WO2015174246A1 - ガスタービンサイクル設備、排ガスのco2回収設備及び燃焼排ガスの排熱回収方法 - Google Patents

ガスタービンサイクル設備、排ガスのco2回収設備及び燃焼排ガスの排熱回収方法 Download PDF

Info

Publication number
WO2015174246A1
WO2015174246A1 PCT/JP2015/062473 JP2015062473W WO2015174246A1 WO 2015174246 A1 WO2015174246 A1 WO 2015174246A1 JP 2015062473 W JP2015062473 W JP 2015062473W WO 2015174246 A1 WO2015174246 A1 WO 2015174246A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressed air
heat
heat exchange
exhaust gas
air
Prior art date
Application number
PCT/JP2015/062473
Other languages
English (en)
French (fr)
Inventor
飯嶋 正樹
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/307,183 priority Critical patent/US10480406B2/en
Priority to EP15792546.2A priority patent/EP3128151B1/en
Priority to CA2947254A priority patent/CA2947254C/en
Publication of WO2015174246A1 publication Critical patent/WO2015174246A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/08Heating air supply before combustion, e.g. by exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/06Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output providing compressed gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • F01K21/04Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas
    • F01K21/047Steam engine plants not otherwise provided for using mixtures of steam and gas; Plants generating or heating steam by bringing water or steam into direct contact with hot gas having at least one combustion gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/04Gas-turbine plants characterised by the use of combustion products as the working fluid having a turbine driving a compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • F02C3/305Increasing the power, speed, torque or efficiency of a gas turbine or the thrust of a turbojet engine by injecting or adding water, steam or other fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/14Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/60Application making use of surplus or waste energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/75Application in combination with equipment using fuel having a low calorific value, e.g. low BTU fuel, waste end, syngas, biomass fuel or flare gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/76Application in combination with an electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/211Heat transfer, e.g. cooling by intercooling, e.g. during a compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/212Heat transfer, e.g. cooling by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/60Fluid transfer
    • F05D2260/61Removal of CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C2001/006Systems comprising cooling towers, e.g. for recooling a cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to a gas turbine cycle facility for improving cycle efficiency, a CO 2 recovery facility for exhaust gas, and an exhaust heat recovery method for combustion exhaust gas.
  • an exhaust heat recovery boiler for effectively using combustion exhaust gas from the gas turbine is used.
  • This exhaust heat recovery boiler Heat Recovery Steam Generator: HRSG
  • HRSG Heat Recovery Steam Generator
  • S / T steam turbine
  • GTCC gas turbine combined cycle
  • heat recovery from high-temperature combustion exhaust gas is performed using multiple stages such as high-pressure, medium-pressure, and low-pressure economizers, evaporators, superheaters, and reheaters. Since heat was recovered at a temperature below the pressure, heat exchange was performed so as not to reach the temperature drop line and pinch point of the combustion exhaust gas. In addition, there is a problem that reheating in the reheater can only be performed at a temperature of about 600 ° C.
  • the gas turbine efficiency was about 60% even when the gas turbine inlet temperature was high pressure / high temperature of, for example, 1500 ° C. class.
  • the gas turbine inlet temperature was high pressure / high temperature of, for example, 1500 ° C. class.
  • various barriers such as a turbine cooling technique, a thermal barrier coating technique, and a heat-resistant material technique.
  • An object of the present invention is to provide a gas turbine cycle facility, an exhaust gas CO 2 recovery facility, and a combustion exhaust gas exhaust heat recovery method capable of improving the gas turbine cycle efficiency.
  • a first invention of the present invention for solving the above-described problem is a gas having a combustor that burns compressed air and fuel, and a power turbine that is driven by high-temperature and high-pressure combustion gas from the combustor.
  • a turbine, and a waste heat recovery device that recovers thermal energy from the combustion exhaust gas that has driven the power turbine, wherein the compressed air is compressed by a primary air compressor that compresses air, and the primary A first heat exchanging unit that indirectly heat-exchanges the combustion exhaust gas and the secondary compressed air, the secondary heat compressed by a secondary air compressor that further compresses the compressed air.
  • the air saturation tank of the second heat exchanging unit communicates at one end with a feed water header for introducing the feed water and the feed water header, and the exhaust heat recovery device
  • a storage header having a plurality of heat exchange tubes arranged in the inside, a communication header that communicates with the heat exchange tube at the other end, stores the supply water, and introduces the primary compressed air into the space of the storage unit
  • a supply water circulation line that circulates the supply water, and passes the primary compressed air through the tube space of the supply water that circulates in a wet wall shape along the inner wall surface of the heat exchange tube, and the heat exchange.
  • the combustion exhaust gas abutting on the outer periphery of the tube heat-exchanges the primary compressed air, generates steam while heating the supply water, and accompanies the generated steam with the heat-exchanged primary compressed air.
  • a third invention is the air saturation tank according to the first or second invention, wherein the cooling tower for cooling the exhaust gas after heat exchange discharged from the exhaust heat recovery device, and the condensed water is used as the supply water.
  • a gas turbine cycle facility comprising a supply water supply line that supplies a supply water circulation line through which supply water circulates.
  • the exhaust heat recovery device further includes the combustion exhaust gas after passing through the second heat exchange unit, and the supply water in the supply water supply line.
  • the gas turbine cycle facility is provided with a third heat exchanging portion for indirectly exchanging heat.
  • an exhaust gas comprising the gas turbine cycle equipment according to any one of the first to fourth aspects and a CO 2 recovery device that recovers CO 2 in the exhaust gas from the cooling tower.
  • a CO 2 recovery device that recovers CO 2 in the exhaust gas from the cooling tower.
  • the CO 2 absorption tower in which the CO 2 recovery apparatus is absorbed by the absorbing liquid CO 2 in the flue gas, the absorbent regenerator to regenerate the absorbing solution that has absorbed CO 2 And an exhaust gas CO 2 recovery facility characterized in that the absorption liquid is circulated and reused.
  • the seventh invention uses the gas turbine cycle equipment of the first invention, and exchanges heat of the combustion exhaust gas from the gas turbine with high-pressure secondary compressed air in the first heat exchange section of the exhaust heat recovery device.
  • the heat exchange exhaust gas is used to recover the low pressure primary compressed air in the second heat exchange section of the air saturation tank, and then the primary compressed air recovered in the second heat exchange section is introduced into the secondary air compressor, After the pressure is increased, heat is recovered at the first heat exchanging section to form secondary compressed air, and the secondary compressed air is used to introduce into the combustor and burn with fuel.
  • the heat exchange exhaust gas is used to recover the low pressure primary compressed air in the second heat exchange section of the air saturation tank, and then the primary compressed air recovered in the second heat exchange section is introduced into the secondary air compressor, After the pressure is increased, heat is recovered at the first heat exchanging section to form secondary compressed air, and the secondary compressed air is used to introduce into the combustor and burn with fuel. In the heat recovery method.
  • the combustion exhaust gas from the gas turbine is used to exchange heat with the high-pressure secondary compressed air in the first heat exchange unit of the exhaust heat recovery apparatus, and the low-pressure primary compression is performed using the heat exchange exhaust gas.
  • Heat is recovered from the air in the second heat exchange section of the air saturation tank.
  • the primary compressed air recovered by the second heat exchange unit is introduced into the secondary air compressor to obtain a high pressure, and then the heat is recovered by the first heat exchange unit to obtain the secondary compressed air.
  • FIG. 1-1 is a schematic diagram of a gas turbine cycle facility according to the first embodiment.
  • FIG. 1-2 is a schematic diagram illustrating an example of temperature and pressure conditions of the gas turbine cycle facility according to the first embodiment.
  • FIG. 2 is an enlarged view of a main part of the gas turbine cycle facility according to the first embodiment.
  • FIG. 3 is a perspective view of the heat exchange tube.
  • FIG. 4 is a schematic cross-sectional view of a heat exchange tube.
  • FIG. 5 is a schematic cross-sectional view of a heat exchange tube.
  • FIG. 6 is a graph showing the relationship between temperature and enthalpy in the temperature drop line of combustion exhaust gas, the feed water temperature, and the rise line of compressed air.
  • FIG. 7 is a schematic diagram of another gas turbine cycle facility according to the first embodiment.
  • FIG. 8 is a schematic diagram of the exhaust gas CO 2 recovery facility according to the second embodiment.
  • FIG. 1-1 is a schematic diagram of a gas turbine cycle facility according to the first embodiment.
  • FIG. 1-2 is a schematic diagram illustrating an example of temperature and pressure conditions of the engaging gas turbine cycle facility according to the first embodiment.
  • a gas turbine cycle facility 10A according to this embodiment is driven by a combustor 14 that combusts compressed air and fuel 13, and a high-temperature and high-pressure combustion gas 15 from the combustor 14.
  • a gas turbine 17 having a power turbine 16 and a waste heat recovery device 19 that recovers thermal energy from the combustion exhaust gas 18 that has driven the power turbine 16, and the compressed air 12 compresses the air 12 a by primary air compression.
  • the air 12A and the supply water 30 are indirectly heat-exchanged in the air saturation tank 31, and are composed of the second heat exchange part 19B accompanied by the water vapor 38 in the primary compressed air 12A, and the air saturation tank 31 of the second heat exchange part 19B.
  • the primary compressed air 12B accompanied by water vapor exchanged in the heat is introduced into the secondary air compressor 22 to form high pressure secondary compressed air (low temperature) 12C
  • the high pressure secondary compressed air (low temperature) 12C Heat exchange at the first heat exchanging portion 19A to form high-pressure secondary compressed air (high temperature) 12D, and then introduce the high-pressure secondary compressed air (high temperature) 12D into the combustor 14 as compressed air for combustion It is.
  • An exchange unit 19C is further provided.
  • the cooling line L 10 includes a cooling tower 41 that cools the exhaust gas 40 after heat exchange discharged from the exhaust heat recovery device 19 and a cooler 42 that circulates the cooling tower 41 with a pump P 1. And a supply water supply line L 11 for supplying the condensed water 44 condensed in the cooling tower 41 as the supply water 30 to the air saturation tank 31.
  • reference numeral 45 is discharged water
  • 46 is a chimney
  • G is a generator connected to the power turbine 16
  • L 1 is an air introduction line
  • L 2 is primary compressed air supply.
  • L 3 secondary compressed air supply line L 4 is the fuel supply line
  • L 5 is a combustion gas supply line
  • L 6 is a combustion exhaust gas discharge line
  • L 7 is the exhaust gas line
  • L 8 is an exhaust gas 40 to the chimney 46 exhaust gas discharge line for discharging
  • L 12 illustrates each drainage line.
  • the gas turbine 17 includes primary and secondary air compressors 21 and 22, a combustor 14, and a power turbine 16.
  • the gas turbine 17 receives air 12 a introduced from the outside by the primary and secondary air compressors 21 and 22.
  • the compressed air 12 that has been compressed to a high temperature and high pressure is guided to the combustor 14 side.
  • the high-temperature / high-pressure compressed air 12 and the fuel 13 are injected and burned to generate a high-temperature (for example, 1500 ° C.) combustion gas 15.
  • the combustion gas 15 is injected into the power turbine 16, and the power turbine 16 converts the thermal energy of the high-temperature and high-pressure combustion gas 15 into rotational energy.
  • Coaxial primary / secondary air compressors 21 and 22 are driven by this rotational energy, and generator G is driven by the remaining rotational energy that has driven this compressor to generate electric power.
  • the combustion exhaust gas 18 that has driven the power turbine 16 is guided to the exhaust heat recovery device 19 in order to recover its thermal energy.
  • the exhaust heat recovery device 19 includes a first heat exchange unit 19A and a second heat exchange unit 19B.
  • first heat exchanging section 19A As shown in FIG. 1-2, secondary compressed air (low temperature 275 ° C./pressure 21 data ( 2.1 MPa)) 12C is heat exchanged.
  • second heat exchange section 19B on the downstream side of the first heat exchange section 19A, the primary compressed air (temperature 224 ° C./pressure 6 ata (0.6 MPa)) 12A is introduced into the air saturation tank 31 for heat exchange. It is.
  • FIG. 2 is an enlarged view of a main part of FIG.
  • FIG. 3 is a perspective view of the heat exchange tube
  • FIGS. 4 and 5 are schematic cross-sectional views of the heat exchange tube.
  • the air saturation tank 31 communicates with the supply water header 32 for introducing the supply water 30 condensed in the cooling tower 41, the supply water header 32 and the one end 33 a side, and the inside of the exhaust heat recovery device 19.
  • FIG. 4 and 5 are views showing a state in which supply water is supplied to the heat exchange tube 33 in the supply water header 32.
  • FIG. FIG. 4 uses a supply nozzle 39 provided in the supply water header 32 for supplying the supply water 30, and the supply water 30 sprayed from the supply nozzle 39 is wet along the wall surface 33 d in the heat exchange tube 33. It is dropped while forming a water film 30a in a wall shape.
  • FIG. 5 as the supply of the supply water 30, the supply water 30 is overflowed from the storage portion 32 a of the supply water header 32, and the overflowed supply water 30 is wetted along the wall surface 33 d in the heat exchange tube 33. And dropped while forming the water film 30a.
  • the primary compressed air is supplied into the tube space 33 c of the supply water 30 that is dropped and circulated by the water film 30 a along the wall surface 33 d of the plurality of heat exchange tubes 33.
  • 12A is passed from below.
  • heat exchange is performed by the combustion exhaust gas 18 ⁇ / b> A that contacts the outer periphery of the heat exchange tube 33.
  • steam 38 is generated while heating the feed water 30 flowing down, and the generated steam 38 is entrained in the heat-exchanged primary compressed air 12A to form primary compressed air (containing water vapor) 12B. Yes.
  • the supply water 30 is jetted by the supply nozzle 39 and flows into the heat exchange tube 33.
  • the supply water 30 that has flowed into the heat exchange tube 33 falls along the wall surface 33d of the heat exchange tube 33 while forming a water film 30a in the form of a wet wall, and is stored in the storage header 37 on the downstream side.
  • the stored supply water 30 is circulated again to the supply water header 32 by the supply water circulation line L 20 via the pump P 2 .
  • the wet wall-shaped water film 30a flowing inside the heat exchange tube 33 is indirectly heated by the heat of the combustion exhaust gas 18A from the outside, and the supply water 30 becomes the water vapor 38 by the heat exchange, and the primary compressed air. It is accompanied by 12A and becomes primary compressed air (water vapor-containing) 12B.
  • the second heat exchange unit 19B performs heat exchange using the combustion exhaust gas 18A that has contributed to heat exchange in the first heat exchange unit 19A.
  • the primary compressed air (pressure 6ata (0.6 MPa)) 12A introduced into the space 35 in the storage header 37 of the air saturation tank 31 is cooled by the introduced supply water 30, and the temperature thereof is, for example, 224 ° C. Drops to 84 ° C. in the space 35.
  • the primary compressed air 12A that has reached this low temperature (84 ° C.) is indirectly heat-exchanged by the combustion exhaust gas 18A after the first heat exchange in the air saturation tank 31 of the second heat exchange unit 19B, and the temperature is 107 ° C. It becomes primary compressed air (water vapor-containing) 12B (pressure 6ata).
  • This primary compressed air (containing water vapor) 12B is then introduced into the secondary air compressor 22 where it is compressed for the second time, and high pressure (pressure 21 data (2.1 MPa)) secondary compressed air (low temperature: 275 ° C.). ) 12C.
  • this secondary compressed air 12C has a low temperature (275 ° C.), it becomes possible to exchange heat with the high-temperature (for example, 617 ° C.) combustion exhaust gas 18 in the first heat exchanging portion 19A of the exhaust heat recovery device 19, and the high pressure Secondary compressed air (high temperature 565 ° C.) 12D.
  • the high-temperature for example, 617 ° C.
  • the high pressure Secondary compressed air high temperature 565 ° C.
  • the entire amount of the primary compressed air 12A passing through the primary air compressor 21 and having a low pressure (pressure 6ata) is introduced into the second heat exchanging part 19B of the exhaust heat recovery device 19, and the first Heat exchange is performed between the combustion exhaust gas 18 ⁇ / b> A after heat exchange in the 1 heat exchange unit 19 ⁇ / b> A and the air saturation tank 31.
  • the primary compressed air (containing water vapor) (107 ° C.) 12B is then further compressed by the secondary air compressor 22 to become high-pressure (pressure 21 ata) secondary compressed air (low temperature: 275 ° C.) 12C.
  • high-pressure pressure 21 ata
  • secondary compressed air low temperature: 275 ° C.
  • this high-pressure secondary compressed air (low temperature: 275 ° C.) 12C is introduced into the first heat exchanging part 19A of the exhaust heat recovery device 19 to become high-pressure secondary compressed air (high temperature: 565 ° C.) 12D, It is introduced into the combustor 14.
  • the amount of the entrained water vapor 38 is small, so that the combustion in the combustor 14 is increased to a high temperature of, for example, 1500 ° C. Is possible.
  • the third heat exchange unit 19C when the third heat exchange unit 19C is installed and the condensed water obtained by condensing the moisture in the combustion exhaust gas 18C in the cooling tower 41 is supplied to the air saturation tank 31 as the supply water 30, heat exchange is performed. By doing so, the exhaust heat recovery efficiency of the combustion exhaust gas 18 is further improved. That is, since the temperature of the feed water 30 cooled and condensed by the cooling tower 41 is about 40 ° C., the feed water 30 at 40 ° C. is passed through the third heat exchanging portion 19C, and combustion exhaust gas (120 ° C.) The heat is exchanged with 18B and supplied to the storage header 37 side as supply water 30 having a temperature of 88 ° C.
  • the exhaust heat recovery device 19 of the present embodiment uses the first heat exchange unit 19A, the second heat exchange unit 19B, and the third heat exchange unit 19C. Since each of them efficiently exchanges heat, the high-temperature (617 ° C.) combustion exhaust gas 18 is recovered to a low temperature (95 ° C.), thereby improving the heat recovery efficiency. Further, since the amount of the water vapor 38 accompanying the primary compressed air (containing water vapor) 12B is small, the exhaust loss is small.
  • FIG. 6 is a graph showing the relationship between temperature and enthalpy in the temperature drop line of combustion exhaust gas, the feed water temperature, and the rise line of compressed air.
  • the temperature of the flue gas 18 gradually decreases in the first heat exchange unit 19A, the second heat exchange unit 19B, and the third heat exchange unit 19C (first heat exchange unit 19A (617 ° C. ⁇ 336 ° C.), second heat exchanging portion 19B (336 ° C. ⁇ 120 ° C.) and third heat exchanging portion 19C (120 ° C. ⁇ 95 ° C.)).
  • the feed water 30 rises from 40 ° C. to 88 ° C. in the third heat exchanging section 19C, and the temperature of the primary compressed air 12A falls in the air saturation tank 31, and thus rises from 84 ° C. to 107 ° C.
  • the secondary compressed air 12C rises from 275 ° C. to 565 ° C. in the first heat exchange unit 19A.
  • the gas turbine cycle efficiency is 66.76% (LHV base) due to the relationship between heat input and exhaust loss. This was able to achieve a significant improvement of about 6.7% or more than 60% of the conventional 1500 ° C. class gas turbine cycle efficiency.
  • the efficiency (LHV) of a gas turbine combined cycle (GTCC) power plant equipped with a waste heat recovery boiler using a conventional high pressure, medium pressure, and low pressure boiler is about 60%. Can rise significantly.
  • the exhaust heat recovery device 19 of the present embodiment uses a first heat exchange unit 19A, a second heat exchange unit 19B, and a third heat exchange unit 19C.
  • the third heat exchange unit 19C can be omitted.
  • the high-temperature (617 ° C.) combustion exhaust gas 18 is recovered to a low temperature (120 ° C.), and the heat recovery efficiency is somewhat lower than that of the gas turbine cycle facility 10A in FIG. Can be achieved.
  • FIG. 8 is a schematic diagram of the exhaust gas CO 2 recovery facility according to the second embodiment.
  • the exhaust gas CO 2 recovery facility 50 according to the present embodiment includes the gas turbine cycle facility 10A according to the first embodiment and a CO 2 recovery device 51 that recovers CO 2 in the exhaust gas 40 from which moisture from the cooling tower 41 has been removed. I have.
  • the CO 2 recovery device 51 includes a CO 2 absorption tower 53 that removes CO 2 in the exhaust gas 40 that has been cooled by the cooling tower 41 by the absorption liquid 52 and an absorption liquid regeneration tower 54 that regenerates the absorption liquid 52.
  • the CO 2 recovery apparatus 51 absorbs and removes CO 2 contained in the exhaust gas 40 in the amine absorption liquid in the CO 2 absorption tower 53, It is discharged as a treated exhaust gas 55 from the top side of the CO 2 absorption tower 53. Further, the absorption liquid 52 that has absorbed CO 2, in the absorbent regenerator 54 is regenerated by steam stripping with reboiler 59, circulation line L 21 of a closed system to reuse at the CO 2 absorber 53 again, L 22 Is building.
  • the amine-based absorbent is brought into contact with the exhaust gas 40, for example, so as to take in CO 2 into the amine absorbent.
  • the gas 56 containing CO 2 removed by the steam stripping is discharged on the absorption liquid regeneration tower 54 side, moisture is removed by a gas-liquid separator, and CO 2 is recovered as gas.
  • a cooling tower is separately provided on the upstream side of the CO 2 recovery device to cool the exhaust gas.
  • the exhaust gas 40 obtains supply water 30. Therefore, in the CO 2 recovery facility 50 for exhaust gas of this embodiment, it is not necessary to install a separate cooling facility.
  • the CO 2 concentration in the exhaust gas is 3.5 to 4.0 Vol.
  • the CO 2 concentration in the exhaust gas is 5-7 Vol. As a result, the amount of exhaust gas can be reduced, and the CO 2 recovery facility becomes compact.
  • a CO 2 absorption tower 53 that absorbs CO 2 in the exhaust gas 40 with the absorption liquid 52 and an absorption liquid regeneration tower 54 that regenerates the absorption liquid 52 that has absorbed CO 2.
  • the present invention is not limited to this, and any equipment that can recover CO 2 in the exhaust gas may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)

Abstract

 パワータービン16からの燃焼排ガス18を用いて、排熱回収装置19の第1熱交換部19Aで高圧の二次圧縮空気12Cを熱交換させると共に、この熱交換排ガス18Aを用いて低圧の一次圧縮空気12Aを空気飽和槽31の第2熱交換部19Bで熱回収する。そして、第2熱交換部19Bで熱回収した一次圧縮空気12Bを二次空気圧縮機22に導入し、高圧とした後、第1熱交換部19Aで熱回収して、二次圧縮空気12Dとし、この二次圧縮空気12Dを用いて、燃焼器14に導入して燃料により燃焼させる。

Description

ガスタービンサイクル設備、排ガスのCO2回収設備及び燃焼排ガスの排熱回収方法
 本発明は、サイクル効率を向上させるガスタービンサイクル設備、排ガスのCO2回収設備及び燃焼排ガスの排熱回収方法に関するものである。
 例えば、ガスタービン(G/T)コンバインドサイクル効率を向上させるために、ガスタービンからの燃焼排ガスを有効利用するための排熱回収ボイラが用いられている。この排熱回収ボイラ(Heat Recovery Steam Generator:HRSG)は、ガスタービン等の排熱発生源から排出される高温の燃焼排ガスを利用して蒸気を生成する装置であり、例えば、排熱回収ボイラで生成した蒸気を蒸気タービン(S/T)に供給し、発電機を駆動させるガスタービンコンバインドサイクル(Gas Turbine Combined Cycle:GTCC)発電プラントなどにおいて広く用いられている(特許文献1及び2)。
特開2003-83003号公報 特開2013-171001号公報
 しかしながら、従来の排熱回収ボイラでは、高温の燃焼排ガスからの熱回収を複数段の例えば高圧・中圧・低圧の各節炭器、蒸発器、過熱器及び再熱器等を用いて、臨界圧以下の温度で熱回収しているので、燃焼排ガスの温度降下線とピンチポイントに至らないよう熱交換を行っていた。また再熱器での再熱も温度が600℃程度での再熱しかできない、という問題がある。
 よって、ガスタービン入口温度が例えば1500℃級の高圧・高温の場合においてもガスタービン効率(%LHV)が60%程度であった。なお、ガスタービン入口温度を例えば1700℃に上昇させる場合には、タービン冷却技術、遮熱コーティング技術、耐熱材料技術等の様々な障壁がある、という問題がある。
 よって、入口温度が例えば1500℃級のガスタービン設備であってもシステム効率の向上を図るシステムの出現が切望されている。
 本発明は、前記問題に鑑み、ガスタービンサイクル効率の向上を図ることができるガスタービンサイクル設備、排ガスのCO2回収設備及び燃焼排ガスの排熱回収方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、圧縮空気と燃料とを燃焼する燃焼器と、前記燃焼器からの高温・高圧の燃焼ガスにより駆動されるパワータービンとを有するガスタービンと、前記パワータービンを駆動した燃焼排ガスから熱エネルギーを回収する排熱回収装置と、を備え、前記圧縮空気は、空気を圧縮する一次空気圧縮機により圧縮された一次圧縮空気と、前記一次圧縮空気をさらに圧縮する二次空気圧縮機により圧縮された二次圧縮空気とからなり、前記排熱回収装置は、前記燃焼排ガスと前記二次圧縮空気とを間接熱交換する第1熱交換部と、前記第1熱交換部を通過し、第1熱交換後の燃焼排ガスと前記一次圧縮空気及び供給水とを空気飽和槽で間接熱交換し、前記一次圧縮空気に水蒸気を同伴する第2熱交換部とからなると共に、前記第2熱交換部の空気飽和槽で熱交換した水蒸気を同伴する一次圧縮空気を、前記二次空気圧縮機に導入して高圧の低温二次圧縮空気とした後、該高圧の低温二次圧縮空気を前記第1熱交換部で熱交換して高圧の高温二次圧縮空気とし、その後、該高圧の高温二次圧縮空気を前記燃焼器に導入することを特徴とするガスタービンサイクル設備にある。
 第2の発明は、第1の発明において、前記第2熱交換部の空気飽和槽は、前記供給水を導入する供給水ヘッダと、前記供給水ヘッダと一端で連通し、前記排熱回収装置内に配置される複数の熱交換チューブと、前記熱交換チューブと他端で連通し、前記供給水を貯留すると共に、貯留部の空間内に前記一次圧縮空気を導入する導入部を有する貯留ヘッダと、前記供給水を循環する供給水循環ラインとを備え、前記熱交換チューブの内壁面に沿って濡れ壁状で循環する供給水のチューブ空間内に、一次圧縮空気を通過させると共に、前記熱交換チューブの外周に当接する前記燃焼排ガスにより、前記一次圧縮空気を熱交換すると共に、前記供給水を加熱しつつ水蒸気を発生させ、該発生した水蒸気を熱交換された前記一次圧縮空気に同伴することを特徴とするガスタービンサイクル設備にある。
 第3の発明は、第1又は2の発明において、前記排熱回収装置から排出された熱交換後の排ガスを冷却する冷却塔と、凝縮された凝縮水を前記供給水として、前記空気飽和槽内を供給水が循環する供給水循環ラインに供給する供給水供給ラインとを備えたことを特徴とするガスタービンサイクル設備にある。
 第4の発明は、第1乃至3のいずれか一つの発明において、前記排熱回収装置は、さらに第2熱交換部通過後の前記燃焼排ガスと、前記供給水供給ライン中の前記供給水とを間接熱交換する第3熱交換部を備えることを特徴とするガスタービンサイクル設備にある。
 第5の発明は、第1乃至4のいずれか一つの発明のガスタービンサイクル設備と、前記冷却塔からの排ガス中のCO2を回収するCO2回収装置とを備えたことを特徴とする排ガスのCO2回収設備にある。
 第6の発明は、第5の発明において、前記CO2回収装置が排ガス中のCO2を吸収液で吸収するCO2吸収塔と、CO2を吸収した吸収液を再生する吸収液再生塔とを備え、吸収液を循環再利用することを特徴とする排ガスのCO2回収設備にある。
 第7の発明は、第1の発明のガスタービンサイクル設備を用い、ガスタービンからの燃焼排ガスを、排熱回収装置の第1熱交換部で高圧の二次圧縮空気と熱交換させると共に、この熱交換排ガスを用いて低圧の一次圧縮空気を空気飽和槽の第2熱交換部で熱回収し、次いで前記第2熱交換部で熱回収した一次圧縮空気を二次空気圧縮機に導入し、高圧とした後、前記第1熱交換部で熱回収して二次圧縮空気とし、この二次圧縮空気を用いて、燃焼器に導入して燃料により燃焼させることを特徴とする燃焼排ガスの排熱回収方法にある。
 本発明によれば、ガスタービンからの燃焼排ガスを用いて、排熱回収装置の第1熱交換部で高圧の二次圧縮空気と熱交換させると共に、この熱交換排ガスを用いて低圧の一次圧縮空気を空気飽和槽の第2熱交換部で熱回収する。そして、第2熱交換部で熱回収した一次圧縮空気を二次空気圧縮機に導入し、高圧とした後、第1熱交換部で熱回収して二次圧縮空気とし、この二次圧縮空気を用いて、燃焼器に導入して燃料により燃焼させることで、例えば温度1500℃まで加熱する。これによって、排熱回収装置における排熱回収の効率を極めて高くすることができる。この結果、ガスタービンサイクル効率の向上を図ることができる。
図1-1は、実施例1に係るガスタービンサイクル設備の概略図である。 図1-2は、実施例1に係るガスタービンサイクル設備の温度・圧力条件の一例を示した概略図である。 図2は、実施例1に係るガスタービンサイクル設備の要部拡大図である。 図3は、熱交換チューブの斜視図である。 図4は、熱交換チューブの概略断面図である。 図5は、熱交換チューブの概略断面図である。 図6は、燃焼排ガスの温度降下線と供給水温度及び圧縮空気の上昇線とにおける温度とエンタルピーとの関係図である。 図7は、実施例1の他のガスタービンサイクル設備の概略図である。 図8は、実施例2に係る排ガスのCO2回収設備の概略図である。
 以下に添付図面を参照して、本発明の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。
 図1-1は、実施例1に係るガスタービンサイクル設備の概略図である。図1-2は、実施例1に係ガスタービンサイクル設備の温度・圧力条件の一例を示した概略図である。
 図1-1に示すように、本実施例に係るガスタービンサイクル設備10Aは、圧縮空気と燃料13とを燃焼する燃焼器14と、燃焼器14からの高温・高圧の燃焼ガス15により駆動されるパワータービン16とを有するガスタービン17と、パワータービン16を駆動した燃焼排ガス18から熱エネルギーを回収する排熱回収装置19と、を備え、圧縮空気12は、空気12aを圧縮する一次空気圧縮機21により圧縮された一次圧縮空気12Aと、一次圧縮空気12Aをさらに圧縮する二次空気圧縮機22により圧縮された二次圧縮空気12Cとからなり、排熱回収装置19は、燃焼排ガス18と二次圧縮空気12Cとを間接熱交換する第1熱交換部19Aと、第1熱交換部19Aを通過し、第1熱交換後の燃焼排ガス18Aと一次圧縮空気12A及び供給水30とを空気飽和槽31で間接熱交換し、一次圧縮空気12Aに水蒸気38を同伴する第2熱交換部19Bとからなると共に、第2熱交換部19Bの空気飽和槽31で熱交換した水蒸気を同伴する一次圧縮空気12Bを、二次空気圧縮機22に導入して高圧の二次圧縮空気(低温)12Cとした後、該高圧の二次圧縮空気(低温)12Cを第1熱交換部19Aで熱交換して高圧の二次圧縮空気(高温)12Dとし、その後、該高圧の二次圧縮空気(高温)12Dを燃焼器14に燃焼用の圧縮空気として導入するものである。
 本実施例では、排熱回収装置19の第2熱交換部19Bの下流側に、第2熱交換部19Bで熱交換した後の燃焼排ガス18Bを用いて供給水30を熱交換する第3熱交換部19Cをさらに備えている。
 また、本実施例では、排熱回収装置19から排出された熱交換後の排ガス40を冷却する冷却塔41と、冷却塔41をポンプP1で循環する冷却器42を備えた冷却ラインL10と、冷却塔41内で凝縮された凝縮水44を、空気飽和槽31への供給水30として供給する供給水供給ラインL11とを備えている。
 なお、図1-1、図1-2中、符号45は排出水、46は煙突、Gはパワータービン16に連結され発電する発電機、L1は空気導入ライン、L2は一次圧縮空気供給ライン、L3は二次圧縮空気供給ライン、L4は燃料供給ライン、L5は燃焼ガス供給ライン、L6は燃焼排ガス排出ライン、L7は排ガスライン、L8は排ガス40を煙突46へ排出する排ガス排出ライン、L12は排水ラインを各々図示する。
 ガスタービン17は、一次・二次空気圧縮機21、22と、燃焼器14と、パワータービン16とを備えており、一次・二次空気圧縮機21、22で外部から導入された空気12aを圧縮して、高温・高圧とされた圧縮空気12は燃焼器14側に導かれる。燃焼器14では、この高温・高圧の圧縮空気12、燃料13を噴射して燃焼させて高温(例えば1500℃)の燃焼ガス15を発生させる。燃焼ガス15はパワータービン16へ噴射され、パワータービン16で高温高圧の燃焼ガス15が持つ熱エネルギーを回転エネルギーに変換する。この回転エネルギーによって同軸の一次・二次空気圧縮機21、22が駆動され、この圧縮機を駆動した残りの回転エネルギーによって発電機Gが駆動されて電力を発生する。
 次に、パワータービン16を駆動した燃焼排ガス18は、その熱エネルギーを回収するため排熱回収装置19へ導かれる。
 この排熱回収装置19は、第1熱交換部19Aと第2熱交換部19Bとを備えている。
 第1熱交換部19Aでは、図1-2に示すように、パワータービン16から排出される高温(例えば617℃)の燃焼排ガス18を用いて、二次圧縮空気(低温275℃/圧力21ata(2.1MPa))12Cを熱交換するものである。また、第1熱交換部19Aの下流側の第2熱交換部19Bでは、一次圧縮空気(温度224℃/圧力6ata(0.6MPa))12Aを空気飽和槽31に導入して熱交換するものである。
 図2は、図1の要部拡大図である。図3は、熱交換チューブの斜視図であり、図4及び図5は、熱交換チューブの概略断面図である。
 図2に示すように、空気飽和槽31は、冷却塔41で凝縮された供給水30を導入する供給水ヘッダ32と、供給水ヘッダ32と一端33a側で連通し、排熱回収装置19内に配置される複数の熱交換チューブ33と、熱交換チューブ33と他端33b側で連通し、供給水30を貯留部34内で貯留すると共に、この貯留部34の上方側の空間35内に一次圧縮空気12Aを導入する導入部36を有する貯留ヘッダ37と、供給水30をポンプP2により循環する供給水循環ラインL20とを備えている。
 図4及び図5は、供給水ヘッダ32内において、熱交換チューブ33へ供給水が供給される様子を示す図である。
 図4は、供給水30の供給として、供給水ヘッダ32に設けた供給ノズル39を用いており、供給ノズル39から散布された供給水30は、熱交換チューブ33内の壁面33dに沿って濡れ壁状で水膜30aを形成しつつ落下される。
 図5は、供給水30の供給として、供給水ヘッダ32の貯留部32aから供給水30をオーバーフローさせており、オーバーフローした供給水30は、熱交換チューブ33内の壁面33dに沿って濡れ壁状で水膜30aを形成しつつ落下される。
 そして、図3、図4及び図5に示すように、複数本の熱交換チューブ33の壁面33dに沿って水膜30aによって落下して循環する供給水30のチューブ空間33c内に、一次圧縮空気12Aを下方側から通過させている。そして、この一次圧縮空気12Aが通過する際、熱交換チューブ33の外周に当接する燃焼排ガス18Aにより、熱交換される。この熱交換の際においては、流下する供給水30を加熱しつつ水蒸気38を発生させ、この発生した水蒸気38を熱交換された一次圧縮空気12Aに同伴させ、一次圧縮空気(含水蒸気)12Bとしている。
 そして、例えば図4に示すように、供給水30は供給ノズル39により噴射され、熱交換チューブ33内に流入させる。熱交換チューブ33内に流入した供給水30は熱交換チューブ33の壁面33dに沿って濡れ壁状で水膜30aを形成しつつ落下し、下流側の貯留ヘッダ37で貯留される。この貯留した供給水30はポンプP2を介して供給水循環ラインL20により供給水ヘッダ32に再度循環される。
 そして、熱交換チューブ33の内側を流れる濡れ壁状の水膜30aが、外部からの燃焼排ガス18Aの熱によって間接的に加熱され、熱交換により供給水30が水蒸気38となって、一次圧縮空気12Aに同伴され、一次圧縮空気(含水蒸気)12Bとなる。この第2熱交換部19Bは、第1熱交換部19Aで熱交換に寄与した燃焼排ガス18Aを用いての熱交換となる。
 ここで、空気飽和槽31の貯留ヘッダ37内の空間35に導入される一次圧縮空気(圧力6ata(0.6MPa))12Aは、導入される供給水30により冷却され、その温度が例えば224℃のものが84℃まで、該空間35内で低下する。
 この低い温度(84℃)となった一次圧縮空気12Aは、第2熱交換部19Bの空気飽和槽31において、第1熱交換後の燃焼排ガス18Aにより間接的に熱交換され、温度が107℃(圧力6ata)の一次圧縮空気(含水蒸気)12Bとなる。
 この一次圧縮空気(含水蒸気)12Bは、次に二次空気圧縮機22に導入されて2回目の圧縮がなされ、高圧(圧力21ata(2.1MPa))の二次圧縮空気(低温:275℃)12Cとなる。
 この二次圧縮空気12Cは、温度が低い(275℃)ので、排熱回収装置19の第1熱交換部19Aにおいて、高温(例えば617℃)の燃焼排ガス18と熱交換が可能となり、高圧の二次圧縮空気(高温565℃)12Dとなる。
 従来では、圧縮機を1台設置して圧縮するような場合には、一次空気圧縮機で圧縮した一次圧縮空気(温度224℃)をそのまま同一の二次空気圧縮機に導入して高圧(21ata)・高温(400℃)の圧縮空気として、燃焼器に導入している。
 これに対して、本発明においては、一次空気圧縮機21を通過して低圧(圧力6ata)の一次圧縮空気12Aを全量、排熱回収装置19の第2熱交換部19Bに導入して、第1熱交換部19Aで熱交換した後の燃焼排ガス18Aと、空気飽和槽31で熱交換している。
 この際、空気飽和槽31では、供給水30を導入して低圧(圧力6ata)の一次圧縮空気12Aの温度を低下(275℃→84℃)し、第1熱交換部19Aで熱交換した後の燃焼排ガス(温度336℃)18Aの排熱により熱交換され、温度が上昇(107℃)された低圧の一次圧縮空気(含水蒸気)12Bとなる。この一次圧縮空気(含水蒸気)(107℃)12Bは、次に二次空気圧縮機22によりさらに圧縮され、高圧(圧力21ata)の二次圧縮空気(低温:275℃)12Cとなる。この二次圧縮の際、従来のような連続して圧縮している場合と異なり、温度が低下しているので、圧縮機の容量をコンパクトにすることができる。
 さらに、この高圧の二次圧縮空気(低温:275℃)12Cは、排熱回収装置19の第1熱交換部19Aに導入して、高圧の二次圧縮空気(高温:565℃)12Dとなり、燃焼器14に導入される。
 本実施例では、第2熱交換部19Bにおける一次圧縮空気12Aの熱交換の際に、同伴される水蒸気38の量は少ないので、燃焼器14での燃焼を例えば1500℃の高温まで上昇させることが可能となる。
 また、本実施例では、第3熱交換部19Cを設置して、冷却塔41で燃焼排ガス18C中の水分を凝縮した凝縮水を、供給水30として空気飽和槽31へ供給する際、熱交換することで、燃焼排ガス18の排熱回収効率の向上をさらに図るようにしている。すなわち、冷却塔41で冷却され、凝縮された供給水30は温度が40℃程度であるので、この40℃の供給水30を第3熱交換部19C内に通過させ、燃焼排ガス(120℃)18Bと熱交換させ、温度88℃の供給水30として貯留ヘッダ37側へ供給することとなる。
 このように、燃焼排ガス18を熱交換して排熱回収する際、本実施例の排熱回収装置19では、第1熱交換部19Aと第2熱交換部19Bと第3熱交換部19Cで各々効率的な熱交換をしているので、高温(617℃)の燃焼排ガス18を低温(95℃)まで熱回収することとなり、熱回収効率が向上する。
 また、一次圧縮空気(含水蒸気)12Bに同伴される水蒸気38の量は少ないので、排気損失が少ないものとなる。
 図6は、燃焼排ガスの温度降下線と供給水温度及び圧縮空気の上昇線とにおける温度とエンタルピーとの関係図である。
 図6に示すように、燃焼排ガス18は第1熱交換部19A、第2熱交換部19B及び第3熱交換部19Cにおいて、徐々に温度が低下する(第1熱交換部19A(617℃→336℃)、第2熱交換部19B(336℃→120℃)及び第3熱交換部19C(120℃→95℃))。
 これに対し、供給水30は第3熱交換部19Cで40℃から88℃に上昇し、一次圧縮空気12Aは空気飽和槽31で温度が低下するので、84℃から107℃に上昇する。次いで、二次圧縮空気12Cは第1熱交換部19Aで275℃から565℃に上昇する。
 また、表1に示すように、入熱と排気ロスとの関係によりガスタービンサイクル効率が66.76%(LHVベース)となる。これは従来の1500℃級のガスタービンサイクル効率の60%よりも約6.7%以上の大幅な向上を図ることができた。
Figure JPOXMLDOC01-appb-T000001
 
 以上より、従来の高圧・中圧・低圧ボイラを用いた排熱回収ボイラを備えたガスタービンコンバインドサイクル(Gas Turbine Combined Cycle:GTCC)発電プラントの効率(LHV)が60%程度であったものを大幅に上昇することができる。
 本実施例では、燃焼排ガス18を熱交換して排熱回収する際、本実施例の排熱回収装置19では、第1熱交換部19Aと第2熱交換部19Bと第3熱交換部19Cで各々効率的な熱交換をしているが、図7に示すガスタービンサイクル設備10Bに示すように、第3熱交換部19Cを省略することもできる。
 この場合には、高温(617℃)の燃焼排ガス18を低温(120℃)まで熱回収することとなり、図1のガスタービンサイクル設備10Aよりは、熱回収効率が多少低下するが、設備の簡素化を図ることができる。
 次に、本発明の実施例2に係る排ガスのCO2回収設備について、図8を参照して説明する。図8は、実施例2に係る排ガスのCO2回収設備の概略図である。なお、実施例1と同様の部材については、同一符号を付してその説明は省略する。本実施例に係る排ガスのCO2回収設備50は、実施例1のガスタービンサイクル設備10Aと、冷却塔41からの水分を除去した排ガス40中のCO2を回収するCO2回収装置51とを備えている。このCO2回収装置51は、冷却塔41で冷却後の排ガス40中のCO2を吸収液52により除去するCO2吸収塔53及び吸収液52を再生する吸収液再生塔54を備えている。
 一般に、CO2回収装置51は、吸収液52として例えばアミン系の吸収液を用いる場合、CO2吸収塔53内において該アミン吸収液に排ガス40中に含まれるCO2を吸収させて除去し、CO2吸収塔53の塔頂側から処理排ガス55として排出される。また、CO2を吸収した吸収液52は、吸収液再生塔54において、リボイラ59によるスチームストリッピングにより再生され、再度CO2吸収塔53にて再利用する閉鎖系の循環ラインL21、L22を構築している。なお、CO2吸収塔53内においては、アミン系吸収液は、排ガス40と例えば対向接触させることで、CO2をアミン吸収液内に取り込むようにしている。ここで、吸収液再生塔54側ではスチームストリッピングにより除去されたCO2を含むガス56が排出され、気液分離器で水分を除去し、CO2はガスとして回収される。
 従来では、排ガス中のCO2を回収する場合、CO2回収装置の前段側において、冷却塔を別途設けて、排ガスを冷却していたが、実施例1で排ガス40は、供給水30を得るための冷却塔41により冷却されているので、本実施例の排ガスのCO2回収設備50においては、別途冷却設備を設置することが不要となる。また、通常のガスタービンでは、排ガス中のCO2濃度が3.5~4.0Vol.%と低いが、本ガスタービンサイクルでは排ガス中のCO2濃度は5~7Vol.%と上昇し、結果的に排ガス量を少なくでき、CO2回収設備がコンパクトとなる。
 なお、本実施例では、CO2回収装置51として、排ガス40中のCO2を吸収液52で吸収するCO2吸収塔53と、CO2を吸収した吸収液52を再生する吸収液再生塔54とを備えた場合で説明したが、本発明はこれに限定されるものではなく、排ガス中のCO2を回収することができる設備であればいずれを用いるようにしてもよい。
 10A、10B ガスタービンサイクル設備
 12a 空気
 12 圧縮空気
 12A 一次圧縮空気
 12B 一次圧縮空気(含水蒸気)
 12C 二次圧縮空気(低温)
 12D 二次圧縮空気(高温)
 13 燃料
 14 燃焼器
 15 燃焼ガス
 16 パワータービン
 17 ガスタービン
 18、18A~18C 燃焼排ガス
 19 排熱回収装置
 19A 第1熱交換部
 19B 第2熱交換部
 19C 第3熱交換部
 21 一次空気圧縮機
 22 二次空気圧縮機
 31 空気飽和槽
 32 供給水ヘッダ
 33 熱交換チューブ
 34 貯留部
 35 空間
 37 貯留ヘッダ
 38 水蒸気
 40 排ガス
 50 排ガスのCO2回収設備
 51 CO2回収装置

Claims (7)

  1.  圧縮空気と燃料とを燃焼する燃焼器と、前記燃焼器からの高温・高圧の燃焼ガスにより駆動されるパワータービンとを有するガスタービンと、
     前記パワータービンを駆動した燃焼排ガスから熱エネルギーを回収する排熱回収装置と、を備え、
     前記圧縮空気は、空気を圧縮する一次空気圧縮機により圧縮された一次圧縮空気と、前記一次圧縮空気をさらに圧縮する二次空気圧縮機により圧縮された二次圧縮空気とからなり、
     前記排熱回収装置は、前記燃焼排ガスと前記二次圧縮空気とを間接熱交換する第1熱交換部と、
     前記第1熱交換部を通過し、第1熱交換後の燃焼排ガスと前記一次圧縮空気及び供給水とを空気飽和槽で間接熱交換し、前記一次圧縮空気に水蒸気を同伴する第2熱交換部とからなると共に、
     前記第2熱交換部の空気飽和槽で熱交換した水蒸気を同伴する一次圧縮空気を、前記二次空気圧縮機に導入して高圧の低温二次圧縮空気とした後、該高圧の低温二次圧縮空気を前記第1熱交換部で熱交換して高圧の高温二次圧縮空気とし、その後、該高圧の高温二次圧縮空気を前記燃焼器に導入することを特徴とするガスタービンサイクル設備。
  2.  請求項1において、
     前記第2熱交換部の空気飽和槽は、前記供給水を導入する供給水ヘッダと、
     前記供給水ヘッダと一端で連通し、前記排熱回収装置内に配置される複数の熱交換チューブと、
     前記熱交換チューブと他端で連通し、前記供給水を貯留すると共に、貯留部の空間内に前記一次圧縮空気を導入する導入部を有する貯留ヘッダと、
     前記供給水を循環する供給水循環ラインとを備え、
     前記熱交換チューブの内壁面に沿って濡れ壁状で循環する供給水のチューブ空間内に、一次圧縮空気を通過させると共に、前記熱交換チューブの外周に当接する前記燃焼排ガスにより、前記一次圧縮空気を熱交換すると共に、前記供給水を加熱しつつ水蒸気を発生させ、該発生した水蒸気を熱交換された前記一次圧縮空気に同伴することを特徴とするガスタービンサイクル設備。
  3.  請求項1又は2において、
     前記排熱回収装置から排出された熱交換後の排ガスを冷却する冷却塔と、凝縮された凝縮水を前記供給水として、前記空気飽和槽内を供給水が循環する供給水循環ラインに供給する供給水供給ラインとを備えたことを特徴とするガスタービンサイクル設備。
  4.  請求項1乃至3のいずれか一つにおいて、
     前記排熱回収装置は、さらに第2熱交換部通過後の前記燃焼排ガスと、前記供給水供給ライン中の前記供給水とを間接熱交換する第3熱交換部を備えることを特徴とするガスタービンサイクル設備。
  5.  請求項1乃至4のいずれか一つのガスタービンサイクル設備と、
     前記冷却塔からの排ガス中のCO2を回収するCO2回収装置とを備えたことを特徴とする排ガスのCO2回収設備。
  6.  請求項5において、
     前記CO2回収装置が排ガス中のCO2を吸収液で吸収するCO2吸収塔と、CO2を吸収した吸収液を再生する吸収液再生塔とを備え、吸収液を循環再利用することを特徴とする排ガスのCO2回収設備。
  7.  請求項1のガスタービンサイクル設備を用い、
     ガスタービンからの燃焼排ガスを、排熱回収装置の第1熱交換部で高圧の二次圧縮空気と熱交換させると共に、この熱交換排ガスを用いて低圧の一次圧縮空気を空気飽和槽の第2熱交換部で熱回収し、次いで前記第2熱交換部で熱回収した一次圧縮空気を二次空気圧縮機に導入し、高圧とした後、前記第1熱交換部で熱回収して二次圧縮空気とし、この二次圧縮空気を用いて、燃焼器に導入して燃料により燃焼させることを特徴とする燃焼排ガスの排熱回収方法。
PCT/JP2015/062473 2014-05-15 2015-04-24 ガスタービンサイクル設備、排ガスのco2回収設備及び燃焼排ガスの排熱回収方法 WO2015174246A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/307,183 US10480406B2 (en) 2014-05-15 2015-04-24 Gas turbine cycle equipment, equipment for recovering CO2 from flue gas, and method for recovering exhaust heat from combustion flue gas
EP15792546.2A EP3128151B1 (en) 2014-05-15 2015-04-24 Gas turbine cycle equipment, equipment for recovering co2 from exhaust gas, and method for recovering exhaust heat from combustion exhaust gas
CA2947254A CA2947254C (en) 2014-05-15 2015-04-24 Gas turbine cycle equipment, equipment for recovering co2 from flue gas, and method for recovering exhaust heat from combustion flue gas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014101758A JP6327941B2 (ja) 2014-05-15 2014-05-15 ガスタービンサイクル設備、排ガスのco2回収設備及び燃焼排ガスの排熱回収方法
JP2014-101758 2014-05-15

Publications (1)

Publication Number Publication Date
WO2015174246A1 true WO2015174246A1 (ja) 2015-11-19

Family

ID=54479789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062473 WO2015174246A1 (ja) 2014-05-15 2015-04-24 ガスタービンサイクル設備、排ガスのco2回収設備及び燃焼排ガスの排熱回収方法

Country Status (5)

Country Link
US (1) US10480406B2 (ja)
EP (1) EP3128151B1 (ja)
JP (1) JP6327941B2 (ja)
CA (1) CA2947254C (ja)
WO (1) WO2015174246A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2546723B (en) * 2015-12-11 2021-06-02 Hieta Tech Limited Inverted brayton cycle heat engine
US11433350B2 (en) 2016-10-19 2022-09-06 Mitsubishi Heavy Industries, Ltd. Carbon dioxide recovery system, thermal power generation facility, and carbon dioxide recovery method
US20180216532A1 (en) * 2017-01-31 2018-08-02 General Electric Company System and method for treating exhaust gas
CZ201826A3 (cs) * 2018-01-17 2019-06-12 Vysoká Škola Báňská-Technická Univerzita Ostrava Zařízení pro výrobu elektřiny s využitím akumulace médií
JP2019190359A (ja) * 2018-04-24 2019-10-31 三菱重工エンジニアリング株式会社 プラント及び燃焼排ガス処理方法
CN111664438B (zh) * 2019-03-07 2021-10-08 中石化广州工程有限公司 一种水帘式定期排污扩容器
JP7412102B2 (ja) 2019-07-24 2024-01-12 三菱重工業株式会社 ガスタービンプラント
US11326513B1 (en) * 2020-10-30 2022-05-10 Doosan Heavy Industries & Construction Co., Ltd. Hybrid power generation equipment
DE102022115556A1 (de) * 2022-06-22 2023-12-28 MTU Aero Engines AG Verfahren zum Betreiben einer Strömungsmaschine
CN115060070B (zh) * 2022-06-23 2024-03-15 北新建材(陕西)有限公司 一种利用干燥机余热加热冷水的温度循环控制使用系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0119053B2 (ja) * 1981-12-10 1989-04-10 Mitsubishi Gas Chemical Co
JPH06221114A (ja) * 1992-11-07 1994-08-09 Asea Brown Boveri Ag ガスターボ群と蒸気タービン装置との組合せ装置を操作する方法
US20010015059A1 (en) * 2000-01-13 2001-08-23 Mircea Fetescu Cooling-air cooler for a gas-turbine plant and use of such a cooling-air cooler
WO2001071176A2 (en) * 2000-03-20 2001-09-27 Exxonmobil Chemical Patents Inc. Method and system for generating power
JP2003049665A (ja) * 2001-08-03 2003-02-21 Mitsui Eng & Shipbuild Co Ltd ガスタービンコージェネレーションシステム
JP2006002622A (ja) * 2004-06-16 2006-01-05 Mitsui Eng & Shipbuild Co Ltd ガスタービン用再生器
WO2011076973A1 (en) * 2009-12-22 2011-06-30 Reijo Alander Arrangement in a gas turbine process
JP2013217215A (ja) * 2012-04-05 2013-10-24 Kawasaki Heavy Ind Ltd ランキンサイクルエンジンを備えるガスタービンエンジン装置
JP2013540229A (ja) * 2010-10-05 2013-10-31 アルストム テクノロジー リミテッド Co2捕捉を備えたコンバインドサイクル発電所及びこれを運転する方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1213737A (en) 1981-12-10 1986-11-12 Hiromi Nakamura Regenerative gas turbine cycle
JP4299313B2 (ja) * 1997-04-22 2009-07-22 株式会社日立製作所 ガスタービン設備
US7096659B1 (en) * 2000-01-21 2006-08-29 Hitachi, Ltd. Gas turbine electric power generation equipment and air humidifier
JP2003083003A (ja) 2001-09-13 2003-03-19 Mitsubishi Heavy Ind Ltd ガスタービン及びガスタービン複合発電プラントの運転方法
SE0301585D0 (sv) 2003-05-30 2003-05-30 Euroturbine Ab Förfarande för drift av en gasturbingrupp
EP1609958A1 (de) * 2004-06-22 2005-12-28 Siemens Aktiengesellschaft Gasturbine mit einem Verdichter und einem Rekuperator
JP5039651B2 (ja) * 2008-07-08 2012-10-03 三菱重工業株式会社 排ガス中の二酸化炭素回収システム
DE102010013729A1 (de) 2010-03-31 2011-10-06 Siemens Aktiengesellschaft Verfahren und Vorrichtung zum Abtrennen von Kohlendioxid aus einem Abgas einer fossil befeuerten Kraftwerksanlage
JP5747309B2 (ja) * 2011-07-29 2015-07-15 一般財団法人電力中央研究所 Caesシステムおよびこれを有する発電プラント
JP5716922B2 (ja) 2012-02-22 2015-05-13 三菱日立パワーシステムズ株式会社 排熱回収ボイラおよび複合発電設備
JP5639609B2 (ja) * 2012-03-01 2014-12-10 三菱日立パワーシステムズ株式会社 高湿分空気利用ガスタービンシステム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0119053B2 (ja) * 1981-12-10 1989-04-10 Mitsubishi Gas Chemical Co
JPH06221114A (ja) * 1992-11-07 1994-08-09 Asea Brown Boveri Ag ガスターボ群と蒸気タービン装置との組合せ装置を操作する方法
US20010015059A1 (en) * 2000-01-13 2001-08-23 Mircea Fetescu Cooling-air cooler for a gas-turbine plant and use of such a cooling-air cooler
WO2001071176A2 (en) * 2000-03-20 2001-09-27 Exxonmobil Chemical Patents Inc. Method and system for generating power
JP2003049665A (ja) * 2001-08-03 2003-02-21 Mitsui Eng & Shipbuild Co Ltd ガスタービンコージェネレーションシステム
JP2006002622A (ja) * 2004-06-16 2006-01-05 Mitsui Eng & Shipbuild Co Ltd ガスタービン用再生器
WO2011076973A1 (en) * 2009-12-22 2011-06-30 Reijo Alander Arrangement in a gas turbine process
JP2013540229A (ja) * 2010-10-05 2013-10-31 アルストム テクノロジー リミテッド Co2捕捉を備えたコンバインドサイクル発電所及びこれを運転する方法
JP2013217215A (ja) * 2012-04-05 2013-10-24 Kawasaki Heavy Ind Ltd ランキンサイクルエンジンを備えるガスタービンエンジン装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3128151A4 *

Also Published As

Publication number Publication date
JP2015218634A (ja) 2015-12-07
JP6327941B2 (ja) 2018-05-23
EP3128151B1 (en) 2019-01-02
EP3128151A1 (en) 2017-02-08
CA2947254A1 (en) 2015-11-19
US10480406B2 (en) 2019-11-19
CA2947254C (en) 2018-10-23
US20170114718A1 (en) 2017-04-27
EP3128151A4 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6327941B2 (ja) ガスタービンサイクル設備、排ガスのco2回収設備及び燃焼排ガスの排熱回収方法
JP5558036B2 (ja) 二酸化炭素回収型汽力発電システム
JP5558310B2 (ja) 二酸化炭素回収方法及び二酸化炭素回収型汽力発電システム
US9702270B2 (en) Hybrid Rankine cycle
JP5402842B2 (ja) 二酸化炭素の回収方法及び回収装置
EP2444141A1 (en) Carbon dioxide recovery method and carbon- dioxide-recovery-type steam power generation system
JP2006506568A (ja) 低排気火力発電装置
JP5637809B2 (ja) 二酸化炭素回収方法及び二酸化炭素回収型汽力発電システム
JP2010235395A (ja) 二酸化炭素回収装置および二酸化炭素回収装置を備えた火力発電システム
JP5656244B2 (ja) 混合ガスの成分分離回収方法およびその装置
JP5738045B2 (ja) 二酸化炭素の回収システム及び方法
WO2013114937A1 (ja) 二酸化炭素回収装置
AU2013313605B2 (en) Heat recovery system and heat recovery method
JP5737844B2 (ja) Co2回収装置の熱回収設備および熱回収方法
JP2014121672A (ja) 二酸化炭素の回収装置、及び該回収装置の運転方法
CN109372600B (zh) 回热煤基超临界co2二次再热发电系统
KR101695029B1 (ko) 발전소 건식 재생용 이산화탄소 분리회수장치로부터의 열 회수장치
CN205746785U (zh) 用于电厂烟气余热利用的orc省煤器和系统
JP2012161750A (ja) Co2回収方法およびco2回収装置
CN105937759A (zh) 用于电厂烟气余热利用的orc省煤器和系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792546

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015792546

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015792546

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2947254

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15307183

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE