, 所述偏振 控制器件还包括:
光电探测器 (170 ), 用于对从所述合波器 (130 ) 的输出端口引出的光 进行光功率检测;
所述第一相位偏移器( 120 )用于调节输入到所述第一相位偏移器 ( 120 ) 中的光的相位, 使得所述光电探测器 (170 )检测到的光功率达到第一最大 值;
所述第二相位偏移器( 133 )用于调节输入到所述第二相位偏移器 ( 133 ) 中的光的相位, 使得所述光电探测器 (170 )检测到的光功率达到第二最大 值。
8. 一种偏振控制的方法, 其特征在于, 包括:
将输入光分为两路横电 TE模光或者两路横磁 TM模光;
将所述两路 TE模光中的第一路 TE模光或者所述两路 TM模光中的第 一路 TM模光输入到合波器的第一输入端口, 将所述两路 TE模光中的第二 路 TE模光或者所述两路 TM模光中的第二路 TM模光经由第一相位偏移器 输入到所述合波器的第二输入端口;
通过所述第一相位偏移器调节所述第二路 TE模光或者所述第二路 TM 模光的相位, 通过所述合波器调节所述合波器的分光比, 将输入到所述合波 器的第一输入端口和第二输入端口的所述两路 TE模光或者所述两路 TM模 光合波为一路 TE模光或者一路 TM模光。
9. 根据权利要求 8所述的方法, 其特征在于, 所述将输入光分为两路 横电 TE模光或者两路横磁 TM模光, 包括:
通过偏振分束器将所述输入光分为所述第二路 TM模光和第三路 TE模 光, 将所述第三路 TE模光通过偏振旋转器转换为所述第一路 TM模光; 或 者,
通过偏振分束器将所述输入光分为所述第二路 TE模光和第三路 TM模 光, 将所述第三路 TM模光通过偏振旋转器转换为所述第一路 TE模光。
10. 根据权利要求 8所述的方法, 其特征在于, 所述将输入光分为两路 横电 TE模光或者两路横磁 TM模光, 包括:
通过光栅辆合器将所述输入光分为所述第一路 TE模光和所述第二路 TE模光。
11. 根据权利要求 8至 10中任一项所述的方法, 其特征在于, 所述通 过所述第一相位偏移器调节所述第二路 TE模光或者所述第二路 TM模光的 相位, 包括:
通过所述第一相位偏移器调节所述第二路 TE模光或者所述第二路 TM 模光的相位,使得输入到所述合波器的第一输入端口和第二输入端口的所述 两路 TE模光或者所述两路 TM模光的相位差为 π。
12. 根据权利要求 8至 11中任一项所述的方法, 其特征在于, 所述合 波器包括: 第一多模干涉耦合器, 第二相位偏移器和第二多模干涉耦合器; 所述通过所述合波器调节所述合波器的分光比,将输入到所述合波器的 第一输入端口和第二输入端口的所述两路 ΤΕ模光或者所述两路 ΤΜ模光合 波为一路 ΤΕ模光或者一路 ΤΜ模光, 包括:
通过所述第一多模干涉耦合器对输入到所述合波器的第一输入端口和 第二输入端口的所述两路 ΤΕ模光或者所述两路 ΤΜ模光进行干涉耦合, 将 每路 ΤΕ模光或者每路 ΤΜ模光的光功率平均分配到所述第一多模干涉耦合 器的第一输出端口和第二输出端口, 得到两路输出;
通过所述第二相位偏移器对所述两路输出中的一路输出进行相位调节, 以调节所述合波器的分光比;
通过所述第二多模干涉耦合器对所述两路输出中的另一路输出和由所 述第二相位偏移器调节相位后的一路输出进行干涉耦合, 得到所述一路 ΤΕ 模光或者所述一路 ΤΜ模光。
13. 根据权利要求 12所述的方法, 其特征在于, 所述通过所述第二相 位偏移器对所述两路输出中的一路输出进行相位调节, 以调节所述合波器的 分光比, 包括:
通过所述第二相位偏移器对所述两路输出中的一路输出进行相位调节, 使得所述合波器的分光比与输入到所述合波器的第一输入端口和第二输入 端口的所述两路 TE模光或者所述两路 TM模光的光强比相等。
14. 根据权利要求 12或 13所述的方法,其特征在于,所述方法还包括: 通过光电探测器对从所述合波器的输出端口引出的微量光进行光功率 检测;
所述通过所述第一相位偏移器调节所述第二路 TE模光或者所述第二路 TM模光的相位, 包括:
通过所述第一相位偏移器调节所述第二路 TE模光或者所述第二路 TM 模光的相位, 使得所述光电探测器检测到的光功率达到第一最大值;
所述通过所述第二相位偏移器对所述两路输出中的一路输出进行相位 调节, 包括:
通过所述第二相位偏移器对所述两路输出中的一路输出进行相位调节, 使得所述光电探测器检测到的光功率达到第二最大值。
PCT/CN2014/078298 2014-05-23 2014-05-23 偏振控制器件和偏振控制的方法 WO2015176311A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2014/078298 WO2015176311A1 (zh) 2014-05-23 2014-05-23 偏振控制器件和偏振控制的方法
JP2016526212A JP2016535302A (ja) 2014-05-23 2014-05-23 偏光制御デバイスおよび偏光制御方法
CN201480003264.0A CN105308495A (zh) 2014-05-23 2014-05-23 偏振控制器件和偏振控制的方法
EP14892818.7A EP3035113A4 (en) 2014-05-23 2014-05-23 POLARIZATION CONTROL DEVICE AND POLARIZATION CONTROL METHOD
US15/203,323 US20160313505A1 (en) 2014-05-23 2016-07-06 Polarization Control Device and Polarization Control Method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/078298 WO2015176311A1 (zh) 2014-05-23 2014-05-23 偏振控制器件和偏振控制的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/203,323 Continuation US20160313505A1 (en) 2014-05-23 2016-07-06 Polarization Control Device and Polarization Control Method

Publications (1)

Publication Number Publication Date
WO2015176311A1 true WO2015176311A1 (zh) 2015-11-26

Family

ID=54553259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078298 WO2015176311A1 (zh) 2014-05-23 2014-05-23 偏振控制器件和偏振控制的方法

Country Status (5)

Country Link
US (1) US20160313505A1 (zh)
EP (1) EP3035113A4 (zh)
JP (1) JP2016535302A (zh)
CN (1) CN105308495A (zh)
WO (1) WO2015176311A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138860A1 (en) * 2015-03-02 2016-09-09 Huawei Technologies Co., Ltd. Polarization state aligner (psa)
WO2018040261A1 (en) * 2016-08-30 2018-03-08 Huawei Technologies Co., Ltd. Method and apparatus for obtaining optical measurements in a device handling split-beam optical signals
CN109075867A (zh) * 2016-05-04 2018-12-21 骁阳网络有限公司 相位调制装置、接收器、发射器以及相位调制方法
JP2019511008A (ja) * 2016-04-11 2019-04-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 偏波制御器を内蔵するスイッチマトリクス
CN109791302A (zh) * 2016-10-18 2019-05-21 华为技术有限公司 光耦合装置及其控制方法
CN109960045A (zh) * 2017-12-14 2019-07-02 科大国盾量子技术股份有限公司 一种硅基集成的偏振旋转调制装置
CN112629662A (zh) * 2020-12-24 2021-04-09 华中科技大学 一种可重构分时偏振分析系统及探测方法
WO2021233207A1 (zh) * 2020-05-22 2021-11-25 华为技术有限公司 偏振控制器和偏振控制方法
CN114815324A (zh) * 2022-06-28 2022-07-29 中山大学 一种基于硅基相变材料的偏振调控装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8625935B2 (en) * 2010-06-15 2014-01-07 Luxtera, Inc. Method and system for integrated power combiners
EP3339922B1 (en) 2016-12-23 2023-07-26 Huawei Technologies Research & Development Belgium NV Optical chip and method for coupling light
JP7000990B2 (ja) * 2018-05-23 2022-01-19 株式会社豊田中央研究所 偏波ダイバーシティフェーズドアレイグレーティング及び偏波ダイバーシティフェーズドアレイグレーティングを用いたレーザレーダ
WO2020103164A1 (zh) 2018-11-24 2020-05-28 华为技术有限公司 偏振处理装置、光收发机和光偏振处理的方法
US11688995B2 (en) * 2019-10-21 2023-06-27 The Charles Stark Draper Laboratory, Inc. Grating emitter systems with controlled polarization
US11042050B1 (en) * 2019-12-09 2021-06-22 Cisco Technology, Inc. Polarization splitter-rotator with embedded PIN structure
US11092745B1 (en) * 2020-02-14 2021-08-17 Nokia Solutions & Networks Oy Polarization controller
JP6991259B2 (ja) * 2020-02-19 2022-01-12 沖電気工業株式会社 光導波路素子
JP2021157131A (ja) * 2020-03-30 2021-10-07 沖電気工業株式会社 光導波路回路及びセンシングデバイス
JP7484325B2 (ja) * 2020-03-30 2024-05-16 沖電気工業株式会社 光導波路素子
JPWO2023095323A1 (zh) * 2021-11-29 2023-06-01
CN114690451B (zh) * 2022-03-30 2024-04-19 华中科技大学 一种基于反馈控制的有源偏振控制系统和方法
CN116774356A (zh) * 2023-08-22 2023-09-19 苏州浪潮智能科技有限公司 可调光多模干涉器及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169964A1 (en) * 2002-03-08 2003-09-11 Tairan Wang Power splitter/combiner with parameter tolerance and design process therefor
US20040008916A1 (en) * 2002-07-12 2004-01-15 Ridgway Richard William Scheme for controlling polarization in waveguides
CN1828349A (zh) * 2006-04-10 2006-09-06 浙江大学 波导型非互易光分束器件
JP2011064657A (ja) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> 光回路
CN102540505A (zh) * 2012-01-13 2012-07-04 中国科学院半导体研究所 基于对称垂直光栅耦合的soi基电光调制器
CN103424893A (zh) * 2013-08-23 2013-12-04 西安电子科技大学 光学偏振变换器及其制作方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212822A (ja) * 1985-03-18 1986-09-20 Nec Corp 偏光自動制御装置
JPH01222216A (ja) * 1988-03-02 1989-09-05 Toshiba Corp 導波路型偏波面制御装置
JPH04368901A (ja) * 1991-06-18 1992-12-21 Hitachi Ltd 光ピックアップ及び光ディスク装置
JPH05313109A (ja) * 1992-05-11 1993-11-26 Nippon Telegr & Teleph Corp <Ntt> 導波路型偏波制御器
JPH1130766A (ja) * 1997-07-09 1999-02-02 Nippon Telegr & Teleph Corp <Ntt> 光非相反回路
WO2003003104A1 (fr) * 2001-06-29 2003-01-09 Mitsubishi Denki Kabushiki Kaisha Dispositif de compensation de dispersion de polarisation
DE10147053A1 (de) * 2001-09-25 2003-04-03 Siemens Ag Polarisationsumsetzer für Polarisationsmultiplex und optischen Überlagerungsempfang
JP5069144B2 (ja) * 2008-02-26 2012-11-07 日本電信電話株式会社 光変調器
US7822298B2 (en) * 2008-04-15 2010-10-26 Alcatel-Lucent Usa Inc. Polarization component processor, method of processing polarization components and integrated photonic circuit employing the same
US8676003B2 (en) * 2009-10-28 2014-03-18 Universiteit Gent Methods and systems for reducing polarization dependent loss
US20110249938A1 (en) * 2010-04-07 2011-10-13 Alcatel-Lucent Usa, Incorporated Optical grating coupler
US20120002971A1 (en) * 2010-06-30 2012-01-05 Alcatel-Lucent Usa Inc. Polarization-tracking device having a waveguide-grating coupler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030169964A1 (en) * 2002-03-08 2003-09-11 Tairan Wang Power splitter/combiner with parameter tolerance and design process therefor
US20040008916A1 (en) * 2002-07-12 2004-01-15 Ridgway Richard William Scheme for controlling polarization in waveguides
CN1828349A (zh) * 2006-04-10 2006-09-06 浙江大学 波导型非互易光分束器件
JP2011064657A (ja) * 2009-09-18 2011-03-31 Nippon Telegr & Teleph Corp <Ntt> 光回路
CN102540505A (zh) * 2012-01-13 2012-07-04 中国科学院半导体研究所 基于对称垂直光栅耦合的soi基电光调制器
CN103424893A (zh) * 2013-08-23 2013-12-04 西安电子科技大学 光学偏振变换器及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3035113A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9819420B2 (en) 2015-03-02 2017-11-14 Futurewei Technolgies, Inc. Polarization state aligner (PSA)
WO2016138860A1 (en) * 2015-03-02 2016-09-09 Huawei Technologies Co., Ltd. Polarization state aligner (psa)
JP2019511008A (ja) * 2016-04-11 2019-04-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 偏波制御器を内蔵するスイッチマトリクス
CN109075867A (zh) * 2016-05-04 2018-12-21 骁阳网络有限公司 相位调制装置、接收器、发射器以及相位调制方法
US10386582B2 (en) 2016-08-30 2019-08-20 Huawei Technoogies Co., Ltd. Method and apparatus for obtaining optical measurements at an optical coupler having two inputs and two outputs
WO2018040261A1 (en) * 2016-08-30 2018-03-08 Huawei Technologies Co., Ltd. Method and apparatus for obtaining optical measurements in a device handling split-beam optical signals
US10948655B2 (en) 2016-10-18 2021-03-16 Huawei Technologies Co., Ltd. Optical coupling apparatus and control method thereof
CN109791302B (zh) * 2016-10-18 2020-06-26 华为技术有限公司 光耦合装置及其控制方法
CN109791302A (zh) * 2016-10-18 2019-05-21 华为技术有限公司 光耦合装置及其控制方法
CN109960045A (zh) * 2017-12-14 2019-07-02 科大国盾量子技术股份有限公司 一种硅基集成的偏振旋转调制装置
CN109960045B (zh) * 2017-12-14 2024-03-15 科大国盾量子技术股份有限公司 一种硅基集成的偏振旋转调制装置
WO2021233207A1 (zh) * 2020-05-22 2021-11-25 华为技术有限公司 偏振控制器和偏振控制方法
CN112629662A (zh) * 2020-12-24 2021-04-09 华中科技大学 一种可重构分时偏振分析系统及探测方法
CN114815324A (zh) * 2022-06-28 2022-07-29 中山大学 一种基于硅基相变材料的偏振调控装置
CN114815324B (zh) * 2022-06-28 2022-10-28 中山大学 一种基于硅基相变材料的偏振调控装置

Also Published As

Publication number Publication date
CN105308495A (zh) 2016-02-03
EP3035113A1 (en) 2016-06-22
US20160313505A1 (en) 2016-10-27
EP3035113A4 (en) 2016-08-10
JP2016535302A (ja) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2015176311A1 (zh) 偏振控制器件和偏振控制的方法
Watanabe et al. 2-D grating couplers for vertical fiber coupling in two polarizations
JP7036515B2 (ja) 光チップ、および、光を結合させるための方法
WO2016134323A1 (en) Integrated polarization splitter and rotator
Guerber et al. Broadband polarization beam splitter on a silicon nitride platform for O-band operation
EP2494393A1 (en) Methods and systems for reducing polarization dependent loss
WO2010021671A3 (en) Planar polarization splitter
JP5623675B2 (ja) 光信号多重化方法および光多重化装置
CN209928057U (zh) 横电偏振器
CN104007512B (zh) 一种光偏振分束器
JP5520393B2 (ja) 導波路型偏波ビームスプリッタ
Guan et al. High-efficiency biwavelength polarization splitter-rotator on the SOI platform
Chen et al. Ultralow crosstalk and loss CMOS compatible silicon waveguide star-crossings with arbitrary included angles
CN105408791B (zh) 单模垂直腔面发射激光器收发模块及光信号传播方法
Zhang et al. Ultra‐high bandwidth density and power efficiency chip‐to‐chip multimode transmission through a rectangular core few‐mode fiber
JPWO2013136393A1 (ja) 偏光合成分離器、偏光合成分離構造、光ミキサ、光変調器モジュール、及び偏光合成分離器の製造方法
Li et al. Fiber–Chip–Fiber Mode/Polarization/Wavelength Transmission and Processing with Few‐Mode Fiber,(de) Multiplexing SiO2 Chip and ROADM Si Chip
CN104317071B (zh) 一种基于石墨烯的平面光波导偏振分束器
Yu et al. Monolithically integrated 128-channel hybrid mode/polarization/wavelength (de) multiplexer on silicon-on-insulator
EP3076212B1 (en) Annular optical shifter and optical signal shifting method
Zou et al. An SOI based polarization insensitive filter for all-optical clock recovery
CN201654271U (zh) 用于光纤到户的平面光波导型单纤三向复用器
US11333830B2 (en) Silicon-based polarization beam splitter
Yuan et al. Ultra broadband, low loss and polarization independent silicon nitrite integrated optical power splitter
CN108761648B (zh) 一种混合集成的三端口光环形器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480003264.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892818

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014892818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014892818

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016526212

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE