WO2015173939A1 - Refrigeration unit - Google Patents

Refrigeration unit Download PDF

Info

Publication number
WO2015173939A1
WO2015173939A1 PCT/JP2014/063005 JP2014063005W WO2015173939A1 WO 2015173939 A1 WO2015173939 A1 WO 2015173939A1 JP 2014063005 W JP2014063005 W JP 2014063005W WO 2015173939 A1 WO2015173939 A1 WO 2015173939A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
compressor
oil
condenser
flow path
Prior art date
Application number
PCT/JP2014/063005
Other languages
French (fr)
Japanese (ja)
Inventor
寛也 石原
齊藤 信
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/063005 priority Critical patent/WO2015173939A1/en
Priority to JP2016519060A priority patent/JP6359095B2/en
Priority to CN201480073546.8A priority patent/CN105917178B/en
Publication of WO2015173939A1 publication Critical patent/WO2015173939A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant

Definitions

  • the present invention relates to a refrigeration apparatus equipped with a compressor.
  • the refrigeration apparatus includes, for example, a compressor, a heat source side heat exchanger that functions as a condenser, a throttling device, and a use side heat exchanger that functions as an evaporator, and these are connected by a refrigerant pipe.
  • the compressor includes a compression mechanism having a compression chamber for compressing the refrigerant. For this reason, refrigerator oil is enclosed in the compressor in order to suppress wear of sliding parts of the compression mechanism.
  • the refrigerating machine oil sealed in the compressor is discharged from the discharge pipe of the compressor at a temperature equivalent to the refrigerant temperature discharged from the compressor.
  • the refrigeration apparatus has a configuration in which the refrigeration oil discharged from the compressor is returned to the compressor via, for example, an oil return pipe.
  • the refrigerant in the compressor is heated, so that the temperature of the refrigerant discharged from the compressor rises.
  • the temperature of the discharged refrigerant rises, the temperature exceeds the allowable temperature of the machine parts inside the compressor, causing a compressor failure.
  • Patent Document 1 separates the refrigerant discharged from the compressor and the refrigerating machine oil with an oil separator, and flows the separated refrigerating machine oil through an auxiliary heat exchanger attached to the condenser.
  • the auxiliary heat exchanger described in Patent Document 1 is an air-cooled type that cools the refrigeration oil by exchanging heat between the refrigeration oil and the air passing through the fins of the condenser.
  • Patent Document 2 separates refrigeration oil discharged from a compressor with an oil separator, and flows the separated refrigeration oil through an oil return pipe passing through a condenser.
  • the oil return pipe described in Patent Literature 2 is an air-cooled type that cools the refrigeration oil by exchanging heat between the refrigeration oil and the air passing through the condenser.
  • Patent Document 3 separates refrigeration oil discharged from a compressor with an oil separator, and flows the separated refrigeration oil through an oil return circuit that passes through a condenser.
  • the description in Patent Document 3 allows heat exchange between refrigerating machine oil and refrigerant in the condenser to return the refrigerating machine oil to the compressor, and also allows the refrigerant exchanged with refrigerating machine oil to be injected into the compressor. is there.
  • Patent Document 4 includes an oil injection circuit having a cooling heat exchanger for cooling refrigeration oil separately from the condenser.
  • Japanese Patent Laid-Open No. 50-048536 (for example, refer to the drawings) Japanese Utility Model Publication No. 50-02493 (see, for example, FIG. 3) JP-A-5-340616 (see, for example, FIG. 1) JP 2009-257705 A (see, for example, abstract)
  • the present invention has been made to solve at least one of the above-described problems, and provides a refrigeration apparatus capable of achieving both suppression of cooling performance of a refrigeration apparatus and suppression of compressor failure. It is intended to provide.
  • a refrigerating apparatus is a refrigerating apparatus having a refrigerant circuit in which a compressor, a condenser, a main throttle device, and an evaporator are connected by a refrigerant pipe, and a refrigerant between the compressor and the condenser.
  • An oil separator connected to the pipe for separating the refrigerant discharged from the compressor and the refrigerating machine oil; an oil cooling section for cooling the refrigerating machine oil separated in the oil separator; and a refrigerating machine oil outflow side of the oil separator; And an oil return pipe that connects the compressor via an oil cooling section.
  • the oil cooling section is provided integrally with the condenser, and is 15% to 25% of the heat transfer area of the condenser. It occupies a range.
  • the refrigeration apparatus according to the present invention has the above-described configuration, it is possible to achieve both suppression of the cooling performance of the refrigeration apparatus and suppression of compressor failure.
  • Embodiment 1 is an example of a refrigerant circuit configuration of a refrigeration apparatus according to Embodiment 1 of the present invention. It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 2 of this invention. It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 3 of this invention. It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 4 of this invention. It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 5 of this invention. It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 6 of this invention. It is an example of the refrigerant circuit structure etc. of the freezing apparatus which concerns on Embodiment 7 of this invention. 10 is an example of a refrigerant circuit configuration of a refrigeration apparatus according to Embodiment 8 of the present invention. It is explanatory drawing of the conventional freezing apparatus.
  • FIG. FIG. 1 is an example of a refrigerant circuit configuration of the refrigeration apparatus 100 according to Embodiment 1.
  • the configuration of the refrigeration apparatus 100 will be described with reference to FIG.
  • the refrigeration apparatus 100 according to the present embodiment is provided with an improvement that can achieve both suppression of reduction in cooling performance of the refrigeration apparatus 100 and suppression of failure of the compressor 1.
  • the refrigeration apparatus 100 includes a compressor 1 that compresses and discharges refrigerant, a condenser 2 (heat radiator) that condenses the refrigerant, a main throttle device 3 that decompresses the refrigerant, and an evaporator 4 that evaporates the refrigerant. is doing.
  • the refrigeration apparatus 100 has a refrigerant circuit (refrigeration cycle) configured by connecting the compressor 1, the condenser 2, the main throttle device 3, and the evaporator 4 with a refrigerant pipe P.
  • the refrigerating apparatus 100 is connected to an oil return pipe OP used to return the refrigerating machine oil to the compressor 1, and an oil separator 5 that separates the refrigerant from the refrigerating machine oil, and a heat exchanger 6 that functions as an economizer. And an economizer throttle device 7 for economizer. Furthermore, the refrigeration apparatus 100 includes a control unit 30 that controls the rotational speed of the compressor 1 and the like.
  • the refrigerant pipe P includes a refrigerant pipe P1 that connects the discharge side of the compressor 1 and the oil separator 5, a refrigerant pipe P2 that connects the refrigerant outlet side of the oil separator 5 and the condenser 2, and condensation. And a refrigerant pipe P ⁇ b> 3 connecting the heat exchanger 2 and the heat exchanger 6.
  • the refrigerant pipe P includes a refrigerant pipe P4 that connects the heat exchanger 6 and the main throttle device 3, a refrigerant pipe P5 that connects the main throttle device 3 and the evaporator 4, the evaporator 4 and the compressor 1.
  • a refrigerant pipe P6 connecting the refrigerant suction side and an economizer pipe P7 connecting the refrigerant pipe P4 and the compressor 1 are provided.
  • the economizer pipe P7 has one end connected to the refrigerant pipe P4 and the other end connected to the compressor 1 via the economizer expansion device 7 and the heat exchanger 6.
  • the economizer pipe P7 has a configuration corresponding to the connection pipe.
  • the oil return pipe OP is connected to the compressor 1 via the condenser 2 with one end side connected to the refrigerating machine oil outflow side of the oil separator 5. More specifically, the other end side of the oil return pipe OP is branched into one connected to a low-stage compression unit 1A side of the compressor 1 described later and one connected to the high-stage compression unit 1B side. Yes. For this reason, the refrigeration oil flowing through the oil return pipe OP is returned to each of the low-stage compression unit 1A and the high-stage compression unit 1B.
  • the compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state.
  • the compressor 1 has a refrigerant discharge side connected to the oil separator 5 via a refrigerant pipe P1, and a refrigerant suction side connected to the evaporator 4 via a refrigerant pipe P6.
  • the compressor 1 is a two-stage screw compressor having a low-stage compressor 1A and a high-stage compressor 1B. That is, the refrigerant that has flowed into the compressor 1 flows into the low-stage compression unit 1A and is compressed to an intermediate pressure, and then flows into the high-stage compression unit 1B and is compressed to become high temperature and high pressure.
  • the condenser 2 performs heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and the air.
  • the condenser 2 is a heat exchanger on the heat source side.
  • the condenser 2 has an upstream side connected to the oil separator 5 via the refrigerant pipe P2 and a downstream side connected to the heat exchanger 6 via the refrigerant pipe P3.
  • the condenser 2 can be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the condenser 2 and the air passing through the fins.
  • the condenser 2 is provided with a condenser blower 2 ⁇ / b> A for supplying air that exchanges heat with the refrigerant supplied to the condenser 2.
  • the rotation speed of the condenser blower 2 ⁇ / b> A is controlled by the control unit 30, and the amount of heat exchange between the refrigerant and the air in the condenser 2 can be changed.
  • the condenser 2 is connected to the condenser 2 such that the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2.
  • the part of the condenser 2 to which the oil return pipe OP is connected constitutes the oil cooling part 2B. That is, the oil cooling section 2B is provided integrally with the condenser 2 and occupies a range of 15% to 25% of the heat transfer area of the condenser 2.
  • the heat transfer area of the condenser 2 includes the heat transfer area in the oil cooling unit 2B.
  • the main throttle device 3 is for expanding the refrigerant, the upstream side is connected to the heat exchanger 6 via the refrigerant pipe P4, and the downstream side is connected to the evaporator 4 via the refrigerant pipe P5. is there.
  • the main throttle device 3 can be composed of, for example, an electronic expansion valve whose opening degree is variable.
  • the evaporator 4 exchanges heat between the refrigerant decompressed by the main expansion device 3 and the air.
  • the evaporator 4 is a use side heat exchanger.
  • the evaporator 4 is comprised with the plate fin and tube type heat exchanger which can exchange heat between the refrigerant
  • the oil separator 5 separates refrigerant and refrigeration oil.
  • the oil separator 5 has an upstream side connected to the compressor 1 via a refrigerant pipe P1 and a downstream side connected to the condenser 2 via a refrigerant pipe P2.
  • the oil separator 5 is connected to the condenser 2 on the outflow side of the refrigerating machine oil via the oil return pipe OP. That is, the refrigerating machine oil separated from the refrigerant by the oil separator 5 is returned to the compressor 1 after being cooled by the condenser 2.
  • the heat exchanger 6 is a heat exchanger that exchanges heat between the refrigerant and the refrigerant, and functions as an economizer of the refrigeration apparatus 100.
  • the heat exchanger 6 includes a first flow path connected to the refrigerant pipe P3 and the refrigerant pipe P4, and a second flow path connected to the economizer pipe P7, and the refrigerant flowing through the first flow path It has a structure capable of exchanging heat with the refrigerant flowing through the second flow path.
  • the heat exchanger 6 can cool the refrigerant flowing through the first flow path by exchanging heat with the refrigerant flowing through the second flow path. Then, the cooled refrigerant is supplied to the evaporator 4 on the downstream side.
  • the heat exchanger 6 has a function of improving the cooling performance of the refrigeration apparatus 100. That is, since the refrigeration apparatus 100 includes the heat exchanger 6, the power consumption of the compressor 1 increases, but the cooling performance (efficiency) is improved because the increase in the cooling capacity is large.
  • the heat exchanger 6 is connected between the low stage compression part 1A and the high stage compression part 1B of the compressor 1 via the economizer piping P7.
  • coolant which flows in into the high stage compression part 1B is the refrigerant
  • the lower the refrigerant temperature the more the compression work in the compressor 1 can be suppressed.
  • the refrigerant supplied from the economizer pipe P7 has a temperature lower than that of the refrigerant compressed by the low-stage compression unit 1A, and as a result, the refrigerant temperature supplied to the high-stage compression unit 1B can be suppressed. . For this reason, the refrigerant temperature discharged from the compressor 1 can be suppressed.
  • the economizer throttle device 7 is for expanding the refrigerant.
  • the economizer expansion device 7 is provided between one end side of the refrigerant pipe P and the second flow path of the heat exchanger 6.
  • the economizer throttling device 7 can be constituted by, for example, an electronic expansion valve whose opening degree is variable.
  • Control unit 30 Based on detection results of various sensors and the like, the control unit 30 rotates the rotation speed (including operation and stop) of the compressor 1, the condenser blower 2 ⁇ / b> A attached to the condenser 2, and the evaporator blower attached to the evaporator 4.
  • the rotational speed of 4A (including operation and stop), the opening of the main throttle device 3, the opening of the economizer throttle device 7, and the like are controlled.
  • this control part 30 can be comprised by control apparatuses, such as a microcomputer, for example.
  • the gaseous refrigerant that has flowed into the condenser 2 undergoes heat exchange with the air supplied from the condenser blower 2A attached to the condenser 2 to condense, and flows out of the condenser 2 as a high-pressure liquid refrigerant. .
  • the liquid refrigerant flowing out of the condenser 2 flows into the first flow path of the heat exchanger 6 functioning as an economizer through the refrigerant pipe P3, and is cooled by exchanging heat with the refrigerant flowing through the second flow path. .
  • the refrigerant cooled in the first flow path of the heat exchanger 6 flows into the main expansion device 3 and is depressurized, and a part of the refrigerant flows into the economizer expansion device 7 and is depressurized.
  • the refrigerant decompressed by the main throttle device 3 flows into the evaporator 4 through the refrigerant pipe P5 and evaporates by exchanging heat with the air supplied from the evaporator blower 4A attached to the evaporator 4.
  • the refrigerant flowing out of the evaporator 4 is sucked into the compressor 1 through the refrigerant pipe P6.
  • the refrigerant sucked into the compressor 1 flows into the low stage compression unit 1A of the compressor 1 and is compressed.
  • the refrigerant decompressed by the economizer expansion device 7 flows into the second flow path of the heat exchanger 6 and exchanges heat with the refrigerant flowing through the first flow path, and then flows into the intermediate stage of the compressor 1.
  • the refrigerant flowing into the intermediate stage of the compressor 1 flows into the high stage compression section 1B and is compressed together with the refrigerant compressed by the low stage compression section 1A.
  • the refrigerating machine oil in the compressor 1 is mixed with the refrigerant. For this reason, the refrigeration oil in the compressor 1 is discharged from the compressor 1 with a refrigerant
  • the high-temperature refrigeration oil discharged from the compressor 1 flows into the oil separator 5 and is separated from the refrigerant.
  • the refrigerating machine oil in the oil separator 5 is supplied to the condenser 2 via the oil return pipe OP and cooled.
  • the refrigerating machine oil cooled by the condenser 2 is returned to the low-stage compression unit 1A and the high-stage compression unit 1B of the compressor 1 through the oil return pipe OP, respectively.
  • the refrigerating apparatus 100 can return to the compressor 1 after cooling refrigerator oil. Thereby, the refrigeration apparatus 100 can suppress wear of the sliding parts and the like constituting the low-stage compression unit 1A and the high-stage compression unit 1B.
  • the refrigerating apparatus 100 according to the first embodiment is connected to the condenser 2 so that the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2. is there. That is, the surface area of the fin of the condenser 2 to which the oil return pipe OP is connected occupies a range of 15% to 25% of the total surface area of the fin of the condenser 2.
  • the surface area of the fins of the condenser 2 to which the oil return pipe OP is connected is smaller than 15% of the total surface area of the fins of the condenser 2, the cooling amount of the refrigerating machine oil becomes insufficient and the compressor 1 The temperature of the discharged refrigerant rises, and the compressor 1 is likely to fail. Further, when the surface area of the fin of the condenser 2 to which the oil return pipe OP is connected is larger than 25% of the total surface area of the fin of the condenser 2, the heat radiation amount of the refrigerant flowing through the condenser 2 is insufficient. As a result, the cooling performance of the refrigeration apparatus 100 is reduced.
  • the fin surface area of the condenser 2 to which the oil return pipe OP is connected has a range of 15% to 25% of the total surface area of the fins of the condenser 2. Therefore, the suppression of the cooling performance of the refrigeration apparatus 100 and the suppression of the failure of the compressor 1 can both be achieved.
  • the refrigerating apparatus 100 according to Embodiment 1 separately cools the refrigerating machine oil by using a part of the condenser 2 without providing a heat exchanger for cooling the refrigerating machine oil. For this reason, the refrigerating apparatus 100 according to the first embodiment can suppress the manufacturing cost because a heat exchanger is not separately provided.
  • FIG. 9 is an explanatory diagram of a conventional refrigeration apparatus.
  • some conventional refrigeration apparatuses are provided with a sub heat exchanger 10 for cooling refrigeration oil separately from the condenser 2.
  • the sub heat exchanger 10 is connected to an injection pipe IJ through which a refrigerant flows and an oil return pipe OP that does not pass through the condenser 2.
  • the supplied refrigerant coolant and refrigerating machine oil heat-exchange, and refrigerating machine oil is cooled.
  • the refrigeration apparatus 100 is configured to cool the refrigeration oil with the air of the air-cooled condenser 2 instead of cooling the refrigeration oil with a refrigerant. For this reason, the amount of refrigerant circulating through the compressor 1, the condenser 2, the main throttle device 3, and the evaporator 4 can be prevented as much as the refrigerant (cooling refrigerant flowing through the injection pipe IJ) for cooling the refrigerating machine oil is unnecessary. . That is, in the refrigeration apparatus 100, the amount of refrigerant for injection is smaller than that in the conventional refrigeration apparatus, so that the refrigerant flowing through the condenser 2 is reduced.
  • the load on the condenser 2 is reduced, and even if the oil return pipe OP is connected to the condenser 2 and the heat transfer area between the refrigerant and the air in the condenser 2 is reduced, the condensation is performed. It is suppressed that the condensation temperature of the vessel 2 changes compared to the conventional case.
  • FIG. FIG. 2 is an example of a refrigerant circuit configuration of the refrigeration apparatus 102 according to the second embodiment.
  • the refrigeration apparatus 102 according to the second embodiment supplies a refrigerant temperature sensor 9 that detects the refrigerant temperature discharged from the compressor 1, supplies liquid refrigerant to the compressor 1, and reduces the refrigerant temperature discharged from the compressor 1.
  • the injection pipe IJ has a configuration corresponding to the connection pipe.
  • the refrigerant temperature sensor 9 is used to detect the surface temperature of the refrigerant pipe P1.
  • the refrigerant temperature sensor 9 has a detection unit (not shown) provided at the tip of the sensor.
  • coolant temperature sensor 9 is arrange
  • the detection unit of the refrigerant temperature sensor 9 is connected to the control unit 30 by wiring or wirelessly.
  • the method for detecting the temperature of the refrigerant flowing through the refrigerant pipe P1 by the refrigerant temperature sensor 9 is, for example, a method in which a resistance that varies depending on the temperature is built in the detection unit, and the control unit 30 performs an operation for converting the resistance value into temperature. Can be adopted.
  • injection pipe IJ has one end connected to the refrigerant pipe P4 and the other end connected to the compressor 1. Note that one end side of the injection pipe IJ is connected to the downstream side of the connection position of the economizer pipe P7, for example.
  • An injection throttle device 8 is connected to the injection pipe IJ.
  • the injection pipe IJ supplies the refrigerant cooled through the first flow path of the heat exchanger 6 functioning as an economizer to the compressor 1 and suppresses the refrigerant temperature discharged from the compressor 1. It is piping.
  • the injection throttle device 8 is for expanding the refrigerant.
  • the injection throttle device 8 is provided in the injection pipe IJ.
  • the injection throttle device 8 can be constituted by, for example, an electronic expansion valve whose opening degree is variable.
  • the opening degree of the injection throttle device 8 is controlled by an opening degree control means 30B of the control unit 30 described later.
  • the controller 30 determines whether or not the detection result of the refrigerant temperature sensor 9 is higher than, for example, a preset temperature T1, and the injection throttle device 8 based on the determination result of the temperature determination unit 30A. Opening degree control means 30B for controlling the opening degree. For example, when the temperature determination unit 30A determines that the detection result of the refrigerant temperature sensor 9 is higher than T1, the opening degree control unit 30B opens the injection throttle device 8. Thereby, a liquid refrigerant is supplied to the compressor 1 and the rise in the temperature of the refrigerant discharged from the compressor 1 can be suppressed.
  • the refrigeration apparatus 102 according to the second embodiment has the following effects in addition to the same effects as the refrigeration apparatus 100 according to the first embodiment. Since the refrigeration apparatus 102 includes the refrigerant temperature sensor 9, the injection pipe IJ, the injection throttle device 8, the temperature determination means 30A, and the temperature determination means 30A, the increase in the temperature of the refrigerant discharged from the compressor 1 is suppressed. Therefore, exceeding the allowable temperature of the machine parts inside the compressor 1 can be suppressed, and failure of the compressor 1 can be suppressed. That is, the refrigeration apparatus 102 according to the second embodiment has improved reliability by the amount that can suppress the failure of the compressor 1 and the like.
  • the refrigeration apparatus 102 has the injection pipe IJ, it does not have a structure (for example, a heat exchanger) for cooling the refrigeration oil connected to the injection pipe IJ. For this reason, the refrigerant for injection is not used for cooling of refrigeration oil. That is, in the refrigeration apparatus 102, it is possible to prevent an increase in the temperature of the refrigerant for injection, and it is possible to prevent a decrease in the injection performance.
  • a structure for example, a heat exchanger
  • FIG. 3 shows an example of the refrigerant circuit configuration of the refrigeration apparatus 103 according to the third embodiment.
  • the refrigeration apparatus 103 according to Embodiment 3 includes a sub heat exchanger 10 in addition to the configuration of the refrigeration apparatus 102 according to Embodiment 2. Further, in the refrigeration apparatus 103 according to Embodiment 3, it is not limited whether the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2. In the refrigeration apparatus 103 according to Embodiment 3, for example, the oil return pipe OP is less than 15% of the heat transfer area of the condenser 2.
  • the sub heat exchanger 10 can cool the refrigerating machine oil that could not be cooled by the condenser 2.
  • the sub heat exchanger 10 is a heat exchanger that exchanges heat between the refrigerating machine oil and the refrigerant.
  • the sub heat exchanger 10 has a first flow path connected to the oil return pipe OP and a second flow path connected to the injection pipe IJ, and the refrigerating machine oil flowing through the first flow path and the first flow path 2 has a structure capable of exchanging heat with the refrigerant flowing through the two flow paths.
  • the refrigeration apparatus 103 according to the third embodiment has the following effects in addition to the same effects as the refrigeration apparatuses 100 and 102 according to the first and second embodiments.
  • the refrigerating apparatus 103 according to the third embodiment has a sub heat exchanger 10 for auxiliary cooling in addition to the condenser 2 as a configuration for cooling the refrigerating machine oil, and uses the refrigerant for injection for cooling the refrigerating machine oil. . For this reason, when the refrigerant temperature discharged from the compressor 1 rises, the refrigerant temperature can be more easily lowered, and the reliability of the refrigeration apparatus 103 can be improved.
  • the refrigeration oil is cooled in the condenser 2 before the refrigeration oil is cooled in the sub heat exchanger 10. For this reason, the refrigeration apparatus 103 according to the third embodiment suppresses an increase in the temperature of the refrigerant flowing through the injection pipe IJ, as compared with the case where the refrigeration oil is cooled only by the refrigerant flowing through the injection pipe IJ. Can do. For this reason, an increase in the temperature of the refrigerant injected into the compressor 1 can be suppressed, and an increase in the temperature of the refrigerant discharged from the compressor 1 can be suppressed.
  • the refrigeration apparatus 103 cools the refrigeration oil in the sub heat exchanger 10 even when the cooling of the refrigeration oil in the condenser 2 is insufficient, and raises the temperature of the refrigerant flowing through the injection pipe IJ. It is possible to achieve both of suppressing the rise in the temperature of the refrigerant discharged from the compressor 1 by suppressing the above.
  • FIG. 4 is an example of a refrigerant circuit configuration of the refrigeration apparatus 104 according to the fourth embodiment.
  • the fourth embodiment components that are the same as those in the first to third embodiments are given the same reference numerals, and differences will be mainly described.
  • the fourth embodiment is different from the second embodiment in that the injection pipe IJ for supplying the liquid refrigerant to the compressor 1 and the injection throttle device 8 are not provided.
  • the control unit 30 includes, in addition to the temperature determination unit 30A, an opening degree control unit 30C that controls the opening degree of the economizer expansion device 7 based on the determination result of the temperature determination unit 30A. For example, when the temperature determination unit 30A determines that the detection result of the refrigerant temperature sensor 9 is higher than T1, the opening degree control unit 30C further increases the opening degree of the economizer expansion device 7. Thereby, when the liquid refrigerant is not flowing through the economizer pipe P7, the liquid refrigerant flows. When the liquid refrigerant is flowing through the economizer pipe P7, the amount of the liquid refrigerant is increased. That is, the amount of liquid refrigerant supplied to the compressor 1 via the economizer pipe P7 can be increased, and the rise in the temperature of the refrigerant discharged from the compressor 1 can be suppressed.
  • the refrigeration apparatus 104 according to the fourth embodiment has the following effects in addition to the same effects as the refrigeration apparatuses 100 and 102 according to the first embodiment. That is, the refrigeration apparatus 104 according to the fourth embodiment supplies liquid refrigerant to the compressor 1 to suppress an increase in the temperature of the refrigerant discharged from the compressor 1, and the injection pipe IJ and the injection throttle apparatus 8 It is possible to achieve both a reduction in manufacturing cost as much as provided.
  • FIG. 5 is an example of the refrigerant circuit configuration of the refrigeration apparatus 105 according to the fifth embodiment.
  • the refrigeration apparatus 105 according to the fifth embodiment has a sub heat exchanger 11 instead of the sub heat exchanger 10 of the refrigeration apparatus 103 according to the third embodiment.
  • the refrigeration apparatus 105 according to the fifth embodiment is not provided with the injection pipe IJ, the injection throttle device 8, and the refrigerant temperature sensor 9.
  • the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2 is limited. Not. In the refrigeration apparatus 105 according to Embodiment 5, for example, the oil return pipe OP is less than 15% of the heat transfer area of the condenser 2.
  • the sub heat exchanger 11 can cool the refrigerating machine oil that could not be cooled by the condenser 2.
  • the sub heat exchanger 11 is a heat exchanger that exchanges heat between the refrigerating machine oil and the refrigerant.
  • the sub heat exchanger 11 has a first flow path connected to the oil return pipe OP and a second flow path connected to the economizer pipe P7, and the refrigerating machine oil flowing through the first flow path and the first flow path 2 has a structure capable of exchanging heat with the refrigerant flowing through the two flow paths.
  • the refrigeration apparatus 105 according to the fifth embodiment has the same effects as the refrigeration apparatus 100 according to the first embodiment.
  • FIG. 6 is an example of a refrigerant circuit configuration of the refrigeration apparatus 106 according to the sixth embodiment.
  • the refrigeration apparatus 106 according to Embodiment 6 includes an oil return pipe OP2 and an accumulator 12 that stores excess refrigerant.
  • the refrigerating apparatus 106 according to the sixth embodiment cools the refrigerating machine oil with the accumulator 12 instead of cooling the refrigerating machine oil with the condenser 2.
  • the oil return pipe OP2 has one end connected to the refrigeration oil outflow side of the oil separator 5 and the other end connected to the compressor 1 via the accumulator 12.
  • the accumulator 12 has one end connected to the evaporator 4 via the refrigerant pipe P6 and the other end connected to the suction side of the compressor 1 via the refrigerant pipe P8.
  • the accumulator 12 has a container 12A for storing a liquid refrigerant.
  • the oil return pipe OP2 is provided to exchange heat with the liquid refrigerant in the accumulator 2.
  • a part of the oil return pipe OP2 is disposed so as to approach the bottom side. That is, the oil return pipe OP2 is disposed so that the portion of the accumulator 12 in the container 12A is closer to the bottom side of the container 12A.
  • the oil return pipe OP2 is more reliably immersed in the liquid refrigerant stored in the container 12A, heat exchange between the liquid refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil is cooled more efficiently.
  • the refrigerating apparatus 106 according to the sixth embodiment separately cools the refrigerating machine oil by using a part of the accumulator 12 without providing a heat exchanger for cooling the refrigerating machine oil. For this reason, the refrigeration apparatus 106 according to the sixth embodiment can reduce the manufacturing cost because a heat exchanger is not separately provided.
  • the refrigeration apparatus 106 according to the sixth embodiment can heat the liquid refrigerant in the accumulator 12 because a part of the oil return pipe OP2 is disposed in the container 12A of the accumulator 12. For this reason, it is possible to prevent the liquid refrigerant from flowing out from the accumulator 12 to the suction side of the compressor 1, that is, so-called liquid back. For this reason, the refrigeration apparatus 106 according to the sixth embodiment has improved reliability because the so-called liquid back can be suppressed.
  • the refrigeration apparatus 106 can store the liquid refrigerant in the accumulator 12, and can also heat the liquid refrigerant in the oil return pipe OP2. For this reason, even if the refrigerant in the two-phase state including the liquid refrigerant flows out of the evaporator 4 to improve the efficiency (performance improvement) of the evaporator 4 as a heat exchanger, the so-called liquid back is suppressed. be able to.
  • FIG. 7 shows an example of a refrigerant circuit configuration of the refrigeration apparatus 107 according to the seventh embodiment.
  • the seventh embodiment components that are the same as those in the first to sixth embodiments are given the same reference numerals, and differences will be mainly described.
  • an oil sump 13 is provided in the oil return pipe OP2 in addition to the configuration of the sixth embodiment.
  • the oil sump 13 is for stabilizing the amount of refrigerating machine oil returned to the compressor 1.
  • the oil sump 13 can store refrigeration oil.
  • the oil sump 13 is provided downstream of the accumulator 12 in the oil return pipe OP2 and upstream of the compressor 1.
  • the refrigeration apparatus 107 according to the seventh embodiment has the following effects in addition to the same effects as the refrigeration apparatus 106 according to the sixth embodiment. That is, the refrigeration apparatus 107 according to Embodiment 7 can stabilize the supply of refrigeration oil to the compressor 1 and can suppress the refrigeration oil from being exhausted by the compressor 1. Thereby, the refrigeration apparatus 107 according to the seventh embodiment can more reliably suppress the wear of the sliding parts constituting the compressor 1 and the reliability is improved.
  • FIG. 8 shows an example of the refrigerant circuit configuration of the refrigeration apparatus 108 according to the eighth embodiment.
  • the refrigeration apparatus 108 according to the eighth embodiment includes the refrigerant temperature sensor 9 provided in the refrigerant pipe P1.
  • the refrigeration apparatus 108 according to Embodiment 8 includes a temperature determination unit 30A that determines whether or not the detection result of the refrigerant temperature sensor 9 is higher than, for example, a preset temperature T1, and the detection of the refrigerant temperature sensor 9. It has rotation speed control means 30D for controlling the rotation speed of the condenser blower 2A attached to the condenser 2 based on the result.
  • Rotation speed control means 30D For example, when the temperature determination unit 30A determines that the detection result of the refrigerant temperature sensor 9 is higher than T1, the rotation speed control unit 30D increases the rotation speed of the condenser blower 2A. Thereby, much air is supplied to the condenser 2 and cooling of the refrigerating machine oil supplied to the condenser 2 through the oil return pipe OP can be promoted.
  • the refrigeration apparatus 108 according to the eighth embodiment has the following effects in addition to the effects of the refrigeration apparatus 100 according to the first embodiment. That is, the refrigeration apparatus 107 increases the rotation speed of the condenser blower 2A when the temperature of the refrigerant discharged from the compressor 1 rises above a preset temperature T1. For this reason, the temperature of the refrigerating machine oil returned to the compressor 1 can be lowered, and the refrigerant temperature discharged from the compressor 1 can be suppressed.
  • the refrigerant circuit of the refrigeration apparatus 100 according to the first embodiment is used as the refrigerant circuit, but the refrigerant circuit is not limited thereto.
  • the eighth embodiment can be similarly applied to the configurations of the second to fifth embodiments having a mechanism for cooling the refrigerating machine oil by the condenser 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A refrigeration unit which has a refrigerant circuit that is configured by a compressor, a condenser, a main throttle unit, and an evaporator being connected by refrigerant piping, the refrigeration unit being equipped with: an oil separator that separates refrigerating machine oil from the refrigerant discharged from the compressor and is connected to a refrigerant pipe between the compressor and the condenser; an oil cooling portion that cools the refrigerating machine oil separated by the oil separator; and an oil return pipe that connects the refrigerating-machine-oil-outflow side of the oil separator and the compressor through the oil cooling portion. The oil cooling portion is provided integrally with the condenser and makes up 15% to 25% of the heat transfer area of the condenser.

Description

冷凍装置Refrigeration equipment
 本発明は、圧縮機を備えた冷凍装置に関するものである。 The present invention relates to a refrigeration apparatus equipped with a compressor.
 冷凍装置は、たとえば、圧縮機、凝縮器として機能する熱源側熱交換器、絞り装置及び蒸発器として機能する利用側熱交換器とを有し、これらが冷媒配管で接続されて構成された冷媒回路を有するものが提案されている。ここで、圧縮機は、冷媒を圧縮する圧縮室を有する圧縮機構を備えている。このため、圧縮機には、圧縮機構の摺動部品の摩耗を抑制するため、冷凍機油が封入されている。 The refrigeration apparatus includes, for example, a compressor, a heat source side heat exchanger that functions as a condenser, a throttling device, and a use side heat exchanger that functions as an evaporator, and these are connected by a refrigerant pipe. Those having a circuit have been proposed. Here, the compressor includes a compression mechanism having a compression chamber for compressing the refrigerant. For this reason, refrigerator oil is enclosed in the compressor in order to suppress wear of sliding parts of the compression mechanism.
 圧縮機に封入されていた冷凍機油は、圧縮機から吐出される冷媒温度と同等の温度で、圧縮機の吐出配管から吐出される。冷凍装置は、圧縮機から吐出された冷凍機油を、たとえば油戻し管などを介して圧縮機に戻す構成を有している。しかし、冷凍機油の温度が高いまま圧縮機に戻すと、圧縮機内の冷媒が加熱されるため、圧縮機から吐出される冷媒温度が上昇する。吐出される冷媒温度が上昇すると、圧縮機内部の機械部品の許容温度を上回り、圧縮機の故障の原因となる。また、冷凍機油の温度が高いまま圧縮機に戻すと、その分圧縮機の冷媒密度が低減し、圧縮機の仕事量が増大して圧縮機の消費電力が増大してしまう。このように、冷凍機油を高温のまま圧縮機に戻すと種々の弊害があるため、冷凍装置には、圧縮機から吐出された冷凍機油を冷却する機構を備えたものが各種提案されている(たとえば、特許文献1~4参照)。 The refrigerating machine oil sealed in the compressor is discharged from the discharge pipe of the compressor at a temperature equivalent to the refrigerant temperature discharged from the compressor. The refrigeration apparatus has a configuration in which the refrigeration oil discharged from the compressor is returned to the compressor via, for example, an oil return pipe. However, when the temperature of the refrigeration oil is returned to the compressor while the temperature is high, the refrigerant in the compressor is heated, so that the temperature of the refrigerant discharged from the compressor rises. When the temperature of the discharged refrigerant rises, the temperature exceeds the allowable temperature of the machine parts inside the compressor, causing a compressor failure. Moreover, if it returns to a compressor with the temperature of refrigerating machine oil still high, the refrigerant | coolant density of a compressor will reduce correspondingly, the work amount of a compressor will increase, and the power consumption of a compressor will increase. Thus, since there are various adverse effects when the refrigeration oil is returned to the compressor at a high temperature, various refrigeration apparatuses having a mechanism for cooling the refrigeration oil discharged from the compressor have been proposed ( For example, see Patent Documents 1 to 4).
 特許文献1に記載の技術は、圧縮機から吐出された冷媒及び冷凍機油を油分離器で分離し、分離した冷凍機油を凝縮器に付設された補助熱交換器に流す。特許文献1に記載の補助熱交換器は、冷凍機油と凝縮器のフィンなどを通過する空気とを熱交換させて冷凍機油を冷却する空冷式のものである。 The technique described in Patent Document 1 separates the refrigerant discharged from the compressor and the refrigerating machine oil with an oil separator, and flows the separated refrigerating machine oil through an auxiliary heat exchanger attached to the condenser. The auxiliary heat exchanger described in Patent Document 1 is an air-cooled type that cools the refrigeration oil by exchanging heat between the refrigeration oil and the air passing through the fins of the condenser.
 特許文献2に記載の技術は、圧縮機から吐出された冷凍機油を油分離器で分離し、その分離した冷凍機油を凝縮器を通る油戻し管に流す。特許文献2に記載の油戻し管は、冷凍機油と凝縮器を通る空気とを熱交換させて冷凍機油を冷却する空冷式のものである。 The technique described in Patent Document 2 separates refrigeration oil discharged from a compressor with an oil separator, and flows the separated refrigeration oil through an oil return pipe passing through a condenser. The oil return pipe described in Patent Literature 2 is an air-cooled type that cools the refrigeration oil by exchanging heat between the refrigeration oil and the air passing through the condenser.
 特許文献3に記載の技術は、圧縮機から吐出された冷凍機油を油分離器で分離し、その分離した冷凍機油を凝縮器を通る油戻し回路に流す。特許文献3に記載は、凝縮器において冷凍機油と冷媒とを熱交換させて冷凍機油を圧縮機に戻すことができるとともに、冷凍機油と熱交換した冷媒を圧縮機にインジェクションすることができるものである。 The technology described in Patent Document 3 separates refrigeration oil discharged from a compressor with an oil separator, and flows the separated refrigeration oil through an oil return circuit that passes through a condenser. The description in Patent Document 3 allows heat exchange between refrigerating machine oil and refrigerant in the condenser to return the refrigerating machine oil to the compressor, and also allows the refrigerant exchanged with refrigerating machine oil to be injected into the compressor. is there.
 特許文献4に記載の技術は、凝縮器とは別に、冷凍機油を冷却する用の冷却用熱交換器を有する油インジェクション回路を備えたものである。 The technique described in Patent Document 4 includes an oil injection circuit having a cooling heat exchanger for cooling refrigeration oil separately from the condenser.
特開昭50-048536号公報(たとえば、図面参照)Japanese Patent Laid-Open No. 50-048536 (for example, refer to the drawings) 実公昭50-022493号公報(たとえば、図3参照)Japanese Utility Model Publication No. 50-02493 (see, for example, FIG. 3) 特開平5-340616号公報(たとえば、図1参照)JP-A-5-340616 (see, for example, FIG. 1) 特開2009-257705号公報(たとえば、要約書参照)JP 2009-257705 A (see, for example, abstract)
 特許文献1、2に記載の技術では、凝縮器を利用して冷凍機油を冷却する方式を採用している。しかし、空気と冷凍機油との凝縮器の伝熱面積を冷凍機油の冷却用に割きすぎると凝縮器の放熱性能が低下し、冷凍装置の冷却性能が低減する。一方、空気と冷凍機油との凝縮器の伝熱面積を冷媒の放熱用に割きすぎると、冷凍機油の冷却が不十分となり、圧縮機の故障などを招く。すなわち、特許文献1、2に記載の技術は、冷凍装置の冷却性能の低減の抑制及び圧縮機の故障の抑制を両立することができないという課題がある。 In the techniques described in Patent Documents 1 and 2, a method of cooling refrigerator oil using a condenser is adopted. However, if the heat transfer area of the condenser of air and refrigerating machine oil is excessively divided for cooling the refrigerating machine oil, the heat dissipation performance of the condenser is lowered and the cooling performance of the refrigerating apparatus is reduced. On the other hand, if the heat transfer area of the condenser of air and refrigeration oil is excessively divided for the heat radiation of the refrigerant, the cooling of the refrigeration oil becomes insufficient, resulting in a failure of the compressor. That is, the techniques described in Patent Documents 1 and 2 have a problem that it is impossible to achieve both suppression of reduction in cooling performance of the refrigeration apparatus and suppression of compressor failure.
 特許文献3に記載の技術では、冷凍機油の冷却に凝縮器を流れる冷媒を利用している。そして、凝縮器で冷凍機油を冷却した冷媒を圧縮機のうちの中間圧力の部分(中間段)にインジェクションする。このため、特許文献3に記載の技術では、インジェクション用の冷媒が、冷凍機油の冷却用に多く割かれると、インジェクション用の冷媒温度が上昇し、インジェクション性能が低減してしまうという課題がある。 In the technique described in Patent Document 3, a refrigerant flowing through a condenser is used for cooling the refrigerator oil. And the refrigerant | coolant which cooled refrigerator oil with the condenser is inject | poured into the part (intermediate stage) of the intermediate pressure of a compressor. For this reason, in the technique described in Patent Document 3, when a large amount of the refrigerant for injection is used for cooling the refrigerating machine oil, there is a problem that the temperature of the refrigerant for injection rises and the injection performance is reduced.
 特許文献4に記載の技術では、冷凍機油の冷却にあたって別途、冷却用熱交換器を有する油インジェクション回路を備えたものである。このため、特許文献4に記載の技術では、冷却用熱交換器などの分だけ、冷凍装置の製造コストが増大してしまうという課題がある。 In the technique described in Patent Document 4, an oil injection circuit having a cooling heat exchanger is separately provided for cooling the refrigerator oil. For this reason, in the technique described in Patent Document 4, there is a problem that the manufacturing cost of the refrigeration apparatus increases by the amount of the heat exchanger for cooling and the like.
 本発明は、以上のような課題のうちの少なくとも一つを解決するためになされたもので、冷凍装置の冷却性能の低減の抑制及び圧縮機の故障の抑制を両立することができる冷凍装置を提供することを目的としている。 The present invention has been made to solve at least one of the above-described problems, and provides a refrigeration apparatus capable of achieving both suppression of cooling performance of a refrigeration apparatus and suppression of compressor failure. It is intended to provide.
 本発明に係る冷凍装置は、圧縮機、凝縮器、主絞り装置及び蒸発器が冷媒配管で接続されて構成された冷媒回路を有する冷凍装置であって、圧縮機と凝縮器との間の冷媒配管に接続され、圧縮機から吐出された冷媒と冷凍機油とを分離する油分離器と、油分離器において分離された冷凍機油を冷却する油冷却部と、油分離器の冷凍機油流出側と圧縮機とを、油冷却部を介して接続する油戻し管と、を備え、油冷却部は、凝縮器と一体的に設けられ、凝縮器の伝熱面積のうちの15%~25%の範囲を占めているものである。 A refrigerating apparatus according to the present invention is a refrigerating apparatus having a refrigerant circuit in which a compressor, a condenser, a main throttle device, and an evaporator are connected by a refrigerant pipe, and a refrigerant between the compressor and the condenser. An oil separator connected to the pipe for separating the refrigerant discharged from the compressor and the refrigerating machine oil; an oil cooling section for cooling the refrigerating machine oil separated in the oil separator; and a refrigerating machine oil outflow side of the oil separator; And an oil return pipe that connects the compressor via an oil cooling section. The oil cooling section is provided integrally with the condenser, and is 15% to 25% of the heat transfer area of the condenser. It occupies a range.
 本発明に係る冷凍装置によれば、上記構成を有しているため、冷凍装置の冷却性能の低減の抑制及び圧縮機の故障の抑制を両立することができる。 Since the refrigeration apparatus according to the present invention has the above-described configuration, it is possible to achieve both suppression of the cooling performance of the refrigeration apparatus and suppression of compressor failure.
本発明の実施の形態1に係る冷凍装置の冷媒回路構成などの一例である。1 is an example of a refrigerant circuit configuration of a refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る冷凍装置の冷媒回路構成などの一例である。It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍装置の冷媒回路構成などの一例である。It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍装置の冷媒回路構成などの一例である。It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る冷凍装置の冷媒回路構成などの一例である。It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る冷凍装置の冷媒回路構成などの一例である。It is an example of the refrigerant circuit structure of the refrigeration apparatus which concerns on Embodiment 6 of this invention. 本発明の実施の形態7に係る冷凍装置の冷媒回路構成などの一例である。It is an example of the refrigerant circuit structure etc. of the freezing apparatus which concerns on Embodiment 7 of this invention. 本発明の実施の形態8に係る冷凍装置の冷媒回路構成などの一例である。10 is an example of a refrigerant circuit configuration of a refrigeration apparatus according to Embodiment 8 of the present invention. 従来の冷凍装置の説明図である。It is explanatory drawing of the conventional freezing apparatus.
 以下、本発明の実施の形態を説明する。
実施の形態1. 
 図1は、実施の形態1に係る冷凍装置100の冷媒回路構成などの一例である。図1を参照して冷凍装置100の構成などについて説明する。
 本実施の形態に係る冷凍装置100は、冷凍装置100の冷却性能の低減の抑制及び圧縮機1の故障の抑制を両立することができる改良が加えられたものである。
Embodiments of the present invention will be described below.
Embodiment 1 FIG.
FIG. 1 is an example of a refrigerant circuit configuration of the refrigeration apparatus 100 according to Embodiment 1. The configuration of the refrigeration apparatus 100 will be described with reference to FIG.
The refrigeration apparatus 100 according to the present embodiment is provided with an improvement that can achieve both suppression of reduction in cooling performance of the refrigeration apparatus 100 and suppression of failure of the compressor 1.
[構成説明]
 冷凍装置100は、冷媒を圧縮して吐出する圧縮機1と、冷媒を凝縮させる凝縮器2(放熱器)と、冷媒を減圧させる主絞り装置3と、冷媒を蒸発させる蒸発器4とを有している。そして、冷凍装置100は、圧縮機1、凝縮器2、主絞り装置3、及び蒸発器4が冷媒配管Pで接続されて構成された冷媒回路(冷凍サイクル)を有している。また、冷凍装置100は、圧縮機1に冷凍機油を戻すのに利用される油戻し管OPに接続され、冷媒と冷凍機油とを分離する油分離器5と、エコノマイザとして機能する熱交換器6と、エコノマイザ用のエコノマイザ絞り装置7とを有している。さらに、冷凍装置100は、圧縮機1の回転数などを制御する制御部30を有している。
[Description of configuration]
The refrigeration apparatus 100 includes a compressor 1 that compresses and discharges refrigerant, a condenser 2 (heat radiator) that condenses the refrigerant, a main throttle device 3 that decompresses the refrigerant, and an evaporator 4 that evaporates the refrigerant. is doing. The refrigeration apparatus 100 has a refrigerant circuit (refrigeration cycle) configured by connecting the compressor 1, the condenser 2, the main throttle device 3, and the evaporator 4 with a refrigerant pipe P. The refrigerating apparatus 100 is connected to an oil return pipe OP used to return the refrigerating machine oil to the compressor 1, and an oil separator 5 that separates the refrigerant from the refrigerating machine oil, and a heat exchanger 6 that functions as an economizer. And an economizer throttle device 7 for economizer. Furthermore, the refrigeration apparatus 100 includes a control unit 30 that controls the rotational speed of the compressor 1 and the like.
 ここで、冷媒配管Pは、圧縮機1の吐出側と油分離器5とを接続する冷媒配管P1と、油分離器5の冷媒流出側と凝縮器2とを接続する冷媒配管P2と、凝縮器2と熱交換器6とを接続する冷媒配管P3とを有している。また、冷媒配管Pは、熱交換器6と主絞り装置3とを接続する冷媒配管P4と、主絞り装置3と蒸発器4とを接続する冷媒配管P5と、蒸発器4と圧縮機1の冷媒吸入側とを接続する冷媒配管P6と、冷媒配管P4と圧縮機1とを接続するエコノマイザ配管P7とを有している。なお、エコノマイザ配管P7は、一端側が冷媒配管P4に接続され、エコノマイザ絞り装置7及び熱交換器6を介して、他端側が圧縮機1に接続されているものである。エコノマイザ配管P7が、接続配管に対応する構成である。 Here, the refrigerant pipe P includes a refrigerant pipe P1 that connects the discharge side of the compressor 1 and the oil separator 5, a refrigerant pipe P2 that connects the refrigerant outlet side of the oil separator 5 and the condenser 2, and condensation. And a refrigerant pipe P <b> 3 connecting the heat exchanger 2 and the heat exchanger 6. The refrigerant pipe P includes a refrigerant pipe P4 that connects the heat exchanger 6 and the main throttle device 3, a refrigerant pipe P5 that connects the main throttle device 3 and the evaporator 4, the evaporator 4 and the compressor 1. A refrigerant pipe P6 connecting the refrigerant suction side and an economizer pipe P7 connecting the refrigerant pipe P4 and the compressor 1 are provided. The economizer pipe P7 has one end connected to the refrigerant pipe P4 and the other end connected to the compressor 1 via the economizer expansion device 7 and the heat exchanger 6. The economizer pipe P7 has a configuration corresponding to the connection pipe.
 また、油戻し管OPは、一端側が油分離器5の冷凍機油流出側に接続され、凝縮器2を介して圧縮機1に接続されているものである。より詳細には、油戻し管OPの他端側は、後述する圧縮機1の低段圧縮部1A側に接続されるものと、高段圧縮部1B側に接続されるものとに分岐している。このため、油戻し管OPを流れる冷凍機油は、低段圧縮部1A及び高段圧縮部1Bのそれぞれに戻される。 Also, the oil return pipe OP is connected to the compressor 1 via the condenser 2 with one end side connected to the refrigerating machine oil outflow side of the oil separator 5. More specifically, the other end side of the oil return pipe OP is branched into one connected to a low-stage compression unit 1A side of the compressor 1 described later and one connected to the high-stage compression unit 1B side. Yes. For this reason, the refrigeration oil flowing through the oil return pipe OP is returned to each of the low-stage compression unit 1A and the high-stage compression unit 1B.
(圧縮機1)
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出するものである。圧縮機1は、冷媒吐出側が冷媒配管P1を介して油分離器5に接続され、冷媒吸入側が冷媒配管P6を介して蒸発器4に接続されている。なお、本実施の形態1に係る冷凍装置100では、圧縮機1は、低段圧縮部1A及び高段圧縮部1Bを有する2段式のスクリュー圧縮機である。すなわち、圧縮機1に流入した冷媒は、低段圧縮部1Aに流入して圧縮されて中間圧となった後に、高段圧縮部1Bに流入して圧縮されて高温高圧となる。
(Compressor 1)
The compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state. The compressor 1 has a refrigerant discharge side connected to the oil separator 5 via a refrigerant pipe P1, and a refrigerant suction side connected to the evaporator 4 via a refrigerant pipe P6. In the refrigeration apparatus 100 according to the first embodiment, the compressor 1 is a two-stage screw compressor having a low-stage compressor 1A and a high-stage compressor 1B. That is, the refrigerant that has flowed into the compressor 1 flows into the low-stage compression unit 1A and is compressed to an intermediate pressure, and then flows into the high-stage compression unit 1B and is compressed to become high temperature and high pressure.
(凝縮器2)
 凝縮器2は、圧縮機1から吐出された高温高圧冷媒と空気との間で熱交換を行わせるものである。凝縮器2は、熱源側の熱交換器である。凝縮器2は、上流側が冷媒配管P2を介して油分離器5に接続され、下流側が冷媒配管P3を介して熱交換器6に接続されている。凝縮器2は、たとえば、凝縮器2を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成することができる。また、凝縮器2には、凝縮器2に供給される冷媒と熱交換する空気を供給する凝縮器用送風機2Aが付設されている。凝縮器用送風機2Aは、制御部30によって回転数が制御され、凝縮器2における冷媒と空気との熱交換量を変えることができる。
(Condenser 2)
The condenser 2 performs heat exchange between the high-temperature and high-pressure refrigerant discharged from the compressor 1 and the air. The condenser 2 is a heat exchanger on the heat source side. The condenser 2 has an upstream side connected to the oil separator 5 via the refrigerant pipe P2 and a downstream side connected to the heat exchanger 6 via the refrigerant pipe P3. The condenser 2 can be configured by, for example, a plate fin and tube heat exchanger that can exchange heat between the refrigerant flowing through the condenser 2 and the air passing through the fins. Further, the condenser 2 is provided with a condenser blower 2 </ b> A for supplying air that exchanges heat with the refrigerant supplied to the condenser 2. The rotation speed of the condenser blower 2 </ b> A is controlled by the control unit 30, and the amount of heat exchange between the refrigerant and the air in the condenser 2 can be changed.
 凝縮器2は、油戻し管OPが、凝縮器2の伝熱面積のうちの15%~25%の範囲を占めるように、凝縮器2に接続されているものである。ここで、凝縮器2のうち油戻し管OPが接続されている部分が、油冷却部2Bを構成している。すなわち、油冷却部2Bは、凝縮器2と一体的に設けられ、凝縮器2の伝熱面積のうちの15%~25%の範囲を占めている。なお、凝縮器2の伝熱面積とは、油冷却部2Bにおける伝熱面積をも含めたものである。 The condenser 2 is connected to the condenser 2 such that the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2. Here, the part of the condenser 2 to which the oil return pipe OP is connected constitutes the oil cooling part 2B. That is, the oil cooling section 2B is provided integrally with the condenser 2 and occupies a range of 15% to 25% of the heat transfer area of the condenser 2. The heat transfer area of the condenser 2 includes the heat transfer area in the oil cooling unit 2B.
(主絞り装置3)
 主絞り装置3は、冷媒を膨張させるためのものであり、上流側が冷媒配管P4を介して熱交換器6に接続され、下流側が冷媒配管P5を介して蒸発器4に接続されているものである。主絞り装置3は、たとえば開度が可変である電子膨張弁などで構成することができる。
(Main diaphragm device 3)
The main throttle device 3 is for expanding the refrigerant, the upstream side is connected to the heat exchanger 6 via the refrigerant pipe P4, and the downstream side is connected to the evaporator 4 via the refrigerant pipe P5. is there. The main throttle device 3 can be composed of, for example, an electronic expansion valve whose opening degree is variable.
(蒸発器4)
 蒸発器4は、主絞り装置3で減圧された冷媒と、空気との間で熱交換を行わせるものである。蒸発器4は、利用側の熱交換器である。なお、蒸発器4は、凝縮器2と同様に、たとえば、蒸発器4を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成することができる。
(Evaporator 4)
The evaporator 4 exchanges heat between the refrigerant decompressed by the main expansion device 3 and the air. The evaporator 4 is a use side heat exchanger. In addition, the evaporator 4 is comprised with the plate fin and tube type heat exchanger which can exchange heat between the refrigerant | coolant which flows through the evaporator 4, and the air which passes a fin similarly to the condenser 2, for example. Can do.
(油分離器5)
 油分離器5は、冷媒と冷凍機油とを分離するものである。油分離器5は、上流側が冷媒配管P1を介して圧縮機1に接続され、下流側が冷媒配管P2を介して凝縮器2に接続されているものである。また、油分離器5は、冷凍機油の流出側が油戻し管OPを介して
凝縮器2に接続されている。すなわち、油分離器5で冷媒から分離された冷凍機油は、凝縮器2で冷却された後に圧縮機1に戻される。
(Oil separator 5)
The oil separator 5 separates refrigerant and refrigeration oil. The oil separator 5 has an upstream side connected to the compressor 1 via a refrigerant pipe P1 and a downstream side connected to the condenser 2 via a refrigerant pipe P2. The oil separator 5 is connected to the condenser 2 on the outflow side of the refrigerating machine oil via the oil return pipe OP. That is, the refrigerating machine oil separated from the refrigerant by the oil separator 5 is returned to the compressor 1 after being cooled by the condenser 2.
(熱交換器6)
 熱交換器6は、冷媒と冷媒とを熱交換させる熱交換器であり、冷凍装置100のエコノマイザとして機能するものである。熱交換器6は、冷媒配管P3及び冷媒配管P4に接続された第1の流路と、エコノマイザ配管P7に接続された第2の流路とを有し、第1の流路を流れる冷媒と第2の流路を流れる冷媒とが熱交換できる構造を有しているものである。
(Heat exchanger 6)
The heat exchanger 6 is a heat exchanger that exchanges heat between the refrigerant and the refrigerant, and functions as an economizer of the refrigeration apparatus 100. The heat exchanger 6 includes a first flow path connected to the refrigerant pipe P3 and the refrigerant pipe P4, and a second flow path connected to the economizer pipe P7, and the refrigerant flowing through the first flow path It has a structure capable of exchanging heat with the refrigerant flowing through the second flow path.
 熱交換器6は、第1の流路を流れる冷媒を、第2の流路を流れる冷媒と熱交換させて冷却させることができる。そして、この冷却された冷媒が、下流側の蒸発器4に供給される。熱交換器6は、冷凍装置100の冷却性能を向上させる機能を有している。すなわち、冷凍装置100は熱交換器6を有するため、圧縮機1の消費電力は増えるが、冷却能力の増え幅が大きいため冷却性能(効率)が向上している。 The heat exchanger 6 can cool the refrigerant flowing through the first flow path by exchanging heat with the refrigerant flowing through the second flow path. Then, the cooled refrigerant is supplied to the evaporator 4 on the downstream side. The heat exchanger 6 has a function of improving the cooling performance of the refrigeration apparatus 100. That is, since the refrigeration apparatus 100 includes the heat exchanger 6, the power consumption of the compressor 1 increases, but the cooling performance (efficiency) is improved because the increase in the cooling capacity is large.
 また、熱交換器6は、エコノマイザ配管P7を介して圧縮機1の低段圧縮部1Aと高段圧縮部1Bとの間に接続されている。このため、高段圧縮部1Bに流入する冷媒は、低段圧縮部1Aで圧縮された冷媒と、エコノマイザ配管P7から供給される冷媒である。ここで、冷媒温度が低いほど圧縮機1における圧縮仕事を抑制することができる。
 エコノマイザ配管P7から供給される冷媒は、低段圧縮部1Aで圧縮された冷媒よりも温度が低くなっているため、結果的に高段圧縮部1Bに供給される冷媒温度を抑制することができる。このため、圧縮機1から吐出される冷媒温度を抑制することができる。
Moreover, the heat exchanger 6 is connected between the low stage compression part 1A and the high stage compression part 1B of the compressor 1 via the economizer piping P7. For this reason, the refrigerant | coolant which flows in into the high stage compression part 1B is the refrigerant | coolant compressed by the low stage compression part 1A, and the refrigerant | coolant supplied from the economizer piping P7. Here, the lower the refrigerant temperature, the more the compression work in the compressor 1 can be suppressed.
The refrigerant supplied from the economizer pipe P7 has a temperature lower than that of the refrigerant compressed by the low-stage compression unit 1A, and as a result, the refrigerant temperature supplied to the high-stage compression unit 1B can be suppressed. . For this reason, the refrigerant temperature discharged from the compressor 1 can be suppressed.
(エコノマイザ絞り装置7)
 エコノマイザ絞り装置7は、冷媒を膨張させるためのものである。エコノマイザ絞り装置7は、冷媒配管Pのうちの一端側と熱交換器6の第2の流路との間に設けられているものである。エコノマイザ絞り装置7は、たとえば開度が可変である電子膨張弁などで構成することができる。
(Economizer squeezing device 7)
The economizer throttle device 7 is for expanding the refrigerant. The economizer expansion device 7 is provided between one end side of the refrigerant pipe P and the second flow path of the heat exchanger 6. The economizer throttling device 7 can be constituted by, for example, an electronic expansion valve whose opening degree is variable.
(制御部30)
 制御部30は、各種センサなどの検出結果に基づいて、圧縮機1の回転数(運転及び停止含む)、凝縮器2に付設された凝縮器用送風機2A及び蒸発器4に付設された蒸発器用送風機4Aの回転数(運転及び停止含む)、主絞り装置3の開度及びエコノマイザ絞り装置7の開度などを制御するものである。なお、この制御部30は、たとえばマイコンなどの制御装置で構成することができる。
(Control unit 30)
Based on detection results of various sensors and the like, the control unit 30 rotates the rotation speed (including operation and stop) of the compressor 1, the condenser blower 2 </ b> A attached to the condenser 2, and the evaporator blower attached to the evaporator 4. The rotational speed of 4A (including operation and stop), the opening of the main throttle device 3, the opening of the economizer throttle device 7, and the like are controlled. In addition, this control part 30 can be comprised by control apparatuses, such as a microcomputer, for example.
[冷凍装置100の冷凍サイクルの冷媒の流れ]
 図1を参照しながら、同図で示される冷媒回路を流れる冷媒の流れについて説明する。
 圧縮機1によって圧縮され吐出された気体の冷媒は、冷媒配管P1を介して油分離器5に流入する。油分離器5に流入した冷媒は、冷媒と冷凍機油とに分離される。油分離器5内の冷媒は、冷媒配管P2を介して凝縮器2へ流入する。この凝縮器2に流入した気体の冷媒は、凝縮器2に付設された凝縮器用送風機2Aから供給される空気と熱交換がなされて凝縮し、高圧の液冷媒となって凝縮器2から流出する。
[Refrigerant flow of refrigeration cycle of refrigeration apparatus 100]
The flow of the refrigerant flowing through the refrigerant circuit shown in FIG. 1 will be described with reference to FIG.
The gaseous refrigerant compressed and discharged by the compressor 1 flows into the oil separator 5 through the refrigerant pipe P1. The refrigerant that has flowed into the oil separator 5 is separated into refrigerant and refrigerating machine oil. The refrigerant in the oil separator 5 flows into the condenser 2 through the refrigerant pipe P2. The gaseous refrigerant that has flowed into the condenser 2 undergoes heat exchange with the air supplied from the condenser blower 2A attached to the condenser 2 to condense, and flows out of the condenser 2 as a high-pressure liquid refrigerant. .
 凝縮器2から流出した液冷媒は、冷媒配管P3を介してエコノマイザとして機能する熱交換器6の第1の流路に流入し、第2の流路を流れる冷媒と熱交換して冷却される。熱交換器6の第1の流路で冷却された冷媒は、主絞り装置3に流入して減圧され、一部がエコノマイザ絞り装置7に流入して減圧される。 The liquid refrigerant flowing out of the condenser 2 flows into the first flow path of the heat exchanger 6 functioning as an economizer through the refrigerant pipe P3, and is cooled by exchanging heat with the refrigerant flowing through the second flow path. . The refrigerant cooled in the first flow path of the heat exchanger 6 flows into the main expansion device 3 and is depressurized, and a part of the refrigerant flows into the economizer expansion device 7 and is depressurized.
 主絞り装置3で減圧された冷媒は、冷媒配管P5を介して蒸発器4に流入し、蒸発器4に付設された蒸発器用送風機4Aから供給される空気と熱交換を実施して蒸発する。蒸発器4から流出した冷媒は、冷媒配管P6を介して圧縮機1に吸引される。圧縮機1に吸入された冷媒は、圧縮機1の低段圧縮部1Aに流入して圧縮される。 The refrigerant decompressed by the main throttle device 3 flows into the evaporator 4 through the refrigerant pipe P5 and evaporates by exchanging heat with the air supplied from the evaporator blower 4A attached to the evaporator 4. The refrigerant flowing out of the evaporator 4 is sucked into the compressor 1 through the refrigerant pipe P6. The refrigerant sucked into the compressor 1 flows into the low stage compression unit 1A of the compressor 1 and is compressed.
 エコノマイザ絞り装置7で減圧された冷媒は、熱交換器6の第2の流路に流入して第1の流路を流れる冷媒と熱交換した後に、圧縮機1の中間段に流入する。圧縮機1の中間段に流入した冷媒は、低段圧縮部1Aで圧縮された冷媒とともに、高段圧縮部1Bに流入して圧縮される。 The refrigerant decompressed by the economizer expansion device 7 flows into the second flow path of the heat exchanger 6 and exchanges heat with the refrigerant flowing through the first flow path, and then flows into the intermediate stage of the compressor 1. The refrigerant flowing into the intermediate stage of the compressor 1 flows into the high stage compression section 1B and is compressed together with the refrigerant compressed by the low stage compression section 1A.
[冷凍装置100の冷凍機油の流れ]
 圧縮機1内の冷凍機油は、冷媒と混ざっている。このため、圧縮機1内の冷凍機油は、冷媒とともに圧縮機1から吐出される。圧縮機1から吐出された高温の冷凍機油は、油分離器5に流入して冷媒から分離される。油分離器5内の冷凍機油は、油戻し管OPを介して凝縮器2に供給されて冷却される。凝縮器2で冷却された冷凍機油は、油戻し管OPを介して圧縮機1の低段圧縮部1A及び高段圧縮部1Bにそれぞれ戻される。これにより、冷凍装置100は、高温の冷凍機油が圧縮機1から流出しても、冷凍機油を冷却した後に圧縮機1に戻すことができる。これにより、冷凍装置100は、低段圧縮部1A及び高段圧縮部1Bを構成する摺動部品などの摩耗の抑制をすることができる。
[Flow of refrigerating machine oil of refrigeration apparatus 100]
The refrigerating machine oil in the compressor 1 is mixed with the refrigerant. For this reason, the refrigeration oil in the compressor 1 is discharged from the compressor 1 with a refrigerant | coolant. The high-temperature refrigeration oil discharged from the compressor 1 flows into the oil separator 5 and is separated from the refrigerant. The refrigerating machine oil in the oil separator 5 is supplied to the condenser 2 via the oil return pipe OP and cooled. The refrigerating machine oil cooled by the condenser 2 is returned to the low-stage compression unit 1A and the high-stage compression unit 1B of the compressor 1 through the oil return pipe OP, respectively. Thereby, even if a high temperature refrigerator oil flows out from the compressor 1, the refrigerating apparatus 100 can return to the compressor 1 after cooling refrigerator oil. Thereby, the refrigeration apparatus 100 can suppress wear of the sliding parts and the like constituting the low-stage compression unit 1A and the high-stage compression unit 1B.
[実施の形態1に係る冷凍装置100の有する効果]
 本実施の形態1に係る冷凍装置100は、油戻し管OPが、凝縮器2の伝熱面積のうちの15%~25%の範囲を占めるように、凝縮器2に接続されているものである。つまり、油戻し管OPが接続されている凝縮器2のフィンの表面積は、凝縮器2の有するフィンの全表面積のうちの15%~25%の範囲を占めている。
[Effects of refrigeration apparatus 100 according to Embodiment 1]
The refrigerating apparatus 100 according to the first embodiment is connected to the condenser 2 so that the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2. is there. That is, the surface area of the fin of the condenser 2 to which the oil return pipe OP is connected occupies a range of 15% to 25% of the total surface area of the fin of the condenser 2.
 油戻し管OPが接続されている凝縮器2のフィンの表面積が、凝縮器2の有するフィンの全表面積のうちの15%よりも小さくなると、冷凍機油の冷却量が不足し、圧縮機1から吐出される冷媒温度が上昇し、圧縮機1の故障を招きやすくなる。また、油戻し管OPが接続されている凝縮器2のフィンの表面積が、凝縮器2の有するフィンの全表面積のうちの25%よりも大きくなると、凝縮器2を流れる冷媒の放熱量が不足し、冷凍装置100の冷却性能が低減する。
 本実施の形態1に係る冷凍装置100は、油戻し管OPが接続されている凝縮器2のフィンの表面積は、凝縮器2の有するフィンの全表面積のうちの15%~25%の範囲となっているため、冷凍装置100の冷却性能の低減の抑制及び圧縮機1の故障の抑制を両立することができる。
When the surface area of the fins of the condenser 2 to which the oil return pipe OP is connected is smaller than 15% of the total surface area of the fins of the condenser 2, the cooling amount of the refrigerating machine oil becomes insufficient and the compressor 1 The temperature of the discharged refrigerant rises, and the compressor 1 is likely to fail. Further, when the surface area of the fin of the condenser 2 to which the oil return pipe OP is connected is larger than 25% of the total surface area of the fin of the condenser 2, the heat radiation amount of the refrigerant flowing through the condenser 2 is insufficient. As a result, the cooling performance of the refrigeration apparatus 100 is reduced.
In the refrigeration apparatus 100 according to the first embodiment, the fin surface area of the condenser 2 to which the oil return pipe OP is connected has a range of 15% to 25% of the total surface area of the fins of the condenser 2. Therefore, the suppression of the cooling performance of the refrigeration apparatus 100 and the suppression of the failure of the compressor 1 can both be achieved.
 本実施の形態1に係る冷凍装置100は、別途、冷凍機油の冷却用の熱交換器を設けず、凝縮器2の一部を利用して冷凍機油を冷却するものである。このため、本実施の形態1に係る冷凍装置100は、別途、熱交換器を設けない分、製造コストを抑制することができる。 The refrigerating apparatus 100 according to Embodiment 1 separately cools the refrigerating machine oil by using a part of the condenser 2 without providing a heat exchanger for cooling the refrigerating machine oil. For this reason, the refrigerating apparatus 100 according to the first embodiment can suppress the manufacturing cost because a heat exchanger is not separately provided.
 図9は、従来の冷凍装置の説明図である。図9に示すように、従来の冷凍装置には、凝縮器2とは別に、冷凍機油冷却用のサブ熱交換器10が設けられていたものがあった。この従来の冷凍装置は、サブ熱交換器10が、冷媒が流れるインジェクション配管IJと凝縮器2を経ない油戻し管OPとに接続されている。そして、熱交換器6では、供給された冷媒と冷凍機油とが熱交換し、冷凍機油が冷却される。 FIG. 9 is an explanatory diagram of a conventional refrigeration apparatus. As shown in FIG. 9, some conventional refrigeration apparatuses are provided with a sub heat exchanger 10 for cooling refrigeration oil separately from the condenser 2. In this conventional refrigeration apparatus, the sub heat exchanger 10 is connected to an injection pipe IJ through which a refrigerant flows and an oil return pipe OP that does not pass through the condenser 2. And in the heat exchanger 6, the supplied refrigerant | coolant and refrigerating machine oil heat-exchange, and refrigerating machine oil is cooled.
 本実施の形態1に係る冷凍装置100は、冷媒で冷凍機油を冷却するのではなく、空冷式の凝縮器2の空気で冷凍機油を冷却するように構成されているものである。このため、冷凍機油を冷却するための冷媒(インジェクション配管IJを流れる冷媒)が必要なくなる分、圧縮機1、凝縮器2、主絞り装置3及び蒸発器4を循環する冷媒量の減少を防止できる。すなわち、冷凍装置100では、インジェクション用の冷媒量が、従来の冷凍装置よりも少なくなるため、凝縮器2を流れる冷媒が少なくなる。凝縮器2を流れる冷媒が少なくなると、凝縮器2の負荷が小さくなり、油戻し管OPが凝縮器2に接続されて凝縮器2における冷媒と空気との伝熱面積が減少した場合でも、凝縮器2の凝縮温度が従来と比較して変化してしまうことは抑制される。 The refrigeration apparatus 100 according to Embodiment 1 is configured to cool the refrigeration oil with the air of the air-cooled condenser 2 instead of cooling the refrigeration oil with a refrigerant. For this reason, the amount of refrigerant circulating through the compressor 1, the condenser 2, the main throttle device 3, and the evaporator 4 can be prevented as much as the refrigerant (cooling refrigerant flowing through the injection pipe IJ) for cooling the refrigerating machine oil is unnecessary. . That is, in the refrigeration apparatus 100, the amount of refrigerant for injection is smaller than that in the conventional refrigeration apparatus, so that the refrigerant flowing through the condenser 2 is reduced. When the refrigerant flowing through the condenser 2 is reduced, the load on the condenser 2 is reduced, and even if the oil return pipe OP is connected to the condenser 2 and the heat transfer area between the refrigerant and the air in the condenser 2 is reduced, the condensation is performed. It is suppressed that the condensation temperature of the vessel 2 changes compared to the conventional case.
実施の形態2.
 図2は、実施の形態2に係る冷凍装置102の冷媒回路構成などの一例である。実施の形態2では、実施の形態1と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態2に係る冷凍装置102は、圧縮機1から吐出される冷媒温度を検出する冷媒温度センサ9と、圧縮機1に液冷媒を供給し、圧縮機1から吐出される冷媒温度を低減するインジェクション配管IJと、インジェクション配管IJに接続されたインジェクション絞り装置8とを有している。なお、インジェクション配管IJが、接続配管に対応する構成である。
Embodiment 2. FIG.
FIG. 2 is an example of a refrigerant circuit configuration of the refrigeration apparatus 102 according to the second embodiment. In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and different points will be mainly described. The refrigeration apparatus 102 according to the second embodiment supplies a refrigerant temperature sensor 9 that detects the refrigerant temperature discharged from the compressor 1, supplies liquid refrigerant to the compressor 1, and reduces the refrigerant temperature discharged from the compressor 1. An injection pipe IJ, and an injection throttle device 8 connected to the injection pipe IJ. The injection pipe IJ has a configuration corresponding to the connection pipe.
(冷媒温度センサ9)
 冷媒温度センサ9は、冷媒配管P1の表面温度を検出するのに利用されるものである。冷媒温度センサ9は、センサの先端に設けられた検出部(図示省略)を有している。そして、冷媒温度センサ9は、この検出部が、たとえば冷媒配管P1などの測定する部位と接触するように配置されている。なお、冷媒温度センサ9の検出部は、配線、或いは無線によって制御部30に接続される。冷媒温度センサ9で冷媒配管P1を流れる冷媒温度の検出方法は、たとえば、温度によって可変する抵抗を検出部に内蔵し、制御部30にて、その抵抗値を温度に変換する演算をする方法などを採用することができる。
(Refrigerant temperature sensor 9)
The refrigerant temperature sensor 9 is used to detect the surface temperature of the refrigerant pipe P1. The refrigerant temperature sensor 9 has a detection unit (not shown) provided at the tip of the sensor. And the refrigerant | coolant temperature sensor 9 is arrange | positioned so that this detection part may contact the site | parts to measure, such as refrigerant | coolant piping P1, for example. The detection unit of the refrigerant temperature sensor 9 is connected to the control unit 30 by wiring or wirelessly. The method for detecting the temperature of the refrigerant flowing through the refrigerant pipe P1 by the refrigerant temperature sensor 9 is, for example, a method in which a resistance that varies depending on the temperature is built in the detection unit, and the control unit 30 performs an operation for converting the resistance value into temperature. Can be adopted.
(インジェクション配管IJ)
 インジェクション配管IJは、一端側が冷媒配管P4に接続され、他端側が圧縮機1に接続されているものである。なお、インジェクション配管IJの一端側は、たとえば、エコノマイザ配管P7の接続位置よりも下流側に接続される。インジェクション配管IJには、インジェクション絞り装置8が接続されている。インジェクション配管IJは、エコノマイザとして機能する熱交換器6の第1の流路を通過して冷却された冷媒を、圧縮機1に供給し、圧縮機1から吐出される冷媒温度を抑制するための配管である。
(Injection piping IJ)
The injection pipe IJ has one end connected to the refrigerant pipe P4 and the other end connected to the compressor 1. Note that one end side of the injection pipe IJ is connected to the downstream side of the connection position of the economizer pipe P7, for example. An injection throttle device 8 is connected to the injection pipe IJ. The injection pipe IJ supplies the refrigerant cooled through the first flow path of the heat exchanger 6 functioning as an economizer to the compressor 1 and suppresses the refrigerant temperature discharged from the compressor 1. It is piping.
(インジェクション絞り装置8)
 インジェクション絞り装置8は、冷媒を膨張させるためのものである。インジェクション絞り装置8は、インジェクション配管IJに設けられているものである。インジェクション絞り装置8は、たとえば開度が可変である電子膨張弁などで構成することができる。インジェクション絞り装置8は、後述する制御部30の開度制御手段30Bによって開度制御がなされる。
(Injection throttle device 8)
The injection throttle device 8 is for expanding the refrigerant. The injection throttle device 8 is provided in the injection pipe IJ. The injection throttle device 8 can be constituted by, for example, an electronic expansion valve whose opening degree is variable. The opening degree of the injection throttle device 8 is controlled by an opening degree control means 30B of the control unit 30 described later.
(温度判定手段30A及び開度制御手段30B)
 制御部30は、冷媒温度センサ9の検出結果が、たとえば予め設定された温度T1よりも高いか否かを判定する温度判定手段30Aと、温度判定手段30Aの判定結果に基づいてインジェクション絞り装置8の開度を制御する開度制御手段30Bとを有している。たとえば、温度判定手段30Aが、冷媒温度センサ9の検出結果がT1よりも高いと判定すると、開度制御手段30Bは、インジェクション絞り装置8を開く。これにより、液冷媒が圧縮機1に供給され、圧縮機1から吐出される冷媒温度の上昇を抑制することができる。
(Temperature determination means 30A and opening degree control means 30B)
The controller 30 determines whether or not the detection result of the refrigerant temperature sensor 9 is higher than, for example, a preset temperature T1, and the injection throttle device 8 based on the determination result of the temperature determination unit 30A. Opening degree control means 30B for controlling the opening degree. For example, when the temperature determination unit 30A determines that the detection result of the refrigerant temperature sensor 9 is higher than T1, the opening degree control unit 30B opens the injection throttle device 8. Thereby, a liquid refrigerant is supplied to the compressor 1 and the rise in the temperature of the refrigerant discharged from the compressor 1 can be suppressed.
[実施の形態2に係る冷凍装置102の有する効果]
 本実施の形態2に係る冷凍装置102は、実施の形態1に係る冷凍装置100と同様の効果に加えて次の効果を有する。冷凍装置102は、冷媒温度センサ9、インジェクション配管IJ、インジェクション絞り装置8、温度判定手段30A及び温度判定手段30Aを有しているので、圧縮機1から吐出される冷媒温度の上昇を抑制することができるので、圧縮機1内部の機械部品の許容温度を上回ることを抑制することができ、圧縮機1の故障などを抑制することができる。すなわち、本実施の形態2に係る冷凍装置102は、圧縮機1の故障などを抑制することができる分、信頼性が向上している。
[Effects of refrigeration apparatus 102 according to Embodiment 2]
The refrigeration apparatus 102 according to the second embodiment has the following effects in addition to the same effects as the refrigeration apparatus 100 according to the first embodiment. Since the refrigeration apparatus 102 includes the refrigerant temperature sensor 9, the injection pipe IJ, the injection throttle device 8, the temperature determination means 30A, and the temperature determination means 30A, the increase in the temperature of the refrigerant discharged from the compressor 1 is suppressed. Therefore, exceeding the allowable temperature of the machine parts inside the compressor 1 can be suppressed, and failure of the compressor 1 can be suppressed. That is, the refrigeration apparatus 102 according to the second embodiment has improved reliability by the amount that can suppress the failure of the compressor 1 and the like.
 本実施の形態2に係る冷凍装置102は、インジェクション配管IJを有しているが、このインジェクション配管IJに接続された冷凍機油を冷却する構造(たとえば、熱交換器)を有していない。このため、インジェクション用の冷媒が、冷凍機油の冷却に用いられることはない。すなわち、冷凍装置102では、インジェクション用の冷媒温度が上昇することを防止することができ、インジェクション性能が低減してしまうことを防止することができる。 Although the refrigeration apparatus 102 according to the second embodiment has the injection pipe IJ, it does not have a structure (for example, a heat exchanger) for cooling the refrigeration oil connected to the injection pipe IJ. For this reason, the refrigerant for injection is not used for cooling of refrigeration oil. That is, in the refrigeration apparatus 102, it is possible to prevent an increase in the temperature of the refrigerant for injection, and it is possible to prevent a decrease in the injection performance.
実施の形態3.
 図3は、本実施の形態3に係る冷凍装置103の冷媒回路構成などの一例である。実施の形態3では、実施の形態1、2と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態3に係る冷凍装置103は、実施の形態2に係る冷凍装置102の構成に加えて、サブ熱交換器10を有している。また、実施の形態3に係る冷凍装置103では、油戻し管OPが、凝縮器2の伝熱面積のうちの15%~25%の範囲を占めるかどうかは限定されない。実施の形態3に係る冷凍装置103は、たとえば、油戻し管OPが凝縮器2の伝熱面積のうちの15%未満となっている。
Embodiment 3 FIG.
FIG. 3 shows an example of the refrigerant circuit configuration of the refrigeration apparatus 103 according to the third embodiment. In the third embodiment, the same reference numerals are given to configurations common to the first and second embodiments, and differences will be mainly described. The refrigeration apparatus 103 according to Embodiment 3 includes a sub heat exchanger 10 in addition to the configuration of the refrigeration apparatus 102 according to Embodiment 2. Further, in the refrigeration apparatus 103 according to Embodiment 3, it is not limited whether the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2. In the refrigeration apparatus 103 according to Embodiment 3, for example, the oil return pipe OP is less than 15% of the heat transfer area of the condenser 2.
(サブ熱交換器10)
 サブ熱交換器10は、凝縮器2で冷却しきれなかった冷凍機油を冷却することができるものである。サブ熱交換器10は、冷凍機油と冷媒とを熱交換させる熱交換器である。サブ熱交換器10は、油戻し管OPに接続された第1の流路と、インジェクション配管IJに接続された第2の流路とを有し、第1の流路を流れる冷凍機油と第2の流路を流れる冷媒とが熱交換できる構造を有しているものである。
(Sub heat exchanger 10)
The sub heat exchanger 10 can cool the refrigerating machine oil that could not be cooled by the condenser 2. The sub heat exchanger 10 is a heat exchanger that exchanges heat between the refrigerating machine oil and the refrigerant. The sub heat exchanger 10 has a first flow path connected to the oil return pipe OP and a second flow path connected to the injection pipe IJ, and the refrigerating machine oil flowing through the first flow path and the first flow path 2 has a structure capable of exchanging heat with the refrigerant flowing through the two flow paths.
[実施の形態3に係る冷凍装置103の有する効果]
 本実施の形態3に係る冷凍装置103は、実施の形態1、2に係る冷凍装置100、102と同様の効果に加えて次の効果を有する。本実施の形態3に係る冷凍装置103は、冷凍機油を冷却する構成として、凝縮器2に加えて補助冷却用のサブ熱交換器10を有し、インジェクション用の冷媒を冷凍機油の冷却に用いる。このため、圧縮機1から吐出される冷媒温度が上昇したときに、より容易に冷媒温度を低下させることができ、冷凍装置103の信頼性を向上させることができる。
[Effect of refrigeration apparatus 103 according to Embodiment 3]
The refrigeration apparatus 103 according to the third embodiment has the following effects in addition to the same effects as the refrigeration apparatuses 100 and 102 according to the first and second embodiments. The refrigerating apparatus 103 according to the third embodiment has a sub heat exchanger 10 for auxiliary cooling in addition to the condenser 2 as a configuration for cooling the refrigerating machine oil, and uses the refrigerant for injection for cooling the refrigerating machine oil. . For this reason, when the refrigerant temperature discharged from the compressor 1 rises, the refrigerant temperature can be more easily lowered, and the reliability of the refrigeration apparatus 103 can be improved.
 また、本実施の形態3に係る冷凍装置103では、サブ熱交換器10で冷凍機油が冷却される前に、凝縮器2において冷凍機油が冷却されるようになっている。このため、本実施の形態3に係る冷凍装置103は、インジェクション配管IJを流れる冷媒だけで冷凍機油を冷却する場合と比較すると、インジェクション配管IJを流れる冷媒温度が上昇してしまうことを抑制することができる。このため、圧縮機1にインジェクションされる冷媒温度の上昇を抑制し、圧縮機1から吐出される冷媒温度の上昇を抑制することができる。 In the refrigeration apparatus 103 according to the third embodiment, the refrigeration oil is cooled in the condenser 2 before the refrigeration oil is cooled in the sub heat exchanger 10. For this reason, the refrigeration apparatus 103 according to the third embodiment suppresses an increase in the temperature of the refrigerant flowing through the injection pipe IJ, as compared with the case where the refrigeration oil is cooled only by the refrigerant flowing through the injection pipe IJ. Can do. For this reason, an increase in the temperature of the refrigerant injected into the compressor 1 can be suppressed, and an increase in the temperature of the refrigerant discharged from the compressor 1 can be suppressed.
 すなわち、本実施の形態3に係る冷凍装置103は、凝縮器2における冷凍機油の冷却が足りない場合でもサブ熱交換器10で冷凍機油を冷却することと、インジェクション配管IJを流れる冷媒温度の上昇を抑制して圧縮機1から吐出される冷媒温度の上昇を抑制することとを両立することができる。 That is, the refrigeration apparatus 103 according to the third embodiment cools the refrigeration oil in the sub heat exchanger 10 even when the cooling of the refrigeration oil in the condenser 2 is insufficient, and raises the temperature of the refrigerant flowing through the injection pipe IJ. It is possible to achieve both of suppressing the rise in the temperature of the refrigerant discharged from the compressor 1 by suppressing the above.
実施の形態4.
 図4は、本実施の形態4に係る冷凍装置104の冷媒回路構成などの一例である。実施の形態4では、実施の形態1~3と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態4は、実施の形態2とは、液冷媒を圧縮機1に供給するインジェクション配管IJ及びインジェクション絞り装置8を設けていない点で異なっている。
Embodiment 4 FIG.
FIG. 4 is an example of a refrigerant circuit configuration of the refrigeration apparatus 104 according to the fourth embodiment. In the fourth embodiment, components that are the same as those in the first to third embodiments are given the same reference numerals, and differences will be mainly described. The fourth embodiment is different from the second embodiment in that the injection pipe IJ for supplying the liquid refrigerant to the compressor 1 and the injection throttle device 8 are not provided.
 制御部30は、温度判定手段30Aに加えて、温度判定手段30Aの判定結果に基づいてエコノマイザ絞り装置7の開度を制御する開度制御手段30Cとを有している。たとえば、温度判定手段30Aが、冷媒温度センサ9の検出結果がT1よりも高いと判定すると、開度制御手段30Cは、エコノマイザ絞り装置7の開度をさらに大きくする。これにより、エコノマイザ配管P7に液冷媒が流れていない場合には、液冷媒が流れることとなり、エコノマイザ配管P7に液冷媒が流れている場合には、液冷媒量が増えることになる。すなわち、エコノマイザ配管P7を介して圧縮機1に供給される液冷媒量を増加し、圧縮機1から吐出される冷媒温度の上昇を抑制することができる。 The control unit 30 includes, in addition to the temperature determination unit 30A, an opening degree control unit 30C that controls the opening degree of the economizer expansion device 7 based on the determination result of the temperature determination unit 30A. For example, when the temperature determination unit 30A determines that the detection result of the refrigerant temperature sensor 9 is higher than T1, the opening degree control unit 30C further increases the opening degree of the economizer expansion device 7. Thereby, when the liquid refrigerant is not flowing through the economizer pipe P7, the liquid refrigerant flows. When the liquid refrigerant is flowing through the economizer pipe P7, the amount of the liquid refrigerant is increased. That is, the amount of liquid refrigerant supplied to the compressor 1 via the economizer pipe P7 can be increased, and the rise in the temperature of the refrigerant discharged from the compressor 1 can be suppressed.
[実施の形態4に係る冷凍装置104の有する効果]
 本実施の形態4に係る冷凍装置104は、実施の形態1に係る冷凍装置100、102と同様の効果に加えて次の効果を有する。すなわち、本実施の形態4に係る冷凍装置104は、圧縮機1に液冷媒を供給して圧縮機1から吐出される冷媒温度の上昇を抑制することと、インジェクション配管IJ及びインジェクション絞り装置8を設ける分の製造コストアップの抑制とを両立することができる。
[Effects of refrigeration apparatus 104 according to Embodiment 4]
The refrigeration apparatus 104 according to the fourth embodiment has the following effects in addition to the same effects as the refrigeration apparatuses 100 and 102 according to the first embodiment. That is, the refrigeration apparatus 104 according to the fourth embodiment supplies liquid refrigerant to the compressor 1 to suppress an increase in the temperature of the refrigerant discharged from the compressor 1, and the injection pipe IJ and the injection throttle apparatus 8 It is possible to achieve both a reduction in manufacturing cost as much as provided.
実施の形態5.
 図5は、本実施の形態5に係る冷凍装置105の冷媒回路構成などの一例である。実施の形態5では、実施の形態1~4と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態5に係る冷凍装置105は、実施の形態3に係る冷凍装置103のサブ熱交換器10の代わりにサブ熱交換器11を有している。そして、実施の形態5に係る冷凍装置105は、実施の形態3とは異なり、インジェクション配管IJ、インジェクション絞り装置8及び冷媒温度センサ9が設けられていない。なお、実施の形態5に係る冷凍装置105も、実施の形態3と同様に、油戻し管OPが、凝縮器2の伝熱面積のうちの15%~25%の範囲を占めるかどうかは限定されない。実施の形態5に係る冷凍装置105は、たとえば、油戻し管OPが凝縮器2の伝熱面積のうちの15%未満となっている。
Embodiment 5 FIG.
FIG. 5 is an example of the refrigerant circuit configuration of the refrigeration apparatus 105 according to the fifth embodiment. In the fifth embodiment, components that are the same as those in the first to fourth embodiments are given the same reference numerals, and differences will be mainly described. The refrigeration apparatus 105 according to the fifth embodiment has a sub heat exchanger 11 instead of the sub heat exchanger 10 of the refrigeration apparatus 103 according to the third embodiment. Unlike the third embodiment, the refrigeration apparatus 105 according to the fifth embodiment is not provided with the injection pipe IJ, the injection throttle device 8, and the refrigerant temperature sensor 9. In the refrigeration apparatus 105 according to the fifth embodiment, as in the third embodiment, whether the oil return pipe OP occupies a range of 15% to 25% of the heat transfer area of the condenser 2 is limited. Not. In the refrigeration apparatus 105 according to Embodiment 5, for example, the oil return pipe OP is less than 15% of the heat transfer area of the condenser 2.
(サブ熱交換器11)
 サブ熱交換器11は、凝縮器2で冷却しきれなかった冷凍機油を冷却することができるものである。サブ熱交換器11は、冷凍機油と冷媒とを熱交換させる熱交換器である。サブ熱交換器11は、油戻し管OPに接続された第1の流路と、エコノマイザ配管P7に接続された第2の流路とを有し、第1の流路を流れる冷凍機油と第2の流路を流れる冷媒とが熱交換できる構造を有しているものである。
(Sub heat exchanger 11)
The sub heat exchanger 11 can cool the refrigerating machine oil that could not be cooled by the condenser 2. The sub heat exchanger 11 is a heat exchanger that exchanges heat between the refrigerating machine oil and the refrigerant. The sub heat exchanger 11 has a first flow path connected to the oil return pipe OP and a second flow path connected to the economizer pipe P7, and the refrigerating machine oil flowing through the first flow path and the first flow path 2 has a structure capable of exchanging heat with the refrigerant flowing through the two flow paths.
[実施の形態5に係る冷凍装置105の有する効果]
 本実施の形態5に係る冷凍装置105は、実施の形態1に係る冷凍装置100と同様の効果を有する。
[Effects of refrigeration apparatus 105 according to Embodiment 5]
The refrigeration apparatus 105 according to the fifth embodiment has the same effects as the refrigeration apparatus 100 according to the first embodiment.
実施の形態6.
 図6は、本実施の形態6に係る冷凍装置106の冷媒回路構成などの一例である。実施の形態6では、実施の形態1~5と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態6に係る冷凍装置106は、実施の形態1とは異なり、油戻し管OP2と、余剰冷媒を貯留するアキュムレータ12とを有している。そして、実施の形態6に係る冷凍装置106は、凝縮器2で冷凍機油を冷却するのではなく、アキュムレータ12で冷凍機油を冷却する。なお、油戻し管OP2は、一端側が油分離器5の冷凍機油流出側に接続され、アキュムレータ12を介して、他端側が圧縮機1に接続されている。
Embodiment 6 FIG.
FIG. 6 is an example of a refrigerant circuit configuration of the refrigeration apparatus 106 according to the sixth embodiment. In the sixth embodiment, components that are the same as those in the first to fifth embodiments are given the same reference numerals, and differences will be mainly described. Unlike Embodiment 1, the refrigeration apparatus 106 according to Embodiment 6 includes an oil return pipe OP2 and an accumulator 12 that stores excess refrigerant. The refrigerating apparatus 106 according to the sixth embodiment cools the refrigerating machine oil with the accumulator 12 instead of cooling the refrigerating machine oil with the condenser 2. The oil return pipe OP2 has one end connected to the refrigeration oil outflow side of the oil separator 5 and the other end connected to the compressor 1 via the accumulator 12.
(アキュムレータ12)
 アキュムレータ12は、一端側が冷媒配管P6を介して蒸発器4に接続され、他端側が冷媒配管P8を介して圧縮機1の吸入側に接続されている。アキュムレータ12は、液冷媒を貯留する容器12Aを有している。油戻し管OP2は、アキュムレータ2内の液冷媒と熱交換するように設けられている。具体的には、容器12Aには、たとえば底部側に寄るように油戻し管OP2の一部が配置されている。すなわち、油戻し管OP2は、アキュムレータ12の容器12A内の部分が、容器12Aの底部側に寄るように配置されている。これにより、油戻し管OP2は、容器12Aに貯留された液冷媒に、より確実に浸漬し、液冷媒と冷凍機油との熱交換が促進され、より高効率に冷凍機油の冷却がされる。
(Accumulator 12)
The accumulator 12 has one end connected to the evaporator 4 via the refrigerant pipe P6 and the other end connected to the suction side of the compressor 1 via the refrigerant pipe P8. The accumulator 12 has a container 12A for storing a liquid refrigerant. The oil return pipe OP2 is provided to exchange heat with the liquid refrigerant in the accumulator 2. Specifically, in the container 12A, for example, a part of the oil return pipe OP2 is disposed so as to approach the bottom side. That is, the oil return pipe OP2 is disposed so that the portion of the accumulator 12 in the container 12A is closer to the bottom side of the container 12A. Thereby, the oil return pipe OP2 is more reliably immersed in the liquid refrigerant stored in the container 12A, heat exchange between the liquid refrigerant and the refrigerating machine oil is promoted, and the refrigerating machine oil is cooled more efficiently.
[実施の形態6に係る冷凍装置106の有する効果]
 本実施の形態6に係る冷凍装置106は、別途、冷凍機油の冷却用の熱交換器を設けず、アキュムレータ12の一部を利用して冷凍機油を冷却するものである。このため、本実施の形態6に係る冷凍装置106は、別途、熱交換器を設けない分、製造コストを抑制することができる。
[Effects of refrigeration apparatus 106 according to Embodiment 6]
The refrigerating apparatus 106 according to the sixth embodiment separately cools the refrigerating machine oil by using a part of the accumulator 12 without providing a heat exchanger for cooling the refrigerating machine oil. For this reason, the refrigeration apparatus 106 according to the sixth embodiment can reduce the manufacturing cost because a heat exchanger is not separately provided.
 本実施の形態6に係る冷凍装置106は、アキュムレータ12の容器12Aに、油戻し管OP2の一部が配置されているため、アキュムレータ12内の液冷媒を加熱することができる。このため、アキュムレータ12から液冷媒が圧縮機1の吸入側に流出すること、いわゆる液バックをすることを抑制することができる。このため、本実施の形態6に係る冷凍装置106は、いわゆる液バックをすることを抑制することができる分、信頼性が向上している。 The refrigeration apparatus 106 according to the sixth embodiment can heat the liquid refrigerant in the accumulator 12 because a part of the oil return pipe OP2 is disposed in the container 12A of the accumulator 12. For this reason, it is possible to prevent the liquid refrigerant from flowing out from the accumulator 12 to the suction side of the compressor 1, that is, so-called liquid back. For this reason, the refrigeration apparatus 106 according to the sixth embodiment has improved reliability because the so-called liquid back can be suppressed.
 本実施の形態6に係る冷凍装置106は、アキュムレータ12で液冷媒が貯留することができるとともに、油戻し管OP2で液冷媒を加熱することもできる。このため、蒸発器4から液冷媒を含む二相状態の冷媒を流出させて蒸発器4の熱交換器としての効率の向上(性能向上)をさせても、いわゆる液バックが生じることを抑制することができる。 The refrigeration apparatus 106 according to the sixth embodiment can store the liquid refrigerant in the accumulator 12, and can also heat the liquid refrigerant in the oil return pipe OP2. For this reason, even if the refrigerant in the two-phase state including the liquid refrigerant flows out of the evaporator 4 to improve the efficiency (performance improvement) of the evaporator 4 as a heat exchanger, the so-called liquid back is suppressed. be able to.
実施の形態7.
 図7は、本実施の形態7に係る冷凍装置107の冷媒回路構成などの一例である。実施の形態7では、実施の形態1~6と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態7に係る冷凍装置107は、実施の形態6の構成に加えて油戻し管OP2に油溜め13を設けたものである。
Embodiment 7 FIG.
FIG. 7 shows an example of a refrigerant circuit configuration of the refrigeration apparatus 107 according to the seventh embodiment. In the seventh embodiment, components that are the same as those in the first to sixth embodiments are given the same reference numerals, and differences will be mainly described. In the refrigeration apparatus 107 according to the seventh embodiment, an oil sump 13 is provided in the oil return pipe OP2 in addition to the configuration of the sixth embodiment.
(油溜め13)
 油溜め13は、圧縮機1へ戻す冷凍機油の量の安定化を図るためのものである。油溜め13は、冷凍機油を貯留することができるものである。また、油溜め13は、油戻し管OP2のうちのアキュムレータ12よりも下流側であって圧縮機1よりも上流側に設けられているものである。
(Oil sump 13)
The oil sump 13 is for stabilizing the amount of refrigerating machine oil returned to the compressor 1. The oil sump 13 can store refrigeration oil. The oil sump 13 is provided downstream of the accumulator 12 in the oil return pipe OP2 and upstream of the compressor 1.
[実施の形態7に係る冷凍装置107の有する効果]
 実施の形態7に係る冷凍装置107は、実施の形態6に係る冷凍装置106と同様の効果を奏することに加えて次の効果を有する。すなわち、実施の形態7に係る冷凍装置107は、圧縮機1への冷凍機油の供給を安定化することができ、圧縮機1で冷凍機油が枯渇してしまうことを抑制することができる。これにより、実施の形態7に係る冷凍装置107は、圧縮機1を構成する摺動部品の摩耗をより確実に抑制することができ、信頼性が向上している。
[Effects of refrigeration apparatus 107 according to Embodiment 7]
The refrigeration apparatus 107 according to the seventh embodiment has the following effects in addition to the same effects as the refrigeration apparatus 106 according to the sixth embodiment. That is, the refrigeration apparatus 107 according to Embodiment 7 can stabilize the supply of refrigeration oil to the compressor 1 and can suppress the refrigeration oil from being exhausted by the compressor 1. Thereby, the refrigeration apparatus 107 according to the seventh embodiment can more reliably suppress the wear of the sliding parts constituting the compressor 1 and the reliability is improved.
実施の形態8.
 図8は、本実施の形態8に係る冷凍装置108の冷媒回路構成などの一例である。実施の形態8では、実施の形態1~7と共通する構成については同一符号を付し、相違点を中心に説明する。実施の形態8に係る冷凍装置108は、実施の形態1の構成に加えて、冷媒配管P1に設けられた冷媒温度センサ9とを有している。さらに、実施の形態8に係る冷凍装置108は、冷媒温度センサ9の検出結果が、たとえば予め設定された温度T1よりも高いか否かを判定する温度判定手段30Aと、冷媒温度センサ9の検出結果に基づいて凝縮器2に付設された凝縮器用送風機2Aの回転数を制御する回転数制御手段30Dとを有している。
Embodiment 8 FIG.
FIG. 8 shows an example of the refrigerant circuit configuration of the refrigeration apparatus 108 according to the eighth embodiment. In the eighth embodiment, components that are the same as those in the first to seventh embodiments are given the same reference numerals, and differences will be mainly described. In addition to the configuration of the first embodiment, the refrigeration apparatus 108 according to the eighth embodiment includes the refrigerant temperature sensor 9 provided in the refrigerant pipe P1. Furthermore, the refrigeration apparatus 108 according to Embodiment 8 includes a temperature determination unit 30A that determines whether or not the detection result of the refrigerant temperature sensor 9 is higher than, for example, a preset temperature T1, and the detection of the refrigerant temperature sensor 9. It has rotation speed control means 30D for controlling the rotation speed of the condenser blower 2A attached to the condenser 2 based on the result.
(回転数制御手段30D)
 回転数制御手段30Dは、たとえば、温度判定手段30Aが、冷媒温度センサ9の検出結果がT1よりも高いと判定すると、凝縮器用送風機2Aの回転数を増大させる。これにより、凝縮器2により多くの空気が供給され、油戻し管OPを介して凝縮器2に供給される冷凍機油の冷却を促進することができる。
(Rotation speed control means 30D)
For example, when the temperature determination unit 30A determines that the detection result of the refrigerant temperature sensor 9 is higher than T1, the rotation speed control unit 30D increases the rotation speed of the condenser blower 2A. Thereby, much air is supplied to the condenser 2 and cooling of the refrigerating machine oil supplied to the condenser 2 through the oil return pipe OP can be promoted.
[実施の形態8に係る冷凍装置108の有する効果]
 本実施の形態8に係る冷凍装置108は、実施の形態1に係る冷凍装置100の有する効果に加えて次の効果を有する。すなわち、冷凍装置107は、圧縮機1から吐出される冷媒温度が予め設定された温度T1よりも上昇すると凝縮器用送風機2Aの回転数を増大させる。このため、圧縮機1に戻される冷凍機油の温度を低下させて、圧縮機1から吐出される冷媒温度を抑制することができる。
[Effects of refrigeration apparatus 108 according to Embodiment 8]
The refrigeration apparatus 108 according to the eighth embodiment has the following effects in addition to the effects of the refrigeration apparatus 100 according to the first embodiment. That is, the refrigeration apparatus 107 increases the rotation speed of the condenser blower 2A when the temperature of the refrigerant discharged from the compressor 1 rises above a preset temperature T1. For this reason, the temperature of the refrigerating machine oil returned to the compressor 1 can be lowered, and the refrigerant temperature discharged from the compressor 1 can be suppressed.
 なお、本実施の形態8では、凝縮器用送風機2Aの回転数を増大させるものとして説明した。すなわち、圧縮機1から吐出される冷媒温度が上昇すると、その時点における凝縮器用送風機2Aの回転数を増速するということである。たとえば、凝縮器用送風機2Aの回転数を最大としてもよい。これにより、より高効率に圧縮機1から吐出される冷媒温度を抑制することができる。 In addition, in this Embodiment 8, it demonstrated as what increases the rotation speed of 2 A of condenser fans. That is, when the temperature of the refrigerant discharged from the compressor 1 rises, the rotational speed of the condenser blower 2A at that time is increased. For example, the rotation speed of the condenser fan 2A may be maximized. Thereby, the refrigerant temperature discharged from the compressor 1 can be suppressed with higher efficiency.
 また、本実施の形態8では、冷媒回路として実施の形態1に係る冷凍装置100のものを用いたが、それに限定されるものではない。本実施の形態8は、凝縮器2で冷凍機油を冷却する機構を有する実施の形態2~5の構成であっても、同様に適用することができる。 In the eighth embodiment, the refrigerant circuit of the refrigeration apparatus 100 according to the first embodiment is used as the refrigerant circuit, but the refrigerant circuit is not limited thereto. The eighth embodiment can be similarly applied to the configurations of the second to fifth embodiments having a mechanism for cooling the refrigerating machine oil by the condenser 2.
 1 圧縮機、1A 低段圧縮部、1B 高段圧縮部、2 凝縮器、2A 凝縮器用送風機、2B 油冷却部、3 主絞り装置、4 蒸発器、4A 蒸発器用送風機、5 油分離器、6 熱交換器、7 エコノマイザ絞り装置、8 インジェクション絞り装置、9 冷媒温度センサ、10 サブ熱交換器、11 サブ熱交換器、12 アキュムレータ、12A 容器、13 油溜め、30 制御部、30A 温度判定手段、30B 開度制御手段、30C 開度制御手段、30D 回転数制御手段、100 冷凍装置、102 冷凍装置、103 冷凍装置、104 冷凍装置、105 冷凍装置、106 冷凍装置、107 冷凍装置、108 冷凍装置、IJ インジェクション配管、OP 油戻し管、OP2 油戻し管、P 冷媒配管、P1 冷媒配管、P2 冷媒配管、P3 冷媒配管、P4 冷媒配管、P5 冷媒配管、P6 冷媒配管、P7 エコノマイザ配管、P8 冷媒配管、T1 温度。
 
1 Compressor, 1A Low stage compression section, 1B High stage compression section, 2 Condenser, 2A Condenser blower, 2B Oil cooling section, 3 Main throttle device, 4 Evaporator, 4A Evaporator blower, 5 Oil separator, 6 Heat exchanger, 7 economizer expansion device, 8 injection expansion device, 9 refrigerant temperature sensor, 10 sub heat exchanger, 11 sub heat exchanger, 12 accumulator, 12A container, 13 oil sump, 30 control unit, 30A temperature determination means, 30B Opening control means, 30C Opening control means, 30D Rotational speed control means, 100 Refrigeration apparatus, 102 Refrigeration apparatus, 103 Refrigeration apparatus, 104 Refrigeration apparatus, 105 Refrigeration apparatus, 106 Refrigeration apparatus, 107 Refrigeration apparatus, 108 Refrigeration apparatus, IJ injection pipe, OP oil return pipe, OP2 oil return pipe, P refrigerant pipe, P1 refrigerant pipe, P2 refrigerant pipe, P3 refrigerant pipe, P4 Refrigerant piping, P5 refrigerant piping, P6 refrigerant piping, P7 economizer piping, P8 refrigerant piping, T1 temperature.

Claims (10)

  1.  圧縮機、凝縮器、主絞り装置及び蒸発器が冷媒配管で接続されて構成された冷媒回路を有する冷凍装置であって、
     前記圧縮機と前記凝縮器との間の前記冷媒配管に接続され、前記圧縮機から吐出された冷媒と冷凍機油とを分離する油分離器と、
     前記油分離器において分離された冷凍機油を冷却する油冷却部と、
     前記油分離器の冷凍機油流出側と前記圧縮機とを、前記油冷却部を介して接続する油戻し管と、
     を備え、
     前記油冷却部は、
     前記凝縮器と一体的に設けられ、前記凝縮器の伝熱面積のうちの15%~25%の範囲を占めている冷凍装置。
    A refrigeration apparatus having a refrigerant circuit configured by connecting a compressor, a condenser, a main throttle device, and an evaporator with refrigerant piping,
    An oil separator which is connected to the refrigerant pipe between the compressor and the condenser and separates refrigerant discharged from the compressor and refrigerating machine oil;
    An oil cooling section for cooling the refrigerating machine oil separated in the oil separator;
    An oil return pipe connecting the refrigeration oil outflow side of the oil separator and the compressor via the oil cooling section;
    With
    The oil cooling section is
    A refrigeration apparatus provided integrally with the condenser and occupying a range of 15% to 25% of a heat transfer area of the condenser.
  2.  前記凝縮器と前記主絞り装置を接続する第1の流路と、前記第1の流路の下流側と前記主絞り装置との間と前記圧縮機とを接続する第2の流路とを有し、前記第1の流路を流れる冷媒と前記第2の流路を流れる冷媒とを熱交換するエコノマイザと、
     一端側が前記エコノマイザの前記第1の流路の下流側に接続され、前記エコノマイザの前記第1の流路を介して、他端側が前記圧縮機に接続されたエコノマイザ配管と、
     一端側が前記エコノマイザの前記第1の流路の下流側に接続され、他端側が前記圧縮機に接続されたインジェクション配管と、
     前記インジェクション配管に設けられたインジェクション絞り装置と、
     前記油分離器と前記圧縮機の吐出側との間の前記冷媒配管の温度を検出する冷媒温度センサと、
     前記冷媒温度センサの検出結果に基づいて前記インジェクション絞り装置の開度を制御する制御部とをさらに備えた請求項1に記載の冷凍装置。
    A first flow path connecting the condenser and the main throttle device; and a second flow path connecting the compressor between the downstream side of the first flow path and the main throttle device. An economizer for exchanging heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path;
    One end side is connected to the downstream side of the first flow path of the economizer, and the other end side is connected to the compressor via the first flow path of the economizer;
    One end side is connected to the downstream side of the first flow path of the economizer, and the other end side is an injection pipe connected to the compressor;
    An injection throttle device provided in the injection pipe;
    A refrigerant temperature sensor for detecting a temperature of the refrigerant pipe between the oil separator and a discharge side of the compressor;
    The refrigeration apparatus according to claim 1, further comprising a control unit that controls an opening degree of the injection throttle device based on a detection result of the refrigerant temperature sensor.
  3.  前記凝縮器と前記主絞り装置を接続する第1の流路と、前記第1の流路の下流側と前記主絞り装置との間と前記圧縮機とを接続する第2の流路とを有し、前記第1の流路を流れる冷媒と前記第2の流路を流れる冷媒とを熱交換するエコノマイザと、
     一端側が前記エコノマイザの前記第1の流路の下流側に接続され、前記エコノマイザの前記第1の流路を介して、他端側が前記圧縮機に接続されたエコノマイザ配管と、
     前記エコノマイザ配管に設けられたエコノマイザ絞り装置と、
     前記油分離器と前記圧縮機の吐出側との間の前記冷媒配管の温度を検出する冷媒温度センサと、
     前記冷媒温度センサの検出結果に基づいて前記エコノマイザ絞り装置の開度を制御する制御部とをさらに備えた請求項1に記載の冷凍装置。
    A first flow path connecting the condenser and the main throttle device; and a second flow path connecting the compressor between the downstream side of the first flow path and the main throttle device. An economizer for exchanging heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path;
    One end side is connected to the downstream side of the first flow path of the economizer, and the other end side is connected to the compressor via the first flow path of the economizer;
    An economizer throttle device provided in the economizer pipe;
    A refrigerant temperature sensor for detecting a temperature of the refrigerant pipe between the oil separator and a discharge side of the compressor;
    The refrigeration apparatus according to claim 1, further comprising a control unit that controls an opening degree of the economizer throttle device based on a detection result of the refrigerant temperature sensor.
  4.  圧縮機、凝縮器、主絞り装置及び蒸発器が冷媒配管で接続されて構成された冷媒回路を有する冷凍装置であって、
     前記圧縮機と前記凝縮器との間の前記冷媒配管に接続され、前記圧縮機から吐出された冷媒と冷凍機油とを分離する油分離器と、
     前記油分離器の冷凍機油流出側と前記圧縮機とを前記凝縮器を介して接続する油戻し管と、
     前記凝縮器と前記主絞り装置を接続する第1の流路と、前記第1の流路の下流側と前記主絞り装置との間と前記圧縮機とを接続する第2の流路とを有し、前記第1の流路を流れる冷媒と前記第2の流路を流れる冷媒とを熱交換するエコノマイザと、
     一端側が前記凝縮器と前記主絞り装置との間に接続され、他端側が前記圧縮機に接続された接続配管と、
     前記油戻し管のうちの前記凝縮器よりも下流側と前記接続配管とに接続され、冷凍機油と冷媒とを熱交換するサブ熱交換器と、
     を備えた冷凍装置。
    A refrigeration apparatus having a refrigerant circuit configured by connecting a compressor, a condenser, a main throttle device, and an evaporator with refrigerant piping,
    An oil separator which is connected to the refrigerant pipe between the compressor and the condenser and separates refrigerant discharged from the compressor and refrigerating machine oil;
    An oil return pipe connecting the refrigeration oil outflow side of the oil separator and the compressor via the condenser;
    A first flow path connecting the condenser and the main throttle device; and a second flow path connecting the compressor between the downstream side of the first flow path and the main throttle device. An economizer for exchanging heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path;
    One end side is connected between the condenser and the main throttle device, and the other end side is connected to the compressor, and a connection pipe;
    A sub heat exchanger that is connected to the downstream side of the condenser and the connection pipe in the oil return pipe and exchanges heat between the refrigeration oil and the refrigerant,
    A refrigeration apparatus.
  5.  前記接続配管が、一端側が前記エコノマイザの前記第1の流路の下流側に接続され、前記サブ熱交換器を介して、他端側が前記圧縮機に接続されたインジェクション配管であるものにおいて、
     前記インジェクション配管のうちの前記サブ熱交換器の上流側に接続されたインジェクション絞り装置と、
     前記油分離器と前記圧縮機の吐出側との間の前記冷媒配管の温度を検出する冷媒温度センサと、
     前記冷媒温度センサの検出結果に基づいて前記インジェクション絞り装置の開度を制御する制御部とをさらに備えた請求項4に記載の冷凍装置。
    In the connection pipe, one end side is connected to the downstream side of the first flow path of the economizer, and the other end side is an injection pipe connected to the compressor via the sub heat exchanger.
    An injection throttle device connected to the upstream side of the sub heat exchanger in the injection pipe;
    A refrigerant temperature sensor for detecting a temperature of the refrigerant pipe between the oil separator and a discharge side of the compressor;
    The refrigeration apparatus according to claim 4, further comprising a control unit that controls an opening degree of the injection throttle device based on a detection result of the refrigerant temperature sensor.
  6.  前記接続配管が、一端側が前記エコノマイザの前記第1の流路の下流側に接続され、前記エコノマイザの前記第2の流路及び前記サブ熱交換器を介して、他端側が前記圧縮機に接続されたエコノマイザ配管であるものにおいて、
     前記エコノマイザ配管のうちの前記サブ熱交換器の上流側に接続されたエコノマイザ絞り装置と、
     前記油分離器と前記圧縮機の吐出側との間の前記冷媒配管の温度を検出する冷媒温度センサと、
     前記冷媒温度センサの検出結果に基づいて前記エコノマイザ絞り装置の開度を制御する制御部とをさらに備えた請求項4に記載の冷凍装置。
    One end side of the connection pipe is connected to the downstream side of the first flow path of the economizer, and the other end side is connected to the compressor via the second flow path of the economizer and the sub heat exchanger. In what is the economizer piping,
    An economizer throttle device connected to the upstream side of the sub heat exchanger in the economizer piping;
    A refrigerant temperature sensor for detecting a temperature of the refrigerant pipe between the oil separator and a discharge side of the compressor;
    The refrigeration apparatus according to claim 4, further comprising a control unit that controls an opening degree of the economizer throttle device based on a detection result of the refrigerant temperature sensor.
  7.  前記凝縮器に付設され、前記凝縮器に供給された冷媒と空気との熱交換を促進させる凝縮器用送風機をさらに備え、
     前記制御部は、
     前記温度判定手段が予め設定された温度よりも高いと判定した場合に、前記凝縮器用送風機の回転数を増大させる回転数制御手段をさらに有する請求項2、3、5、6のいずれか一項に記載の冷凍装置。
    A condenser blower that is attached to the condenser and that promotes heat exchange between the refrigerant and air supplied to the condenser;
    The controller is
    The rotation speed control means for increasing the rotation speed of the condenser blower when the temperature determination means determines that the temperature is higher than a preset temperature. 7. The refrigeration apparatus described in 1.
  8.  圧縮機、凝縮器、主絞り装置及び蒸発器が冷媒配管で接続されて構成された冷媒回路を有する冷凍装置であって、
     前記圧縮機と前記凝縮器との間の前記冷媒配管に接続され、前記圧縮機から吐出された冷媒と冷凍機油とを分離する油分離器と、
     前記蒸発器と前記圧縮機の吸入側との間に接続され、前記冷媒回路中の余剰冷媒を貯留する容器を有するアキュムレータと、
     前記油分離器の冷凍機油流出側と前記圧縮機とを、前記アキュムレータを介して接続する油戻し管と、
     を備え、
     前記油戻し管は、
     前記アキュムレータ内の液冷媒と熱交換するように設けられている冷凍装置。
    A refrigeration apparatus having a refrigerant circuit configured by connecting a compressor, a condenser, a main throttle device, and an evaporator with refrigerant piping,
    An oil separator which is connected to the refrigerant pipe between the compressor and the condenser and separates refrigerant discharged from the compressor and refrigerating machine oil;
    An accumulator connected between the evaporator and the suction side of the compressor and having a container for storing excess refrigerant in the refrigerant circuit;
    An oil return pipe connecting the compressor oil outflow side of the oil separator and the compressor via the accumulator;
    With
    The oil return pipe is
    A refrigeration apparatus provided to exchange heat with the liquid refrigerant in the accumulator.
  9.  前記油戻し管のうちの前記アキュムレータよりも下流側に設けられ、冷凍機油を貯留する油溜めとをさらに備えた請求項8に記載の冷凍装置。 The refrigeration apparatus according to claim 8, further comprising an oil sump that is provided downstream of the accumulator in the oil return pipe and stores refrigeration oil.
  10.  前記圧縮機は、
     冷媒を圧縮する低段側圧縮部と、
     前記低段側圧縮部で圧縮した冷媒を圧縮する高段側圧縮部とを有し、
     前記油戻し管は、
     前記低段側圧縮部及び前記高段側圧縮部のそれぞれに冷凍機油が供給されるように、前記低段側圧縮部及び前記高段側圧縮部に接続されている請求項1~9のいずれか一項に記載の冷凍装置。
     
    The compressor is
    A low-stage compression section that compresses the refrigerant;
    A high-stage compression section that compresses the refrigerant compressed by the low-stage compression section,
    The oil return pipe is
    10. The method according to claim 1, wherein the low-stage compression section and the high-stage compression section are connected to the low-stage compression section and the high-stage compression section so that refrigeration oil is supplied to each of the low-stage compression section and the high-stage compression section. The refrigeration apparatus according to claim 1.
PCT/JP2014/063005 2014-05-15 2014-05-15 Refrigeration unit WO2015173939A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/063005 WO2015173939A1 (en) 2014-05-15 2014-05-15 Refrigeration unit
JP2016519060A JP6359095B2 (en) 2014-05-15 2014-05-15 Refrigeration equipment
CN201480073546.8A CN105917178B (en) 2014-05-15 2014-05-15 Refrigerating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/063005 WO2015173939A1 (en) 2014-05-15 2014-05-15 Refrigeration unit

Publications (1)

Publication Number Publication Date
WO2015173939A1 true WO2015173939A1 (en) 2015-11-19

Family

ID=54479508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063005 WO2015173939A1 (en) 2014-05-15 2014-05-15 Refrigeration unit

Country Status (3)

Country Link
JP (1) JP6359095B2 (en)
CN (1) CN105917178B (en)
WO (1) WO2015173939A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111888A1 (en) * 2017-05-31 2018-12-06 Hanon Systems Refrigeration system with separate oil circuit
WO2019021360A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Refrigeration cycle device
WO2020122615A1 (en) * 2018-12-12 2020-06-18 엘지전자 주식회사 Air conditioner

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766371B (en) * 2016-11-29 2019-12-10 珠海格力电器股份有限公司 two-stage compressor heat pump and oil return control system and control method thereof
CN110440402B (en) * 2019-07-02 2021-09-21 青岛海尔空调电子有限公司 Air conditioner and oil return control method thereof
CN111043795B (en) * 2019-12-27 2021-08-20 广东美的白色家电技术创新中心有限公司 Compressor assembly and refrigeration equipment
JP7292428B2 (en) * 2020-01-07 2023-06-16 三菱電機株式会社 refrigeration cycle equipment
CN112815584B (en) * 2021-02-24 2023-05-23 孟雷 Liquid filling and supplying system with low filling amount and oil return method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298763A (en) * 1989-05-15 1990-12-11 Hitachi Ltd Refrigerator
JPH04203764A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Freezer device
JP2001194033A (en) * 1999-12-28 2001-07-17 Mitsubishi Heavy Ind Ltd Car air conditioner
JP2003021409A (en) * 2001-07-10 2003-01-24 Japan Climate Systems Corp Air conditioner for vehicle
JP2004301462A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Refrigerating machine
WO2005108881A1 (en) * 2004-05-07 2005-11-17 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Air-conditioning compressor
JP2006300341A (en) * 2005-04-15 2006-11-02 Hitachi Ltd Refrigerating apparatus
WO2012026317A1 (en) * 2010-08-27 2012-03-01 株式会社日立産機システム Oil-cooled gas compressor
JP2012137214A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3327197B2 (en) * 1997-08-19 2002-09-24 三菱電機株式会社 Refrigeration air conditioner
JP4356214B2 (en) * 2000-08-21 2009-11-04 三菱電機株式会社 Oil separator and outdoor unit

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02298763A (en) * 1989-05-15 1990-12-11 Hitachi Ltd Refrigerator
JPH04203764A (en) * 1990-11-30 1992-07-24 Hitachi Ltd Freezer device
JP2001194033A (en) * 1999-12-28 2001-07-17 Mitsubishi Heavy Ind Ltd Car air conditioner
JP2003021409A (en) * 2001-07-10 2003-01-24 Japan Climate Systems Corp Air conditioner for vehicle
JP2004301462A (en) * 2003-04-01 2004-10-28 Hitachi Ltd Refrigerating machine
WO2005108881A1 (en) * 2004-05-07 2005-11-17 Luk Fahrzeug-Hydraulik Gmbh & Co. Kg Air-conditioning compressor
JP2006300341A (en) * 2005-04-15 2006-11-02 Hitachi Ltd Refrigerating apparatus
WO2012026317A1 (en) * 2010-08-27 2012-03-01 株式会社日立産機システム Oil-cooled gas compressor
JP2012137214A (en) * 2010-12-24 2012-07-19 Mitsubishi Electric Corp Refrigerating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017111888A1 (en) * 2017-05-31 2018-12-06 Hanon Systems Refrigeration system with separate oil circuit
DE102017111888B4 (en) 2017-05-31 2023-06-15 Hanon Systems Refrigeration system with separate oil circuit
WO2019021360A1 (en) * 2017-07-25 2019-01-31 三菱電機株式会社 Refrigeration cycle device
JPWO2019021360A1 (en) * 2017-07-25 2019-12-12 三菱電機株式会社 Refrigeration cycle equipment
WO2020122615A1 (en) * 2018-12-12 2020-06-18 엘지전자 주식회사 Air conditioner

Also Published As

Publication number Publication date
JP6359095B2 (en) 2018-07-18
JPWO2015173939A1 (en) 2017-04-20
CN105917178B (en) 2018-02-02
CN105917178A (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP6359095B2 (en) Refrigeration equipment
KR101214343B1 (en) Refrigeration device
JP3988779B2 (en) Refrigeration equipment
JP6264688B2 (en) Refrigeration equipment
JP5323023B2 (en) Refrigeration equipment
JP2011208860A (en) Air conditioner
JP6370470B2 (en) Refrigeration equipment
JPWO2014068967A1 (en) Refrigeration equipment
JP2015148407A (en) Refrigeration device
JP2015148406A (en) Refrigeration device
JP2013139902A (en) Refrigeration device
JP2019138499A (en) Air conditioning apparatus
JP2013076541A (en) Heat pump
JP2014190614A (en) Turbo refrigerator
JP6388260B2 (en) Refrigeration equipment
JP6091616B2 (en) Refrigeration cycle equipment
JP2014163624A (en) Turbo refrigerator
JP2013164250A (en) Refrigerating apparatus
CN107328002A (en) The air conditioner heat pump system and its working method of a kind of temperature control throttling
JP5971633B2 (en) Refrigeration cycle equipment
JP6497582B2 (en) Refrigerator unit
JP2014102008A (en) Refrigeration apparatus
JP6497581B2 (en) Refrigerator unit
JP6069179B2 (en) Turbo refrigerator
JP6065261B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14892167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519060

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14892167

Country of ref document: EP

Kind code of ref document: A1